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Abstract

This paper discusses transductive versions of conformal predictors and inductive
conformal predictors. The transductive versions are computationally inefficient
for long test sequences, but it turns out that apparently crude “Bonferroni pre-
dictors” are about as good in their informational efficiency and vastly superior
in computational efficiency. The paper explores transductive predictors both
theoretically and experimentally, in the latter case using the standard USPS
data set of handwritten digits.
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1 Introduction

The most standard learning problems are inductive: given a training sequence of
labelled objects, the task is to come up with a prediction rule with a reasonable
performance on unknown test objects. In typical transductive problems (Vapnik
and Chervonenkis[10], Chapter VI, Sections 10–13; Vapnik[9], Chapter 8) we
are given both a training sequence of labelled objects and a test sequence of
unlabelled objects; the task is to come up with a prediction rule, which may
depend on both sequences, with a reasonable performance on the test sequence.

Conformal prediction (see, e.g., Vovk et al.[13]) is a set of methods for pro-
ducing prediction regions rather than point predictions. Typical predictors of
this kind are conformal predictors (Vovk et al.[13], Chapter 2), inductive con-
formal predictors (Vovk et al.[13], Section 4.1), and cross-conformal predictors
(Vovk[14]). None of these methods is transductive in the sense of Vapnik and
Chervonenkis[10] and Vapnik[9] (although conformal predictors do have a trans-
ductive flavour, as discussed in Section 7 below).

The goal of this paper is to introduce fully transductive versions of confor-
mal and related predictors. The basic definitions are given in Section 2. Sec-
tion 3 introduces Bonferroni predictors, a simple and computationally efficient
modification of conformal predictors adapted to the transductive framework.
Sections 4 and 5 contain simple theoretical results about transductive confor-
mal predictors and Bonferroni predictors. Section 6 reports on experimental
results. Section 7 discusses the notion of transduction as used in this paper
and in existing literature. Section 8 concludes the main part of the paper. A
applies the same ideas to inductive conformal predictors, and B discusses disad-
vantages of the standard statistical approach to combining ranks in the context
of transductive conformal prediction.

The expression “transductive conformal predictors” has been used before
(see, e.g., Nouretdinov et al.[5]) to refer to what is called “conformal predictors”
in Vovk et al.[13] and this paper. This usage agrees with the terminology of
this paper, since conformal predictors are a special case of our transductive
conformal predictors corresponding to a test sequence of length 1.

2 Transductive Conformal Predictors

Let z1 = (x1, y1), . . . , zl = (xl, yl) be a training sequence and xl+1, . . . , xl+k be
a test sequence. The test sequence is a finite sequence of objects xj ∈ X and
the training sequence is a finite sequence of labelled objects, or observations,
zi = (xi, yi) ∈ Z := X×Y. The object space X, label space Y, and observation
space Z := X × Y are fixed throughout the paper; they are assumed to be
measurable spaces. The set of all finite sequences of elements of Z is denoted
Z∗; similar notation will be used for other sets as well (such as R∗ for the set of
all finite sequences of real numbers).

Transductive conformal predictors are determined by their transductive non-
conformity measures, which are defined as follows. A transductive nonconfor-
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mity measure is a measurable function A : Z∗ × Z∗ → R such that A(ζ1, ζ2)
does not depend on the ordering of ζ1. (For the specific transductive nonconfor-
mity measures used in this paper A(ζ1, ζ2) will not depend on the ordering of ζ2
either.) The intuition is that A(ζ1, ζ2) (the transductive nonconformity score)
measures the lack of conformity of the “test sequence” ζ2 to the “training se-
quence” ζ1.

The transductive conformal predictor (TCP) corresponding to A finds the
prediction region for the test sequence xl+1, . . . , xl+k at a significance level ε ∈
(0, 1) as follows:

• For each possible sequence of labels (υ1, . . . , υk) ∈ Yk:

– set yj := υj−l and zj := (xj , yj) for j = l + 1, . . . , l + k;

– compute the transductive nonconformity scores

αS := A(z{1,...,l+k}\S , zS),

where S ranges over all (l+k)!/l! ordered subsets (s1, . . . , sk) of size k
of the set {1, . . . , l + k}, zS stands for the sequence (zs1 , . . . , zsk)
(when S = (s1, . . . , sk)), and z{1,...,l+k}\S stands for zB , B being any
ordering of {1, . . . , l + k} \ S′ and S′ being the set of all elements of
S (it does not matter which ordering is chosen, by the definition of
a transductive nonconformity measure);

– compute the p-value

p(υ1, . . . , υk) :=

∣∣{S | αS ≥ α(l+1,...,l+k)}
∣∣

(l + k)!/l!
, (1)

where S ranges, as before, over all (l + k)!/l! ordered subsets of
{1, . . . , l + k} of size k, and |· · · | stands for the size of a set.

• Output the prediction region

Γε(z1, . . . , zl, xl+1, . . . , xl+k) :=
{

(υ1, . . . , υk) ∈ Yk | p(υ1, . . . , υk) > ε
}
.

(2)

Smoothed TCPs are defined in the same way except that (1) is replaced by

p(υ1, . . . , υk) :=

∣∣{S | αS > α(l+1,...,l+k)}
∣∣+ θ

∣∣{S | αS = α(l+1,...,l+k)}
∣∣

(l + k)!/l!
,

where θ are random variables distributed uniformly on [0, 1] (no independence
between different sequences of postulated labels υ1, . . . , υk is required, but later
on when we consider the online prediction protocol we will assume that θ are
independent between different trials).

A nonconformity measure can now be defined as the restriction of a trans-
ductive nonconformity measure to the domain Z∗ × Z (we identify a 1-element
sequence with its only element). Nonconformity measures are well studied and
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there are many useful examples of them (see, e.g., Vovk et al.[13]). For example,
a natural choice of a nonconformity measure is

A(ζ, (x, y)) := ∆(y, f(x)) , (3)

where f : X → Y′ is a prediction rule found from ζ as the training sequence
and ∆ : Y ×Y′ → R is a distance between a label and a prediction. (Usually
Y′ ⊇ Y, such as Y′ = [0, 1] ⊇ {0, 1} = Y.)

An interesting class of transductive nonconformity measures can be obtained
from nonconformity measures. Let R be the set of real numbers. A simple
nonconformity aggregator is a function M : R∗ → R that is symmetric and
increasing in each argument. (The requirement that M be symmetric, i.e.,
M(ζ) not depend on the ordering of ζ, is not necessary but convenient for the
following discussion. The requirement that M be increasing in each argument
is not necessary either but very natural.) With each nonconformity measure
A and simple nonconformity aggregator M we can associate the transductive
nonconformity measure

AM ((z1, . . . , zl), (zl+1, . . . , zl+k)) := M(αl+1, . . . , αl+k) ,

where

αj := A((z1, . . . , zl, zl+1, . . . , zj−1, zj+1, . . . , zl+k), zj), j = l+1, . . . , l+k . (4)

Our experiments in Section 6 use the Nearest Neighbour nonconformity measure

A
(
((x1, y1), . . . , (xn, yn)), (x, y)

)
:=

mini=1,...,n:yi=y d(x, xi)

mini=1,...,n:yi 6=y d(x, xi)
, (5)

where d is a distance, and the max nonconformity aggregator

M(α1, . . . , αk) := max(α1, . . . , αk) . (6)

Remark. Alternatively, we could set αj := A((z1, . . . , zl), zj) in (4) (cf. (13)
below), but this would adversely affect the already low computational efficiency
of TCPs in our experiments in Section 6.

Rank-based Transductive Conformal Predictors

The notion of a simple nonconformity aggregator can be generalized as follows.
A nonconformity aggregator is a function M : R∗×R∗ → R such that M(ζ1, ζ2)
depends neither on the ordering of ζ1 nor on the ordering on ζ2. (The most
natural class of nonconformity aggregators is where M(ζ1, ζ2) is decreasing in
every element of ζ1 and increasing in every element of ζ2, but it is too narrow
for our purposes.) With each nonconformity measure A and nonconformity
aggregator M we associate the transductive nonconformity measure

AM ((z1, . . . , zl), (zl+1, . . . , zl+k)) := M
(
(α1, . . . , αl), (αl+1, . . . , αl+k)

)
3



where

αi := A((z1, . . . , zi−1, zi+1, . . . , zl, zl+1, . . . , zl+k), zi), i = 1, . . . , l, (7)

and αl+1, . . . , αl+k are defined by (4). We identify each simple nonconformity
aggregator M with the nonconformity aggregator

M†((α1, . . . , αl), (αl+1, . . . , αl+k)) := M(αl+1, . . . , αl+k) .

For transductive nonconformity measures obtained from nonconformity mea-
sures and nonconformity aggregators, the p-value (1) as function of the noncon-
formity scores αi of individual observations reduces to the well-known notion of
a one-sided permutation test (see, e.g., Lehmann[4], Section 1.7.E). In classical
nonparametric statistics, the most popular permutation tests are rank tests, and
we will give corresponding definitions in our current context. Let N := {1, 2, . . .}.
A (simple) rank aggregator is a function M : N∗ → N that is symmetric and
increasing in each argument. The corresponding nonconformity aggregator is

M ′
(
(α1, . . . , αl), (αl+1, . . . , αl+k)

)
:= M(Rl+1, . . . , Rl+k) , (8)

where R1, . . . , Rl+k are the ranks of α1, . . . , αl+k, respectively, in the multiset
*α1, . . . , αl+k+. Formally, Ri is defined as

Ri := |{j = 1, . . . , l + k | αj < αi}|+ 1 .

If there are no ties (i.e., equal elements in *α1, . . . , αl+k+), this is the usual no-
tion of a rank; in the presence of ties, our definition is somewhat non-standard
giving each tie the smallest of the ranks that it spans. (And this definition
causes a counterintuitive behaviour of the definition (8), where M ′ is not nec-
essarily increasing in αj , j ∈ {l+ 1, . . . , l+ k}, even in the case where M is the
max nonconformity aggregator (6).) (In classical nonparametric statistics, Ri
is usually defined as

Ri :=
|{j = 1, . . . , n | αj ≤ αi}|+ |{j = 1, . . . , n | αj < αi}|+ 1

2
,

where n := l + k. Informally, the ranks are computed as follows: rank the αi
starting from 1 and give each tie a rank equal to the average of the ranks it
spans. Such Ri are also known as midranks: cf. Lehmann[4], Section 1.4.)

The most popular rank aggregator in classical nonparametric statistics is the
ranksum aggregator

M(R1, . . . , Rk) := R1 + · · ·+Rk , (9)

which is used in the Wilcoxon ranksum test (see Wilcoxon[15] or Lehmann[4],
Section 1.2). Using the ranksum aggregator, however, produces very poor results
(see B) when the efficiency of TCPs is measured by the number of multiple
predictions that they produce, as in this paper (see Section 6 below).
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Remark. The classical Wilcoxon ranksum test as applied to nonconformity
scores consists in computing the p-value (1) from the nonconformity aggregator
corresponding to the ranksum aggregator (9). More generally, each rank aggre-
gator M defines a statistical test for testing whether two independent samples
are coming from the same distribution (with sum corresponding to the classical
one-sided Wilcoxon ranksum test[15, 4]). Let S1 and S2 be two finite sets of real
numbers; suppose, for simplicity, that all their elements are different. Find the
ranks of S2 in the merged set S1 ∪ S2. Apply M to those ranks; let the result
be t. The p-value pM (S1, S2) produced by the test (the M -test) is equal to the
probability that the value of M will be at least t under the null hypothesis. In
other words, pM (S1, S2) is equal to the probability that the value of M on a
random sample of size |S2| without replacement from {1, . . . , |S2|+ |S2|} will be
at least t.

Notice that the nonconformity aggregator (6) is equivalent (in the sense
of leading to the same TCP) to the rank aggregator M ′(R1, . . . , Rk) :=
max(R1, . . . , Rk). The corresponding TCP will be called the rankmax TCP
(and the TCP corresponding to (9) will be called the ranksum TCP).

It is easy to give an explicit representation of the rankmax TCP. Remember
that the length of the training sequence is l and the length of the test sequence is
k and suppose that the value of the rankmax test statistic max(Rl+1, . . . , Rl+k)
is t. The probability that a random subset {s1, . . . , sk} of {1, . . . , l+k} of size k
will lead to a value of the test statistic max(Rs1 , . . . , Rsk) of at least t can be
found as 1 minus the probability that a random subset of {1, . . . , l+k} of size k
is covered by a fixed subset of {1, . . . , l + k} of size t− 1 (namely, by the set of
indices i with Ri < t). In other words, the p-value is

1−
(
t−1
k

)(
l+k
k

) = 1− (t− 1)! l!

(t− 1− k)! (l + k)!
(10)

(which is understood to be 1 when t ≤ k).

Remark. The smallest possible value of (10), attained when t = l + k, is

1−
(
t−1
k

)(
l+k
k

) =
k

l + k
.

3 Bonferroni Predictors

Unfortunately, transductive conformal predictors are computationally ineffi-
cient, especially if we want to predict many test objects at once: we have to go
over all |Y|k combinations of labels for the test sequence. (Even if A(ζ1, ζ2) does
not depend on the ordering of ζ2, there are no computational savings unless the
test sequence contains many identical objects.) We next introduce a family of
region predictors based on the idea of the Bonferroni adjustment of p-values. In
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brief, a Bonferroni predictor computes a p-value for each test object separately
and then combines the k p-values into one p-value using the Bonferroni formula

p := min(kp1, . . . , kpk, 1) . (11)

The full description of the Bonferroni predictor (BP) corresponding to a non-
conformity measure A is as follows:

• For each object xj , j ∈ {l + 1, . . . , l + k}, in the test sequence and each
possible label υ ∈ Y:

– set yj := υ and zj := (xj , yj);

– compute the nonconformity scores

αi := A((z1, . . . , zi−1, zi+1, . . . , zl, zj), zi), i = 1, . . . , l,(12)

αj := A((z1, . . . , zl), zj) ; (13)

– compute the p-value

pj−l(υ) :=
|{i = 1, . . . , l | αi ≥ αj}|+ 1

l + 1
. (14)

• Output the prediction region

Γε(z1, . . . , zl, xl+1, . . . , xl+k) :=

l+k∏
j=l+1

{υ | pj−l(υ) > ε/k} , (15)

where ε ∈ (0, 1) is the significance level.

Notice that the prediction region (15) output by the BP can be rewritten in the
form (2) if we define

p(υ1, . . . , υk) := min(kp1(υ1), . . . , kpk(υk), 1) (16)

(cf. (11)).
It is difficult to compare the rankmax TCP and the corresponding BP the-

oretically, but the following intermediate notion facilitates a comparison. The
semi-Bonferroni predictor (SBP) is defined as follows:

• For each possible sequence of labels (υ1, . . . , υk) ∈ Yk for the test se-
quence:

– set yj := υj−l and zj := (xj , yj) for j = l + 1, . . . , l + k;

– compute nonconformity scores αi, i = 1, . . . , l + k, by

αi := A((z1, . . . , zi−1, zi+1, . . . , zl+k), zi), i = 1, . . . , l + k (17)

(cf. (7) and (4); the main difference of (17) from (7) and (4) is that
(17) involves the true training observations and test objects whereas
(7) and (4) involve arbitrary subsets of size l and k of the union of
the training sequence and the test sequence with postulated labels);
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– compute the p-value (14) for each j = l+1, . . . , l+k and merge these
p-values using (16).

• Output the prediction region (2).

Notice that the SBP becomes identical to the BP when (17) is replaced by
(12) and (13) for j = l + 1, . . . , l + k.

The following lemma shows that SBPs are usually weaker than the corre-
sponding rankmax TCPs. (However, in Remark 3 and Section 6 we will see that
the difference can be surprisingly small.)

Lemma 1. Suppose all nonconformity scores (17) are different. The p-value
(10) produced by a rankmax TCP does not exceed the p-value (16) produced by
the corresponding SBP.

Proof. Let t be the value of the rankmax test statistic, as defined at the end of
Section 2. We are required to prove

1−
(
t−1
k

)(
l+k
k

) ≤ k l + k − t+ 1

l + 1
. (18)

Indeed, the left-hand side of (18) is identical to (10), and the ratio on the right-
hand side of (18) is the smallest of the p-values (14) over j (cf. (16)). The
statement that the ratio on the right-hand side of (18) is the smallest of the p-
values (14) depends on (17) being all different (in fact, it is sufficient to assume
that the maximum in the definition of the rankmax test statistic t is attained on
only one test object). Notice, however, that the right-hand side of (18) is always
an upper bound on the SBP p-value; this fact will be used in our discussions
below.

We will prove a slightly stronger inequality than (18) replacing the denom-
inator l + 1 by l + k. In principle, t can take any value in {1, . . . , l + k}, but
we can assume, without loss of generality, that t ∈ {k + 1, . . . , l + k}: if t ≤ k,
the left-hand side of (18) is 1 by definition and the right-hand side is at least 1
(even when l + 1 is replaced by l + k). Rewriting (18) (with l + k in place of
l + 1) as

1− (t− 1)(t− 2) · · · (t− k)

k!
(
l+k
k

) ≤ k l + k − t+ 1

l + k
, (19)

we can assume that t ∈ [k+ 1, l+ k]. Since the fraction on the left-hand side of
(19) is a convex function of t (the second derivative is obviously nonnegative)
and for t := k + l (19) holds (it becomes k/(l + k) ≤ k/(l + k)), it suffices to
prove that the derivative in t of the left-hand side of (19) at the point l + k is
equal to or exceeds the derivative of the right-hand side:

−
(Γ(t)/Γ(t− k))′t=l+k

k!
(
l+k
k

) ≥ k −1

l + k
,
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Figure 1: Left panel: SBP p-values (the solid red line) and rankmax TCP p-
values (the dashed blue line) for l = 1000 and k = 2 as functions of t. Right
panel: the lower right corner of the left panel.

where Γ is the gamma function, Γ(n) = (n− 1)! for n ∈ N. By the definition of
the digamma function ψ, the last inequality can be rewritten as

Γ(l + k)

Γ(l)

(
ψ(l + k)− ψ(l)

)
≤ k

l + k
k!

(
l + k

k

)
,

which simplifies to

ψ(l + k)− ψ(l) ≤ k

l
.

The well-known expression for ψ at the integer values of its argument (see, e.g.,
Olver et al.[6], http://dlmf.nist.gov/5.4.14) allows us to rewrite the last
inequality as

1

l
+

1

l + 1
+ · · ·+ 1

l + k − 1
≤ k

l
,

which is obviously true.

Remark. The proof of Lemma 1 shows that the inequality (18) is strict when-
ever k > 1 (for k = 1 the two p-values coincide). Three factors contribute to
its being strict: the SBP p-value is larger than the rankmax TCP p-value at
t = l + k; as function of t, the SBP p-value has a steeper (negative) slope at
t = l + k; besides, to the left of t = l + k the SBP p-value goes in a straight
line whereas the rankmax TCP p-value veers down. This is illustrated in Fig-
ure 1 for l = 1000 and k = 2 (typical values for our experiments reported in
Section 6); the first two factors, however, are not noticeable.
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It is plausible that a BP usually produces somewhat smaller p-values (and,
therefore, somewhat smaller prediction regions) than the corresponding SBP:
the only difference is that, when computing p-values, the SBP uses more test
objects with arbitrarily assigned labels, and this may lead to a greater distortion
of the nonconformity scores.

4 Validity

The strongest notion of validity for conformal and related predictors can be
stated in the online mode. Suppose we are given a sequence of positive in-
teger numbers k1, k2, . . . and the incoming sequence of observations is z1 =
(x1, y1), z2 = (x2, y2), . . .; set ln :=

∑n
i=1 ki (including l0 := 0). At trial

n = 1, 2, . . . of the online prediction protocol, Predictor predicts the kn la-
bels yln−1+1, . . . , yln given the ln−1 observations z1, . . . , zln−1

and kn objects
xln−1+1, . . . , xln . The prediction is a subset Γn of Ykn . It can be multiple
(|Γn| > 1), singleton (|Γn| = 1), or empty (|Γn| = 0). Predictor makes an error
if (yln−1+1, . . . , yln) /∈ Γn.

In this and next sections we assume either that the sequence of observations
z1, z2, . . . is infinite and the observations are produced independently from the
same probability distribution on Z, or that the sequence of observations is finite,
z1, . . . , zlN , and produced from an exchangeable probability distribution on ZlN .

The following simple result states the validity of TCPs in the online mode;
the idea of its proof is standard (see, e.g., Vovk[11] or Vovk et al.[13], Sec-
tion 8.7).

Theorem 1. In the online mode, a smoothed TCP makes errors with probabil-
ity ε (the significance level) independently at different trials.

In other words, Theorem 1 says that the sequence e1, e2, . . . of errors (where
ei ∈ {0, 1} and ei = 1 means that an error is made at trial i) is distributed
as B∞ε (or BNε , if there are only lN observations), where Bε is the Bernoulli
distribution with parameter (probability of success) equal to ε.

Proof. We will follow the scheme of the proof in Appendix A.1 of Vovk[11].
First notice that it is sufficient to prove that the sequence of errors e1, . . . , en
is distributed as Bnε for each n (for each n ≤ N if there are lN observations).
Fix such an n. Given the multiset *z1, . . . , zln+ and under the assumption of ex-
changeability, the probability that the smoothed TCP will make an error at trial
n is ε (this follows from the fact that p-values are distributed uniformly in the
interval [0, 1]). Therefore, en is a Bernoulli random variable with parameter ε,
even given the multiset *z1, . . . , zln+. Analogously, en−1 is a Bernoulli ran-
dom variable with parameter ε given the multiset *z1, . . . , zln+ and the sequence
(zln−1+1, . . . , zln); this implies that en−1 is a Bernoulli random variable with
parameter ε given en (since whether an error is made at trial n is determined
by the multiset *z1, . . . , zln+ and observations zln−1+1, . . . , zln : cf. Lemma 2 in
Vovk[11]). Continuing backwards in this fashion, we eventually obtain that e1
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is a Bernoulli random variable with parameter ε given e2, . . . , en. Therefore,
e1, . . . , en is indeed distributed as Bnε .

A suitable version of validity in the absence of smoothing is conservative
validity, i.e., being dominated by a sequence of independent Bernoulli trials
with parameter equal to the significance level. Formally (cf. Vovk et al.[13],
p. 21), the conservative validity means that there is a probability space with
two families

(ξ(ε)n | ε ∈ (0, 1), n = 1, 2, . . .), (η(ε)n | ε ∈ (0, 1), n = 1, 2, . . .)

of {0, 1}-valued random variables such that:

• for a fixed ε, ξ
(ε)
1 , ξ

(ε)
2 , . . . is a sequence of independent Bernoulli random

variables with parameter ε;

• for all n and ε, η
(ε)
n ≤ ξ(ε)n ;

• the joint distribution of errors e1, e2, . . . made at any significance level ε

coincides with the joint distribution of η
(ε)
1 , η

(ε)
2 , . . . .

By Theorem 1, TCPs are conservatively valid:

Corollary 1. In the online mode, each TCP is conservatively valid.

Proof. Each TCP is conservatively valid since it can only make an error when
the corresponding smoothed TCP (i.e., the smoothed TCP based on the same
transductive nonconformity measure) makes an error.

Remark. Lemma 1 suggests that SBPs can be regarded as conservatively valid
for practical purposes, since an SBP can make an error only when the corre-
sponding rankmax TCP makes an error, unless there are ties among nonconfor-
mity scores. However, in general, it is not always true that an SBP can make
an error only when the corresponding rankmax TCP makes an error. Consider,
e.g., the case where k = 2 and the nonconformity scores of the two test observa-
tions are equal and exceed the nonconformity scores of all training observations;
in this case, the SBP p-value will be smaller than the rankmax TCP p-value un-
less l = 1. Indeed, the required inequality between the rankmax TCP’s p-value
and the SBP’s p-value is

1− (l − 1)l

(l + 1)(l + 2)
≤ 2

l + 1
,

which is equivalent to l ≤ 1.

Theorem 2. In the online mode, each BP is conservatively valid.

Proof. The proof follows the scheme of the proof of Theorem 1 above. Start, as
before, by fixing an n. Given the multiset *z1, . . . , zln+ and under the assumption
of exchangeability, the probability that the BP will make an error at trial n for
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a given test observation (e.g., for the second observation in the test sequence)
is at most ε/kn. Therefore, the probability that it will make an error for some
of the kn test observations is at most ε. We can increase the indicator en of
making an error to obtain a Bernoulli random variable ξ

(ε)
n with parameter ε

(this might involve extending the probability space). In this way we can obtain

a sequence of independent ξ
(ε)
i , i = n, . . . , 1, and it is clear that we can choose

the same ξ
(ε)
i regardless of the starting value n ≥ i.

5 Universality

A transductive confidence predictor is a measurable strategy for Predictor in
the online prediction protocol (as described in the previous section) depending
on a parameter ε ∈ (0, 1) (the significance level) in such a way that for each
training sequence and each test sequence the prediction at a larger significance
level is a subset of the prediction at a smaller significance level. We say that
the transductive confidence predictor is conservatively valid if the sequence of
errors that it makes at any significance level ε is dominated by a sequence of
independent Bernoulli trials with parameter ε. We say that it is invariant if,
when fed with observations z1, . . . , zln−1

and objects xln−1+1, . . . , xln at any trial
n, it issues the same prediction regardless of the ordering of z1, . . . , zln−1

. And
we say that a transductive confidence predictor Γ′ is at least as good as another
transductive confidence predictor Γ′′ if at any significance level ε the prediction
region issued by Γ′ is completely covered by the prediction region issued by Γ′′.
The following result states the universality of transductive conformal predictors.

Theorem 3. Suppose Z is a Borel space. For any invariant conservatively
valid transductive confidence predictor Γ there exists a transductive conformal
predictor Γ′ that is at least as good as Γ.

Proof. The proof is similar to the proof of the analogous result for conformal
predictors (Vovk et al.[13], Theorem 2.6). Fix an n (n ≤ N if there are lN
observations altogether). For each sequence z1, . . . , zln of ln observations define

f(z1, . . . , zln) to be the conditional expectation of ξ
(ε)
n given η

(ε)
i = ei for i =

1, . . . , n, where ei is the indicator of error at trial i when the predictor Γ is fed
with z1, . . . , zli−1

. For each multiset B of size ln let f(B) be the arithmetic mean
of f over all orderings of B. By the completeness of the statistic that maps a
sequence of observations of length ln to the corresponding multiset (Lehmann[3],
Section 4.3), f(B) = ε for almost all multisets B; we will consider only such
multisets. Define S(B, ε) as the multiset of sequences s in Zkn such that Γ
makes an error at the significance level ε when fed with B ordered in such a way
that it ends with s (because of the invariance of Γ, the order of the observations
preceding s does not matter). Since

ε1 ≤ ε2 =⇒ S(B, ε1) ⊆ S(B, ε2)

and
|S(B, ε)| /ln ≤ ε,

11
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Figure 2: Left panel: the performance of the rankmax TCP based on Near-
est Neighbour for tangent distance on the USPS data set (randomly permuted)
for the length k = 2 of test sequences and significance level 5%. The cumula-
tive errors are shown with a solid red line, multiple predictions with a dashed
black line, and empty predictions with a dash-dot blue line. Right panel: the
analogous picture for the BP.

the TCP Γ′ corresponding to the transductive nonconformity measure

A((z1, . . . , zln−1), (zln−1+1, . . . , zln)) := 1/ inf
{
ε | (zln−1+1, . . . , zln) ∈ S(*z1, . . . , zln+, ε)

}
will be at least as good as Γ.

Theorem 3 says that TCPs are universal in the sense of dominating all
invariant conservatively valid transductive confidence predictors. In particular,
for any BP there is a TCP that is at least as good as that BP. However, in
the next section we will see that the rankmax TCP corresponding to the same
nonconformity measure does not always satisfy this property.

6 Experiments

In our experiments we will use the standard USPS data set of hand-written
digits. The training sequence (7291 observations) is merged with the test se-
quence (2007 observations) and the resulting sequence of 9298 observations is
randomly permuted, to make sure the assumption of exchangeability is satisfied.
The prediction protocol is online. In a typical scenario the digits might arrive in
batches of k = 5 digits and represent American zip codes (in this case, however,
the exchangeability assumption is only a crude approximation, since the digits
within the same zip code are likely to be written by the same person). How-
ever, the TCP and SBP are too computationally inefficient to be applied in this
case, and for comparing them with the BP we first consider online prediction of
batches of k = 2 digits; intuitively, our task is to recognize a two-digit number.

We always use the Nearest Neighbour nonconformity measure (5), where d
is tangent distance[8], and study empirically the corresponding rankmax TCP,
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Figure 3: Left panel: reproduces the left panel of Figure 2 (the performance of
the rankmax TCP). Right panel: the analogous picture for the SBP.

SBP, and BP. As the significance level we always take 5%. The left panel of
Figure 2 shows the performance of the rankmax TCP using three functions:
the cumulative number of errors made over the trials 1, . . . , n as function of n,
the cumulative number of multiple predictions made over the trials 1, . . . , n as
function of n, and the cumulative number of empty predictions over the trials
1, . . . , n as function of n. The performance of the SBP and BP as measured
by these functions is very similar; only the latter is shown in the right panel
of Figure 2, but all three graphs are visually indistinguishable (cf. Figure 3).
The BP even makes 2 fewer multiple predictions than the rankmax TCP, which
confirms the claim made in Section 5 that the rankmax TCP corresponding to
the same nonconformity measure as a given BP is not always at least as good
as that BP. (It is not true in general that the BP always makes fewer multiple
predictions than the corresponding rankmax TCP. It just happens to be true for
tangent distance and seed 0 for the MATLAB pseudorandom number generator;
e.g., the BP makes slightly more multiple predictions for Euclidean distance and
seed 0.) The SBP makes one more multiple prediction than the rankmax TCP,
which agrees with Lemma 1.

The cause of the similarity between the two plots in Figure 3 is illustrated by
Figure 4 (essentially a version of Figure 1), which shows the p-values produced
by the SBP plotted against the respective p-values produced by the correspond-
ing rankmax TCP, assuming there are no ties among the nonconformity scores.
When the p-values are small, they are remarkably close to each other. And
even without making any assumptions, we can still see that the SBP p-values
are never significantly worse than the respective rankmax TCP p-values, assum-
ing the latter are not too large.

The main advantage of BPs is that they are much more computationally
efficient than both TCPs and SBPs. (For example, running the experiments
described so far takes about 1 hour for the BP and about 50 hours for each of
the TCP and the SBP on the computer system of a typical British department
of computer science.) Because of their computational efficiency, it is very easy
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Figure 4: Left panel: the p-values produced by an SBP vs the p-values produced
by the corresponding rankmax TCP (the solid blue line) for the length l = 1000
of the training sequence and k = 2 of the test sequence. Right panel: the lower
left corner of the left panel.

to produce the analogue of the right panel of Figure 2 for k = 5 (as in American
zip codes): see the left panel of Figure 5; but it is not clear at all how to make
the computations for rankmax TCPs and SBPs feasible, even for moderately
large k.

Remark. In our experiments in this section we only use transductive noncon-
formity measures A : Z∗×Z∗ → R such that A(ζ1, ζ2) depends on the ordering of
neither ζ1 nor ζ2. In this case the definition of the p-value (1) can be rewritten,
in obvious notation, as

p(υ1, . . . , υk) :=
#{S | αS ≥ α{l+1,...,l+k}}(

l+k
k

) ,

S ranging over all
(
l+k
k

)
subsets of {1, . . . , l + k} of size k.

Remark. It can be argued that in the main example of this section, recognizing
zip codes, the cost of error depends on the position of the digit in the code: e.g.,
an error in the first digit will take the mail to a wrong state. This suggests the
following generalization of BPs: the Bonferroni formula (11) is replaced by

p := min(n1p1, . . . , nkpk, 1) ,

where n1, . . . , nk are positive constants satisfying

1

n1
+ · · ·+ 1

nk
= 1.
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Figure 5: Left panel: the performance of the BP for the length k = 5 of test
sequences. Right panel: the performance of the ranksum TCP for k = 2 (very
poor). The setting is as in Figure 2: the prediction algorithms are based on
Nearest Neighbour and tangent distance; the cumulative errors are shown with
a solid red line, multiple predictions with a dashed black line, and empty pre-
dictions with a dash-dot blue line; the significance level is 5%.

(In other words, ε/k in (15) is replaced by ε/nj−l.) For example, setting n1 =
n2 = n3 = 10, n4 = 5, and n5 = 2 makes the error in one of the digits (first,
second, or third) determining the state unlikely; at significance level 5%, the
probability of error in each of those digits is at most 0.5%.

7 Comparisons

The notion of transduction is usually opposed to induction. In this paper the
relation between these two notions is more complicated, and they will be even
combined in A into “transinductive conformal predictors”. The goal of this
section is to clarify our terminology.

Induction is the process of using training observations to arrive at a general
rule; the general rule can then be applied to test objects to obtain predictions for
their labels (deduction). Two essential properties of this process can be called
informational and computational: the informational property is that we do not
have the test set at the stage of finding the general rule, and the computational
property is that the general rule is computationally efficient, so that applying it
to new test objects can be done quickly (in many cases it can also be presented
in a compact form). If a process of calculating predictions lacks one (or both)
of these properties, it can be classified as transduction. Therefore, we have
informational and computational transduction.

Vapnik and Chervonenkis[10] and Vapnik[9] emphasized informational trans-
duction, where we should be given a test set before we can start computing pre-
dictions. Conformal predictors as defined in Vovk et al.[13] are not transductive
in this sense. They are, however, transductive in the computational sense: for
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each test object they have to redo most of the calculations. Their inductive
version, inductive conformal predictors, was designed to lower computational
burden.

In this paper, the word “induction” and its derivatives are always used in
the computational sense, and the word “transduction” and its derivatives are
always used in the informational sense.

For a further discussion of various aspects of transduction, see Vovk et al.[13],
pp. 258–260.

8 Conclusion

Based on our theoretical and empirical results, the preliminary recommenda-
tion is to use Bonferroni predictors in transductive problems: as compared to
rankmax TCPs and SBPs, they enjoy the same theoretical validity guarantees,
have comparable predictive performance empirically, but are much more com-
putationally efficient.

The conclusion is preliminary since our empirical comparison in Section 6
only covers TCPs for a small length k of the test sequence, namely k = 2. The
computational inefficiency of TCPs greatly complicates their empirical compar-
ison with the BPs and SBPs for large values of k.

The comparison is much more straightforward in the case of transductive
and Bonferroni extensions of inductive conformal predictors (Papadopoulos et
al.[7]; Vovk et al.[13], Section 4.1), and it can be shown that the two extensions
produce similar p-values in practically important cases: see A for details.

The criterion of efficiency used in this paper for comparing various predictors
in the transductive setting is the number of multiple predictions. This is a
standard criterion (see, e.g., Vovk et al.[13]), but several recent papers[1, 2,
12] propose other criteria, which have certain advantages over the standard
criterion. Comparison using the new criteria is a direction of further research.
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A Transinductive conformal predictors

Even BPs are computationally inefficient when used for predicting a large num-
ber of test sequences (of length k) from the same training sequence (of length
l), since in general there is no way of reusing the computations carried out for
the previous test sequences when processing the current test sequence. This
appendix combines the ideas of TCPs and inductive conformal predictors (Pa-
padopoulos et al.[7]; Vovk et al.[13], Section 4.1) to obtain a computationally
efficient version of TCPs, which we will call transductive inductive, or transin-
ductive, conformal predictors.

Split the training sequence (z1, . . . , zl) into two parts: the proper train-
ing sequence (z1, . . . , zm) of length 0 < m < l and the calibration sequence
(zm+1, . . . , zl) of length l−m; the test sequence (xl+1, . . . , xl+k) is as before. The
rankmax transinductive conformal predictor (or rankmax TICP) corresponding
to a nonconformity measure A is defined as follows:

• Compute the nonconformity scores

αi := A((z1, . . . , zm), zi), i = m+ 1, . . . , l, (20)

for all calibration observations.

• For each possible sequence of labels (υ1, . . . , υk) ∈ Yk:

– set yj := υj−l and zj := (xj , yj) for j = l + 1, . . . , l + k;

– compute the nonconformity scores

αj := A((z1, . . . , zm), zj) , (21)

j = l + 1, . . . , l + k, for all test observations;
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– compute the p-value

p(υ1, . . . , υk) :=
|{S | maxi∈S αi ≥ max(αl+1, . . . , αl+k)}|(

l−m+k
k

) , (22)

where S ranges over all
(
l−m+k

k

)
subsets of {m+1, . . . , l+k} of size k.

• Output the prediction region (2).

The Bonferroni inductive predictor (or BIP) corresponding to a nonconformity
measure A is defined similarly:

• Compute the nonconformity scores (20) for all calibration observations.

• For each object xj , j ∈ {l + 1, . . . , l + k}, in the test sequence and each
possible label υ ∈ Y:

– set yj := υ and zj := (xj , yj) for j = l + 1, . . . , l + k;

– compute the nonconformity score (21) for zj ;

– compute the p-value

pj−l(υ) :=
|{i = m+ 1, . . . , l | αi ≥ αj}|+ 1

l −m+ 1
.

• Output the prediction region (15).

The rankmax TICP and BIP are especially computationally efficient for
nonconformity measures of the form (3), since the prediction rule f can be
precomputed.

Another representation of the BIP is (2), where the p-values p(υ1, . . . , υk)
are defined by (16). Lemma 1 simplifies in the inductive case:

Lemma 2. If the nonconformity scores (21) for the test observations are all
different, the p-value (22) produced by a rankmax TICP never exceeds the p-
value (16) produced by the corresponding BIP.

Proof. It suffices to apply (18) with l−m (the length of the calibration sequence)
in place of l to the value of the rankmax statistic t := max(Rl+1, . . . , Rl+k),
where Rj is now the rank of αj in the multiset *αm+1, . . . , αl+k+.

Section 6 was devoted to an empirical study of the difference between
rankmax TCPs and the corresponding BPs. In the inductive case, such a study
is, to a large degree, redundant. In the proof of Lemma 2 we saw that

1−
(
t−1
k

)(
l−m+k

k

) ≤ k l −m+ k − t+ 1

l −m+ 1
,

where the left-hand side is the p-value produced by the rankmax TICP and the
right-hand side is an upper bound on the p-value produced by the BIP (now
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we are not making any assumptions on the nonconformity scores). When all
nonconformity scores are different, the left panel of Figure 4 is also the plot of
BIP p-values vs rankmax TICP p-values for a calibration sequence of length
l −m = 1000 and a test sequence of length k = 2; Figure 1 and the discussion
in Remark 3 are also applicable in the inductive case. When no assumptions
are made, the pair of a rankmax p-value and the corresponding BIP p-value
always lies at or below the solid blue line in Figure 4. We can see that the
BIP’s results are never much worse in the interesting range of small p-values.
Figure 6 gives analogous pictures for the lengths k = 10 and k = 50 of the
test sequence, and we still observe the same phenomenon: the BIP’s results
are never much worse if we are interested in small p-values; but the figure also
illustrates the increasing difficulty of obtaining small p-values as the length k
of the test sequence increases: it is clear that the smallest achievable p-value is
k/(l −m+ 1) for the BIP and k/(l −m+ k) for the rankmax TICP.

Remark. The methods of transductive prediction considered in this paper can
also be applied to cross-conformal predictors[14]; however, we will not go into
the details of the resulting “transductive cross-conformal predictors”.

B Ranksum TCP

This appendix briefly discusses ranksum TCPs, based on the ranksum aggrega-
tor (9). The results are shown in the right panel of Figure 5, in the same format
as before. They are very poor, and the following heuristic argument explains
why.

Suppose the training sequence is very long, of length l � 1, and the test
sequence contains two observations. The TCP assigns all possible labels to the
two test objects, and we can expect the prediction to be a singleton whenever
assigning a wrong label to either test object leads to a p-value not exceeding the
significance level. Now suppose one of the test objects is assigned the correct
label and the other a wrong label. Let us assume, optimistically, that the
normalized rank R/(l + 2) of the latter test object (with a wrong label) is 1;
the normalized rank x of the former test object (with the right label) will be, at
best, uniformly distributed on [0, 1]. In the limit of a very long training sequence
and assuming the observations are exchangeable, the p-value corresponding to
the normalized rank x of the former test object is at least

P(ξ1 + ξ2 ≥ 1 + x) = (1− x)2/2 ,

where ξ1 and ξ2 are distributed uniformly on [0, 1], and so the expected p-value

is at least
∫ 1

0
(1−x)2

2 dx = 1/6 ≈ 17%.
This shows that we can expect the bulk of our predictions to be singleton

when using the ranksum TCP only when the significance level considerably
exceeds 17%. For example, the ranksum TCP for the USPS data set at the 5%
level will typically produce as its prediction the cross in {0, . . . , 9}2 centred on
the pair of true labels, and this has been observed in our experiments.
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Remark. In fact, the results for the most straightforward implementation of
the ranksum TCP are unsatisfactory for two reasons: the very low accuracy
of computed p-values for the Wilcoxon ranksum test (both in MATLAB and
R) and the test’s way of combining ranks (summing) that is very poorly suited
to our task. Our argument shows that already the second reason is sufficient,
and this is confirmed by more precise calculations of p-values for the Wilcoxon
ranksum test.

Remark. It is interesting that using an unsuitable rank aggregator leads to the
predictor that sometimes issues empty predictions before multiple predictions
(see the right panel of Figure 5). Typically satisfactory predictors start issuing
empty predictions only after they stop issuing multiple predictions. For example,
the rankmax TCP in the left panel of Figure 2 issues only singleton predictors
in trials 1263–1385; before that it never issues empty predictions and after that
it never issues multiple predictions.
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Figure 6: Left panels: the p-values produced by a BIP vs the p-values produced
by the corresponding rankmax TICP (the solid blue lines). Right panels: the
lower left corners of the corresponding left panels. The length of the calibration
sequence is l −m = 1000 and the length of the test sequence is k = 10 for the
top panels and k = 50 for the bottom panels.
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