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ABSTRACT

The logic-programming paradigm is a prime example of how the integration
of the declarative and the operational aspects of logical systems can be used
to provide a uni�ed framework for both speci�cation and programming
languages. In essence, programming in logic amounts to giving appropri-
ate axiomatic formalizations of computable functions, which can then be
executed by means of carefully designed goal-directed deduction rules.

In this thesis, we examine common features of various conventional logic-
programming languages, ranging from the most traditional variant of the
paradigm – de�ned over Horn-clause logic – to �rst-order and higher-order
equational logic programming. Based on these, we propose an abstract
model-theoretic framework that allows us to develop and conduct research
into logic programming over an arbitrary logical system, without concrete
models, sentences, satisfaction, or deduction, and thus to explore the logic-
programming paradigm for other, less conventional formalisms, like the logic
of orchestration schemes used in the context of service-oriented computing.

Our study is based on abstractions of notions such as logic program, clause,
query, solution, and computed answer, which we develop over Goguen and
Burstall’s theory of institutions. These give rise to a series of concepts that
formalize the interplay between the denotational and the operational se-
mantics of logic programming. We investigate properties concerning the
satisfaction of quanti�ed sentences, discuss a variant of Herbrand’s theorem
that is not limited in scope to any logical formalism or construction of logic
programs, and de�ne a sound and conditionally complete procedure for
computing solutions to queries. Within this setting, we further examine two
of the most fundamental aspects of the modularization of logic programs
– the preservation and the re�ection of solutions along morphisms of pro-
grams – leading to results that can be applied not only to unstructured logic
programs (plain sets of clauses), but also to elaborate module systems.
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1
INTRODUCTION

This thesis concerns the model-theoretic foundations of logic programming from the
vantage point of the theory of institutions put forward by Goguen and Burstall in
the late 1970s in the context of algebraic speci�cation. Its purpose is to provide a gen-
eral mathematical framework for the study of logic programming so that, through
abstraction, one could gain a more accurate and deeper understanding of the in-
trinsic nature of the paradigm. In this introduction, we discuss the motivation that
underlies the present research and give an overview of the following chapters.

1.1 THE LOGIC -PROGRAMMING PARADIGM

The essential idea of exploring the computational aspects of logical inference
as a foundation for the development of new programming paradigms was
�rst investigated by Kowalski [KK71; Kow74] and Colmerauer [Col+73]
based on the pioneering work of Herbrand in proof theory [see Her67] and
on the introduction by Robinson [Rob65] of resolution as an inference rule
well suited for automation. Logic programming thus originated from the
observation that a considerable fragment of �rst-order logic has a natural
computational interpretation that makes it adequate not only as a declar-
ative language but also as a programming language. To be more precise,
logic programming (a) de�nes computable functions by way of standard
constructs from model theory and (b) executes these de�nitions as programs
through goal-directed deductions that are performed according to a �xed
strategy. This means that logic programming provides, at the same time,
both a denotational and an operational perspective on programs.
Conventional logic programming is semantically based upon the Horn-

clause fragment of (single-sorted) �rst-order logic without equality, and
implements deduction as backwards reasoning de�ned in terms of resolution
steps [see Llo87]. However, the essence of the paradigm is, to a great extent,
independent of any logical system of choice. This is re�ected by a multitude
of variants that have been developed over time, such as order-sorted [GM86]
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and category-based equational logic programming [Dia95], constraint logic
programming [JL87] (see also [Dia00] for a presentation that is more closely
related to the setting of this thesis), as well as higher-order [Mes89; Mes92]
and behavioural (i.e. object-oriented) logic programming [GMK02]. Even
more, recent developments in the operational semantics of systems in the
context of service-oriented computing [see e.g. FLB11] have suggested a deep
connection with logic programming. This connection was made explicit
in [ŢF13] with the introduction of a service-oriented variant of the paradigm,
which we will further pursue in Chapter 5 of this thesis.

1.2 TOWARDS ABSTRACT LOGIC PROGRAMMING

Through our inquiry, we aim to provide a single unifying framework for the
model-theoretic foundations of logic programming, with a high level of ab-
straction, that incorporates ideas from concrete instances of the phenomena
but without being committed to any particular formalism. To this end, our
work has roots in the theory of institutions [GB92] – a major �eld of study in
universal logic that originated in computer science – and draws inspiration
from previous institution-theoretic developments related to logic program-
ming such as [Tar86; Dia04] and also [Mes89]. We propose an axiomatic
approach to logic programming, and intrinsically to logic programs, that is
founded on a three-level hierarchy of concepts meant to capture:

1 the denotational semantics of logic programming, based on a notion of gen-
eralized substitution system that extends institutions with appropriate abstrac-
tions of variables, substitutions, local sentences, interpretations (of variables),
and satisfaction, all parameterized by the signature used;

2 the operational semantics of logic programming, supported by a notion of
logic-programming framework that describes clauses and queries – two of the
most important syntactic structures used to de�ne and execute logic pro-
grams – as well as goal-directed rules that allow the integration of resolution;

3 the various constructions of logic programs through a notion of logic-pro-
gramming language that de�nes programs as abstract objects characterized
by signatures, sets of axioms (clauses) and classes of models, thus allowing
us to uniformly accommodate a great variety of module systems.

Under this conceptual structure, we study a logic-independent version
of Herbrand’s theorem, describe a general resolution-based procedure for
computing solutions to queries, introduce a new form of service-oriented
logic programming, and develop foundations of modularization.
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herbrand’s fundamental theorem

The Fundamental Theorem of Herbrand [Her67] is a central result in proof
theory that deals with the reduction of provability in �rst-order logic to
provability in propositional logic. Its importance in the context of automated
theorem proving was realized in the early 1960s, when, together with the
theory of Horn-clause logic, it played a key role in establishing the mathem-
atical foundations of logic programming [see e.g. Llo87]. In the traditional
setting of relational �rst-order logic, Herbrand’s theorem states that, for a
set Γ of Horn clauses (an unstructured logic program), the answers to an
existential query can be found simply by examining a term model – the least
Herbrand model – instead of all the models that satisfy Γ. Thus, the theorem
links the denotational and the operational semantics of a logic-programming
language by reducing the satis�ability of a query with respect to a given
logic program to the search of a suitable correct-answer substitution.

Over the last three decades, the original result has been extended to a vari-
ety of logical systems [e.g. GM87; Dia00; GMK02], culminating in [Dia04]
with an investigation of Herbrand’s theorem in an arbitrary institution.
Thanks to its generality, the institution-based approach to Herbrand’s the-
orem enabled the development of logic programming over a wide range
of logical systems [see e.g. Găiip; and also Dia08]. All the same, certain
institution-based forms of logic programming do not �t into the framework
proposed in [Dia04]. In particular, the logic-programming semantics of ser-
vices [ŢF13] is grounded on a family of logical systems for which the concept
of variable cannot be faithfully captured by means of representable exten-
sions of signatures, thus failing to meet one of the most basic assumptions
of the institution-independent variant of the theorem. This led us to study
Herbrand’s fundamental theorem to an even greater extent in Chapters 3
and 4, in the general context of abstract logic-programming languages.

sound and complete operational semantics

The second main contribution of our work is the development of a sound
procedure for searching for solutions to queries. As in conventional lo-
gic programming, this is achieved through the computation of a series of
intermediate results (namely computed substitutions) by means of resolu-
tion steps. The challenge here lies primarily in determining an appropriate
formalization of the goal-directed rules that underlie our general form of
resolution so as to capture both the �rst-order resolution of relational logic
programming [see Rob65] and the paramodulation of equational logic pro-
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gramming [see RW83]. We study the proposed abstract notion of resolution
in Chapter 3, where, in addition to soundness, we also discuss a minimal set
of assumptions under which it can be shown to be complete.

service-oriented logic programming

Service-oriented computing is a modern computational paradigm that deals
with the execution of programs over distributed information-processing
infrastructures in which software applications can discover and bind dynam-
ically, at run time, to services o�ered by providers. Whereas the paradigm
has been e�ectively in use for a more than a decade in the form of Web
services [Alo+04] or Grid computing [FK04], research into its formal founda-
tions has lagged somewhat behind, partly because of the lack of understand-
ing of (or agreement on) what is really new about the paradigm, especially
in relation to distributed computing in general [see e.g. Vog03].
It is fair to say that signi�cant advances have been made towards form-

alizing new kinds of distributed computation that have arisen around the
notion of service (see, for example, the choreography models discussed
in [Su+07]), notably through several variants of the π-calculus. However,
service-oriented computing raises more profound challenges at the level of
the structure of systems due to their ability to discover and bind dynamically,
in a non-programmed manner, to other systems. As a result, the structure of
the systems that we are now creating in the virtual space of computational
networks is intrinsically dynamic, a phenomenon hitherto unknown. Form-
alisms such as the π-calculus do not address these structural properties of
systems. This prevents us from fully controlling and developing trust in the
systems that are now operating in cyberspace, and also from exploiting the
power of the paradigm beyond the way it is currently deployed.

Towards that end, a great deal of work has focused on the algebraic struc-
tures that account for modularity [e.g. FLB07; FS07] – referring to the way
services are orchestrated as composite structures of components and how
binding is performed through interaction protocols – and on themechanisms
through which discovery can be formalized in terms of logical speci�cations
of required/provided services and constraint optimisation for service-level
agreements [e.g. FLB11; FL13a]. In Chapter 5, we take this research further
to address the operational aspects behind dynamic recon�guration, i.e. the
mechanisms through which applications discover and bind, at run time,
to services. Our aim is to develop an abstract, foundational setting – inde-
pendent of the speci�c technologies that are currently deployed, such as
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soap for message-exchange protocols and uddi for description, discovery,
and integration – that combines both the denotational and the operational
semantics of services. The most di�cult and interesting task is to de�ne an
integrated algebraic framework that accounts for (a) logical speci�cations of
services, (b) the way models of those speci�cations capture orchestrations of
components that may depend on externally provided services, and (c) how
the discovery of services and the binding of their orchestrations to client
applications can be expressed in logical/algebraic terms.

The approach that we plan to develop to meet this challenge builds on the
relational variant of logic programming. In a nutshell, the analogy between
service-oriented computing and conventional logic programming that we
propose to systematically examine in this thesis unfolds as follows:

· The Herbrand universe consists of service orchestrations that have no de-
pendencies on external services – what we refer to as ground orchestrations.

· Variables and terms correspond to dependencies on external services to be
discovered and to the actual services made available by orchestrations.

· Service clauses express properties of services required or provided by orches-
trations, thus capturing the notion of service module described in [FLB11].
Their declarative semantics is that, when bound to the orchestrations of other
service clauses that ensure the required properties, they deliver, through
their orchestration, services that satisfy the speci�ed properties.

· Service queries express properties of services that an application requires in
order to ful�l its goal – what are described in [FLB11] as activity modules.

· Logic programs de�ne service repositories as collections of service modules.

· Resolution accounts for service discovery by matching required properties
with provided ones and the binding of required with provided services.

modularization

The literature on modularization in logic programming is vast, and it has
evolved primarily along two somewhat divergent lines of research. Whereas
a number of proposals have focused on augmenting logic-programming
languages with module systems through dedicated constructs for building
programs as hierarchical combinations of components, preserving in this
way the denotational and the operational semantics of the underlying form-
alisms [see e.g. O’K85; GM86; SW92], others have explored the possibility of
extending the base language with new logical connectives in order to capture
the operators needed for building and composing program modules [see
e.g. Mil89; GMR92; and also the comprehensive survey BLM94].
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Through our work, we aim to bring the two aforementioned lines of re-
search into harmony by studying modularization over the model-theoretic
framework for logic programming advanced in Chapter 3, which combines
ideas speci�c to each of the directions. On the one hand, by extending the
concept of institution with appropriate notions of variable, substitution,
clause, query, and goal-directed rule, the theory we propose accommodates
logical systems whose expressive power goes beyond that of the original
formalism of Horn-clause logic. On the other hand, inspired by recent de-
velopments in the theory of structured speci�cations [see Dia12a], it de�nes
logic programs in an axiomatic manner, capturing in this way both represent-
ations of programs as plain sets of (de�nite) clauses [see Llo87] and module
systems like those described, for example, in [ST88a; Bor02; DŢ11].

In the �nal chapter of this thesis, we investigate elementarymodularization
properties concerning the preservation and the re�ection of solutions along
morphisms of programs. From a computational point of view, these prop-
erties have a signi�cant impact on the e�ciency of searching for solutions
to queries. In particular, the preservation of solutions gives us the possibil-
ity to search for solutions to queries in restricted contexts that correspond
to subprograms or imported modules, and then translate these solutions
back to the original setting, while the re�ection property guarantees that all
solutions can be obtained in this manner.

1.3 THE STRUCTURE OF THE THES I S

chapter 3: Section 3.1 reviews the foundations of conventional logic pro-
gramming, with explicit emphasis on the abstraction of �rst-order variables
and substitutions, and on the mappings induced by signature morphisms.
Section 3.2 introduces the basic notion of generalized substitution system
and details the conditions that guarantee the invariance of the satisfaction
of universally and existentially quanti�ed sentences (de�ned over a given
generalized substitution system) under change of notation. Section 3.3 is
dedicated to the development of abstract logic programming, encompassing
the notions of logic-programming framework and language, as well as the
�rst main results of the thesis.

chapter 4: Section 4.1 is devoted to the logical foundations of two other
notable variants of logic programming, (many-sorted) �rst-order and higher-
order equational logic programming. In Section 4.2, we examine a class
of substitution systems whose variables are de�ned through extensions of
signatures (of a given institution), and whose substitutions correspond to
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the institution-independent notion of substitution; based on this formaliza-
tion, in Section 4.3 we further investigate the translation of variables along
signature morphisms and identify a set of su�cient conditions under which
an institution can give rise to a generalized substitution system. Lastly, in
Section 4.4 we present a di�erent perspective on the institution-independent
versions of Herbrand’s fundamental theorem.

chapter 5: In Section 5.1, we present a new categorical model of service
orchestrations, called orchestration scheme, that enables us to treat orches-
trations as fully abstract entities required to satisfy only a few elementary
properties. This framework is �exible enough to accommodate, for example,
orchestrations in the form of program expressions, as considered in [Fia12],
or as asynchronous relational networks similar to those de�ned in [FL13b].
In our study, such schemes play an essential role in managing the inher-
ent complexity of orchestrations whilst making available, at the same time,
the fundamental building blocks of service-oriented logic programming.
In Section 5.2, we de�ne a logical system of orchestration schemes over
which we can express properties that can be further used to guide the in-
terconnection of orchestrations. We prove that the resulting logic forms a
generalized substitution system, thus providing the declarative semantics of
our approach to service-oriented computing, as well as a de�nite mathem-
atical foundation to the analogy between service-oriented computing and
conventional logic programming. Building on these results, we show how
(de�nite) clauses, queries, uni�cation and resolution can be de�ned over the
generalized substitution system of orchestration schemes, obtaining in this
way the corresponding operational semantics of service-oriented computing.

chapter 6: In Section 6.1, we recall some of the most important speci�ca-
tion-building operators from the literature, and explain how they can be
used to de�ne modular logic programs. This provides us with a structured
model-oriented alternative to the original view of logic programs as plain
sets of clauses. Section 6.2 is devoted to the translation of queries and to the
preservation and the re�ection of solutions along signature morphisms. In
Section 6.3, we extend these results to computed answers (i.e. to the more
operational notion of solution to a query), and discuss the soundness and
completeness of resolution with respect to modularization.
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1.4 RELEVANT PUBL ICAT IONS

Parts of this thesis have been presented at academic conferences, workshops,
or meetings, or have been advanced in research papers, as follows:

· Chapter 3 is a modi�ed version of the paper [ŢFipa], and has been presented
at the 22nd meeting of the ifip-tc1 Working Group on Foundations of System
Speci�cation – ifip wg1.3.

· Chapter 4 is based on the results presented in the papers [Ţuţ13; ŢFipb],
of which [ŢFipb] has been presented at the 6th Conference on Algebra and
Coalgebra in Computer Science – calco 2015.

· Chapter 5 is a modi�ed version of the paper [ŢFipc]; a preliminary version of
this work has been presented at the 5th Conference onAlgebra and Coalgebra
in Computer Science – calco 2013 – [ŢF13].

· Chapter 6 is to some extent based on the results included in the paper [ŢFipa],
which have been further developed and presented at the 22nd International
Workshop on Algebraic Development Techniques – wadt 2014.



2
TECHNICAL PREL IMINARIES

In this chapter, we review some of the most important category- and institution-
theoretic concepts, notations, and terminology that support the general approach to
logic programming developed in the subsequent sections of the present thesis. We
focus particularly on comma categories, indexed categories, institutions and co-
morphisms of institutions, as well as on the presentation of institutions as functors
into the category of rooms, all of which will be used extensively in our work.

2.1 CATEGORIES

We assume the reader is familiar with basic notions of category theory such
as category, functor, and natural transformation. With a few exceptions, we
use the terminology and the notations from [Mac98]. In this sense, we denote
by |C| the collection of objects of a category C, by C(A, B) the collection of ar-
rows from A to B, by f ; g the composition of arrows f and g in diagrammatic
order, and by 1A the identity arrow of an object A; furthermore, we denote
by τ ; σ the ‘vertical’ composition of natural transformations τ and σ, and by
τ · σ (or sometimes by simple juxtaposition) their ‘horizontal’ composition.

a note on foundations. Most of the constructions described in this thesis
rely on large or very large collections of objects, and thus some care must be
taken with respect to the set-theoretic foundations of category theory. One
may consider for instance the hierarchy of set universes discussed in [Mac98],
in which every universe is closed under the usual set-theoretic constructions,
contains the elements of its elements, and belongs to the next universe in the
hierarchy. In this way, we obtain concepts such as category and functor for
every level of the hierarchy, which means that we cannot de�ne, for example,
the category of all sets, but rather a category of sets for every universe. In
terms of notation, given an arbitrary but �xed level of the hierarchy of set
universes, we denote by Set its corresponding category of sets and functions,
and by Cat its category of categories and functors, which belongs, of course,
to a higher set-theoretic universe.
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The most important category-theoretic notions for our work are those of
comma category, Grothendieck construction, and generalized subfunctor.
We only recall here a number of de�nitions and elementary properties,
mainly for �xing the terminology and the notation to be used throughout
the thesis. The interested reader can �nd more detailed presentations in
canonical texts such as [Mac98; AHS09], as well as in works like [GB84;
TBG91] on the applications of category theory to algebraic speci�cation.

definition 2.1.1 (Comma category). Consider two functors F1 : C1 → K

and F2 : C2 → K with the same codomain category K. The comma category
F1 / F2 is de�ned as follows:

· the objects are triples 〈A1 , f ,A2〉, where A1 is an object of C1, A2 is an object
of C2, and f : F1(A1) → F2(A2) is an arrow in K;

· the arrows 〈A1 , f ,A2〉 → 〈A′1 , f ′,A′2〉 are pairs 〈g1 , g2〉, where g1 : A1 → A′1
and g2 : A2 → A′2 are arrows in C1 and C2, such that f ; F2(g2) � F1(g1) ; f ′;

· the composition of arrows is de�ned componentwise: for every pair of com-
posable arrows 〈g1 , g2〉 and 〈g′1 , g′2〉, 〈g1 , g2〉 ; 〈g′1 , g′2〉 � 〈g1 ; g′1 , g2 ; g′2〉.

F1(A1)
F1(g1)

//

f
��

F1(A′1)
F1(g′1)

//

f ′

��

F1(A′′1 )

f ′′

��

F2(A2)
F2(g2)

// F2(A′2)
F2(g′2)

// F2(A′′2 )

The comma category F1 / F2 is often denoted by C1 / F2, F1 /C2, or simply
by C1 /C2 if F1, F2, or both of them, respectively, correspond to inclusions of
categories. A special case arises when F1 is the constant functor with value
A ∈ |K| and F2 is the identity of K. Then we denote the comma category
F1 / F2 by A /K – the category of K-objects under A – and the forgetful functor
A /K→ K that maps every object 〈A, f ,A′〉 of A /K to A′ by |_|A.

fact 2.1.2. Every arrow h : A → A′ in a given category K induces a left-
composition functor h /K : A′/K→ A /K that maps every object 〈A′, f , B〉
of A′/K to 〈A, h ; f , B〉 and every arrow g : 〈A′, f1 , B1〉 → 〈A′, f2 , B2〉 in A′/K

to g : 〈A, h ; f1 , B1〉 → 〈A, h ; f2 , B2〉.

definition 2.1.3 (Arrow category). For any category K, the category K~ of
K-arrows is given by the comma category 1K / 1K.

This means that, intuitively, the objects of the arrow category K~ are arrows
f : A1 → A2 in K, and that the morphisms in K~ from f : A1 → A2 to
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f ′ : A′1 → A′2 correspond to commutative squares as depicted below.

A1
g1
//

f
��

A′1
f ′

��

A2 g2
// A′2

We denote the two canonical projection functors K~ → K that map the
arrows f : A1 → A2 in K (i.e. the objects of K~ ) to their domain A1 and
codomain A2 by dom: K~ → K and cod: K~ → K, respectively.

definition 2.1.4 (Indexed category). For any category I of indices, an I-in-
dexed category is a functor C : Iop

→ Cat.

definition 2.1.5 (Grothendieck construction). Any I-indexed category
C : Iop

→ Cat can be ‘�attened’ to a Grothendieck category C] in which

· the objects are pairs 〈i ,A〉, where i is an object of I and A is an object of C(i),

· the arrows 〈i ,A〉 → 〈i′,A′〉 are pairs 〈u , f 〉 such that u : i → i′ is an arrow in
I and f : A→ C(u)(A′) is an arrow in C(i), and

· the composition of arrows 〈u , f 〉 and 〈u′, f ′〉 is de�ned as 〈u ; u′, f ; C(u)( f ′)〉.

〈i ,

u

��

A〉

f
//

〈i′,

u′

��

A′〉
f ′

//

〈i′′,A′′〉

C(u′)(A′′)

C(u)(A′)
C(u)( f ′)

// C(u ; u′)(A′′)

fact 2.1.6. Every indexed functor F between I-indexed categories C and
D : Iop

→ Cat, that is every natural transformation F : C⇒ D, determines
a functor F] : C]

→ D] that maps every object 〈i ,A〉 of the Grothendieck
category C] to 〈i , Fi (A)〉 and every arrow 〈u , f 〉 : 〈i ,A〉 → 〈i′,A′〉 in C] to
〈u , Fi ( f )〉. We obtain in this way a ‘�attening’ functor (_)] from the category
[Iop
→ Cat] of I-indexed categories to Cat.

definition 2.1.7 (Category of functors). For any category K, the category
[_→ K]] of functors into K is the Grothendieck category de�ned by the
functor [_ → K] : Catop

→ Cat that maps every category C to the functor
category [C→ K] (with natural transformations as arrows) and any functor
U : C→ C′ to the left-composition functor U_ : [C′→ K]→ [C→ K].

This means that the objects of [_→ K]] are, in essence, functors F : C→ K

into the category K, and that the morphisms between two such functors
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F : C → K to F′ : C′ → K are pairs 〈U, τ〉, where U is a functor C → C′

and τ is a natural transformation F ⇒ U ; F′. Moreover, the composition of
morphisms in [_→ K]] is de�ned by 〈U, τ〉 ; 〈U′, τ′〉 � 〈U ; U′, τ ; (U · τ′)〉.

fact 2.1.8. Functors G : K→ K′ determine appropriate natural transforma-
tions [G] between [_→K] and [_→K′]; their components [G]C, for categor-
ies C ∈ |Catop

|, are the obvious right-composition functors from [C→ K] to
[C→ K′]. Hence, by Fact 2.1.6, every functor G between categories K and
K′ induces a functor [G]] : [_→ K]] → [_→ K′]].

definition 2.1.9 (Subfunctor). For any two functors F,G : C→ Set, F is said
to be a subfunctor of G (denoted F ⊆ G) if there exists a natural transformation
F ⇒ G whose components are all set-theoretic inclusions.

Therefore, F is a subfunctor of G when for every object A ∈ |C|, F(A) is a
subset of G(A), and for every arrow f : A → A′ in C, F( f ) is the domain-
codomain restriction of G( f ).

definition 2.1.10 (Generalized subfunctor). For any two functors F,G : I→

[_→ Set]], F is said to be a generalized subfunctor of G (denoted F ⊆ G) when
F(i) is a natural subfunctor of G(i) for every i ∈ |I|.

This means that, for every object i ∈ |I|, F(i) is a subfunctor of G(i) and, for
every arrow u : i → i′ in I, the [_→ Set]]-morphisms F(u) and G(u) make
the following square commute.

i

u
��

F(i) : Ci → Set F(i)⊆G(i)
//

F(u)
��

G(i) : Ci → Set

G(u)
��

i′ F(i′) : Ci′ → Set
F(i′)⊆G(i′)

// G(i′) : Ci′ → Set

2.2 INST ITUT IONS

The notion of institution emerged within the theory of algebraic speci�cation
from the general concept of language [see BG79]. It was introduced by
Goguen and Burstall in [GB92] with the aim of formalizing the intuitive
notion of logical system as a balanced interaction between its syntax and
its semantics. The theory of institutions provides in this way a rigorous
model-theoretic abstraction of logics, and thus it can be used to provide
foundations for both speci�cation and programming languages.
In what follows, we recall the basic notions and notations of institutions.

Intuitively, an institution consists of a collection (category) of signatures,
each of which determines (through dedicated functors) a set of sentences



technical preliminaries 19

and a collection of models, as well as a satisfaction relation between models
and sentences that is assumed to be invariant under change of signature.

definition 2.2.1 (Institution). An institution I consists of

· a category SigI of signatures and signature morphisms,

· a sentence functor SenI: SigI
→ Set de�ning, for every signature Σ, the set

SenI(Σ) of Σ-sentences and, for every signature morphism ϕ : Σ → Σ′, the
sentence-translation map SenI(ϕ) : SenI(Σ) → SenI(Σ′),

· a model functor ModI: (SigI)op
→ Cat de�ning, for every signature Σ, the

category ModI(Σ) of Σ-models and Σ-(model) homomorphisms and, for every
morphism ϕ : Σ→ Σ′, the reduct functor ModI(ϕ) : ModI(Σ′) →ModI(Σ),

· a family of satisfaction relations �I
Σ
⊆ |ModI(Σ) | × SenI(Σ) determining, for

every signature Σ, the satisfaction of Σ-sentences by Σ-models,

such that, for any signature morphisms ϕ : Σ → Σ′, the translation of sen-
tences SenI(ϕ) and the reduction of models ModI(ϕ) preserve the satisfac-
tion relation: for every Σ′-model M′ and Σ-sentence ρ,

M′ �I
Σ′

SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) �I
Σ
ρ.

This property is usually called the satisfaction condition for I.

When there is no danger of confusion, we may omit the superscripts
or subscripts from the notations introduced above for the components of
institutions. For instance, when the institution I and the signature Σ can be
easily inferred, we will often denote the satisfaction relation �I

Σ
simply by

�. In addition, we will frequently denote the sentence translation SenI(ϕ)
by ϕ(_) and the reduct functor ModI(ϕ) by _�ϕ; and we will say that M is
the ϕ-reduct of M′ and that M′ is a ϕ-expansion of M whenever M � M′�ϕ.
Finally, we will use the fact that the satisfaction relation extends in a natural
way from sentences to sets of sentences, and we will say that a Σ-sentence
ρ is a semantic consequence of a set of Σ-sentences E, denoted E �I

Σ
ρ, when

every Σ-model that satis�es every sentence in E satis�es ρ as well.
Note that, for any signature Σ of an institution I, the satisfaction rela-

tion �I
Σ
can be identi�ed with a Boolean-valued function �I

Σ
: SenI(Σ) →

[|ModI(Σ) | → 2] that determines whether any given Σ-sentence is satis�ed
by any given Σ-model. In view of this observation, the satisfaction condition
for I can be captured categorically by de�ning the satisfaction relations �I

Σ

as components of a natural transformation

�I: SenI
⇒ [|ModI(_) | → 2]
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from SenI to the functor [|ModI(_) | → 2] thatmaps every signatureΣ ∈ |SigI
|

to the collection of all functions from |ModI(Σ) | to the two-element set 2.

Σ

ϕ

��

SenI(Σ)

SenI(ϕ)
��

�I
Σ
// [|ModI(Σ) | → 2]

ModI(ϕ);_
��

Σ′ SenI(Σ′)
�I
Σ′

// [|ModI(Σ′) | → 2]

A large number of logical systems have been formalized as institutions.
Some examples related to the study of logic programming include (many-
sorted) �rst-order logic [see GB92], order-sorted Horn-clause logic with
equality [see GM87], category-based equational logic [see Dia95], higher-
order logic [see MTW87], hidden algebra [see GMK02], constraint logic [see
Dia00], and the rather recent logic of asynchronous relational networks
described in [ŢF13]. Many others are thoroughly discussed in monographs
on institutions and algebraic speci�cations such as [Dia08; ST11].
The present thesis is mainly concerned with institutions of substitutions,

that is with ‘local’ institutions that are usually de�ned over a given signature
of a logical system such as �rst-order or higher-order logic, whose signa-
tures are abstract representations of (sets of) variables, and whose signature
morphisms correspond to substitutions. These structures provide conveni-
ent abstractions of the basic elements involved in de�ning the denotational
and the operational semantics of logic programs. A detailed presentation of
the institutions of �rst-order substitutions is given in Section 3.1.1.

Changing signatures (by means of signature morphisms) yields appropri-
ate maps between their corresponding institutions of substitutions, formal-
ized as institution comorphisms [GR02]. These capture the intuitive notion of
embedding simpler logical systems into more complex ones, and are dual
to the original concept of institution morphism [GB92], which corresponds
to structure-forgetting relationships between logical systems. Institution
comorphisms were originally discussed in [Mes89] under the name of plain
maps, and in [Tar95] under the name of institution representations.

definition 2.2.2 (Comorphism of institutions). For any two institutions
I � 〈Sig, Sen,Mod, �〉 and I′ � 〈Sig′, Sen′,Mod′, �′〉, a comorphism I→ I′ is a
triple 〈Φ, α, β〉 for which

· Φ is a signature functor Sig→ Sig′,

· α is a natural transformation Sen⇒ Φ ; Sen′, and

· β is a natural transformation Φop ; Mod′⇒Mod,
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such that the following property – the satisfaction condition for 〈Φ, α, β〉 –
holds for every I-signature Σ, Φ(Σ)-model M′, and Σ-sentence ρ:

M′ �′
Φ(Σ) αΣ(ρ) if and only if βΣ(M′) �Σ ρ.

Institution comorphisms compose in a natural, componentwise manner.
Their composition is associative and has identities, thus providing a category
coIns of institutions and institution comorphisms.

2.3 INST ITUT IONS AS FUNCTORS

Institutions can also be de�ned as functors into a category of local satisfaction
systems called rooms or twisted relations [see GB92]. This alternative charac-
terization has proved to be convenient for various studies on generalized
institutions [see GB86], heterogeneous logical systems [see Mos02; Mos06],
and logic translations [see MDT09].

definition 2.3.1 (Rooms and corridors). The category Room of rooms and
corridors is de�ned as follows:

The objects are Boolean rooms, that is triples 〈S,M, �〉 consisting of

· a set S of sentences,

· a category M of models, and

· a satisfaction relation � ⊆ |M| × S.

The morphisms – corridors – 〈S,M, �〉 → 〈S′,M′, �′〉 are pairs 〈α, β〉, where

· α is a sentence-translation function S → S′ and

· β is a model-reduction functor M′
→M,

such that the following condition holds for all M′ ∈ |M′
| and ρ ∈ S:

M′ �′ α(ρ) if and only if β(M′) � ρ.

The composition of morphisms is de�ned componentwise.

The ternary structure of rooms induces appropriate projections Sen and
Mod1 into the categories of sets and categories, respectively, as well as a
natural transformation � that captures the invariance of the satisfaction of
sentences by models with respect to the change of rooms:

1 For simplicity, we overload the use of Sen, Mod, and �. To resolve the potential confusion
between the projections of Room and the sentence functor, model functor, and satisfaction
relations of an institution I, we usually denote the latter by SenI, ModI, and �I, respectively.
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· Sen: Room → Set and Mod: Roomop
→ Cat are the functors that map

every room 〈S,M, �〉 to its underlying set of sentences S and category of
models M respectively, and

· � is the natural transformation Sen ⇒ [|Mod(_) | → 2] whose components
are given by the satisfaction relations of the considered rooms.

Hence, Room can also be understood as the comma category Set / [|_| → 2].

fact 2.3.2. The categories Room and Set / [|_| → 2] are isomorphic.

The observation above allows us to identify every institution I having Sig
as the category of signatures with the functor I : Sig→ Room that maps

· every signature Σ to
〈
SenI(Σ),ModI(Σ), �I

Σ

〉
and

· every signature morphism ϕ to
〈
SenI(ϕ),ModI(ϕ)

〉
.

Conversely, every functor I : Sig → Room describes an institution whose
category of signatures, sentence functor, model functor, and family of satis-
faction relations are given by Sig, I ; Sen, Iop ; Mod, and I · � respectively.
This one-to-one correspondence between institutions and functors into

Room can be easily extended to maps of institutions: every comorphism of
institutions 〈Φ, α, β〉 : I→ I′ can be regarded as an arrow 〈Φ, τ〉 between the
functors I : Sig→ Room and I′ : Sig′→ Room, where, for every I-signature
Σ, τΣ is the corridor 〈αΣ , βΣ〉; in the opposite direction, α and β can be derived
from the ‘horizontal’ compositions τ · Sen and τop

·Mod respectively.

fact 2.3.3. The categories coIns and [_→ Room]] are isomorphic.



3
INTRODUCING LOGIC - INDEPENDENT
LOGIC PROGRAMMING

Following the work of Goguen and Burstall, in this chapter we propose a logic-
independent approach to logic programming through which the paradigm as we
know it for Horn-clause logic can be systematically examined for other formalisms.
For this purpose, we introduce an abstract concept of generalized substitution sys-
tem that extends institutions by allowing for direct representations of variables and
substitutions, providing in this way support for the development of both the de-
notational and the operational semantics of logic programming. In this framework,
we study a logic-independent variant of Herbrand’s theorem and describe a gen-
eral resolution-based procedure for computing solutions to queries. We prove that
this procedure is sound and that, moreover, under additional hypotheses that re�ect
faithfully properties of actual logic-programming languages, it is also complete.

3.1 THE LOGICAL SYSTEM OF REFERENCE

Our �rst step towards a presentation of the foundations of logic program-
ming that does not depend on any concrete logical system consists in de-
termining an appropriate benchmark institution that will enable us to relate
to concepts and results speci�c to conventional logic programming [see
generally Llo87]. To this end, we recall that logic programming has been
traditionally studied in the Horn subinstitution of FOL1

, – the single-sorted
variant of �rst-order logic without equality.

signatures. A FOL1
,-signature is a pair 〈F, P〉 where F and P are ω-indexed

families (Fn)n∈ω and (Pn)n∈ω of disjoint sets of operation and relation sym-
bols respectively. The indices are usually called arities and qualify the oper-
ation and relation symbols; in this sense, we denote an operation or relation
symbol ς of arity n by ς : n. However, when there is no risk of confusion, we
may drop the additional quali�cation and denote ς : n simply by ς.
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The signature morphisms ϕ : 〈F, P〉 → 〈F′, P′〉 re�ect the structure of signa-
tures and consist of families ϕop and ϕrel of functions ϕop

n : Fn → F′n and
ϕrel

n : Pn → P′n , for n ∈ ω, between the corresponding sets of operation and
relation symbols, respectively.

sentences. The sentences are ordinary �rst-order sentences built over rela-
tional atoms: for any FOL1

,-signature 〈F, P〉, the set TF of F-terms is the least
set such that σ(t1 , . . . , tn) ∈ TF for every σ ∈ Fn and t1 , . . . , tn ∈ TF ; the set of
〈F, P〉-sentences can then be de�ned as the least set that contains the relational
atoms π(t1 , . . . , tn), where π ∈ Pn and t1 , . . . , tn ∈ TF, and is closed under
Boolean connectives1 and quanti�cation over sets of �rst-order variables. It
should be noted that 〈F, P〉-variables are pairs (x , F0), often denoted simply
by their name, x, and that the sets of 〈F, P〉-variables are in fact collections
of variables such that di�erent variables have di�erent names. Also, every
set of 〈F, P〉-variables X determines an extended signature 〈F∪X, P〉, which
can be obtained from 〈F, P〉 by adding the variables of X as new constants.

The translation of sentences along a signaturemorphismϕ : 〈F, P〉 → 〈F′, P′〉
is de�ned inductively on the structure of sentences by replacing the sym-
bols of 〈F, P〉 according to ϕ. To be more precise, ϕ determines a func-
tion ϕtm : TF → TF′ given by σ(t1 , . . . , tn) 7→ ϕ

op
n (σ)(ϕtm(t1), . . . , ϕtm(tn)),

which allows us to de�ne the translation of relational atoms π(t1 , . . . , tn)
– corresponding to the signature 〈F, P〉 – as ϕrel

n (π)(ϕtm(t1), . . . , ϕtm(tn)).
This de�nition can be straightforwardly extended tomore complex sentences.
For instance, the translation of universally quanti�ed 〈F, P〉-sentences is
given by ∀X · ρ 7→ ∀Xϕ · ϕX (ρ), where Xϕ is the set of 〈F′, P′〉-variables
{(x , F′0) | (x , F0) ∈ X} and ϕX : 〈F ∪ X, P〉 → 〈F′ ∪ Xϕ, P′〉 is the canonical
extension of ϕ such that (ϕX)op

0 (x , F0) � (x , F′0) for every (x , F0) ∈ X.

〈F, P〉
ϕ

//

⊆

��

〈F′, P′〉

⊆

��

〈F ∪ X, P〉
ϕX
// 〈F′ ∪ Xϕ, P′〉

models. Given a FOL1
,-signature 〈F, P〉, an 〈F, P〉-model M consists of

· a set |M |, called the carrier set of M, together with

· a function Mσ : |M |n → |M | for each operation symbol σ ∈ Fn and

· a subset Mπ ⊆ |M |n for each relation symbol π ∈ Pn .

1 For convenience, we assume that disjunctions, denoted
∨

E, and conjunctions, denoted
∧

E,
are de�ned over arbitrary �nite sets of sentences E, and we abbreviate

∧
{ρ1 , ρ2} as ρ1 ∧ ρ2

and
∧
∅ as true. When there is no danger of confusion, we may also abbreviate

∧
{ρ} as ρ.
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Homomorphisms h : M1 → M2 are functions h : |M1 | → |M2 | between the
carrier sets of M1 and M2 satisfying the following two properties:

1 Preservation of operations: h(M1,σ (m1 , . . . ,mn)) � M2,σ (h(m1), . . . , h(mn))
for all operation symbols σ ∈ Fn and all arguments m1 , . . . ,mn ∈ |M1 |.

2 Preservation of relations: h(M1,π) ⊆ M2,π for all relation symbols π ∈ Pn .

Concerningmodel reducts, for any signaturemorphism ϕ : 〈F, P〉 → 〈F′, P′〉
and 〈F′, P′〉-model M′, the ϕ-reduct M′�ϕ is de�ned as the 〈F, P〉-model M
with the same carrier set as M′ and with the interpretation of operation and
relation symbols given by Mς � M′ϕ(ς) for every symbol ς in 〈F, P〉.

the satisfaction relation. The satisfaction between models and sen-
tences is the usual Tarskian satisfaction de�ned inductively on the structure
of sentences and based on the evaluation of terms in models. For example,
an 〈F, P〉-model M satis�es a universally quanti�ed 〈F, P〉-sentence ∀X · ρ if
all of its expansions along the signature inclusion 〈F, P〉 ⊆ 〈F ∪ X, P〉 satisfy
ρ; thus, M �〈F,P〉 ∀X · ρ if N �〈F∪X,P〉 ρ for all models N of 〈F ∪ X, P〉 such
that N�〈F,P〉 � M, that is for all valuations in M of the variables in X.

The approach that we follow in the present inquiry on the foundations of
logic programming relies on abstract concepts of universally and existentially
quanti�ed sentences, whose de�nitions are independent of the logical system
of choice. For this reason, our description of conventional logic programming
is not based on the institution FOL1

, discussed above, but on its quanti�er-
free fragment (with sentences built from atoms by repeated applications of
Boolean connectives), which we denote by qf-FOL1

,.

3.1.1 institutions of substitutions

the category of substitutions. Let us �x a qf-FOL1
,-signature 〈F, P〉, for

example the following signature of natural numbers with addition (speci�ed
as a ternary predicate): FNAT � {0 : 0, s_ : 1}, PNAT � {add : 3}.
In this setting, variables (or, more precisely, sets of variables) can be seen

as signatures of a specialized logical system. A signature of variables is just
a set X of 〈F, P〉-variables with distinct names, which, by de�nition, shares
no elements with the set F0 of constant-operation symbols. The syntactic
entities over a given signature of variables X are de�ned as the corresponding
qf-FOL1

,-expressions that can be formed based on the operation and relation
symbols of 〈F, P〉 and on the variables of X considered as new constants.
For example, the terms over X, or with variables from X, can be informally
de�ned in an inductive manner as follows:
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· every variable of X is a term over X and

· for every arity n, if σ is an operation symbol in Fn and t1 , . . . , tn are terms
over X, then σ(t1 , . . . , tn) is a term over X as well.

Substitutions provide syntactic transformations on expressions that are
de�ned over sets of variables: given two signatures of variables X and Y,
a substitution ψ : X → Y is a map ψ : X → TF∪Y that associates a term over
Y with every variable of X. Note that any substitution ψ : X → Y can be
canonically extended to a function ψtm : TF∪X → TF∪Y de�ned by x 7→ ψ(x)
for variables, and by σ(t1 , . . . , tn) 7→ σ(ψtm(t1), . . . , ψtm(tn)) for compound
terms. This allows us to de�ne the composition of substitutions ψ : X → Y
and θ : Y → Z as the map ψ ; θtm : X → TF∪Z. It is easy to see that ψ ; θ

induces the term translation ψtm ; θtm, which entails that the composition of
substitutions is associative. Moreover, it satis�es the identity laws by taking,
for every signature of variables X, the identity 1X as the function that encodes
the variables of X as terms over X. Hence, the signatures of 〈F, P〉-variables
together with their corresponding substitutions form a category Subst〈F,P〉.

sentences, models, and the satisfaction relation. Signatures of
variables do not inherit only the terms of the extended qf-FOL1

,-signatures,
but also their sentences, models, and the satisfaction relation between them.
For every signature of variables X we de�ne

· the set of sentences Sen〈F,P〉(X) as Sen(F ∪ X, P),

· the category of models Mod〈F,P〉(X) as Mod(F ∪ X, P), and

· the satisfaction relation �〈F,P〉,X as �〈F∪X,P〉.

With respect to substitutions, notice that, for every two signatures of
variables X and Y, every substitution ψ : X → Y determines

· a sentence-translation map Sen〈F,P〉(ψ) : Sen〈F,P〉(X) → Sen〈F,P〉(Y) de�ned
on atomic sentences by π(t1 , . . . , tn) 7→ π(ψtm(t1), . . . , ψtm(tn)), and

· a model-reduct functor Mod〈F,P〉(ψ) : Mod〈F,P〉(Y) →Mod〈F,P〉(X) that maps
every Y-model N to the X-model N�ψ given by |N�ψ | � |N |, (N�ψ)ς � Nς

for each symbol ς of 〈F, P〉, and (N�ψ)x � Nψ(x) (the evaluation of the term
ψ(x) in N) for each variable x in X.

We have thus de�ned the four components of an institution of 〈F, P〉-sub-
stitutions: the category Subst〈F,P〉 of signatures (of variables) and signature
morphisms (substitutions), the sentence functor Sen〈F,P〉 : Subst〈F,P〉→ Set,
the model functor Mod〈F,P〉 : Substop

〈F,P〉→ Cat, and the family of satisfaction
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relations (�〈F,P〉,X)X∈|Subst〈F,P〉 |. Our construction is completed by the follow-
ing result, originally discussed in [Dia04], which states that satisfaction is
invariant under substitution of variables.

proposition 3.1.1. For every �rst-order substitution ψ : X → Y, every model N
of Y, and every sentence ρ with variables from X,

N �〈F,P〉,Y Sen〈F,P〉(ψ)(ρ) if and only if Mod〈F,P〉(ψ)(N) �〈F,P〉,X ρ.

�

corollary 3.1.2. For every qf-FOL1
,-signature 〈F, P〉, the structure(

qf-FOL1
,

)
〈F,P〉 �

〈
Subst〈F,P〉 , Sen〈F,P〉 ,Mod〈F,P〉 , �〈F,P〉

〉
de�nes an institution – the institution of 〈F, P〉-substitutions. �

The institutions of substitutions are not considered in isolation; instead,
they are linked by various institution comorphisms induced by morphisms
between their underlying �rst-order signatures.

proposition 3.1.3. Every qf-FOL1
,-signature-morphism ϕ : 〈F, P〉 → 〈F′, P′〉

determines a comorphism 〈Ψϕ , αϕ , βϕ〉 between the institutions of 〈F, P〉- and
〈F′, P′〉-substitutions, where

· Ψϕ (X) � Xϕ and Ψϕ (ψ)(x , F′0) � (ϕY)tm(ψ(x , F0)),

· αϕ,X � Sen(ϕX), and

· βϕ,X � Mod(ϕX),

for each signature of 〈F, P〉-variables X, 〈F, P〉-substitution ψ : X → Y, and vari-
able (x , F′0) ∈ Xϕ.

proof. We begin by proving that Ψϕ is a functor Subst〈F,P〉→ Subst〈F′,P′〉.
Following an inductive argument on the structure of terms, we can easily
infer that, for every 〈F, P〉-substitution ψ : X → Y, the translations (ϕX)tm ;

Ψϕ (ψ)tm and ψtm ; (ϕY)tm (of F-terms over X into F′-terms over Yϕ) are
equal. Based on this property, for any pair of composable 〈F, P〉-substitutions
ψ : X → Y and θ : Y → Z, we obtain the following chain of equalities:

Ψϕ (ψ ; θ)(x , F0)

� (ϕZ)tm((ψ ; θ)(x , F0)) by the de�nition ofΨϕ (ψ ; θ)

� (ϕZ)tm(θtm(ψ(x , F0))) according to the de�nition of composition
in Subst〈F,P〉
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� Ψϕ (θ)tm((ϕY)tm(ψ(x , F0))) because (ϕY )tm ;Ψϕ (θ)tm
� θtm ; (ϕZ )tm

� Ψϕ (θ)tm(Ψϕ (ψ)((x , F0))) by the de�nition ofΨϕ (ψ)

� (Ψϕ (ψ) ;Ψϕ (θ))(x , F0). according to the de�nition of composition
in Subst〈F′,P′〉

In a similar manner, it can be shown thatΨϕ also preserves identities.
As regards the last two components of the comorphism, the naturality of

αϕ and βϕ amounts to the fact that the following two squares commute for
every 〈F, P〉-substitution ψ : X → Y.

Sen〈F,P〉(X)
ϕX (_)

//

ψ(_)
��

Sen〈F′,P′〉(Ψϕ (X))

Ψϕ (ψ)(_)
��

Sen〈F,P〉(Y)
ϕY(_)

// Sen〈F′,P′〉(Ψϕ(Y))

Mod〈F,P〉(X) Mod〈F′,P′〉(Ψϕ (X))
_�ϕX
oo

Mod〈F,P〉(Y)

_�ψ

OO

Mod〈F′,P′〉(Ψϕ (Y))

_�Ψϕ (ψ)

OO

_�ϕY

oo

This can be established with ease through a series of straightforward calcu-
lations. For example, in the case of relational atoms π(t1 , . . . , tn) we obtain

Ψϕ (ψ)(ϕX (π(t1 , . . . , tn)))

� Ψϕ (ψ)(ϕrel
n (π)((ϕX)tm(t1), . . .)) by the de�nition of ϕX (_)

� ϕrel
n (π)(Ψϕ (ψ)tm((ϕX)tm(t1)), . . .) by the de�nition ofΨϕ (ψ)(_)

� ϕrel
n (π)((ϕY)tm(ψtm(t1)), . . .) because (ϕX )tm ;Ψϕ (ψ)tm

� ψtm ; (ϕY )tm

� ϕY(π(ψtm(t1), . . .)) by the de�nition of ϕY(_)

� ϕY(ψ(π(t1 , . . . , tn))). by the de�nition of ψ(_) �

3.2 SUBST ITUT ION SYSTEMS

The institutions of substitutions discussed in Section 3.1 provide the most ba-
sic building blocks needed forwriting logic programs: signatures of variables
and sentences over those signatures. For instance, the following de�nition of
the addition of natural numbers (which makes use of the dedicated clausal
notation speci�c to logic programming)

add(0,M,M) ←−−M

add(s M,N, sP) ←−−−−−M,N,P add(M,N, P)

can be presented formally as the set given by the universal closures of the sen-
tences true ⇒ add(0,M,M) and add(M,N, P) ⇒ add(s M,N, sP) de�ned
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over the signatures of 〈FNAT , PNAT〉-variables {M} and {M,N, P}, respectively.
In order to describe the semantics of such de�nitions at the same level

of abstraction, we need to make explicit the translations of sentences and
the reductions of models that correspond to signature extensions such as
〈FNAT , PNAT〉 ⊆ 〈FNAT ∪ {M}, PNAT〉. A possible approach is to consider signa-
tures ofΣ-variables, for some signatureΣ of a given logical system, as speci�c
morphisms X : Σ→ Σ(X). This treatment of (signatures of) variables was
�rst outlined in [ST84] as part of an institutional approach to open formulae,
and is related to many developments in institution theory such as institution-
independent semantics for quanti�ers [Tar86], ultraproducts [Dia08], gen-
eral versions of Herbrand theorems [Dia04], Birkho� completeness [CG08],
hybridization [Mar+11], structural induction [Dia11], constructor-based lo-
gics [GFO12], and forcing techniques [GP10; Găi14].
The framework that we propose for formalizing signatures of variables

(and substitutions) generalizes the aforementioned approach by taking into
account only their corresponding extensions of rooms. This choice is mo-
tivated by the di�culties that may arise in de�ning variables as signature
extensions in other logical systems of interest for logic programming, such
as the institution of asynchronous relational networks [see ŢF13]. In that
case, signatures (and, consequently, signature morphisms) and variables
are signi�cantly di�erent from a structural point of view: the former are
logical systems satisfying given properties, while the latter are hypergraphs
whose vertices and hyperedges are labelled with signatures and models of
their underlying logical system; for this reason, variables cannot be faithfully
represented through extensions of their base signatures.

definition 3.2.1 (Substitution system). A substitution system is a triple
〈Subst,G, S〉, usually denoted simply by S, consisting of

· a category Subst of signatures of variables and substitutions,

· a room G of ground sentences and models, and

· a functor S : Subst→ G /Room de�ning, for every signature of variables X,
the corridor S(X) : G → G(X) to the room G(X) of X-sentences and X-models.

Therefore, given a room G � 〈Sen(G),Mod(G), �G〉 of ground sentences and
models, the signatures of variables are de�ned abstractly as objects X of a
category Subst for which we consider (a) a set Sen(G(X)) of X-sentences
together with a sentence-extension map αX : Sen(G) → Sen(G(X)), (b) a
category Mod(G(X)) of X-models together with a model-reduction functor
βX : Mod(G(X)) → Mod(G), and (c) a satisfaction relation �G(X) between
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X-models and X-sentences such that the following satisfaction condition
holds for all X-models N and ground sentences ρ:

N �G(X) αX (ρ) if and only if βX (N) �G ρ.

Similarly, substitutions ψ : X → Y are arrows in Subst for which we consider
(a) a sentence-translation map Sen(ψ) : Sen(G(X)) → Sen(G(Y)) and (b) a
model-reduction functor Mod(ψ) : Mod(G(Y)) → Mod(G(X)) such that
the following diagrams commute

Sen(G)
αX

}}

αY

!!

Sen(G(X))
Sen(ψ)

// Sen(G(Y))

Mod(G)

Mod(G(X))

βX
<<

Mod(G(Y))

βY
bb

Mod(ψ)
oo

and, for every Y-model N and X-sentence ρ,

N �G(Y) Sen(ψ)(ρ) if and only if Mod(ψ)(N) �G(X) ρ.

It should be noted that, whenever the signatures of variables are de�ned
as extensions of their base signatures (in a given institution), the corridors
〈Sen(ψ),Mod(ψ)〉 determined by substitutions ψ : X → Y correspond to
the institution-independent concept of substitution de�ned in [Dia04]. A
detailed presentation of this approach is given in Section 4.2.

example 3.2.2. Every qf-FOL1
,-signature 〈F, P〉 gives rise to a substitution

system
(
qf-FOL1

,

)
〈F,P〉 : Subst〈F,P〉 → qf-FOL1

,(F, P) /Room2 in which

· signatures of 〈F, P〉-variables X determine corridors given by set-theoretic in-
clusions Sen(F, P) ⊆ Sen〈F,P〉(X) and model-reduct functors Mod〈F,P〉(X) →
Mod(F, P) that forget the interpretation of variables, and

· substitutions ψ : X → Y are mapped to 〈Sen〈F,P〉(ψ),Mod〈F,P〉(ψ)〉.

Note that we can easily recover the institution of 〈F, P〉-substitutions de-
scribed in Corollary 3.1.2 (regarded as a functor into Room) by means of a
straightforward composition:

(
qf-FOL1

,

)
〈F,P〉 �

(
qf-FOL1

,

)
〈F,P〉 ; |_|qf-FOL1

,(F,P) .

Working with substitution systems instead of the simpler institutions of

2 In this case, the room qf-FOL1
,(F, P) is just the image of the �rst-order signature 〈F, P〉 under

the functor representation of the institution qf-FOL1
,.
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substitutions means that we also need to consider an adequate notion of
map of substitution systems.

definition 3.2.3 (Morphism of substitution systems). A morphism between
substitution systems S : Subst→ G /Room and S′ : Subst′→ G′/Room is a
triple 〈Ψ, κ, τ〉, where

Subst S
//

Ψ
��

G /Room

Subst′
S′
// G′/Room

κ/Room

OO

τ
��

· Ψ is a functor Subst→ Subst′,

· κ is a corridor G → G′, and

· τ is a natural transformation S⇒ Ψ ; S′ ; (κ /Room).

proposition 3.2.4. For every morphism of qf-FOL1
,-signatures ϕ : 〈F, P〉 →

〈F′, P′〉, the comorphism 〈Ψϕ , αϕ , βϕ〉 given in Proposition 3.1.3 can be extended
to a morphism of substitution systems

〈Ψϕ , κϕ , τϕ〉 :
(
qf-FOL1

,

)
〈F,P〉 →

(
qf-FOL1

,

)
〈F′,P′〉

where κϕ is the corridor qf-FOL1
,(ϕ) � 〈Sen(ϕ),Mod(ϕ)〉 and, for every signa-

ture of 〈F, P〉-variables X, τϕ,X � 〈αϕ,X , βϕ,X〉.

proof. All we need to check is that, for every signature of 〈F, P〉-variables
X, τϕ,X is indeed an arrow in the comma category qf-FOL1

,(F, P) /Room.
This follows directly from the fact that the equality

(qf-FOL1
,)〈F,P〉(X) ; τϕ,X � κϕ ; (qf-FOL1

,)〈F′,P′〉(Ψϕ (X))

can be obtained by applying the functor qf-FOL1
, : Sigqf-FOL1

, → Room to
the commutative diagram below.

〈F, P〉
⊇

��

ϕ
//

��

〈F′, P′〉

⊇

��

〈F ∪ X, P〉
ϕX
// 〈F′ ∪ Xϕ, P′〉

�

As expected, the composition of morphisms of substitution systems can
be straightforwardly de�ned in terms of their components: for any two
morphisms 〈Ψ, κ, τ〉 : S→ S′ and 〈Ψ′, κ′, τ′〉 : S′→ S′′ between substitution
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systems S : Subst→ G /Room, S′ : Subst′ → G′/Room, and S′′ : Subst′′ →
G′′/Room, 〈Ψ, κ, τ〉 ; 〈Ψ′, κ′, τ′〉 : S→ S′′ is given by

· the translation of signatures of variablesΨ ;Ψ′ : Subst→ Subst′′,

· the translation of ground sentences and models κ ; κ′ : G → G′′, and

· the translation of sentences and models de�ned over signatures of variables

τ ; (Ψ · τ′ · (κ /Room)) : S⇒ (Ψ ;Ψ′) ; S′′ ; (κ ; κ′/Room),

where, for every X ∈ |Subst|, (τ ; (Ψ · τ′ · (κ /Room)))X � τX ; τ′
Ψ(X) .

Together with the obvious identities, the construction above yields a category
SubstSys with substitution systems as objects andmorphisms of substitution
systems as arrows.

fact 3.2.5. The category SubstSys arises from theGrothendieck construction
for the functor [_→ _ /Room]: (Cat ×Room)op

→ Cat that maps

· every category Subst and room G to [Subst→ G /Room], the category of
functors from Subst to G /Room, and

· every functorΨ : Subst→ Subst′ and corridor κ : G → G′ to the composition
functorΨ_(κ /Room) : [Subst′→ G′/Room]→ [Subst→ G /Room].

We conclude the present section by noticing that the construction of �rst-
order substitution systems is functorial, in the sense that it can be described
as a functor into SubstSys (see Example 3.2.2 and Proposition 3.2.4). We can
thus de�ne the following concept of generalized substitution system.

definition 3.2.6 (Generalized substitution system). Generalized substitution
systems are objects of the category [_→ SubstSys]] of functors into SubstSys.

Therefore, generalized substitution systems are functors GS : Sig→ SubstSys
from a category Sig of signatures and signature morphisms to SubstSys. Be-
cause this de�nition is rather compact and lacks some of the transparency
needed for dealing with logic-programming languages, let us �rst establish
the notations and terminology that we will use throughout our work.

· Given a signature Σ of a generalized substitution system GS, we will denote
the (local) substitution system GS(Σ) by GSΣ : SubstΣ → GΣ /Room, and we
will refer to the objects and morphisms of the category SubstΣ as signatures
of Σ-variables and Σ-substitutions, respectively.3

3 In this regard, generalized substitution systems are similar to the context institutions
of [Paw95], which enrich the structure of institutions with explicit notions of context (in place
of signatures of variables) and substitution; the latter, however, are concrete, in the sense that
the category of models of every signature is concrete over the category of indexed sets.
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The room GΣ consists of the set Sen(Σ) of ground Σ-sentences, the category
Mod(Σ) of Σ-models, and the Σ-satisfaction relation �Σ ⊆ |Mod(Σ) | × Sen(Σ).

· On objects, the functor GSΣ maps every signature of Σ-variables X to the
corridor GSΣ(X) � 〈αΣ,X , βΣ,X〉 from GΣ to the room GΣ(X), whose set of
X-sentences, category of X-models, and X-satisfaction relation are denoted by
SenΣ(X), ModΣ(X), and �Σ,X , respectively.

αΣ,X : Sen(Σ) → SenΣ(X) βΣ,X : ModΣ(X) →Mod(Σ)

· On morphisms, GSΣ maps every Σ-substitution ψ : X → Y to the corridor
GSΣ(ψ) � 〈SenΣ(ψ),ModΣ(ψ)〉 from GΣ(X) to GΣ(Y), which satis�es, by
de�nition, the equality GSΣ(X) ; GSΣ(ψ) � GSΣ(Y).

Sen(Σ)
αΣ,X

~~

αΣ,Y

  

SenΣ(X)
SenΣ(ψ)

// SenΣ(Y)

Mod(Σ)

ModΣ(X)

βΣ,X
<<

ModΣ(Y)

βΣ,Y
bb

ModΣ(ψ)
oo

· With respect to signature morphisms, every arrow ϕ : Σ → Σ′ in Sig de-
termines a morphism of substitution systems GSϕ � 〈Ψϕ , κϕ , τϕ〉 from GSΣ

to GSΣ′, where κϕ is the corridor 〈Sen(ϕ),Mod(ϕ)〉 between GΣ and GΣ′

and, for every signature of Σ-variables X, τϕ,X is the corridor 〈αϕ,X , βϕ,X〉
between GΣ(X) and GΣ′ (Ψϕ (X)).

Sen(Σ)
Sen(ϕ)

//

αΣ,X
��

Sen(Σ′)
αΣ′,Ψϕ (X)

��

SenΣ(X) αϕ,X
// SenΣ′ (Ψϕ (X))

Mod(Σ) Mod(Σ′)
Mod(ϕ)
oo

ModΣ(X)

βΣ,X

OO

ModΣ′ (Ψϕ (X))

βΣ′,Ψϕ (X)

OO

βϕ,X
oo

In addition, we adopt similar notational conventions as in the case of institu-
tions. For example, we may use superscripts as in SubstGS

Σ
in order to avoid

potential ambiguities; or we may drop the subscripts of �Σ,X when there is
no danger of confusion. Likewise, we will often denote the functions Sen(ϕ),
αΣ,X , and SenΣ(ψ) by ϕ(_), X(_), and ψ(_), respectively, and the functors
Mod(ϕ), βΣ,X , and ModΣ(ψ) by _�ϕ, _�Σ, and _�ψ.

example 3.2.7. The quanti�er-free, single-sorted fragment of �rst-order
logic without equality forms a generalized substitution system, which we
denote by qf-FOL1

,.
qf-FOL1

, : Sigqf-FOL1
, → SubstSys
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3.2.1 quantified sentences

The last ingredient needed to interpret logic programs is an appropriate
concept of quanti�ed sentence over a given generalized substitution system.
To this purpose, we introduce universal and existential closures of sentences
de�ned over signatures of variables by adapting the general institution-
independent quanti�ers of [Tar86] to the present framework of generalized
substitution systems.

definition 3.2.8 (Quanti�ed sentence). In any generalized substitution
system GS : Sig→ SubstSys, a universally quanti�ed Σ-sentence is a structure
∀X · ρ, where X is a signature of Σ-variables and ρ is an X-sentence. The
denotation of ∀X · ρ is given by the class of Σ-models whose X-expansions
satisfy ρ. To be more precise, a Σ-model M is a model of ∀X · ρ, denoted
M �qs

Σ
∀X · ρ, if, for every X-model N such that N�Σ � M, N �Σ,X ρ.

Existentially quanti�ed Σ-sentences ∃X · ρ are introduced in a similar man-
ner. Their semantics is, as expected, existential rather than universal: the
denotation of a sentence ∃X · ρ is given by the class of Σ-models that admit
X-expansions satisfying ρ.

Let QSen(Σ), or QSenGS(Σ) when we want to make explicit the under-
lying generalized substitution system, be the set of quanti�ed sentences
(universal or existential) over a signature Σ of a generalized substitution
system GS : Sig→ SubstSys. It is straightforward to see that the map QSen
can be extended to a functor Sig → Set by de�ning QSen(ϕ)(Q X · ρ) as
QΨϕ (X) · αϕ,X (ρ) for every morphism of signatures ϕ : Σ→ Σ′ and every
quanti�ed Σ-sentence Q X · ρ, where Q ∈ {∀, ∃}.

fact 3.2.9. For any generalized substitution system GS : Sig → SubstSys,
QSen is a quanti�ed-sentence functor Sig→ Set.

In order to reason about programs de�ned over di�erent signatures, it is
necessary to ensure that the translation of quanti�ed sentences is consistent
with the reduction of models – in the sense that the satisfaction relation is
preserved. As in many institutions that capture logical systems with quanti-
�ers, this condition relies on the essential property of model amalgamation,
that is on the possibility of combining models of di�erent but related signa-
tures, provided that they have a common reduct to a given shared signature.
The form of model amalgamation that we use here was �rst introduced
in [BPP85]; other early papers include [ST88a; DGS93]. Its importance was
also emphasized in works on heterogeneous speci�cations such as [Tar00;
Bor02], which are closely related to our setting.
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definition 3.2.10 (Model amalgamation). A generalized substitution system
GS : Sig→ SubstSys has (weak) model amalgamationwhen, for every signature
morphism ϕ : Σ → Σ′ and every signature of Σ-variables X, the diagram
depicted below is a (weak) pullback.

|Mod(Σ) | |Mod(Σ′) |
_�ϕ

oo

|ModΣ(X) |

_�Σ

OO

|ModΣ′ (Ψϕ (X)) |

_�Σ′

OO

βϕ,X
oo

This means that for every Σ′-model M′ and every X-model N such that
M′�ϕ � N�Σ there exists aΨϕ (X)-model N′, called the amalgamation of M′

and N, that satis�es N′�Σ′ � M′ and βϕ,X (N′) � N. Whenever this holds,
the following commutative square, which subsumes the diagram above, is
said to be a (weak) model-amalgamation square:

GΣ
κϕ

//

GSΣ(X)
��

GΣ′

GSΣ′ (Ψϕ (X))
��

GΣ(X) τϕ,X
// GΣ′ (Ψϕ (X))

In generalized substitution systems such as qf-FOL1
, – as well as, for ex-

ample, qf-FOL�, discussed in Chapter 4 – for every signature morphism
ϕ : 〈F, P〉 → 〈F′, P′〉 and every signature of 〈F, P〉-variables X, the commutat-
ive square of interest for model amalgamation can be obtained by taking the
image through qf-FOL1

, of the following diagram of signature morphisms:

〈F, P〉

⊆

��

ϕ
// 〈F′, P′〉

⊆

��

〈F ∪ X, P〉
ϕX
// 〈F′ ∪ Xϕ, P′〉

It is well known that such diagrams are pushouts and, moreover, that every
pushout of �rst-order signature morphisms gives rise to a model-amalgam-
ation square (details can be found, for example, in [Dia08; ST11]). These
considerations lead us to the following result.

proposition 3.2.11. The generalized substitution system qf-FOL1
, has model

amalgamation. �

Model amalgamation allows us to prove that the translations of quanti�ed
sentences and the reductions of models preserve the satisfaction relation.
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proposition 3.2.12. Let GS : Sig → SubstSys be a generalized substitution
system that has weak model amalgamation. Then for every signature morphism
ϕ : Σ→ Σ′, every quanti�ed Σ-sentence Q X · ρ, and every Σ′-model M′,

M′ �qs
Σ′

QSen(ϕ)(Q X · ρ) if and only if Mod(ϕ)(M′) �qs
Σ

Q X · ρ.

proof. Since the two kinds of quanti�ed sentences can be treated similarly,
we focus here only on the case of universal sentences. Let us thus consider a
signature morphism ϕ : Σ→ Σ′, a Σ-sentence ∀X · ρ, and a Σ′-model M′.
The proof of the ‘if’ part is simpler and it does not require the model-

amalgamation property. Assume that Mod(ϕ)(M′) �qs
Σ
∀X · ρ, and let

N′ be an arbitrary Ψϕ (X)-expansion of M′. Since κϕ ; GSΣ′ (Ψϕ (X)) �

GSΣ(X) ; τϕ,X (because 〈Ψϕ , κϕ , τϕ〉 is a morphism of substitution systems),
it follows that βϕ,X (N′) is an X-expansion of Mod(ϕ)(M′). As a result,
βϕ,X (N′) �Σ,X ρ, which implies, by the satisfaction condition for τϕ,X , that
N′ �Σ′,Ψϕ (X) αϕ,X (ρ). Hence, given that, by de�nition, QSen(ϕ)(∀X · ρ)
is the universally quanti�ed sentence ∀Ψϕ (X) · αϕ,X (ρ), we conclude that
M′ �qs

Σ′
QSen(ϕ)(∀X · ρ).

For the ‘only if’ part, assume that M′ is a model of QSen(ϕ)(∀X · ρ), and
let N be an X-expansion of Mod(ϕ)(M′), which means that Mod(ϕ)(M′) �
βΣ,X (N). We need to show that N satis�es ρ. Since GS has weak model
amalgamation, we deduce that there exists a Ψϕ (X)-model N′ such that
βΣ′,Ψϕ (X) (N′) � M′ and βϕ,X (N′) � N. This means that N′ is a Ψϕ (X)-ex-
pansion of M′, which further implies that N′ �Σ′,Ψϕ (X) αϕ,X (ρ) because, by
hypothesis, M′ �qs

Σ′
∀Ψϕ (X) · αϕ,X (ρ). Therefore, by the satisfaction condi-

tion for τϕ,X , we have βϕ,X (N′) �Σ,X ρ. �

corollary 3.2.13. For any generalized substitution systemGS : Sig→ SubstSys
that has weak model amalgamation, the structure GSqs

� 〈Sig,QSen,Mod, �qs
〉

describes an institution – the institution of quanti�ed sentences over GS. �

3.3 ABSTRACT LOGIC PROGRAMMING

As we have seen, generalized substitution systems provide us with a frame-
work that is rich and �exible enough for capturing some of the most essential
aspects of logic programming. However, since they make no assumptions
on the structure of sentences de�ned over signatures of variables, we can-
not distinguish between clauses and queries, nor can we describe uni�able
sentences, which would further enable the search for solutions to queries by
means of a suitable concept of resolution. To overcome these limitations, we
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extend the notion of generalized substitution system with appropriate func-
tors that de�ne local clauses and queries, and with binary inference rules
that allow the integration of the declarative and the operational semantics
of logic programming. The following property gives a concise presentation
of the local sentences de�ned by a generalized substitution system.

fact 3.3.1. Any generalized substitution system GS : Sig→ SubstSys determ-
ines a local-sentence functor LSen: Sig → [_→ Set]], denoted LSenGS when
we want to make explicit the generalized substitution system, that maps

· every signature Σ to the pair 〈SubstΣ , GSΣ ; |_|GΣ ; Sen〉, usually identi�ed
with the second component, the functor GSΣ ; |_|GΣ ; Sen: SubstΣ → Set, and

· every signature morphism ϕ : Σ→ Σ′ to 〈Ψϕ , τϕ · (|_|GΣ ; Sen)〉.

SubstΣ
GSΣ
//

Ψϕ

��

GΣ /Room |_|GΣ
++

Room Sen
// Set

SubstΣ′
GSΣ′
// GΣ′ /Room |_|GΣ′

33
κϕ/Room
OO

τϕ
��

This means that, for every signatureΣ, the functor LSen(Σ) describes the sets
LSen(Σ)(X) � SenΣ(X) of local Σ-sentences, where X is a signature of Σ-vari-
ables, together with translations of local sentences LSen(Σ)(ψ) � SenΣ(ψ),
where ψ is a Σ-substitution. In addition, for every signature morphism
ϕ : Σ → Σ′, LSen(ϕ) describes the translation of signatures of Σ-variables
Ψϕ : SubstΣ → SubstΣ′ and the family of natural maps αϕ,X : SenΣ(X) →
SenΣ′ (Ψϕ (X)), indexed by signatures of Σ-variables X.

We can now de�ne the main algebraic concept that underlies our approach
to logic-independent logic programming.

definition 3.3.2 (Logic-programming framework). A logic-programming
framework is a tuple F � 〈GS,C,Q, 〉, where

· GS is a generalized substitution system that has weak model amalgamation,

· C and Q are generalized subfunctors of LSen, de�ning the subsets CΣ(X) ⊆
SenΣ(X) and QΣ(X) ⊆ SenΣ(X) of X-clauses and X-queries, respectively, for
every signature Σ and every signature of Σ-variables X, and

·  is a generalized subfunctor of (Q × C) ×Q de�ning, for every signature Σ
and signature of Σ-variables X, the subset Σ,X ⊆ (QΣ(X)×CΣ(X))×QΣ(X)
of X-goal-directed rules (ρ1 , γ, ρ2), usually denoted by ρ1 , γ Σ,X ρ2,

such that the following soundness property holds for every signature Σ, sig-
nature of Σ-variables X, X-queries ρ1 and ρ2, and every X-clause γ:

ρ1 , γ Σ,X ρ2 implies {ρ2 , γ} �Σ,X ρ1.
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example 3.3.3. Conventional �rst-order logic programming is de�ned over
the generalized substitution system qf-FOL1

, as follows: for every signature
〈F, P〉 and every signature of 〈F, P〉-variables X,

· the setC〈F,P〉(X) of X-clauses consists of all implications of the form
∧

H⇒ C,
where H is a �nite set of relational atoms and C is an atom,

· the set Q〈F,P〉(X) of X-queries consists of all �nite conjunctions of atoms
∧

Q,

· the rules are given by
∧

({C} ∪Q), (
∧

H ⇒ C) 〈F,P〉,X
∧

(Q ∪ H).

One can easily see that the (local) �rst-order clauses, queries, and goal-
directed rules are preserved along both signature morphisms and substitu-
tions; for example, the translation of a clause along a signature morphism,
when regarded as a sentence over the domain signature of that morphism,
is a clause de�ned over the codomain signature of the morphism. Moreover,
the goal-directed rules correspond, in essence, to applications of modus pon-
ens, and thus they are sound. As a result, the constructions above de�ne a
logic-programming framework, which we denote by FOL1

,.

The de�nitions of clauses and queries are rather straightforward.

definition 3.3.4 (Clause and query). Let Σ be a signature of the underly-
ing generalized substitution system GS of a logic-programming framework
〈GS,C,Q, 〉. A Σ-clause is a universally quanti�ed sentence ∀X · γ over
Σ such that γ ∈ CΣ(X). Similarly, a Σ-query is an existentially quanti�ed
sentence ∃X · ρ over Σ such that ρ ∈ QΣ(X).
We obtain in this way two subfunctors ∀C (de�ning the clauses) and ∃Q

(de�ning the queries) of the sentence functor QSen of the institution of
quanti�ed sentences over GS (see Corollary 3.2.13).

Following recent developments in structuring speci�cations [see Dia12a;
Ţuţ13], we propose an axiomatic approach to logic-programming languages
in which programs are treated as abstract entities, each of them de�ning a
signature (in a given logic-programming framework), a class of models – that
provides the denotational semantics of the program – and an appropriate
set of clauses – that supports the operational semantics of the program.
In addition, programs are related by morphisms that induce appropriate
reductions of models and translations of clauses, de�ned in terms of their
projections to the underlying logic-programming framework.

definition 3.3.5 (Logic-programming language). A logic-programming lan-
guage L � 〈LP, Sign, PMod,Ax〉 over a framework 〈GS,C,Q, 〉 consists of
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· a category LP of logic programs and morphisms of logic programs,

· a signature functor Sign: LP→ Sig, and

· subfunctors PMod ⊆ Signop ; Mod and Ax ⊆ Sign ; ∀C de�ning, for every
program P, the category PMod(P) of P-models and the setAx(P) of P-clauses,

LP

Sign
��

Ax

$$

PModop

zz

Catop Sig
∀C

//

Modop
oo

Wk
⊇ ⊇

s�
Set

such that, for every logic program P and model M of P, M �qs
Sign(P) Ax(P).

Byway of notation, when there is no risk of confusion, wewill often denote
logic programs P by 〈〈Σ, Γ〉〉, whereΣ � Sign(P) and Γ � Ax(P), emphasizing
in this way their corresponding signatures and sets of clauses; moreover, we
may denote simply by ν the signature morphism Sign(ν) determined by a
morphism of programs ν : P → P′. We may also indicate that a Σ-model M
is a model of P by writing M �lp

Σ
P in place of M ∈ |PMod(P) |, and that a

quanti�ed Σ-sentence Q X · ρ is semantically entailed by P, meaning that
M �qs

Σ
Q X · ρ for all P-models M, by writing P �lp

Σ
Q X · ρ.

example 3.3.6. Most of the mechanisms used in de�ning (structured) spe-
ci�cations can also be used to de�ne logic programs. For instance, one of
the simplest and most common descriptions of logic programs is as the-
ory presentations over a logic-programming framework F � 〈GS,C,Q, 〉
such as FOL1

, [see e.g. GB92; DGS93]. In this case, the programs de�ned
by the resulting logic-programming language – denoted Fpres – are pairs
〈Σ, Γ〉 of signatures Σ of GS and sets of Σ-clauses Γ, while the morphisms
ϕ : 〈Σ, Γ〉 → 〈Σ′, Γ′〉 are merely signature morphisms ϕ : Σ → Σ′ such
that Γ′ �qs

Σ′
ϕ(Γ). The functors Sign, Ax, and PMod have their usual in-

terpretations: for every presentation 〈Σ, Γ〉, (a) Sign(Σ, Γ) is the signature Σ,
(b) Ax(Σ, Γ) is the set of Σ-clauses Γ, and (c) PMod(Σ, Γ) is the full subcat-
egory of Mod(Σ) given by the models of Σ that satisfy Γ.
Under this formalism, based on the �rst-order signature 〈FNAT , PNAT〉 con-

sidered in Section 3.1 and on the clauses presented in Section 3.2, the logic
program that captures the addition of natural numbers can be de�ned over
the logic-programming language (FOL1

,)pres as follows:

signature

ops 0 : 0, s_ : 1

pred add : 3
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axioms

add(0,M,M) ←−−M

add(s M,N, sP) ←−−−−−M,N,P add(M,N, P)

For the remaining part of this section, we will assume that L is an arbitrary but
�xed logic-programming language 〈LP, Sign, PMod,Ax〉 over a logic-program-
ming framework F � 〈GS,C,Q, 〉.

3.3.1 herbrand’s theorem

From a model-theoretic perspective, a logic program 〈〈Σ, Γ〉〉 gives a positive
answer to a Σ-query ∃X · ρ when it semantically entails the query, which
means, of course, that every model of 〈〈Σ, Γ〉〉 admits an X-expansion that
satis�es ρ. In practice, this kind of answer is not always adequate for the
particular task at hand, as we may be interested in �nding the actual ‘values’
for X – independent of any choice of model of 〈〈Σ, Γ〉〉 – that meet all the
requirements described by ρ. The notion of solution presented below relies
technically on the concept of conservative signature of variables.

definition 3.3.7 (Conservative signature of variables). For any signature Σ,
a signature of Σ-variables Y is said to be conservativewhenever the model-
reduct functor βΣ,Y : ModΣ(Y) →Mod(Σ) is surjective on objects.

Note that, in the case of the single-sorted fragment of relational �rst-order
logic, a (non-empty) signature of 〈F, P〉-variables is conservative if and only
if the set F0 of constant-operation symbols is not empty.

definition 3.3.8 (Solution). For any logic program 〈〈Σ, Γ〉〉, a Σ-substitution
ψ : X → Y is a 〈〈Σ, Γ〉〉-solution, or correct 〈〈Σ, Γ〉〉-answer, to a Σ-query ∃X · ρ
if the signature of variables Y is conservative and 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · ψ(ρ).

Therefore, we have to consider two notions of answer to a query, both of
which are relative to a given logic program: the �rst one corresponds to
the denotational semantics of the logic-programming language, while the
second provides the necessary foundations for its operational semantics.
Herbrand’s theorem ensures that the two notions are equivalent. First, it

reduces the semantic entailment of the considered query to satisfaction in
the initial model of the logic program; then, it shows that any expansion
of the initial model that satis�es the underlying local sentence of the query
gives rise to a solution, and vice versa. These properties are well known in
the literature for various logical systems [see e.g. Llo87; GM87; GMK02], and
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they were �rst investigated in an institution-independent setting in [Dia04].
The result we develop here upgrades the ones from [Dia04] by considering
a di�erent set of hypotheses, based on the existence of certain reachable
models instead of representable signature morphisms and substitutions;
moreover, it can be utilized even when the signatures of variables cannot be
described as extensions of their base signatures. These new assumptions are
signi�cantly more permissive as they allow us to apply the theory advanced
herein to logical systems that, similarly to those discussed in [ŢF13] (and
further developed in Section 5.2.1), do not �t into the framework proposed
in [Dia04] – which, in fact, can be shown to be a concrete realization of the
conceptual structure that we put forward here (see Theorem 4.3.17).

The following concept of reachable model extends (non-trivially) the hom-
onymous one from [GP10] to generalized substitution systems by eliminating
the need for an initial signature of variables with the same sentences, models,
and satisfaction relation as its corresponding base signature.

definition 3.3.9 (Reachable model). Let Σ be a signature and X a signature
ofΣ-variables in a generalized substitution system. AΣ-model M is said to be
X-reachablewhen for every X-expansion N of M there exists a Σ-substitution
ψ : X → Y such that

· Y is conservative and

· the canonical map _�Σ : N /ModΣ(ψ) → M / βΣ,Y determined by the reduct
functor βΣ,X is surjective on objects.

Hence, given a model N and a substitution ψ as above, the Σ-model M is
X-reachable if every homomorphism h : M → N1�Σ from M to the Σ-reduct
of an Y-model N1 admits an X-expansion of the form f : N → N1�ψ.
In many concrete examples of institutions [see e.g. GP10], a model M is

reachable (with respect to some signature of variables) if and only if all its
elements are interpretations of terms, that is if the unique homomorphism
0Σ → M from the initial model of the signature of M to M is epi. In particu-
lar, for �rst-order logic, the initial model 0〈F,P〉,Γ of a set Γ of 〈F, P〉-clauses
is X-reachable for every signature of 〈F, P〉-variables X: every expansion
N〈F,P〉,Γ of 0〈F,P〉,Γ yields a substitution ψ : X → ∅ to the empty signature of
variables (which is conservative, and has the same models as 〈F, P〉) such
that 0〈F,P〉,Γ�ψ � N〈F,P〉,Γ; hence, every homomorphism h : 0〈F,P〉,Γ → N1�〈F,P〉
in Mod(F, P) admits an X-expansion N〈F,P〉,Γ → N1�ψ given by h�ψ.

proposition 3.3.10. In (FOL1
,)pres, every program 〈〈F, P〉, Γ〉 admits an initial

model 0〈F,P〉,Γ that is reachable with respect to all signatures of 〈F, P〉-variables. �
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In addition to the existence of particular reachable models, we also require
(as in [Dia04]) that model homomorphisms preserve the satisfaction of the
local sentence upon which the query under consideration is based.

definition 3.3.11 (Preservation of satisfaction). Given a signature Σ and a
signature of Σ-variables X in a generalized substitution system GS : Sig→
SubstSys, an X-homomorphism h : N1 → N2 is said to preserve the satisfaction
of an X-sentence ρ if N1 �Σ,X ρ implies N2 �Σ,X ρ.

Note that, in the case ofqf-FOL1
,, all homomorphisms preserve, by de�nition,

the satisfaction of all relational atoms. This property can be easily extended
to arbitrary conjunctions of atoms, and thus to local queries of FOL1

,.

fact 3.3.12. In the logic-programming framework FOL1
,, all homomorph-

isms preserve the satisfaction of all local queries.

theorem 3.3.13 (Herbrand’s theorem). For every logic program 〈〈Σ, Γ〉〉 and
everyΣ-query ∃X · ρ such that (a) 〈〈Σ, Γ〉〉 has an X-reachable initial model 0〈〈Σ,Γ〉〉,
and (b) the satisfaction of ρ is preserved by X-homomorphisms, the following state-
ments are equivalent:

1 〈〈Σ, Γ〉〉 �lp
Σ
∃X · ρ.

2 0〈〈Σ,Γ〉〉 �
qs
Σ
∃X · ρ.

3 ∃X · ρ admits a 〈〈Σ, Γ〉〉-solution.

proof.

1⇒ 2. Obvious, since 0〈〈Σ,Γ〉〉 �
lp
Σ
〈〈Σ, Γ〉〉.

2⇒ 3. By hypothesis, there exists an X-expansion N〈〈Σ,Γ〉〉 of 0〈〈Σ,Γ〉〉 such that
N〈〈Σ,Γ〉〉 �Σ,X ρ. Since 0〈〈Σ,Γ〉〉 is assumed to be X-reachable, we know that
there exists a substitution ψ : X → Y (corresponding to the model N〈〈Σ,Γ〉〉)
satisfying the two properties listed in De�nition 3.3.9. Therefore, we only
need to show that 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · ψ(ρ).

Let us thus consider a model M of 〈〈Σ, Γ〉〉 and a Y-expansion N of M. Based
on the initiality property of 0〈〈Σ,Γ〉〉, we obtain a (unique) Σ-homomorph-
ism h : 0〈〈Σ,Γ〉〉→ M � N�Σ, which can be lifted, by taking into account the
surjectivity of the map _�Σ : N〈〈Σ,Γ〉〉 /ModΣ(ψ) → 0〈〈Σ,Γ〉〉 / βΣ,Y , to an X-ho-
momorphism f : N〈〈Σ,Γ〉〉→ N�ψ. Since f preserves the satisfaction of ρ (by
hypothesis) and N〈〈Σ,Γ〉〉 �Σ,X ρ, it follows that N�ψ �Σ,X ρ, which implies, by
the satisfaction condition for ψ, that N �Σ,Y ψ(ρ). Hence, M �qs

Σ
∀Y · ψ(ρ).

3⇒ 1. Assume that ψ : X → Y is a 〈〈Σ, Γ〉〉-solution to ∃X · ρ, and that
M is a model of 〈〈Σ, Γ〉〉. This means that 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · ψ(ρ), and thus
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M �
qs
Σ
∀Y · ψ(ρ). In addition, Y is conservative, from which we deduce

that there exists a Y-expansion N of M such that N �Σ,Y ψ(ρ). It follows by
the satisfaction condition for ψ that N�ψ is an X-expansion of M such that
N�ψ �Σ,X ρ. Consequently, M �qs

Σ
∃X · ρ. �

remark 3.3.14. The additional hypotheses referring to the existence of a
reachable initial model of 〈〈Σ, Γ〉〉 and to the preservation of the satisfaction
of ρ by homomorphisms are used only in the proof of the ‘completeness’
part of Theorem 3.3.13, that is for the implication 1⇒ 3;4 the ‘soundness’
part, corresponding to the implication 3⇒ 1, holds for every logic program
〈〈Σ, Γ〉〉 (de�ned over an arbitrary language) and every Σ-query ∃X · ρ.

3.3.2 operational semantics

One of the most important (and distinctive) features of the concept of logic-
programming language is that it allows us to make e�ective use of the resolu-
tion inference rule and, in a very naturalway, to give an operational semantics
to logic programs. Consider, for instance, the logic program 〈〈FNAT , PNAT〉, Γ〉

described in Example 3.3.6 and the query ∃{X1} ·add(s 0, s 0,X1), sometimes
written as

7−−−−X1
add(s 0, s 0,X1)

using a notation similar to that of clauses. We can compute a solution to the
query ∃{X1} · add(s 0, s 0,X1) using the clauses of Γ and the goal-directed
rules of FOL1

, as follows: we �rst derive the query ∃{X2} · add(0, s 0,X2),
based on the second clause of Γ, the substitutions θ1 : {X1} → {X2} and
ψ1 : {M,N, P} → {X2} given by X1 7→ sX2, M 7→ 0, N 7→ s 0 and P 7→ X2,
and the following goal-directed rule over {X2};

add(s 0, s 0, sX2)
θ1(add(s 0,s 0,X1))

, add(0, s 0,X2) ⇒ add(s 0, s 0, sX2)
ψ1(add(M,N,P)⇒add(s M,N,sP))

〈FNAT ,PNAT〉,X2 add(0, s 0,X2)

by iterating these constructions, we can further derive the trivial query
∃∅ · true using the �rst clause of Γ, the substitutions θ2 : {X2} → ∅ and
ψ2 : {M} → ∅ given by X2 7→ s 0 and M 7→ s 0, and the goal-directed rule
over ∅ detailed below;

add(0, s 0, s 0)
θ2(add(0,s 0,X2))

, true⇒ add(0, s 0, s 0)
ψ2(true⇒add(0,M,M))

〈FNAT ,PNAT〉,∅ true

4 Moreover, it would su�ce to assume that the model 0〈〈Σ,Γ〉〉 is weakly initial.
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�nally, we compose the substitutions θ1 and θ2 (which are usually computed
through term uni�cation) to obtain a solution to ∃{X1} · add(s 0, s 0,X1).
The procedure outlined above does not depend on any particular details

of (FOL1
,)pres; in fact, it admits a straightforward formalization within the

abstract framework of logic-programming languages.

definition 3.3.15 (Resolution). Let ∃X1 · ρ1 be a query and ∀Y1 · γ1 a clause
over a signature Σ. A Σ-query ∃X2 · ρ2 is said to be derived by resolution from
∃X1 · ρ1 and ∀Y1 · γ1 using the computed substitution θ1 : X1 → X2 if there
exists a substitution ψ1 : Y1 → X2 such that θ1(ρ1), ψ1(γ1) Σ,X2 ρ2.

∃X1 · ρ1 ∀Y1 · γ1

∃X2 · ρ2

θ1

unification. Note that resolution describes not only the derivation of
new and (presumably) simpler queries from appropriate pairs of queries
and clauses, but also how partial answers to the original queries can be
computed by means of sentence uni�cation. In this sense, for any signature Σ
and signatures ofΣ-variables X1 and Y1, an ordered pair 〈ρ1 , γ1〉 of sentences
ρ1 ∈ QΣ(X1) and γ1 ∈ CΣ(Y1) is uni�able if there exists a pair 〈θ1 , ψ1〉 of
substitutions θ1 : X1 → X2 and ψ1 : Y1 → X2, called the uni�er of ρ1 and γ1,
such that θ1(ρ1), ψ1(γ1) Σ,X2 ρ2 for some X2-sentence ρ2 ∈ QΣ(X2).

It is also possible to distinguish between the various levels of generality of
the uni�ers. Given two uni�ers 〈θ1 , ψ1〉 and 〈θ′1 , ψ

′

1〉 of ρ1 and γ1 as depicted
below, we say that 〈θ′1 , ψ

′

1〉 is an instance of 〈θ1 , ψ1〉, or that 〈θ1 , ψ1〉 is more
general than 〈θ′1 , ψ

′

1〉, if there exists a substitution θ such that θ1 ; θ � θ′1 and
ψ1 ; θ � ψ′1. Given this, the uni�ers of ρ1 and γ1 can be de�ned as objects of
a subcategory of the category of cospans of Σ-substitutions.

X2

θ
��

X1

θ1 66

θ′1
''

Y1

ψ1hh

ψ′1
ww

X′2

It should be noted however that, under the present formalization, the most
general uni�ers, de�ned as initial objects in their corresponding category
(along the lines of [Gog89]), cannot be guaranteed to exist. Even in the case
of the logic-programming framework FOL1

,, one cannot �nd, for example, a
most general uni�er of the sentences add(s 0, s 0,X1) ∧ add(s s 0, 0,X1) and
add(M,N, P) ⇒ add(s M,N, sP) – although one exists for add(s 0, s 0,X1)
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and add(M,N, P) ⇒ add(s M,N, sP), as well as for add(s s 0, 0,X1) and
add(M,N, P) ⇒ add(s M,N, sP). This does not restrict the applicability
of the theory proposed here, because our abstract notion of resolution actu-
ally corresponds to an extended variant of �rst-order resolution, in which
any uni�er may give rise to a derivation, not just the most general ones.

The scope of De�nition 3.3.15 can be easily broadened to accommodate
sets of clauses: given a set Γ of clauses over a signature Σ, a Σ-query ∃X2 · ρ2

is said to be derived by resolution from ∃X1 · ρ1 and Γ using the computed
substitution θ1 : X1 → X2, written

∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 ,

if ∃X2 · ρ2 can be derived by resolution from ∃X1 · ρ1 and ∀Y1 · γ1 using
the computed substitution θ1, for some Σ-clause ∀Y1 · γ1 ∈ Γ. This gives us
a family (−�Γ,θ)θ∈SubstΣ of one-step derivation relations generated by Γ, whose
union is denoted by −�Γ.
The rest of this section is devoted to the composition of one-step deriva-

tions, which will be shown to provide a general procedure for computing
answers to queries. To this purpose, let us �rst investigate the soundness of
the one-step derivation relations with respect to the concept of solution.

proposition 3.3.16. Let 〈〈Σ, Γ〉〉 be a logic program, and ∃X1 · ρ1 and ∃X2 · ρ2

two Σ-queries. For every inference step ∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 and every
solution ψ : X2 → Y to ∃X2 · ρ2, the substitution θ1 ; ψ is a solution to ∃X1 · ρ1.

proof. Assume that ∃X2 · ρ2 is derived by resolution from ∃X1 · ρ1 and Γ
using the substitution θ1 : X1 → X2, and that ψ : X2 → Y is a 〈〈Σ, Γ〉〉-solution
to ∃X2 · ρ2. The latter implies that the codomain Y of θ1 ; ψ is conservative.
Therefore, we only need to prove that 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · (θ1 ; ψ)(ρ1).

Let M be a model of 〈〈Σ, Γ〉〉 and N a Y-expansion of M. By the de�nition
of the one-step derivation relation −�Γ,θ1 , there exists a clause ∀Y1 · γ1 ∈ Γ

and a substitution ψ1 : Y1 → X2 such that θ1(ρ1), ψ1(γ1) Σ,X2 ρ2. This
allows us to deduce, based on the soundness of the goal-directed rules, that{
ρ2 , ψ1(γ1)

}
�Σ,X2 θ1(ρ1). Furthermore, since the semantic consequence is

preserved by translation along signature morphisms (which, in turn, is an
immediate consequence of the invariance of truth under change of notation),
we obtain

{
ψ(ρ2), (ψ1;ψ)(γ1)

}
�Σ,Y (θ1;ψ)(ρ1). Thismeans that, to conclude

our proof, it su�ces to show that N satis�es both ψ(ρ2) and (ψ1 ; ψ)(γ1).
In the case of the �rst relation, since, by hypothesis, the substitution ψ is

a 〈〈Σ, Γ〉〉-solution to the query ∃X2 · ρ2, we have 〈〈Σ, Γ〉〉 �lp
Σ
∀Y · ψ(ρ2). It
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follows that M �qs
Σ
∀Y · ψ(ρ2), which further implies N �Σ,Y ψ(ρ2).

In the case of the second relation, by the general properties of substitu-
tion systems, we know that N�ψ1;ψ is a Y1-expansion of M. As a result,
N�ψ1;ψ �Σ,Y1 γ1, because M �qs

Σ
∀Y1 · γ1, and thus, by the satisfaction condi-

tion for ψ1 ; ψ, N �Σ,X2 (ψ1 ; ψ)(γ1). �

The search for (computed) solutions to a given query proceeds by means
of a sequence of one-step derivations, each of which contributes towards the
�nal answer through its corresponding computed substitution.

definition 3.3.17 (Derivation). For any set Γ of clauses over Σ, and any two
Σ-queries ∃X1 · ρ1 and ∃Xn · ρn , a Γ-derivation of ∃Xn · ρn from ∃X1 · ρ1 is
a chain of one-step derivations

∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 −�Γ,θ2 ∃X3 · ρ3 · · ·

∃Xn−1 · ρn−1 −�Γ,θn−1 ∃Xn · ρn .

Whenever such a chain exists, the query ∃Xn · ρn is said to be derived from
∃X1 · ρ1 and Γ using the computed substitution θ � θ1 ; θ2 ; · · · ; θn−1; in this
case, we write ∃X1 · ρ1 −�∗Γ,θ ∃Xn · ρn . By de�nition, if the chain depicted
above is empty, ∃X1 · ρ1 −�∗Γ,1X1

∃X1 · ρ1. We obtain in this way a family
(−�∗

Γ,θ)θ∈SubstΣ of derivation relations generated by Γ.

remark 3.3.18. The union of (−�∗
Γ,θ)θ∈SubstΣ is the re�exive and transitive

closure of the one-step derivation relation −�Γ.

Proposition 3.3.16 can be generalized without di�culty from one-step to
arbitrary derivations by induction on the length of the derivation.

corollary 3.3.19. Let 〈〈Σ, Γ〉〉 be a logic program, and ∃X1 · ρ1 and ∃Xn · ρn

two Σ-queries. For every derivation ∃X1 · ρ1 −�∗Γ,θ ∃Xn · ρn and every solution
ψ : Xn → Y to ∃Xn · ρn , the substitution θ ; ψ is a solution to ∃X1 · ρ1. �

All we require now in order to de�ne computed answers is a concept of
trivial query, which is meant to characterize the successful termination of
the search procedure.

definition 3.3.20 (Trivial query). Given a signature Σ, a Σ-query ∃Y · > is
said to be trivial if Y is conservative and every Y-model satis�es >.

fact 3.3.21. In the logic-programming framework FOL1
,, a query is trivial if

and only if it is of the form ∃Y · true.5

5 Note that, to ensure the conservativity of non-empty signatures of variables, the considered
�rst-order signature has to de�ne at least one constant.
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An immediate consequence of the de�nition above is that every trivial
query corresponds to a local tautology (and, even more, the query itself is
a tautology). As a result, for every logic program 〈〈Σ, Γ〉〉 and every trivial
Σ-query ∃Y · >, we have 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · >. This amounts to describing the

identity 1Y as a 〈〈Σ, Γ〉〉-solution to ∃Y · >.

fact 3.3.22. Every trivial query ∃Y · > over the signature Σ of a logic pro-
gram 〈〈Σ, Γ〉〉 admits a 〈〈Σ, Γ〉〉-solution: the identity substitution 1Y .

definition 3.3.23 (Computed answer). Given a program 〈〈Σ, Γ〉〉, a Σ-sub-
stitution θ : X → Y is a computed 〈〈Σ, Γ〉〉-answer to a Σ-query ∃X · ρ if there
exists a trivial query ∃Y · > such that ∃X · ρ −�∗Γ,θ ∃Y · >.

Corollary 3.3.19 and Fact 3.3.22 lead to our �rst main result related to the
operational semantics of abstract logic-programming languages.

theorem 3.3.24 (Soundness of resolution). Consider a logic program 〈〈Σ, Γ〉〉
and a Σ-query ∃X · ρ. Then every computed 〈〈Σ, Γ〉〉-answer to ∃X · ρ is also a
solution to ∃X · ρ. �

3.3.3 completeness

As expected, completeness is more di�cult to obtain, and requires additional
hypotheses. To simplify the proof, we consider two lemmas, each of which
introduces a new property to be satis�ed by the query at hand or by the
considered logic program. The �rst lemma allows us to derive by resolution
any translation (along a substitution) of a given query, which is reminiscent
of the well-known lifting lemma of conventional logic programming [see
e.g. Av82; Llo87]; the second lemma reduces the search for solutions to a
sequence of elementary inferences in a local institution of substitutions –
which, in the case of �rst-order logic-programming, involves no quanti�ers.

definition 3.3.25 (Identity clause). Let ∃X · ρ be a query over a signature Σ.
A Σ-clause ∀X · γ is an identity of ∃X · ρ if γ is a tautology and ρ, γ Σ,X ρ.

fact 3.3.26. In FOL1
,, every non-trivial query ∃X ·

∧
Q admits an identity

∀X · π(t1 , . . . , tn) ⇒ π(t1 , . . . , tn), where π(t1 , . . . , tn) is an atom in Q.

lemma 3.3.27. Consider a signature Σ, a Σ-query ∃X · ρ, and an identity ∀X · γ
of ∃X · ρ. For every Σ-substitution ψ : X → Y there exists a one-step derivation
of ∃Y · ψ(ρ) from ∃X · ρ and ∀X · γ having ψ as the computed substitution.

∃X · ρ −�{∀X·γ},ψ ∃Y · ψ(ρ)
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proof. Because ∀X · γ is the identity of ∃X · ρ, we know that ρ, γ Σ,X ρ.
This implies ψ(ρ), ψ(γ) Σ,Y ψ(ρ) because, by the functoriality of , the
goal-directed rules are preserved along substitutions. It follows that 〈ψ, ψ〉
is a uni�er of ρ and γ, which allows us to conclude that ∃Y · ψ(ρ) can be
derived by resolution from ∃X · ρ and ∀X · γ using the substitution ψ. �

The second lemma is based on the following concept of instance of a set of
clauses, which, together with the generalization of goal-directed rules to sets
of clauses, provides an essential characterization of the derivation relation.

definition 3.3.28 (Instance of a set of clauses). Given a set Γ of clauses over
Σ and a signature of Σ-variables X, the X-instance of Γ is de�ned as the set
X(Γ) of all X-sentences that can be obtained by translating the local clauses
of Γ along substitutions into X.

X(Γ) �
{
ψ(γ) ∈ SenΣ(X) �� ∀Y · γ ∈ Γ and ψ : Y → X

}
definition 3.3.29. For every signature Σ and signature of Σ-variables X,
Σ,X can be extended to a set ∗

Σ,X of goal-directed rules between X-queries
and sets of X-clauses as follows: given two queries ρ1 , ρn ∈ QΣ(X) and a
(possibly empty) set of clauses G ⊆ CΣ(X),

ρ1 ,G ∗Σ,X ρn

if there exists an alternating sequence ρ1 γ1 ρ2 γ2 ρ3 . . . ρn−1 γn−1 ρn of quer-
ies ρi ∈ QΣ(X) and clauses γi ∈ G such that ρi , γi Σ,X ρi+1 for each index
1 ≤ i < n.

γ1 γ2 γn−1

ρ1 ρ2 ρ3 . . . ρn−1 ρn

This gives rise to a generalized subfunctor ∗ of
(
Q × C ; [P]]

)
×Q.6

proposition 3.3.30. For all sets Γ of clauses over some signature Σ, queries
∃X1 · ρ1 and ∃Xn · ρn over Σ, and all (computed) substitutions θ : X1 → Xn ,

∃X1 · ρ1 −�
∗

Γ,θ ∃Xn · ρn if and only if θ(ρ1),Xn (Γ) ∗
Σ,Xn

ρn .

proof. We prove the result by induction on the length of the derivation. For
the base case, the conclusion can be inferred directly from the de�nitions of

6 We recall from Fact 2.1.8 and De�nition 3.3.2 that C ; [P]] is the functor that maps every
signature Σ and every signature of Σ-variables X to the set P(CΣ(X)) of sets of X-clauses.



introducing logic-independent logic programming 49

−�∗
Γ
and ∗; because of this, in the following we will focus entirely on the

more interesting case that corresponds to the induction step.
For the ‘if’ part, assume there exists an Xn-query ρ2 and an Xn-clause

ψ1(γ1) ∈ Xn (Γ), further indicating the existence of a clause ∀Y1 · γ1 in
Γ and of a substitution ψ1 : Y1 → Xn such that θ(ρ1), ψ1(γ1) Σ,Xn ρ2

and ρ2 ,Xn (Γ) ∗
Σ,Xn

ρn . Based on the de�nition of resolution and on
the induction hypothesis, we deduce that ∃X1 · ρ1 −�Γ,θ ∃Xn · ρ2 and
∃Xn · ρ2 −�∗Γ,1Xn

∃Xn · ρn ; therefore, by the composition of these deriva-
tions, we obtain ∃X1 · ρ1 −�∗Γ,θ ∃Xn · ρn .
For the ‘only if’ part, let θ1 ; θ2 be a factorization of the substitution θ

such that ∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 and ∃X2 · ρ2 −�∗Γ,θ2
∃Xn · ρn . Then,

by the induction hypothesis, θ2(ρ2),Xn (Γ) ∗
Σ,Xn

ρn . We also know, by
the de�nition of resolution, that there exists a clause ∀Y1 · γ1 ∈ Γ and a
substitution ψ1 : Y1 → X2 such that θ1(ρ1), ψ1(γ1) Σ,X2 ρ2. Based on the
functoriality of ∗, this implies that (θ1 ; θ2)(ρ1), (ψ1 ; θ2)(γ1) Σ,Xn θ2(ρ2),
and thus, since (ψ1 ; θ2)(γ1) belongs to Xn (Γ) and θ2(ρ2),Xn (Γ) ∗

Σ,Xn
ρn ,

we conclude that θ(ρ1),Xn (Γ) ∗
Σ,Xn

ρn . �

Let us recall that, in general, the derivation of queries proceeds by se-
lecting, at each step, a new rule – over a new signature of variables – to be
applied to the current goal. Provided that we know the result of the deriv-
ation, Proposition 3.3.30 allows us to reduce the derivation of queries to
applications of goal-directed rules that are de�ned over the same signature
of variables. In view of this characterization, the soundness of resolution
can be interpreted locally as described in the following corollary.

corollary 3.3.31. Let 〈〈Σ, Γ〉〉 be a logic program, X a conservative signature of
Σ-variables, and ρ an X-query. Then for every trivial X-query >,

ρ,X(Γ) ∗
Σ,X > implies 〈〈Σ, Γ〉〉 �

lp
Σ
∀X · ρ.

proof. Assume > to be a trivial query over X such that ρ,X(Γ) ∗
Σ,X >.

By Proposition 3.3.30, it follows that ∃X · ρ −�∗Γ,1X
∃X · >. This means

that the identity 1X is a computed 〈〈Σ, Γ〉〉-answer to ∃X · ρ (because X is
conservative), and thus, by Theorem 3.3.24, 1X is also a solution to ∃X · ρ.
As a result, 〈〈Σ, Γ〉〉 �lp

Σ
∀X · ρ. �

With respect to the completeness of resolution, we are interested in the
converse of the implication discussed in the corollary above. This may hold
for certain programs in logic-programming languages of interest, but it
cannot be guaranteed in general.
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definition 3.3.32 (Query-completeness). A logic program 〈〈Σ, Γ〉〉 is said
to be query-complete if for every conservative signature of Σ-variables X and
every X-query ρ,

〈〈Σ, Γ〉〉 �
lp
Σ
∀X · ρ implies ρ,X(Γ) ∗

Σ,X >

for some trivial X-query >. In addition, the logic-programming language L
is query-completewhen all logic programs of L have this property.

The following result is well known in the literature; it can be found, for
instance, in a slightly di�erent form, in [Llo87]. The result is based on the
observation that for every signature of variables X over a �rst-order signature
〈F, P〉, and for every set Γ of clauses over 〈F, P〉, the X-expansion N of the
free 〈〈F, P〉, Γ〉-model over X given by Nx � x for every x ∈ X satis�es a
relational atom ρ if and only if there exist a clause ∀Y ·

∧
H ⇒ C in Γ and a

substitution ψ : Y → X such that ψ(C) � ρ and N �〈F,P〉,X
∧
ψ(H).

Therefore, if 〈〈F, P〉, Γ〉 �lp
〈F,P〉 ∀X · ρ, then N �〈F,P〉,X ρ, and thus there

exists a clause ψ(γ) ∈ X(Γ) such that ρ, ψ(γ) Σ,X ρ1, where N �〈F,P〉,X ρ1.
By iterating this construction, we obtain an alternating sequence of X-queries
and clauses as in De�nition 3.3.29; furthermore, since N�〈F,P〉 is the free
〈〈F, P〉, Γ〉-model over X, it is always possible to assemble such a sequence
that terminates in a trivial query – which, in the case of FOL1

,, is simply
the sentence true (see Fact 3.3.21). Consequently, ρ,X(Γ) ∗

Σ,X true. A more
detailed presentation of this result can be found, for example, in [Llo87].

proposition 3.3.33. The logic-programming language (FOL1
,)pres of theory

presentations over FOL1
, is query-complete. �

Our second lemma is now a direct consequence of Proposition 3.3.30.

lemma 3.3.34. Suppose that 〈〈Σ, Γ〉〉 is a query-complete logic program. Then
for every Σ-query ∃X · ρ such that X is conservative and 〈〈Σ, Γ〉〉 �lp

Σ
∀X · ρ, there

exists a trivial query∃X ·> that can be derived from∃X · ρ and Γ, with the identity
substitution 1X as the computed answer.

∃X · ρ −�∗Γ,1X
∃X · >

proof. Let 〈〈Σ, Γ〉〉 be a logic program as above and ∃X · ρ a Σ-query such
that 〈〈Σ, Γ〉〉 �lp

Σ
∀X · ρ. By query-completeness, there exists a trivial X-query

> such that ρ,X(Γ) ∗
Σ,X >. Hence, by Proposition 3.3.30, we can derive the

trivial query ∃X · > from ∃X · ρ and Γ using the substitution 1X . �
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theorem 3.3.35 (Completeness of resolution). Let 〈〈Σ, Γ〉〉 be a query-complete
logic program and ∃X · ρ a Σ-query that admits an identity ∀X · γ ∈ Γ. Then
every 〈〈Σ, Γ〉〉-solution to ∃X · ρ is also a computed 〈〈Σ, Γ〉〉-answer to ∃X · ρ.

proof. Let ψ : X → Y be a 〈〈Σ, Γ〉〉-solution to ∃X · ρ. By Lemma 3.3.27, we
know that ∃Y · ψ(ρ) can be derived from ∃X · ρ and its identity, ∀X · γ,
using the substitution ψ. Therefore, since ∀X · γ ∈ Γ, the query ∃Y · ψ(ρ)
can also be derived from ∃X · ρ and Γ.

∃X · ρ −�Γ,ψ ∃Y · ψ(ρ)

In addition, by De�nition 3.3.8, the signature of variables Y is conservative,
and 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · ψ(ρ). Hence, by Lemma 3.3.34, we can derive a trivial

query ∃Y · > from ∃Y · ψ(ρ) and Γ using the computed substitution 1Y .

∃Y · ψ(ρ) −�∗
Γ,1Y
∃Y · >

Composing the two derivation chains outlined above yields a derivation of
∃Y · > from ∃X · ρ using the substitution ψ. Consequently, ψ is a computed
answer to ∃X · ρ. �



4
CONNECTION WITH INST ITUT IONS

This chapter is devoted to the formalization of the connection between the institu-
tion- and the substitution-system-based approach to logic programming. For this
purpose, we investigate a number of features of institutions, like the existence of a
quanti�cation space or of representable substitutions, under which they give rise
to suitable generalized substitution systems. Building on these results, we further
show how the original institution-independent versions of Herbrand’s theorem can
be obtained as concrete instances of the general result developed in Section 3.3.1.

Before we embark on the study of institution-based abstract logic-pro-
gramming languages, let us brie�y recall the logical systems that underlie
two of the most prominent examples of (concrete) logic-programming lan-
guages examined in the context of institutions: �rst-order and higher-order
equational logic programming [see e.g. GM86; Mes92; and also OPE97].
These will form the main reference points that we will use to illustrate the
concepts and properties discussed in the subsequent sections of this chapter.

4.1 EQUATIONAL LOGIC PROGRAMMING

Equational logic programming integrates the machinery of its relational
counterpart within algebraic speci�cation in order to solve equations over
abstract data types that are provided by given speci�cations. This is accom-
plished by replacing (a) the single-sorted relational variant of �rst-order logic
(without equality) with the many-sorted equational variant of �rst-order
logic (with equality) or with higher-order logic with Henkin semantics,
(b) resolution with paramodulation, and (c) presentations (in the de�nition
of logic programs) with program modules that are adequate for de�ning
abstract data types. In this setting, the computation of the sum of s 0 and s 0

considered in Section 3.3 can be triggered by a query of the form

7−−−−−−−−X1 : Nat s 0 + s 0 � X1
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meant to be solved over a logic program that consists of two modules: NAT,
which de�nes natural numbers as an abstract data type, and ADD, which
speci�es the addition of natural numbers in the usual inductive manner.

module NAT � free

sort Nat

op 0 : → Nat

op s_ : Nat→ Nat

module ADD � NAT then

op _ + _ : Nat Nat→ Nat

clause 0 + M � M ←−−−−−−M : Nat

clause (s M) + N � s (M + N) ←−−−−−−−−M,N : Nat

4.1.1 first-order equational logic

First-order equational logic programming is de�ned over the institution
qf-FOL

�
of the quanti�er-free fragment ofmany-sorted �rst-order equational

logic. Since most of the de�nitions and properties to check are straightfor-
ward adaptations of the de�nitions and properties discussed in Section 3.1
for qf-FOL1

, to the many-sorted equational setting of qf-FOL
�
, we only

shortly review some of the most important concepts that we need. A more
in-depth discussion of the components of qf-FOL

�
can be found, for example,

in [GM87],1 or in the recent monographs [Dia08; ST11].

signatures. The signatures of qf-FOL
�
are pairs 〈S, F〉, where S is a (�nite)

set of sorts and F is a family (Fw→s )w∈S∗,s∈S of (�nite) sets of operation symbols
indexed by arities and sorts. Signature morphisms ϕ : 〈S, F〉 → 〈S′, F′〉 are
de�ned by functions ϕst : S → S′ between the sets of sorts and by families
of functions ϕop

w→s : Fw→s → F′ϕst(w)→ϕst(s) , for w ∈ S∗ and s ∈ S, between the
sets of operation symbols.

sentences, models, and the satisfaction relation. For every many-
sorted signature 〈S, F〉 and every sort s ∈ S, the set TF,s of F-terms of sort s is
the least set such that σ(t1 , . . . , tn) : s ∈ TF,s for all σ ∈ Fs1 ...sn→s and ti ∈ TF,si .
Similarly to the relational setting, the sentences over a qf-FOL

�
-signature

〈S, F〉 are built from equational atoms l � r, where l and r are F-terms having
the same sort, by iteration of the usual Boolean connectives.

1 It should be noted that in [GM87] the authors consider a more general setting of order-sorted
equational logic, with subsorts and overloading of operation symbols.
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The models, or algebras, M of 〈S, F〉 interpret each sort s ∈ S as a set Ms ,
called the carrier set of s in M, and each operation symbol σ ∈ Fs1 ...sn→s as
a function Mσ : Ms1 × · · · × Msn → Ms . Homomorphisms h : M1 → M2 are
families of functions (hs : M1,s → M2,s )s∈S such that hs (M1,σ (m1 , . . . ,mn)) �
M2,σ (hs1 (m1), . . . , hsn (mn)) for all σ ∈ Fs1 ...sn→s and mi ∈ Msi .

M1,s1 × · · · ×M1,sn

M1,σ
//

hs1×···×hsn
��

M1,s

hs
��

M2,s1 × · · · ×M2,sn M2,σ
// M2,s

Finally, the satisfaction relation is de�ned by induction on the structure
of sentences, based on the evaluation of terms in models. For instance, an
〈S, F〉-model M satis�es an equational atom l � r if and only Ml � Mr , that
is if the terms l and r yield the same value in M.

4.1.2 higher-order logic with henkin semantics

Building on the work of Russell on mathematical logic and the theory of
types [see Rus08], higher-order logic with Henkin semantics has been de-
veloped in [Chu40; Hen50] and later integrated into the framework of al-
gebraic speci�cations in [MTW87]. As in [MTW87] and in more recent
institution-theoretic works such as [ST11; Dia12b; Ţuţ13] we use here a sim-
pli�ed version of higher-order logic that only takes into account λ-free terms.
This does not limit its expressive power since for any term λ(x : s). t we can
de�ne a new constant σ and a universal sentence of the form ∀{x : s} · σ x � t
– a detailed presentation of the encoding of higher-order logic with λ-ab-
straction into its λ-free subinstitution can be found in [Găi14].
Analogously to �rst-order equational logic programming, for the results

presented in the following sections it su�ces to consider the quanti�er-free
fragment of higher-order logic, whose institution we denote by qf-HNK.2

signatures. A higher-order signature 〈S, F〉 consists of a set S of basic types,
or sorts, and a family (Fs )s∈~S of sets of constant-operation symbols indexed by
S-types, where ~S is the least set for which S ⊆ ~S and s1→ s2 ∈ ~S whenever
s1 , s2 ∈ ~S. Signature morphisms ϕ : 〈S, F〉 → 〈S′, F′〉 comprise functions
ϕst : S → ~S′ and ϕop

s : Fs → F′ϕtype(s) , for s ∈ ~S, where ϕtype : ~S → ~S′ is the
canonical extension of ϕst given by ϕtype(s1→ s2) � ϕtype(s1)→ ϕtype(s2).

2 Note that the universal sentences needed for encoding λ-terms can still be de�ned as Horn
clauses of the logic programs under consideration.
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sentences, models, and the satisfaction relation. Given a signature
〈S, F〉, the family

(
TF,s

)
s∈~S of F-terms is the least family of sets such that

σ : s ∈ TF,s for all types s ∈ ~S and constants σ ∈ Fs , and (t t1) ∈ TF,s2 for all
terms t ∈ TF,s1→s2 and t1 ∈ TF,s1 . As in �rst-order logic, the sentences over
〈S, F〉 are built from equational atoms l � r, where l and r are terms in TF,s for
some type s ∈ ~S, by repeated applications of the Boolean connectives.
The models M of a higher-order signature 〈S, F〉 interpret the types s ∈ ~S

as sets Ms , the constant symbols σ ∈ Fs as elements Mσ ∈ Ms , and de�ne
injective maps [[_]]M

s1→s2 : Ms1→s2→ [Ms1→Ms2], where [Ms1→Ms2] denotes
the set of functions from Ms1 to Ms2 , for any two types s1 , s2 ∈ ~S. Model
homomorphisms h : M1 → M2 are families of functions (hs : M1,s → M2,s )s∈~S

such that hs (M1,σ) � M2,σ for every type s ∈ ~S and operation symbol σ ∈ Fs ,
and the following diagram commutes for all s1 , s2 ∈ ~S and f ∈ M1,s1→s2 .

M1,s1

[[ f ]]M1
s1→s2

//

hs1
��

M1,s2

hs2
��

M2,s1
[[hs1→s2 ( f )]]M2

s1→s2

// M2,s2

The (inductive) de�nition of the satisfaction relation relies once again on
the interpretation of terms in models, which extends the interpretation of
constant-operation symbols as follows: for every 〈S, F〉-model M and every
pair of terms t ∈ TF,s1→s2 and t1 ∈ TF,s1 , M(t t1) � [[Mt]]M

s1→s2(Mt1 ).

4.2 INST ITUT ION- INDEPENDENT SUBST ITUT IONS

The institution-independent concept of substitution [see Dia04; and also
Dia08] generalizes �rst-order substitutions (as well as second-order and
higher-order substitutions, among others) to arbitrary institutions by taking
notice only of their syntactic and semantic e�ects: the translations of sen-
tences and the reductions ofmodels that they generate. A key step in arriving
at this notion is the presentation of the extensions of signatures by sets of vari-
ables as particular cases of signature morphisms (along the lines of [ST84]).
Thus, given two signature morphisms χ1 : Σ → Σ1 and χ2 : Σ → Σ2 (two
extensions of a signature Σ) in an institution I � 〈Sig, Sen,Mod, �〉, a substi-
tution ψ : χ1 → χ2 is a pair 〈SenΣ(ψ),ModΣ(ψ)〉 consisting of

· a sentence-translation function SenΣ(ψ) : Sen(Σ1) → Sen(Σ2) and

· a model-reduction functor ModΣ(ψ) : Mod(Σ2) →Mod(Σ1)
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that preserveΣ, in the sense that Sen(χ1) ;SenΣ(ψ) � Sen(χ2) and ModΣ(ψ) ;

Mod(χ1) � Mod(χ2), and satisfy the following condition:

M2 �Σ2 SenΣ(ψ)(ρ1) if and only if ModΣ(ψ)(M2) �Σ1 ρ1

for every Σ2-model M2 and every Σ1-sentence ρ1.
In the present work, we take into consideration an equivalent formulation

of the original de�nition that makes use of the category Room of rooms
and corridors. In addition, we extend the fact that substitutions inherit the
composition of their components – thus giving rise to a category – to derive
a general substitution system of Σ-substitutions for each signature Σ.

proposition 4.2.1. Let Q ⊆ Sig be a class of signature morphisms of an insti-
tution I : Sig → Room. For every I-signature Σ we obtain a substitution system
SIQ
Σ

: SubstQΣ → I(Σ) /Room de�ned as follows:

· The objects of the category SubstQΣ – i.e. the signatures of Σ-variables – are sig-
nature morphisms χ : Σ → Σ(χ) 3 belonging to the class Q. Their corresponding
corridors via the functor SIQ

Σ
are given simply by I(χ) : I(Σ) → I(Σ(χ)).

· For every two signatures of Σ-variables χ1 : Σ → Σ(χ1) and χ2 : Σ → Σ(χ2), a
Σ-substitution ψ : χ1 → χ2 consists of a corridor 〈SenΣ(ψ),ModΣ(ψ)〉 between
I(Σ(χ1)) and I(Σ(χ2)) such that I(χ1) ; 〈SenΣ(ψ),ModΣ(ψ)〉 � I(χ2).

I(Σ)
I(χ1)

��

I(χ2)

��

I(Σ(χ1))

〈SenΣ(ψ),ModΣ(ψ)〉

OO
I(Σ(χ2))

As such, Σ-substitutions are merely arrows in the comma category I(Σ) /Room,
meaning that they are identi�ed with their images under the functor SIQ

Σ
. The com-

position of substitutions is de�ned accordingly. �

example 4.2.2. In qf-FOL
�
, a �rst-order variable over a signature 〈S, F〉 is a

triple (x , s , Fε→s ),4 often denoted simply by x : s, where x is the name of
the variable and s is its sort. Thus, qf-FOL

�
-signatures of 〈S, F〉-variables

X are S-indexed families of sets Xs of variables of sort s such that di�erent
variables have di�erent names. First-order substitutions ψ : X → Y can be

3 For convenience, we denote the codomain of the signature morphism χ by Σ(χ); this re�ects
the intuition that Σ(χ) is an extension of the signature Σwith variables de�ned by χ.

4 We denote the empty arity by ε; hence, Fε→s is the set of F-constants of sort s.
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further de�ned as S-indexed families of maps ψs : Xs → TF∪Y,s that assign a
term over the extended signature 〈S, F ∪ Y〉 to every variable of X.
One can easily check that every �rst-order substitution ψ : X → Y gives

rise to a general substitution between the inclusions 〈S, F〉 ⊆ 〈S, F ∪ X〉
and 〈S, F〉 ⊆ 〈S, F ∪ Y〉, much the same as in the case of qf-FOL1

, [see e.g.
Dia08]. For instance, the reduct Mod〈S,F〉(ψ)(N) of an 〈S, F ∪ Y〉-model N is
the 〈S, F ∪ X〉-expansion of N�〈S,F〉 given by Mod〈S,F〉(ψ)(N)x : s � Nψ(x) for
every variable x : s of X. Note, however, that not every general substitution
between 〈S, F〉 ⊆ 〈S, F∪X〉 and 〈S, F〉 ⊆ 〈S, F∪Y〉 corresponds to a �rst-order
substitution; we will discuss this aspect to a greater extent in Section 4.3.2.
Higher-order signatures of variables and substitutions can be de�ned likewise,

by recalling that a higher-order variable over a signature 〈S, F〉 is a triple of
the form (x , s , Fs ), where x and s correspond to the name and the type of
the variable [see e.g. Ţuţ13; and also Cod07]. As expected, this means that
we allow higher-order variables to range over arbitrary functions.

4.3 QUANTIF ICAT ION SPACES

Due to its mild assumptions, the construction outlined in Proposition 4.2.1
cannot be easily generalized to accommodate signature morphisms. More
precisely, one cannot guarantee that signature morphisms ϕ : Σ → Σ′ de-
termine adequate morphisms between the substitution systems associated
with Σ and Σ′: it would su�ce, for example, to consider a class Q of signa-
ture morphisms that consists only of extensions of Σ, thus preventing the
translation of the signatures of Σ-variables along ϕ. To overcome this limita-
tion, we take into account only those extensions of signatures that belong
to a quanti�cation space – a notion introduced in [Dia10] in the context of
quasi-Boolean encodings5 and utilized in a series of papers on hybridization
and many-valued institutions [see e.g. Mar+11; Dia13b; Dia13a].

Quanti�cation spaces provide a way of translating signatures of variables
along signaturemorphism bymeans of dedicated pushout constructions. For
the purpose of our work, it will be convenient to consider a more categorical
formulation of the original de�nition, based on Fact 4.3.1 below.

fact 4.3.1. Consider a category K and a subcategory Q of the category K~

of K-arrows. The domain functor dom: Q→ K gives rise to a natural trans-
formation ιQ : (_/Q) ⇒ domop ; (_ /K) where, for every triple 〈A1 , f ,A2〉 in

5 It should be noted, however, that the ideas that underlie quanti�cation spaces can be traced
back to [Tar86; ST88a] – two of the earliest works in which open formulae are treated in
arbitrary institutions.
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|Q| (i.e. arrow f : A1 → A2 inK), ιQ, f : f /Q→ A1/K is the functor thatmaps
the morphisms 〈g1 , g2〉 : 〈A1 , f ,A2〉 → 〈A′1 , f ′,A′2〉 in Q (corresponding to
commutative squares in K) to g1 : A1 → A′1.

A1
g1
//

f
��

A′1
f ′

��

A2 g2
// A′2

7→ A1
g1
// A′1

definition 4.3.2 (Quanti�cation space). A quanti�cation space for an institu-
tion I : Sig→ Room consists of a subcategory Q of Sig~ such that

1 every arrow in Q corresponds to a pushout in Sig, and
2 the transformation ιQ : (_ /Q) ⇒ domop ; (_ / Sig) is a natural isomorphism.

This means that for every extension of signatures χ : Σ → Σ(χ) in |Q|
and every signature morphism ϕ : Σ → Σ′ there exist a unique extension
χ′ : Σ′→ Σ′(χ′) in |Q| and a unique signature morphism φ : Σ(χ) → Σ′(χ′)
such that the pair 〈ϕ, φ〉 de�nes a morphism in Q between the arrows χ and
χ′.6 We will henceforth denote the signature extension χ′ and the signature
morphism φ by χϕ : Σ′→ Σ′(χϕ) and ϕχ : Σ(χ) → Σ′(χϕ), respectively.

Σ
ϕ

//

χ
��

Σ′

χϕ

��

Σ(χ)
ϕχ
// Σ′(χϕ)

example 4.3.3. For both qf-FOL
�
and qf-HNK, the extensions of signatures

χ : 〈S, F〉 → 〈S, F∪X〉 de�ned by (families of) �nite sets of �rst-order/higher-
order 〈S, F〉-variables X form a quanti�cation space. More precisely, for every
signature morphism ϕ : 〈S, F〉 → 〈S′, F′〉,

· χϕ : 〈S′, F′〉 → 〈S′, F′ ∪ Xϕ
〉 is the extension of 〈S′, F′〉 given by Xϕ

s′ � {x : s′ |
x : s ∈ Xs for some sort s ∈ S (or type s ∈ ~S) such that ϕ(s) � s′}, and

· ϕχ : 〈S, F∪X〉 → 〈S′, F′∪Xϕ
〉 is the canonical extension of ϕ that maps each

〈S, F〉-variable x : s in X to the 〈S′, F′〉-variable x : ϕ(s) in Xϕ.

definition 4.3.4 (Adequacy). For any institution, a quanti�cation space
Q is said to be adequate if every arrow 〈ϕ, ϕχ〉 : χ → χϕ in Q corresponds
to a model-amalgamation square: for every Σ′-model M′ and Σ(χ)-model

6 Moreover, the signature morphisms χ′ and φ correspond to a pushout of ϕ and χ.
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N such that M′�ϕ � N�χ there exists a unique model N′ of Σ′(χϕ) – the
amalgamation of M′ and N – such that N′�χϕ � M′ and N′�ϕχ � N .

In semi-exact institutions7 – like qf-FOL
�
[see Mes89; DGS93] – all quanti-

�cation spaces are adequate. This is not the case of qf-HNK, for which it is
known that, due to the presence of higher-order types, not every pushout
square of signature morphisms is a model-amalgamation square [see e.g.
Cod07]. Nonetheless, the quanti�cation space for qf-HNK outlined in Ex-
ample 4.3.3 is adequate: the amalgamation N′ of any two given models M′

of 〈S′, F′〉 and N of 〈S, F ∪X〉 is the unique χϕ-expansion of M′ that satis�es
N′x : ϕ(s) � Nx : s for each variable x : s in X.

remark 4.3.5. Since the morphisms of any quanti�cation space Q are re-
quired to form a category (by de�nition, Q is a subcategory of Sig~ ), for
every signature extension χ : Σ→ Σ(χ) in |Q| and every pair of composable
signature morphisms ϕ : Σ→ Σ′ and ϕ′ : Σ′ → Σ′′, we have (χϕ)ϕ

′

� χϕ;ϕ′

and ϕχ ; (ϕ′)χ
ϕ
� (ϕ ; ϕ′)χ. Moreover, χ1Σ � χ and 1χ

Σ
� 1Σ(χ) .

Σ
ϕ

//

χ

��

Σ′
ϕ′

//

χϕ

��

Σ′′

(χϕ )ϕ
′

�χϕ;ϕ′

��

Σ(χ)
ϕχ

//

(ϕ;ϕ′)χ

OO
Σ′(χϕ)

(ϕ′)χ
ϕ

// Σ′′((χϕ)ϕ
′

)

Quanti�cation spaces thus provide adequate support for translating abstract
signature extensions along morphisms of signatures in a functorial manner.

4.3.1 representable signature extensions

Since the institution-independent substitutions of Proposition 4.2.1 corres-
pond to a semantic concept, we cannot expect to translate them along signa-
turemorphisms in the samemanner as the extensions of signatures provided
by a given quanti�cation space. The solution that we propose herein relies
on an important characterization of the �rst-order signature extensions
with variables (regarded as new constant-operation symbols): for every
qf-FOL

�
-signature extension 〈S, F〉 ⊆ 〈S, F ∪ X〉 there is a one-to-one cor-

respondence between the models of 〈S, F ∪ X〉 and the model homomorph-
isms de�ned on the free 〈S, F〉-algebra TF (X) over the set of variables X;
in particular, every 〈S, F ∪ X〉-model N determines the homomorphism

7 We recall that an institution is semi-exact – in the sense of [Mes89; DGS93] – if its model
functor preserves pullbacks.
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h : TF (X) → N�〈S,F〉 given by h(x) � Nx for every variable x in X. In this
context, TF (X) is said to be a representation of the inclusion of signatures
〈S, F〉 ⊆ 〈S, F ∪ X〉. The following de�nition originates from [Dia03].

definition 4.3.6 (Representable signature morphism). In any institution, a
signaturemorphism χ : Σ→ Σ(χ) is representable if there exist aΣ-model Mχ,
called the representation of χ, and an isomorphism of categories iχ between
Mod(Σ(χ)) and Mχ /Mod(Σ) such that the following diagram commutes.

Mod(Σ)

Mod(Σ(χ))

_�χ

OO

iχ
// Mχ /Mod(Σ)

|_|Mχ
hh

Representable �rst-order signature morphisms were studied in depth
in [Şer04], from where we recall Proposition 4.3.7 below [see also Dia08].

proposition 4.3.7. A �rst-order signature morphism is representable if and only
if it is bijective on all symbols, except constant-operation symbols. �

Consequently, for every qf-FOL
�
-signature 〈S, F〉, all signature extensions

〈S, F〉 ⊆ 〈S, F∪X〉 given by �nite sets X of 〈S, F〉-variables are representable.
A similar result can be obtained for qf-HNK. In that case, however, the sig-

nature extensions with constants 〈S, F〉 ⊆ 〈S, F ∪ X〉 can only be guaranteed
to be quasi-representable, in the sense that, for every 〈S, F∪X〉-model N , the
canonical functor N /Mod(S, F ∪ X) → N�〈S,F〉 /Mod(S, F) determined by
themodel-reduct functor _�〈S,F〉 is an isomorphism (see e.g. [Cod07] formore
details). Representability further requires that the resulting higher-order
signatures 〈S, F ∪ X〉 have initial models, a property which holds whenever
〈S, F ∪ X〉 has at least one constant-operation symbol for each type.8

proposition 4.3.8. All higher-order signature extensions 〈S, F〉 ⊆ 〈S, F ∪ X〉
with (�nite) sets X of new constant-operation symbols are representable, provided
that Fs ∪ Xs , ∅ for each type s ∈ ~S. �

remark 4.3.9. Let χ : Σ→ Σ(χ) and χ′ : Σ′→ Σ′(χ′) be a pair of represent-
able signature extensions de�ned by a quanti�cation space Q, and let β and

8 This property is commonly achieved by assuming that, for each type s ∈ ~S, the set Fs contains
an implicit constant-operation symbol.
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β′ be two functors as depicted below such that Mod(χ′) ; β � β′ ; Mod(χ).

Mod(Σ) Mod(Σ′)
β

oo

Mod(Σ(χ))

_�χ

OO

iχ ))

Mod(Σ′(χ′))
β′

oo

_�χ′

OO

iχ′ ))

Mχ /Mod(Σ)

|_|Mχ

]]

Mχ′ /Mod(Σ′)

|_|Mχ′

^^

U
oo

The composition i−1
χ′ ; β′ ; iχ gives rise to a functor U between the comma

categories Mχ′ /Mod(Σ′) and Mχ /Mod(Σ), where

· for every Σ′-model homomorphism h′ : Mχ′ → M′, U (h′) is the Σ-model
homomorphism (i−1

χ′ ; β′ ; iχ)(h′) : Mχ → β(M′), and

· for every arrow f ′ : h′1 → h′2 betweenmodel homomorphisms h′1 : Mχ′ → M′1
and h′2 : Mχ′ → M′2, U ( f ′) is just the β-reduct of f ′, β( f ′) : β(M′1) → β(M′2).

When β corresponds to the model-reduct functor Mod(ϕ) of a signature
morphism ϕ : Σ→ Σ′, andwhen χ′ and β′ are χϕ andMod(ϕχ), respectively,
we will denote the functor U : Mχ′ / Mod(Σ′) → Mχ / Mod(Σ) by Uϕ,χ.
Similarly, when β is the identity of Mod(Σ) and β′ is the underlying model
functor of a substitution ψ : χ → χ′, we will denote the functor U by Uψ.

Model homomorphisms h′ : Mχ′ → M′ can be regarded both as objects
and as arrows (between 1Mχ′

and h′) in the comma category Mχ′ /Mod(Σ′).
In combination with the de�nition of U : Mχ′ /Mod(Σ′) → Mχ /Mod(Σ),
the arrow view provides us a useful factorization of U (h′) as U (1Mχ′

) ; β(h′).

Mχ′

1Mχ′

��

h′

��

Mχ′ h′
// M′

7→

Mχ
U (1Mχ′

)

��

U (h′)

��

β(Mχ′) β(h′)
// β(M′)

fact 4.3.10. Under the notation and hypotheses of Remark 4.3.9, for every
Σ′-model homomorphism h′ : Mχ′ → M′, U (h′) � U (1Mχ′

) ; β(h′).

4.3.2 representable substitutions

Quanti�cation spaces that have representable extensions of signatures, mean-
ing that every extension χ : Σ→ Σ(χ) de�ned by the quanti�cation space
is representable, allow us to extend the concept of representability from
signature extensions (i.e. signatures of variables) to substitutions, leading to
a purely model-theoretic view of the categories of substitutions.
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proposition 4.3.11. For every signature Σ in an institution equipped with a
quanti�cation space Q, the representation of the extensions of signatures extends to
a functor RQ

Σ
: SubstQ

Σ
→Mod(Σ), where

· for every extension of signatures χ : Σ→ Σ(χ) in |Q|, RQ

Σ
(χ) � Mχ, and

· for every substitution ψ : χ1 → χ2, RQ

Σ
(ψ) � Uψ (1Mχ2

) : Mχ1→ Mχ2 .

Moreover, for any Σ-substitution ψ, ModΣ(ψ) is uniquely determined by RQ

Σ
(ψ).

proof. The preservation of composition follows from a series of straight-
forward calculations based on the fact that, for every pair Σ-substitutions
ψ1 : χ1 → χ2 and ψ2 : χ2 → χ3, ModΣ(ψ1 ; ψ2) � ModΣ(ψ2) ; ModΣ(ψ1).

RQ

Σ
(ψ1 ; ψ2)

� Uψ1;ψ2 (1Mχ3
) by the de�nition of RQ

Σ

�
(
i−1
χ3

; ModΣ(ψ1 ; ψ2) ; iχ1

)
(1Mχ3

) by the de�nition of Uψ1;ψ2

�
(
i−1
χ3

; ModΣ(ψ2) ; ModΣ(ψ1) ; iχ1

)
(1Mχ3

) by the functoriality of ModΣ

�
(
i−1
χ3

; ModΣ(ψ2) ; iχ2

; i−1
χ2

; ModΣ(ψ1) ; iχ1

)
(1Mχ3

) since iχ2 ; i−1
χ2 � 1Mod(Σ(χ2))

� Uψ1 (Uψ2 (1Mχ3
)) according to the de�nitions

of Uψ1 and Uψ2

� Uψ1 (1Mχ2
) ; Uψ2 (1Mχ3

) by Fact 4.3.10

� RQ

Σ
(ψ1) ; RQ

Σ
(ψ2) by the de�nition of RQ

Σ

In much the same way, based on the fact that ModΣ(1χ) � 1Mod(Σ(χ)) , for
every signature of Σ-variables χ : Σ→ Σ(χ), we obtain RQ

Σ
(1χ) � 1Mχ .

To prove the second part of the statement, notice that by the de�nition of
Uψ we have ModΣ(ψ) � iχ2 ; Uψ ; i−1

χ1 , where χ1 and χ2 correspond to the do-
main and codomain signatures of variables of the substitution ψ. This allows
us to deduce, based on Fact 4.3.10, that ModΣ(ψ)(N2) � i−1

χ1 (Uψ (iχ2 (N2))) �
i−1
χ1 (Uψ (1Mχ2

) ; iχ2 (N2)) � i−1
χ1 (RQ

Σ
(ψ) ; iχ2 (N2)) for every model N2 of Σ(χ2).

Furthermore, by Remark 4.3.9, the reduction of Σ(χ2)-model homomorph-
isms h2 is given by ModΣ(ψ)(h2) � i−1

χ1 (iχ2 (h2)). Therefore, for any substitu-
tion ψ′ : χ1 → χ2 such that RQ

Σ
(ψ′) � RQ

Σ
(ψ), ModΣ(ψ′) � ModΣ(ψ). �

When the quanti�cation space Q and the signature Σ are clear from the
context (as well as the institution under consideration), we may also denote
the representation RQ

Σ
(ψ) of a substitution ψ : χ1 → χ2 by hψ : Mχ1→ Mχ2 .

Note that, in general, the functor RQ

Σ
: SubstQ

Σ
→ Mod(Σ) of Proposi-

tion 4.3.11 need be neither full nor faithful. For example, in the case of
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qf-FOL
�
, for every general substitution ψwe can de�ne another substitution

ψ′ (with the samedomain and codomain asψ) such that, for every atomic sen-
tence l � r that is not ground, SenΣ(ψ′)(l � r) corresponds to SenΣ(ψ)(r � l).
In consequence, we can obtain distinct institution-independent substitutions
having the same underlying model functor – and thus, the same representa-
tion. This is contrary to our intuition concerning �rst-order substitutions,
where, given a signature 〈S, F〉, every substitution ψ : X1 → X2, i.e. every
S-indexed family of maps ψs : X1,s → TF∪X2 ,s , is determined uniquely by
its representation RQ

〈S,F〉(ψ) : TF (X1) → TF (X2). As we will see later, the full
and faithful representation of substitutions as model homomorphisms is
essential for translating substitutions along signature morphisms.

definition 4.3.12 (Representable substitution). Let Σ be a signature in an
institution equipped with a quanti�cation space Q. For every subcategory
SubstΣ ⊆ SubstQ

Σ
, a substitution ψ : χ1 → χ2 in SubstΣ is said to be Q-rep-

resentable if it is uniquely determined by its image under RQ

Σ
. In addition,

SubstΣ forms a category of Q-representable Σ-substitutions if the restriction of
the functor RQ

Σ
: SubstQ

Σ
→Mod(Σ) to SubstΣ is both full and faithful.

example 4.3.13. Let Q be the quanti�cation space for qf-FOL
�
presented

in Example 4.3.3. For every �rst-order signature 〈S, F〉, the subcategory
Subst〈S,F〉 ⊆ SubstQ

〈S,F〉whose arrows correspond to the corridors induced by
�rst-order substitution forms a category of Q-representable substitutions. A
similar property can be formulated for higher-order substitutions.

For the remaining part of this chapter we will assume that I is an arbitrary but
�xed institution 〈Sig, Sen,Mod, �〉 equipped with

· an adequate quanti�cation space Q ⊆ Sig~ of representable signature extensions,

· a broad subcategory SubstΣ ⊆ SubstQ

Σ
(i.e. with the same objects as SubstQ

Σ
), for

every signature Σ ∈ |Sig|, of Q-representable Σ-substitutions.

lemma 4.3.14. Under the above assumptions, for every morphism ϕ : Σ → Σ′

in Sig and every signature extension χ : Σ → Σ(χ) in |Q|, the homomorphism
Uϕ,χ (1Mχϕ

) : Mχ → Mχϕ�ϕ is a universal arrow from Mχ to Mod(ϕ).

proof. Suppose that h : Mχ → M′�ϕ is a Σ-model homomorphism from
Mχ to the reduct of a Σ′-model M′. Since χ is representable, we know
that i−1

χ (h)�χ � M′�ϕ. This allows us to deduce, based on the adequacy of
Q, that there exists a unique Σ′(χϕ)-model N′ satisfying N′�χϕ � M′ and
N′�ϕχ � i−1

χ (h). We thus obtain the homomorphism iχϕ (N′) : Mχϕ → M′.
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To show that Uϕ,χ (1Mχϕ
) ; iχϕ (N′)�ϕ � h, and thus that iχϕ (N′)�ϕ is an

arrow in Mχ / Mod(Σ) between Uϕ,χ (1Mχϕ
) and h, it su�ces to consider

iχϕ (N′) as an arrow in Mχϕ/Mod(Σ′) between 1Mχϕ
and iχϕ (N′). In this way,

by taking the image of iχϕ (N′) under Uϕ,χ, we obtain the arrow iχϕ (N′)�ϕ
between Uϕ,χ (1Mχϕ

) and Uϕ,χ (iχϕ (N′)) � iχ (N′�ϕχ) � h.

Mχ

Uϕ,χ (1Mχϕ
)
//

h
''

Mχϕ�ϕ

iχϕ (N′)�ϕ
��

Mχϕ

iχϕ (N′)
��

M′�ϕ M′

For the ‘uniqueness’ part of the universality of Uϕ,χ (1Mχϕ
), let f ′ be an

arbitrary Σ′-homomorphism Mχϕ → M′ such that Uϕ,χ (1Mχϕ
) ; f ′�ϕ � h.

Then i−1
χϕ ( f ′) is a Σ′(χϕ)-model and, in addition, it satis�es i−1

χϕ ( f ′)�χϕ � M′

and i−1
χϕ ( f ′)�ϕχ � i−1

χ (h); the latter equality follows from the observation
that iχ (i−1

χϕ ( f ′)�ϕχ ) � Uϕ,χ ( f ′) � Uϕ,χ (1Mχϕ
) ; f ′�ϕ � h. Therefore, i−1

χϕ ( f ′)
is the amalgamation of M′ and i−1

χ (h); this further implies that i−1
χϕ ( f ′) � N′,

because Q is adequate, thus allowing us to conclude that f ′ � iχϕ (N′). �

The lemma above enables us to make use of a well-known construction of
adjoint functors from universal arrows [see e.g. AHS09] to derive translations
between categories of substitutions. We thus obtain the following result.

proposition 4.3.15. Every morphism of signatures ϕ : Σ → Σ′ gives rise to a
functorΨϕ : SubstΣ → SubstΣ′ that maps

I(Σ)
ϕ

//

I(χ1)

�� I(χ2)

��

I(Σ′)

I(χϕ1 )

�� I(χϕ2 )

��

I(Σ(χ1))
I(ϕχ1 )

//

ψ
$$

I(Σ′(χϕ1 ))(
RQ

Σ′

)−1
(hϕψ ) $$

I(Σ(χ2))
I(ϕχ2 )

// I(Σ′(χϕ2 ))

· every signature extension χ : Σ→ Σ(χ) to χϕ : Σ′→ Σ′(χϕ), and

· every Σ-substitution ψ : χ1 → χ2 to ψϕ �
(
RQ

Σ′

)−1(hϕψ), where hϕψ is the unique
Σ′-homomorphism Mχ

ϕ
1
→ Mχ

ϕ
2
for which the diagram below commutes.

Mχ1

Uϕ,χ1 (1Mχ
ϕ
1

)
//

hψ $$

Mχ
ϕ
1
�ϕ

hϕψ�ϕ
$$

Mχ
ϕ
1 hϕψ

$$

Mχ2 Uϕ,χ2 (1Mχ
ϕ
2

)
// Mχ

ϕ
2
�ϕ Mχ

ϕ
2
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Moreover,Ψ itself is functorial, in the sense thatΨϕ;ϕ′ � Ψϕ ;Ψϕ′ for every com-
posable signature morphisms ϕ : Σ→ Σ′ and ϕ′ : Σ′→ Σ′′, andΨ1Σ � 1SubstΣ .

proof. The �rst part of the statement follows by Lemma 4.3.14 as a direct
consequence of the universal property of the homomorphism Uϕ,χ1 (1Mχ

ϕ
1
) –

note that, since the functor RQ

Σ
is assumed to be both full and faithful, for

every signature Σ, it su�ces to reason about the representations of sub-
stitutions. With respect to the second part of the statement, notice �rst
that, by the de�nition of quanti�cation spaces, the translation of signa-
ture extensions along signature morphisms is functorial (see Remark 4.3.5).
In addition, by Remark 4.3.9, for every signature extension χ : Σ → Σ(χ),
Uϕ;ϕ′,χ � Uϕ′,χϕ ;Uϕ,χ. This allows us to deduce, according to Fact 4.3.10, that
Uϕ;ϕ′,χ (1Mχϕ

) � Uϕ,χ (1Mχϕ
) ;Uϕ′,χϕ (1Mχϕ;ϕ′). Hence, by the general properties

of composing universal arrows, we can further conclude that the translation
of substitutions along signature morphisms is also functorial. �

4.3.3 deriving generalized substitution systems

For any signature morphism ϕ : Σ→ Σ′, the functorΨϕ : SubstΣ → SubstΣ′
discussed in Proposition 4.3.15 can be extended in a straightforward manner
to a morphism 〈Ψϕ , κϕ , τϕ〉 between the substitution systems SIΣ and SIΣ′

obtained by restricting the functors SIQ

Σ
and SI

Q

Σ′
of Proposition 4.2.1 to the

subcategories SubstΣ and SubstΣ′ of Σ- and Σ′-substitutions.

SubstΣ
SIΣ
//

Ψϕ

��

I(Σ) /Room

SubstΣ′
SIΣ

// I(Σ′) /Room

I(ϕ)/Room

OO

τϕ
��

To be more speci�c, κϕ is the corridor 〈Sen(ϕ),Mod(ϕ)〉 obtained by taking
the image I(ϕ) of ϕ under the institution I, regarded as a functor into Room.
Furthermore, for every signature extension χ : Σ → Σ(χ), the corridor
τϕ,χ : I(Σ(χ)) → I(Σ′(χϕ)) is simply I(ϕχ). It should be noted, however,
that the naturality of τϕ holds in general only up to semantic equivalence
(see Proposition 4.3.16 below): this means that we can only guarantee that
Mod(ϕχ) is natural in χ, and thus that, for every substitution ψ : χ1 → χ2

and sentence ρ over Σ(χ1), ϕχ2 (ψ(ρ)) ��ψϕ (ϕχ1 (ρ)).9 In concrete cases like
qf-FOL

�
, the equality ϕχ2 (ψ(ρ)) � ψϕ (ϕχ1 (ρ)) is usually due to the careful

choice of the categories of substitutions; other choices, which may involve,

9 We recall that two sentences ρ1 and ρ2 are semantically equivalent, denoted ρ1 ��ρ2, if and
only if they are satis�ed by the same class of models.
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for example, swapping the left- and the right-hand side of non-ground equa-
tional atoms, do not necessarily give rise to natural transformations τϕ. For
this reason, in what follows, we will implicitly assume that the categories
SubstΣ ofΣ-substitutions are compatiblewith respect to signaturemorphisms,
meaning that ψ ; I(ϕχ2 ) � I(ϕχ1 ) ; ψϕ for every substitution ψ : χ1 → χ2.

proposition 4.3.16. For every signature morphism ϕ : Σ→ Σ′ and everyΣ-sub-
stitution ψ : χ1 → χ2, Mod(ϕχ2 ) ; ModΣ(ψ) � ModΣ′ (ψϕ) ; Mod(ϕχ1 ).

proof. The conclusion follows easily by ‘chasing’ the diagram bellow, pro-
vided that the outer square is commutative, that is Uϕ,χ2 ; Uψ � Uψϕ ; Uϕ,χ1 .

Mχ1 /Mod(Σ) Mod(Σ(χ1))
iχ1
oo Mod(Σ′(χϕ1 ))

_�ϕχ1
oo

i
χ
ϕ
1
// Mχ

ϕ
1
/Mod(Σ′)

Uϕ,χ1

��

Mχ1 /Mod(Σ)

Uψ

OO

Mod(Σ(χ2))

_�ψ

OO

iχ2

oo Mod(Σ′(χϕ2 ))

_�ψϕ

OO

_�ϕχ2

oo

i
χ
ϕ
2

// Mχ
ϕ
2
/Mod(Σ′)

Uψϕ

OO

Uϕ,χ2

OO

This equality can also be established without di�culty by noticing that, for
every Σ′-homomorphism h′ : Mχ

ϕ
2
→ M′,

(Uϕ,χ2 ; Uψ)(h′)

� hψ ; Uϕ,χ2 (1Mχ
ϕ
2
) ; h′�ϕ by Fact 4.3.10 and Proposition 4.3.11

� Uϕ,χ1 (1Mχ
ϕ
2
) ; hϕψ�ϕ ; h′�ϕ by Proposition 4.3.15

� (Uψϕ ; Uϕ,χ1 )(h′). by Fact 4.3.10 and Proposition 4.3.11

Analogously, for every arrow f ′ in the comma category Mχ
ϕ
2
/Mod(Σ′), one

can check directly that (Uϕ,χ2 ; Uψ)( f ′) � f ′�ϕ � (Uψϕ ; Uϕ,χ1 )( f ′). �

We can now conclude the construction of a generalized substitution sys-
tem SI : Sig→ SubstSys from an arbitrary institution I : Sig→ Room that
satis�es the hypotheses laid out in Section 4.3.2 by noticing that, according
to Proposition 4.3.15, to the fact that I is a functor, and to Remark 4.3.5, all
components of the morphism of substitution systems 〈Ψϕ , κϕ , τϕ〉 presen-
ted above are functorial in ϕ. Moreover, since the quanti�cation space of I is
assumed to be adequate, the generalized substitution system SI has model
amalgamation. This leads us to the �rst main result of the present chapter.
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theorem 4.3.17. For any institution I : Sig→ Room equipped with an adequate
quanti�cation space Q of representable signature extensions and with compatible
categories SubstΣ of Q-representable Σ-substitutions, SI : Sig → SubstSys is a
generalized substitution system that has model amalgamation. �

example 4.3.18. Both institutions qf-FOL
�
and qf-HNK, in combination

with signature extensions with constants and with the �rst-order and higher-
order substitutions outlined in Example 4.2.2, give rise to generalized substi-
tution systems, which we will denote by qf-FOL� and qf-HNK respectively.

4.4 LOGIC PROGRAMMING OVER AN ARBITRARY
INST ITUT ION

The view we take here is that the logic programming paradigm can be
developed over an arbitrary institution I : Sig → Room by considering
logic-programming frameworks and languages de�ned over the generalized
substitution system SI : Sig→ SubstSys introduced in Section 4.3.3. To this
end, we assume that I : Sig→ Room is an institution that satis�es the hypo-
theses of Theorem 4.3.17, and we let L be a logic-programming language
〈LP, Sign, PMod,Ax〉 de�ned over a framework 〈SI,C,Q, 〉. Since the un-
derlying generalized substitution system of L is derived from I, it is often
more convenient – especially when discussing concrete examples – to regard
C and Q as subfunctors of the sentence functor Sen: Sig→ Set of I.

4.4.1 paramodulation

Paramodulation originated with the work of Robinson and Wos [RW83]
as a re�nement of resolution that is suitable for dealing with clauses and
queries de�ned over �rst-order logic with equality. The de�nition of its
corresponding goal-directed rules relies on the following notions of context
and substitution of a term in a given context [see e.g. ST11; and also BN99].
For any sort s of a �rst-order signature 〈S, F〉 – and similarly, for any

type s of a higher-order signature 〈S, F〉 – a context for s is a term c over an
extended signature of the form 〈S, F ∪ {� : s}〉 that contains precisely one
occurrence of the new variable �. The substitution of a term t ∈ TF,s in c,
denoted c[t], is de�ned simply as the translation of c along the substitution
(� 7→ t) : {� : s} → ∅ that maps � to the term t.

clauses and queries. For every signature 〈S, F〉 – and, in particular, for
signature extensions with constants 〈S, F ∪ X〉 – the local (quanti�er-free)
clauses are de�ned, as in the relational case, as implications of the form
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∧
H ⇒ (l � r), where H is a �nite set of equational atoms and l � r is an

equational atom. In a similar manner, the local queries over 〈S, F〉 are just
�nite conjunctions

∧
Q of equational atoms.

goal-directed rules. (Local) paramodulation is given by rules of the form

∧(
{c[l] � t} ∪Q

)
,
(∧

H ⇒ (l � r)
)
〈S,F∪X〉

∧(
{c[r] � t} ∪Q ∪ H

)
or ∧(

{t � c[l]} ∪Q
)
,
(∧

H ⇒ (l � r)
)
〈S,F∪X〉

∧(
{t � c[r]} ∪Q ∪ H

)
where 〈S, F〉 ⊆ 〈S, F ∪ X〉 is a signature extension with constants, Q and H
are �nite sets of atoms over 〈S, F ∪ X〉, l and r are (F ∪ X)-terms of some
sort s, c is a context for s, and t is an (F ∪ X)-term with the same sort as c.

It is easy to verify that the above constructions satisfy all the necessary
properties of De�nition 3.3.2, thus giving rise to two logic-programming
frameworks: FOL� – over (many-sorted) �rst-order equational logic – and
HNK – over higher-order equational logic. Moreover, the abstract concept of
resolution captures in this setting an extended version of what is known as
paramodulation: a query ∃X2 ·

∧
Q2 (over some signature 〈S, F〉) is derived

by paramodulation in one step from another query ∃X1 ·
∧

Q1 and a clause
∀Y1 ·

∧
H1 ⇒ (l1 � r1) using the computed substitution θ1 : X1 → X2 if and

only if there exists a substitution ψ1 : Y1 → X2 such that

∧
θ1(Q1),

(∧
ψ1(H1) ⇒ (ψtm

1 (l1) � ψtm
1 (r1))

)
〈S,F∪X2〉

∧
Q2.

The extension is in this case twofold: �rst, the derivation is not limited tomost
general uni�ers (similarly to the relational variant of logic programming);
second, the term ψtm

1 (l1) need not be equal with the θ1-translation of a
subterm in Q1, but with a subterm in the θ1-translation of Q1.

computed answers. All that is needed now in order to compute answers
to queries de�ned over FOL� orHNK is an analogue of Fact 3.3.21 providing
an adequate characterization of trivial queries. To this end, notice that a �rst-
order signature extension with constants 〈S, F〉 ⊆ 〈S, F ∪ X〉 is conservative
if and only if there exists at least one F-term for each sort s ∈ S such that
TF∪X,s is not empty. A similar property holds in general for higher-order
logic because we assumed that all signatures of interest have at least one
constant-operation symbol for each type. Hence, all higher-order signature
extensions with constants that we consider here are conservative.

fact 4.4.1. Let 〈S, F〉 ⊆ 〈S, F ∪ Y〉 be a FOL�-signature extension such that
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TF,s � ∅ implies TF∪Y,s � ∅ for every s ∈ S. Then an 〈S, F〉-query ∃Y · > is
trivial if and only if > is a conjunction of equalities of the form t � t.

To illustrate the use of paramodulation, let Γ be the set that consists of
the two clauses de�ned by the module ADD together with the identity clause
∀∅ · true⇒ (0 � 0). Then the sum of s 0 and s 0 can be computed according
to the following chain of derivations:

∃{X1 : Nat} · s 0 + s 0 � X1

−�Γ,X1 7→X2 ∃{X2 : Nat} · s (0 + s 0) � X2 using the second clause of Γ and
the substitution M 7→ 0,N 7→ s 0

−�Γ,X2 7→X3 ∃{X3 : Nat} · s s 0 � X3 using the �rst clause of Γ and the
substitution M 7→ s 0

−�Γ,X3 7→s s 0 ∃∅ · s s 0 � s s 0. using the third (and last) clause

4.4.2 herbrand’s theorem revisited

Under the additional assumption that, for every signature Σ, the identity 1Σ
is a signature of variables – the ‘empty’ signature of Σ-variables – the general
institution-independent versions of Herbrand’s theorem presented in [Dia04;
Dia08] can be obtained as more concrete instances of Theorem 3.3.13. In
particular, the equivalence 1⇔ 2 of Theorem 4.4.5 captures the denotational
aspect of Herbrand’s theorem – how the problem of checking whether a
logic program entails a given query can be reduced from all models of the
program to those that are initial; on the other hand, the equivalence 2⇔ 3
emphasizes the operational aspect of the theorem – the correspondence
between those expansions of the program’s initial model that satisfy the
underlying (quanti�er-free) sentence of the query and the possible solutions
to the query, about which we know that can be computed when properties
such as query-completeness are satis�ed (see Theorem 3.3.35).
To start with, let us recall that, in any category, an object A is said to

be projective with respect to an arrow e : B → C provided that every ar-
row f : A → C can be factored through e as f � h ; e, for some arrow
h : A→ B. For instance, as a consequence of the axiom of choice, for every
qf-FOL

�
-signature extension 〈S, F〉 ⊆ 〈S, F ∪ X〉, the free algebra TF (X) –

the representation of the inclusion 〈S, F〉 ⊆ 〈S, F ∪ X〉 – is projective with
respect to all epimorphisms, and in particular with respect to all quotient
homomorphisms 0〈S,F〉 → 0〈S,F〉,Γ that correspond to sets of 〈S, F〉-clauses Γ.
The concept of basic sentence [see Dia03; and also Tar86, where it was

studied under the name of ground positive elementary sentence] captures cat-
egorically the satisfaction of the conjunctions of atomic sentences that are
usually involved in de�ning logic-programming queries.
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definition 4.4.2 (Basic sentence). For any signature Σ, a sentence ρ is said
to be basic if there exists a model Mρ such that, for everyΣ-model M, M �Σ ρ
if and only if there exists a model homomorphism Mρ→ M.

example 4.4.3. In the institution qf-FOL
�
, every (�nite) conjunction

∧
E

of �rst-order equational atoms forms a basic sentence [see e.g. Dia08]. This
property does not hold in general for qf-HNK, for which one can de�ne
higher-order equational atoms of the form σ1 f � σ2 f , with f : s → s and
σ1 , σ2 : (s → s) → s′, that are not basic [see Cod07; Dia08].

We also recall from [Dia03] the following immediate result.
fact 4.4.4. For any signature Σ, the satisfaction of basic sentences is pre-
served by all Σ-model homomorphisms: for every basic sentence ρ and
model homomorphism h : M1 → M2 such that M1 �Σ ρ, M2 �Σ ρ.
The above preliminaries enable us to recast the institution-independent

versions of Herbrand’s theorem in the context of (institution-based) abstract
logic-programming languages.

theorem 4.4.5. Consider a logic program 〈〈Σ, Γ〉〉 and a Σ-query ∃χ · ρ such that

· both the signature Σ and the program 〈〈Σ, Γ〉〉 have initial models 0Σ and 0〈〈Σ,Γ〉〉,

· Mχ is projective with respect to the unique homomorphism !Γ : 0Σ → 0〈〈Σ,Γ〉〉, and

· the Σ(χ)-sentence ρ is basic.

Then the following statements are equivalent:

1 〈〈Σ, Γ〉〉 �lp
Σ
∃χ · ρ.

2 0〈〈Σ,Γ〉〉 �
qs
Σ
∃χ · ρ.

3 ∃χ · ρ admits a 〈〈Σ, Γ〉〉-solution.

proof. According to Theorem3.3.13, it su�ces to show that 0〈〈Σ,Γ〉〉 is χ-reach-
able and that the satisfaction of ρ is preserved by χ-homomorphisms. The
latter property is guaranteed by Fact 4.4.4, because ρ is basic. Therefore, we
will focus solely on proving that 0〈〈Σ,Γ〉〉 is χ-reachable.

Let N〈〈Σ,Γ〉〉 be a χ-expansion of 0〈〈Σ,Γ〉〉 . Since χ is a representable extension
of signatures (by hypothesis), we know that iχ (N〈〈Σ,Γ〉〉) : Mχ→ 0〈〈Σ,Γ〉〉 is an
object of the comma category Mχ /Mod(Σ); and because its representation,
Mχ, is projective with respect to !Γ : 0Σ → 0〈〈Σ,Γ〉〉 , it follows that there exists a
Σ-model homomorphism h : Mχ→ 0Σ such that h ; !Γ � iχ (N〈〈Σ,Γ〉〉).

Mχ

iχ (N〈〈Σ,Γ〉〉)
  

h
// 0Σ

!Γ
��

0〈〈Σ,Γ〉〉
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Moreover, since the identity 1Σ is a signature of Σ-variables – which, by
hypothesis, is also representable – we deduce that 0Σ is (isomorphic to)
the representation M1Σ of 1Σ. By the representability of Σ-substitutions, we
further obtain the substitution

(
RQ

Σ′

)−1(h) : χ → 1Σ, which we will hence-
forth denote by ψ. All we need to prove now is that the canonical map
_�Σ : N〈〈Σ,Γ〉〉 /ModΣ(ψ) → 0〈〈Σ,Γ〉〉 /Mod(Σ) is surjective on objects.

To this end, notice that everyΣ-model homomorphism g : 0〈〈Σ,Γ〉〉 → M can
be viewed as an arrow in Mχ/Mod(Σ) between iχ (N〈〈Σ,Γ〉〉) and iχ (N〈〈Σ,Γ〉〉) ; g,
fromwhich we deduce that i−1

χ (g) is aΣ(χ)-model homomorphism between
N〈〈Σ,Γ〉〉 and N � i−1

χ (iχ (N〈〈Σ,Γ〉〉) ; g). In addition, by Proposition 4.3.11 and
the commutativity of the diagram below, we obtain M�ψ � i−1

χ (h ; !M) �

i−1
χ (iχ (N〈〈Σ,Γ〉〉) ; g) � N, thus con�rming that i−1

χ (g) : N〈〈Σ,Γ〉〉 → M�ψ is
an object of N〈〈Σ,Γ〉〉 / ModΣ(ψ). The conclusion of the theorem follows by
observing that N�Σ � |iχ (N〈〈Σ,Γ〉〉) ; g |Mχ

� M and i−1
χ (g)�Σ � |g |Mχ

� g.

Mχ

iχ (N〈〈Σ,Γ〉〉)
��

h
// 0Σ

!Γ
��

!M

��

0〈〈Σ,Γ〉〉 g
// M �



5
A LOGIC -PROGRAMMING
SEMANTICS OF SERVICES

Building on recent theoretical advancements in the algebraic structures that capture
the way services are orchestrated and in the processes that formalize the discovery
and binding of services to given client applications by means of logical representa-
tions of required and provided services, in the following we develop formal found-
ations for notions and mechanisms needed to support service-oriented computing.
In particular, we show how the denotational and the operational semantics speci�c
to conventional logic programming can be generalized using the theory presented
in Chapter 3 to address both static and dynamic aspects of services, thus leading to
a service-oriented variant of the paradigm. Our results rely upon a strong analogy
between the discovery of a service that can be bound to an application and the search
for a clause that can be used for computing an answer to a query; they explore the
manner in which requests for external services can be described as service queries,
and explain how the computation of their answers can be performed through service-
oriented derivatives of uni�cation and resolution, which characterize the binding of
services and the recon�guration of applications.

5.1 ORCHESTRAT ION SCHEMES

The �rst step in the development of the particular variant of logic program-
ming that we consider in this chapter consists in determining appropriate
categorical abstractions of the structures that support service-oriented com-
puting. These will ultimately allow us to describe the process of service
discovery and binding in a way that is independent of any particular formal-
ism (like various forms of automata, transition systems, or process algebras).
Our approach is grounded on two observations: �rst, that orchestrations

can be organized as a category whose arrows, or more precisely, cospans
of arrows, can be used to model the composition of service components (as
de�ned, for example, in [FLB07; FLB11; FL13a]); second, that the discovery
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of a service module to be bound to a given application can be formalized
in terms of logical speci�cations of required and provided services, ensur-
ing that the speci�cation of the provided service re�nes the speci�cation
of the requested service. To this end, we explore the model-theoretic no-
tion of re�nement advanced in [ST88b], except that, in the present setting,
the structures over which speci�cations are evaluated are morphisms into
ground orchestrations, that is into orchestrations that have no dependencies
on external services. The motivation for this choice is that, in general, the
semantics of non-ground orchestrations is open: the (observable) behaviour
exhibited by non-ground orchestrations varies according to the external
services that they may procure at run time. With these remarks in mind, we
arrive at the following concept of orchestration scheme.

definition 5.1.1 (Orchestration scheme). An orchestration scheme is a quad-
ruple O � 〈Orc, Spec,Grc, Prop〉 consisting of

· a category Orc of orchestrations and orchestration morphisms,

· a functor Spec : Orc→ Set de�ning, for every orchestration o, the set Spec(o)
of service speci�cations over o,

· a full subcategory Grc ⊆ Orc of ground orchestrations, and

· a functor Prop: Grc→ Set de�ning, for every ground orchestration g, the
natural subset Prop(g) ⊆ Spec(g) 1 of properties of g (speci�cations that are
guaranteed to hold when evaluated over g).

To illustrate our categorical approach to orchestrations, we consider two
main running examples: program expressions as discussed in [Fia12; see
also Mor94], which provide a way of constructing structured (sequential)
programs through design-time discovery and binding, and the theory of
asynchronous relational networks put forward in [FL13b], which emphasizes
the role of services as an interface mechanism for software components that
can be composed through run-time discovery and binding.

5.1.1 program expressions

The view that program expressions can be seen as de�ning ‘service orches-
trations’ through which structured programs can be built in a compositional
way originates from [Fia12]. Intuitively, we can see the rules of the Hoare
calculus [see Hoa69] as de�ning ‘clauses’ in the sense of logic program-
ming, where uni�cation is controlled through the re�nement of pre/post-

1 By describing Prop(g) as a natural subset of Spec(g) we mean that the family of inclusions
(Prop(g) ⊆ Spec(g))g∈|Grc| de�nes a natural transformation from Prop to (Grc ⊆ Orc) ;Spec.
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conditions as speci�cations of provided/required services, and resolution
binds program statements (terms) to variables in program expressions.
In Figure 5.1, we depict Hoare rules in a notation that is closer to that of

service modules, which also brings out their clausal form: the speci�cation
(a pair of a pre- and a post-condition) on the left-hand side corresponds
to the consequent of the clause (which relates to a ‘provides-point’ of the
service), while those on the right-hand side correspond to the antecedent of
the clause (i.e. to the ‘requires-points’ of the service) – the speci�cations of
what remains to be discovered and bound to the program expression (the
‘service orchestration’ inside the box) to produce a program. In Figure 5.2,
we retrace Hoare’s original example of constructing a program that com-
putes the quotient and the remainder resulting from the division of two
natural numbers as an instance of the uni�cation and resolution mechanisms
particular to logic programming. We will further discuss these mechanisms
in more detail in Section 5.2.3.

skipρ, ρ

(empty statement)

x B eρ(e), ρ(x)

(assignment)

;pgm1 pgm2ρ, ρ′′

ρ, ρ′

ρ′, ρ′′

(sequence)

ifC then
pgm1

else
pgm2

endif

ρ, ρ′
ρ ∧ [[C]], ρ′

ρ ∧ ¬[[C]], ρ′

(selection)

whileC do
pgm

done

ρ, ρ ∧ ¬[[C]] ρ ∧ [[C]], ρ

(iteration)

figure 5.1. Program modules

The formal description of program expressions that we consider here
follows the presentation given in [GM96] of the algebraic semantics of pro-
grams, except that, instead of the theory of many-sorted algebra, we rely on
the theory of preordered algebra developed in [DF98], whose institution we
denote by POA. In this context, signatures are ordinary algebraic signatures
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whose denotation is de�ned over the category of preorders rather than that
of sets, with models interpreting the sorts as preordered sets and the opera-
tion symbols as monotonic functions. The sentences are built as in �rst-order
logic based on two kinds of atoms: equational atoms l � r and preorder atoms
(transitions) l → r, where l and r are terms of the same sort; the latter are
satis�ed by a preordered algebra A if and only if the interpretations of l and
r in A belong to the preorder relation of the carrier of their sort.
In order to fully de�ne the orchestration scheme of program expressions

we assume that the programming language we have chosen to analyse is
speci�ed through a many-sorted signature 〈S, F〉 equipped with

· a distinguished set of sorts Spgm
⊂ S corresponding to the types of executable

expressions supported by the language, and sorts State,Con�g ∈ S \ Spgm

capturing the states of the programs and the various con�gurations that may
arise upon their execution, respectively;

· operation symbols 〈_〉 : State → Con�g and 〈_, _〉 : eXp State → Con�g, for
eXp ∈ Spgm, which we regard as constructor operators for the sort Con�g;

· a (sortwise in�nite) Spgm-indexed set Var of program variables together with
state variables st, st′ : State, used to refer to the states that precede or result
from executions; and

· a preordered 〈S, F〉-algebra A that describes the semantics of the program-
ming language through the preorder relation associatedwith the sortCon�g.2

example 5.1.2. The premises that we consider within this section are weak
enough to allow the proposed algebraic framework to accommodate a wide
variety of programming languages. For instance, the program expressions
underlying the modules depicted in Figure 5.1 are simply terms of sort Pgm
that can be formed based on the following �ve operation symbols (written
using the mix�x notation of CafeOBJ [DF98] and Casl [Mos04]):

(empty statement) skip : → Pgm,

(assignment) _ B _ : Id AExp→ Pgm,

(sequence) _ ; _ : Pgm Pgm→ Pgm,

(selection) if _ then _ else _ endif : Cond Pgm Pgm→ Pgm,

(iteration) while _ do _ done : Cond Pgm→ Pgm.

In this case, the many-sorted signature of interest can be described as follows:

· Besides the sort Pgm of program expressions, the set S also comprises the

2 Alternatively, one could use a theory presentation or a structured speci�cation instead of A.
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sorts Id of identi�ers, AExp of arithmetic expressions, and Cond of conditions,
as well as the two essential sorts State and Config.

· The operation symbols in F are those that correspond to the �ve types of pro-
gram expressions presented above (empty statement, assignment, sequence,
selection, and iteration) together with the usual operation symbols associ-
ated with identi�ers (like $_ : Id→ AExp, which is used to denote the value
bound to a given identi�er), with the addition, subtraction and multiplica-
tion of arithmetic expressions, and with the atoms and Boolean connectives
speci�c to conditions. In addition, F also contains the two operation symbols
〈_〉 : State→ Config and 〈_, _〉 : Pgm State→ Config.

The only expressions considered to be executable are those of sort Pgm,
hence Spgm is just the singleton set {Pgm}. Furthermore, the obvious can-
didates for State and Con�g are the sorts State and Config, and a similar
observation can be stated for the operation symbols 〈_〉 and 〈_, _〉. As for
the preordered algebra A that de�nes the semantics of the programming
language, we note that, apart from State and Config, the interpretations
of sorts and operation symbols are straightforward. With respect to states,
the carrier AState can be regarded simply as the discrete preorder of partial
functions from identi�ers to values (natural numbers). Based on this, we
can de�ne con�gurations (elements of sort Config) either as plain states,
corresponding to those con�gurations that are considered to be ‘�nal’, or
as pairs 〈pgm, st〉, which indicate the start of the execution of a program
expression pgm in a state st. Finally, the transitions between such con�gura-
tions can be de�ned using natural operational-semantics rules as in [Kah87]:
for instance, for any two program expressions pgm1 and pgm2, and any two
states st1 and st2, if there exists a transition 〈pgm1 , st1〉 → 〈st2〉, then there
exists a transition 〈pgm1 ; pgm2 , st1〉 → 〈pgm2 , st2〉 as well.

Algebraic signatures having the aforementioned additional structure in-
duce orchestration schemes in a canonical way, as follows.

orchestrations. The orchestrations are program expressions, that is terms
pgm : eXp over the signature 〈S, F ∪ Var〉, usually denoted simply by pgm if
there is no danger of confusion, such that eXp is a sort in Spgm. The arrows
through which they are linked generalize the subterm relations; in this sense,
amorphism 〈ψ, π〉 between programs pgm1 : eXp1 and pgm2 : eXp2 consists of

· a substitution ψ : var(pgm1) → var(pgm2), mapping the variables that occur
in pgm1 to program expressions de�ned over the variables of pgm2, and

· a position π in pgm2, that is a sequence of natural numbers that precisely
identi�es a particular occurrence of a subterm pgm2�π of pgm2,
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such that ψtm(pgm1) � pgm2�π. Their composition is de�ned componentwise,
in a way that ensures the commutativity of the following diagram.

pgm1 : eXp1
〈ψ1 ,π1〉

//

〈ψ1;ψ2 ,π2·π1〉

OO
pgm2 : eXp2

〈ψ2 ,π2〉
// pgm3 : eXp3

specifications. For each program expression pgm : eXp, a (program) spe-
ci�cation is a triple of the form ι : [ρ, ρ′], where ι is a position in pgm indic-
ating the ‘subprogram’ of pgm whose behaviour is being analysed,3 and
ρ and ρ′ are pre- and post-conditions associated with pgm�ι, formalized as
(quanti�er-free) POA-sentences over the signature 〈S, F ∪ {st : State}〉. The
intuitive interpretation is the usual one:

Whenever the program pgm�ι is executed in an initial state that
satis�es the pre-condition ρ, and the execution terminates, the
resulting �nal state satis�es the post-condition ρ′.

Note, however, that speci�cations cannot be evaluated over arbitrary pro-
gram expressions because, due to the presence of program variables, some of
the programsmay not support awell-de�ned notion of execution. Wewill ad-
dress this aspect in Section 5.2 by taking into account translations of speci�c-
ations along morphisms whose codomains are ground program expressions.
For now, it su�ces to mention that the translation of a program speci�c-
ation ι : [ρ, ρ′] of pgm1 : eXp1 along a morphism 〈ψ, π〉 : (pgm1 : eXp1) →
(pgm2 : eXp2) is de�ned as (π · ι) : [ψ(ρ), ψ(ρ′)] of pgm2 : eXp2.

ground orchestrations and properties. As expected, ground program
expressions are just expressions that do not contain variables: 〈S, F〉-terms
pgm : eXpwhose sort eXp belongs to Spgm. Consequently, they have a well-
de�ned operational semantics, which means that we can check whether or
not they meet the requirements of a given speci�cation.

A speci�cation ι : [ρ, ρ′] is a property of a ground program pgm : eXp if the
following satisfaction condition holds for the preordered algebra A:

A �POA
∀{st, st′ : State} · (ρ(st) ∧ 〈pgm�ι , st〉 → 〈st′〉) ⇒ ρ′(st′).

To keep the notation simple and, at the same time, to emphasize the roles of
st and st′, in the above POA-sentence, ρ(st) is used just as another name for

3 The �rst component of speci�cations may be encountered in the literature [e.g. in Mor94]
with a di�erent meaning: the frame of the considered speci�cation, that is the set of identi�ers
whose values may change during the execution of the program.
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ρ, while ρ′(st′) is the sentence derived from ρ′ by replacing the variable st
with st′.4 The same notational convention is used in Figure 5.1 to represent
the speci�cation attached to the assignment expression. In that case, ρ is
assumed to be a sentence de�ned not only over st : State, but also over a
variable v : AExp; the sentences ρ(e) and ρ(x) are then derived from ρ by
replacing v with e and x (regarded as an atomic arithmetic expression),
respectively. Another notation used in Figure 5.1 (and also in Figure 5.2) is
[[C]], where C is a term of sort Cond; this follows Iverson’s convention [see
Ive62; and also GKP94], and corresponds to an atomic POA-sentence that
captures the semantics of the condition C.
We conclude the presentation of orchestrations as program expressions

with Proposition 5.1.3 below, which guarantees that properties form natural
subsets of the sets of speci�cations; in other words, that the morphisms of
ground programs preserve properties.

proposition 5.1.3. Let 〈ψ, π〉 : (pgm1 : eXp1) → (pgm2 : eXp2) be a morph-
ism between ground programs. For every property ι : [ρ, ρ′] of pgm1 : eXp1, the
speci�cation Spec(ψ, π)(ι : [ρ, ρ′]) is a property of pgm2 : eXp2.

proof. By the de�nition of the translation of speci�cations alongmorphisms
of program expressions, Spec(ψ, π)(ι : [ρ, ρ′]) is a property of pgm2 : eXp2 if
and only if

A �POA
∀{st, st′ : State} · (ψ(ρ)(st)

ρ(st)

∧ 〈pgm2�π·ι
pgm1�ι

, st〉 → 〈st′〉) ⇒ ψ(ρ′)(st′)
ρ′(st′)

.

To prove this, notice that allmorphisms of ground program expressions share
the same underlying substitution: the identity of ∅. Therefore, ψ(ρ) � ρ,
ψ(ρ′) � ρ′, and pgm2�π·ι � pgm2�π�ι � ψ

tm(pgm1)�ι � pgm1�ι, from which
we immediately deduce that both the evaluation of ι : [ρ, ρ′] in pgm1 : eXp1
and that of Spec(ψ, π)(ι : [ρ, ρ′]) in pgm2 : eXp2 correspond to the satisfac-
tion by A of the same POA-sentence. �

5.1.2 asynchronous relational networks

Asynchronous relational networks as developed in [FL13b] uphold a sig-
ni�cantly di�erent perspective on services: the emphasis is put not on the
role of services in addressing design-time organisational aspects of complex,
interconnected systems, but rather on their role in managing the run-time

4 Formally, the sentences ρ(st) and ρ′(st′) are obtained by translating ρ and ρ′ along the
〈S, F〉-substitutions {st} → {st, st′} given by st 7→ st and st 7→ st′, respectively.
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interactions that are involved in such systems. In this section, we consider a
variant of the original theory of asynchronous relational networks that relies
on hypergraphs instead of graphs, and uses ω-automata [Tho90; see also
PP04] instead of sets of traces as models of behaviour.

The notions discussed in this context depend upon elements of linear tem-
poral logic, and are introduced through syntactic structures that correspond
to speci�c temporal signatures and signature morphisms. However, the
proposed theory is largely independent of any logical framework of choice –
similarly to the way program expressions can be de�ned over a variety of
algebraic signatures – and can be easily adapted to any institution for which

1 the category of signatures is (�nitely) cocomplete,
2 there exist cofree models along every signature morphism, meaning that the reduct

functors determined by signature morphisms admit right adjoints,
3 the category of models of every signature has (�nite) products, and
4 all model homomorphisms re�ect the satisfaction of sentences.

In addition to the above requirements, we implicitly assume, as in many
other works on institutions [see e.g. Dia08; and also ST11, for more details],
that the considered logical system is closed under isomorphisms, meaning
that the satisfaction of sentences is invariant with respect to isomorphisms
of models. This property holds in most institutions; in particular, it holds in
the variant of temporal logic that we use here as a basis for the construction
of the orchestration scheme of asynchronous relational networks.

linear temporal logic. In order to capture a more operational notion
of service orchestration, we work with an automata-based variant of the
institution LTL of linear temporal logic [FC96]. This logical system, denoted
ALTL, has the same syntax as LTL, which means that signatures are arbitrary
sets of actions, and that signature morphisms are just functions. With respect
to sentences, for any signature A, the set of A-sentences is de�ned as the
least set containing the actions in A that is closed under standard Boolean
connectives and under the temporal operators next (�_) and until (_ U _). As
usual, the derived temporal sentences eventually ρ (written ^ρ) and always
ρ (written �ρ) stand for true U ρ and ¬(true U ¬ρ) respectively.
The semantics of ALTL is de�ned over (non-deterministic) Muller auto-

mata [Mul63] instead of themore conventional temporal models. This means
that, in the present setting, the models of a signature A are Muller automata
Λ � 〈Q ,P(A),∆, I ,F〉, which consist, besides the (�nite) set Q of states, the
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alphabet P(A), and the transition relation ∆ ⊆ Q×P(A)×Q, of a subset I ⊆ Q
of initial states, and of a subset F ⊆ P(Q) of (non-empty) �nal-state sets.

The satisfaction relation is still essentially based upon the satisfaction
between traces and (linear) temporal sentences: an automaton Λ satis�es a
sentence ρ if every trace accepted by Λ satis�es ρ. To be more precise, let us
�rst recall that a trace over A is an (in�nite) sequence λ ∈ P(A)ω, and that
a run of an automaton Λ de�ned as above on a trace λ is a state sequence
% ∈ Qω such that %(0) ∈ I and (%(i), λ(i), %(i + 1)) ∈ ∆ for every i ∈ ω. A
run % is said to be successful if its in�nity set, Inf(%), that is the set of states
that occur in�nitely often in %, is a member of F. Then, a trace λ is accepted
by Λ if there exists a successful run of Λ on λ. Finally, given a trace λ (that
can be presumed to be accepted by Λ) and i ∈ ω, we use the notation λ(i..)
to indicate the su�x of λ that starts at λ(i). The satisfaction of temporal
sentences by traces can now be de�ned by structural induction, as follows:

λ � a if and only if a ∈ λ(0),

λ � ¬ρ if and only if λ 2 ρ,

λ �
∨

E if and only if λ � ρ for some ρ ∈ E,

λ � �ρ if and only if λ(1..) � ρ, and

λ � ρ1 U ρ2 if and only if λ(i..) � ρ2 for some i ∈ ω

and λ( j..) � ρ1 for all j < i ,

where a is an action in A, ρ, ρ1, and ρ2 are A-sentences, and E is a �nite set
of A-sentences.

One can easily see that the �rst of the hypotheses 1–4 that form the basis of
the present study of asynchronous relational networks is satis�ed by ALTL,
as it corresponds to a well-known result about the existence of small colimits
in Set. In order to check that the remaining three properties hold as well,
let us �rst recall that a homomorphism h : Λ1 → Λ2 between Muller automata
Λ1 � 〈Q1 ,P(A),∆1 , I1 ,F1〉 and Λ2 � 〈Q2 ,P(A),∆2 , I2 ,F2〉 (over the same
alphabet) is a function h : Q1 → Q2 such that (h(p), α, h(q)) ∈ ∆2 whenever
(p , α, q) ∈ ∆1, h(I1) ⊆ I2, and h(F1) ⊆ F2. We also note that for any map
σ : A→ A′ (i.e. for any signature morphism) and anyMuller automatonΛ′ �
〈Q′,P(A′),∆′, I′,F′〉, the reduct Λ′�σ is the automaton 〈Q′,P(A),∆′�σ , I′,F′〉
with the same states, initial states, and �nal-state sets as Λ′, and with the
transition relation given by ∆′�σ � {(p′, σ−1(α′), q′) | (p′, α′, q′) ∈ ∆′}.

The following results enable us to use the institution ALTL as a foundation
for the subsequent development of asynchronous relational networks. In
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particular, Proposition 5.1.4 ensures the existence of cofree Muller automata
along signature morphisms; Proposition 5.1.5 allows us to form products
of Muller automata based on a straightforward categorical interpretation
of the fact that the sets of traces accepted by Muller automata, that is the
regular ω-languages, are closed under intersection [see e.g. Tho90]; and
�nally, Proposition 5.1.6 guarantees that all model homomorphisms re�ect
the satisfaction of temporal sentences.

proposition 5.1.4. For every morphism of ALTL-signatures σ : A → A′, the
reduct functor _�σ : ModALTL(A′) → ModALTL(A) admits a right adjoint, which
we denote by (_)σ.

proof. According to a general category-theoretic result concerning adjoint
functors, it su�ces to show that for any automatonΛ over the alphabet P(A)
there exists a universal arrow from _�σ to Λ. Let us thus consider a Muller
automaton Λ � 〈Q ,P(A),∆, I ,F〉 over P(A). We de�ne the automaton Λσ �
〈Q ,P(A′),∆σ, I ,F〉 over the alphabet P(A′) by

∆σ � {(p , α′, q) | (p , σ−1(α′), q) ∈ ∆}.

It is straightforward to verify that the identity map 1Q de�nes a homomorph-
ism of automata Λσ�σ → Λ: for any transition (p , α, q) ∈ ∆σ�σ, by the
de�nition of the reduct functor _�σ, there exists a subset α′ ⊆ A′ such that
σ−1(α′) � α and (p , α′, q) ∈ ∆σ; given the de�nition above of ∆σ, it follows
that (p , σ−1(α′), q) ∈ ∆, and hence (p , α, q) ∈ ∆.

Λ Λσ�σ
1Q

oo Λσ

Λ′�σ

h

OO

h

aa

Λ′

h

OO

Let us now assume that h : Λ′�σ → Λ is another homomorphism of auto-
mata, with Λ′ � 〈Q′,P(A′),∆′, I′,F′〉. Then, for any transition (p′, α′, q′) of Λ′,
by the de�nition of the functor _�σ, we have (p′, σ−1(α′), q′) ∈ ∆′�σ. Since
h is a homomorphism, (h(p′), σ−1(α′), h(q′)) ∈ ∆; this further implies, by
the de�nition of ∆σ, that (h(p′), α′, h(q′)) ∈ ∆σ. As a result, the map h is
also a homomorphism of automata Λ′→ Λσ. Even more, it is obviously the
unique homomorphism Λ′→ Λσ (in the category of automata over P(A′))
such that h ; 1Q � h in the category of automata over P(A). �

proposition 5.1.5. For any set of actions A, the category ModALTL(A) of Muller
automata de�ned over the alphabet P(A) admits (�nite) products.
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proof. Let (Λi) i∈ J be a (�nite) family of Muller automata over the alphabet
P(A), with Λi given by 〈Qi ,P(A),∆i , Ii ,Fi〉 for every i ∈ J. We de�ne the
automaton Λ � 〈Q ,P(A),∆, I ,F〉 by

Q �
∏

i∈ J Qi ,

∆ � {(p , α, q) | (p(i), α, q(i)) ∈ ∆i for all i ∈ J},

I �
∏

i∈ J Ii , and

F � {S ⊆ Q | πi (S) ∈ Fi for all i ∈ J},

where the functions πi : Q → Qi are the corresponding projections of the
Cartesian product

∏
i∈ J Qi . By construction, it immediately follows that for

every i ∈ J, the map πi de�nes a homomorphism of automata Λ → Λi .
Even more, one can easily see that for any other family of homomorphisms
(hi : Λ′ → Λi) i∈ J , with Λ′ given by 〈Q′,P(A′),∆′, I′,F′〉, the unique map
h : Q′ → Q such that h ; πi � hi , for all i ∈ J, de�nes a homomorphism of
automata as well. Therefore, the automaton Λ, together with the projections
(πi) i∈ J , form the product of (Λi) i∈ J . �

proposition 5.1.6. Let h : Λ1 → Λ2 be a homomorphism between automata Λ1

and Λ2 de�ned over an alphabet P(A). Every temporal sentence over A that is
satis�ed by Λ2 is also satis�ed by Λ1.

proof. Suppose that the automaton Λi is given by 〈Qi ,P(A),∆i , Ii ,Fi〉, for
i ∈ {1, 2}. Since the map h : Q1 → Q2 de�nes a homomorphism of automata,
for every successful run % ∈ Qω

1 of Λ1 on a trace λ ∈ P(A)ω, the composition
% ; h yields a successful run of Λ2 on λ. As a result, the automaton Λ2

accepts all the traces accepted by Λ1, which further implies that Λ1 satis�es
all temporal sentences that are satis�ed by Λ2. �

service components. Following [FL13b], we regard service components as
networks of processes that interact asynchronously by exchanging messages
through communication channels. Messages are considered to be atomic
units of communication. They can be grouped either into sets of messages
that correspond to processes or channels, or into speci�c structures, called
ports, through which processes and channels can be interconnected.
The ports can be viewed as sets of messages with attached polarities. As

in [BZ83; BCT06] we distinguish between outgoing or published messages
(labelled with a minus sign), and incoming or delivered messages (labelled
with a plus sign).
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definition 5.1.7 (Port). A port M is a pair 〈M−,M+
〉 of disjoint (�nite) sets

of published and delivered messages. The set of all messages of M is given by
M−
∪M+ and is often denoted simply by M. Every port M de�nes the set of

actions AM as the union AM− ∪ AM+ , where

· AM− is the set {m! | m ∈ M−
} of publication actions and

· AM+ is the set {m¡ | m ∈ M+
} of delivery actions.

Processes are de�ned by sets of interaction points labelled with ports and
by automata that describe their behaviour in terms of observable publication
and delivery actions.

definition 5.1.8 (Process). A process 〈X, (Mx)x∈X ,Λ〉 consists of a (�nite)
set X of interaction points, each point x ∈ X being labelled with a port Mx ,
and a Muller automaton Λ over P(AM), where M is the port given by

M∓
�

⊎
x∈X

M∓

x � {x.m | x ∈ X,m ∈ M∓

x }.

example 5.1.9. In Figure 5.3, we depict a process named JP (for Journey
Planner) that provides directions from a source to a target location. The
process interacts with the environment by means of two ports, JP1 and JP2.
The �rst of them is used to communicate with potential client applications;
the request for directions (including the source and the target locations)
is encoded into the incoming message planJourney, while the response is
represented by the outgoing message directions. The second port de�nes
messages that JP exchanges with other processes in order to complete its
task; the outgoing message getRoutes can be seen as a query for all possible
routes between the speci�ed source and target locations, while the incom-
ing messages routes and timetables de�ne the result of the query and the
timetables of the available transport services for the selected routes.

JP

ΛJP

planJourney +
directions−

JP1
−getRoutes
+ routes
+ timetables

JP2

figure 5.3. The process JP

The behaviour of JP is given by theMuller automaton depicted in Figure 5.4,
whose �nal-state sets contain q0 whenever they contain q5. We can describe it
informally as follows: whenever the process JP receives a request planJourney,
it immediately initiates the search for the available routes by sending the
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message getRoutes; it then waits for the delivery of the routes and of the
corresponding timetables (given here by the messages routes and timetables),
and, once it receives both, it compiles the directions and replies to the client.

q0 q1 q3

q2

q5

q4

¬planJourney¡

planJourney¡

getRoutes!
¬routes¡ ∧ ¬timetables¡

routes¡ ∧
timetables¡

¬routes¡ ∧ timetables¡routes¡ ∧ ¬timetables¡

routes¡

¬routes¡

timetables¡

¬timetables¡

¬directions!
directions!

figure 5.4. The automaton ΛJP 5

remark 5.1.10. To generalize De�nition 5.1.8 to an arbitrary institution (sub-
ject to the four technical assumptions listed at the beginning of the section),
we �rst observe that every polarity-preserving map θ between ports M and
M′ de�nes a function Aθ : AM → AM′ – i.e. a morphism of ALTL-signatures
– usually denoted simply by θ, that maps every publication action m! to
θ(m)! and every delivery action m¡ to θ(m)¡. Moreover, for any process
〈X, (Mx)x∈X ,Λ〉, the injections (x._ : AMx → AM)x∈X de�ne a coproduct in
the category of ALTL-signatures. This allows us to introduce an abstract
notion of process as a triple 〈X, (ιx : Σx → Σ)x∈X ,Λ〉 that consists of a set X
of interaction points, each point x ∈ X being labelled with a port signature Σx ,
a process signature Σ together with morphisms ιx : Σx → Σ for x ∈ X (usually
de�ning a coproduct), and a model Λ of Σ.

Processes communicate by transmitting messages through channels. As
in [BZ83; FL13b], channels are bidirectional: they may transmit both incom-
ing and outgoing messages.

definition 5.1.11 (Channel). A channel is a pair 〈M,Λ〉 that consists of
a (�nite) set M of messages and a Muller automaton Λ over the alphabet
P(AM), where AM is given by the union A−M ∪ A+

M of the sets of actions
A−M � {m! | m ∈ M} and A+

M � {m¡ | m ∈ M}.

Note that channels do not provide any information about the commu-
nicating entities. In order to enable given processes to exchange messages,
channels need to be attached to their ports, thus forming connections.

5 In the graphical representation, transitions are labelled with propositional sentences, as
in [AS87]; this means that there exists a transition for any propositional model (i.e. set of
actions) of the considered sentence.
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definition 5.1.12 (Connection). A connection 〈M,Λ, (µx : M ⇀ Mx)x∈X〉

between the ports Mx , for x ∈ X, consists of a channel 〈M,Λ〉 and a (�nite)
family of partial attachment injections (µx : M ⇀ Mx)x∈X such that the set M
corresponds to the union

⋃
x∈X dom(µx) and, for any point x ∈ X,

µ−1
x (M∓

x ) ⊆
⋃

y∈X\{x}

µ−1
y (M±

y ).

This notion of connection generalizes the one found in [FL13b] so that mes-
sages can be transmitted between more than two ports. The additional
condition ensures in this case that messages are well paired: every published
message of Mx , for x ∈ X, is paired with a delivered message of My , for
y ∈ X \ {x}, and vice versa. One can also see that for any binary connection
the attachment injections have to be total functions; therefore, any binary
connection is also a connection in the sense of [FL13b].

example 5.1.13. To illustrate how the process JP can send or receivemessages,
we consider the connection C depicted in Figure 5.5, which moderates the
�ow of messages between the port JP2 and two other ports, R1 and R2.

−getRoutes
+ routes
+ timetables

JP2 getRoutes +
routes −

R1

routes +
timetables −

R2
C

ΛC

figure 5.5. The Journey Planner’s connection

The underlying channel of C is given by the set of messages M � {g , r, t}
together with the automaton ΛC that speci�es the delivery of all published
messages without any delay; ΛC can be built as the product of the automata
Λm , for m ∈ M, whose transition map is depicted in Figure 5.6, and whose
sets of states are all marked as �nal.

q0 q1

¬m!
m!

m! ∧ m¡

¬m! ∧ m¡

figure 5.6. The automaton Λm

The channel is attached to the ports JP2, R1, and R2 through the injections

· µJP2 : M → MJP2 given by g 7→ getRoutes, r 7→ routes and t 7→ timetables,
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· µR1 : M → MR1 given by g 7→ getRoutes and r 7→ routes, and

· µR2 : M → MR2 given by r 7→ routes and t 7→ timetables.

These injections specify the actual senders and receivers of messages. For
instance, the message g is delivered only to the port R1 (because µR2 is not
de�ned on g), whereas r is simultaneously delivered to both JP2 and R2.

As already suggested in Examples 5.1.9 and 5.1.13, processes and con-
nections have dual roles, and they interpret the polarities of messages
accordingly. In this sense, processes are responsible for publishing mes-
sages (i.e. they regard delivered messages as inputs and published mes-
sages as outputs), while connections are responsible for delivering messages.
This dual nature of connections can be made explicit by taking into ac-
count, for every connection 〈M,Λ, (µx : M ⇀ Mx)x∈X〉, partial translations
(Aµx : AM ⇀ AMx )x∈X of the actions de�ned by the channel into actions
de�ned by the ports, as follows:

dom(Aµx ) � {m! | m ∈ µ−1
x (M−

x )} ∪ {m¡ | m ∈ µ−1
x (M+

x )},

Aµx (m!) � µx (m)! for all messages m ∈ µ−1
x (M−

x ),

Aµx (m¡) � µx (m)¡ for all messages m ∈ µ−1
x (M+

x ).

When there is no danger of confusion, we may also designate the partial
translations Aµx : AM ⇀ AMx simply by µx .

remark 5.1.14. Just as in the case of processes, we can de�ne connections
based on an arbitrary logical system, without relying onmessages. To achieve
this goal, note that every connection 〈M,Λ, (µx : M ⇀ Mx)x∈X〉 determines
a family of spans of ALTL-signature morphisms

AM dom(µx)⊇
oo

µx
// AMx

indexed by points x ∈ X. This allows us to consider connections more
generally as triples 〈Σ,Λ, (ιx : Σ′x → Σ, µx : Σ′x → Σx)x∈X〉 in which the
signature Σ and the model Λ of Σ abstract the channel component, while the
spans (ιx , µx)x∈X capture the attachment of port signatures to the channel.

We can now de�ne asynchronous networks of processes as hypergraphs
having vertices labelled with ports and hyperedges labelled with processes
or connections.

definition 5.1.15 (Hypergraph). A hypergraph 〈X, E, γ〉 consists of a set X of
vertices or nodes, a set E of hyperedges, disjoint from X, and an incidence map
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γ : E → P(X) de�ning, for every hyperedge e ∈ E, a non-empty set γe ⊆ X
of vertices it is incident with.
A hypergraph 〈X, E, γ〉 is said to be edge-bipartite if it admits a distin-

guished partition of E into subsets F and G such that no adjacent hyperedges
belong to the same part, meaning that for every two hyperedges e1 , e2 ∈ E
such that γe1 ∩ γe2 , ∅, either e1 ∈ F and e2 ∈ G, or e1 ∈ G and e2 ∈ F.

Hypergraphs have been used extensively in the context of graph-rewriting-
based approaches to concurrency, including service-oriented computing [e.g.
Fer+05; BGLL09]. We use them instead of graphs [see FL13b] because they
o�er a more �exible mathematical framework for handling the notions of
variable and variable binding required in Section 5.2.

definition 5.1.16 (Asynchronous relational network – arn). An asynchron-
ous relational network N � 〈X, P, C, γ,M, µ,Λ〉 consists of a (�nite) edge-
bipartite hypergraph 〈X, P, C, γ〉 of points x ∈ X, computation hyperedges
p ∈ P and communication hyperedges c ∈ C, together with

· a port Mx for every point x ∈ X,

· a process 〈γp , (Mx)x∈γp ,Λp〉 for every hyperedge p ∈ P, and

· a connection 〈Mc ,Λc , (µc
x : Mc ⇀ Mx)x∈γc 〉 for every hyperedge c ∈ C.

example 5.1.17. By putting together the process and the connection presen-
ted in Examples 5.1.9 and 5.1.13, we obtain the arn JourneyPlanner depicted
in Figure 5.7. Its underlying hypergraph consists of the points JP1, JP2, R1,
and R2, the computation hyperedge JP, the communication hyperedge C, and
the incidence map γ given by γJP � {JP1 , JP2} and γC � {JP2 , R1 , R2}.

JP

ΛJP

planJourney +
directions−

JP1
−getRoutes
+ routes
+ timetables

JP2 getRoutes +
routes −

R1

routes +
timetables −

R2
C

ΛC

figure 5.7. The arn JourneyPlanner

the orchestration scheme of asynchronous relational networks.
Let us now focus on the manner in which arns can be organized to form an
orchestration scheme. This provides a convenient mechanism for dealing
with the added complexity of arns (of a di�erent nature than the component
abstraction considered in [FL13b]) that will prove to be particularly suited
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for the present investigation of the logic-programming semantics of services.
We begin with a brief discussion on the types of points of arns, which will
enable us to introduce notions of morphism of arns and ground arn.
An interaction point of an arn N is a point ofN that is not bound to both

computation and communication hyperedges. We distinguish between two
types of interaction points, called requires- and provides-points, as follows.

definition 5.1.18 (Requires- and provides-point). A requires-point of an arn
N is a point of N that is incident only with a communication hyperedge.
Similarly, a provides-point ofN is incident onlywith a computation hyperedge.

For the arn JourneyPlanner depicted in Figure 5.7, the points R1 and R2 are
requires-points (incident with the communication hyperedge C), whereas
JP1 is a provides-point (incident with the computation hyperedge JP).

orchestrations. In order to describe arns as orchestrations we �rst need
to equip them with appropriate notions of morphism and composition of
morphisms. Morphisms of arns correspond to injective homomorphisms
between their underlying hypergraphs, and are required to preserve all
labels, except those associated with points that, like the requires-points, are
not incident with computation hyperedges.

definition 5.1.19 (Homomorphism of hypergraphs). A homomorphism h
between hypergraphs 〈X1 , E1 , γ1

〉 and 〈X2 , E2 , γ2
〉 consists of a pair of func-

tions h : X1 → X2 and h : E1 → E2 6 such that for any vertex x ∈ X1 and
hyperedge e ∈ E1, x ∈ γ1

e if and only if h(x) ∈ γ2
h(e) .

definition 5.1.20 (Morphism of arns). A morphism θ between arnsN1 �

〈X1 , P1 , C1 , γ1,M1, µ1,Λ1
〉 and N2 � 〈X2 , P2 , C2 , γ2,M2, µ2,Λ2

〉 consists of

· an injective homomorphism θ between the hypergraphs 〈X1 , P1 , C1 , γ1
〉 and

〈X2 , P2 , C2 , γ2
〉 such that θ(P1) ⊆ P2 and θ(C1) ⊆ C2, and

· a family θpt of polarity-preserving injections θpt
x : M1

x → M2
θ(x) , for x ∈ X1,

such that

· for every point x ∈ X1 incident with a computation hyperedge, θpt
x � 1M1

x
,

· for every computation hyperedge p ∈ P1, Λ1
p � Λ2

θ(p) , and

6 To simplify the notation, we denote both the translation of vertices and the translation of
hyperedges simply by h.
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· for every communication hyperedge c ∈ C1, M1
c � M2

θ(c) , Λ
1
c � Λ

2
θ(c) and the

following diagram commutes, for every point x ∈ γ1
c .

M1
c � M2

θ(c)
µ1,c

x
/

µ2,θ(c)
θ(x) "

M1
x

θ
pt
x
��

M2
θ(x)

It is straightforward to verify that themorphisms of arns can be composed
in terms of their components. Their composition is associative and has left
and right identities given by morphisms that consist solely of set-theoretic
identities. We obtain in this way the �rst result supporting the construction
of an orchestration scheme of arns.

proposition 5.1.21. Themorphisms ofarns form a category, denotedARN. �

specifications. To de�ne speci�cations over given arns, we label their
points with linear temporal sentences, much in the way we used pre- and
post-conditions as labels for positions in terms when de�ning speci�cations
of program expressions.

definition 5.1.22 (Speci�cation over an arn). For any arn N, the set
Spec(N) of N-speci�cations is the set of pairs 〈x , ρ〉, usually denoted @x ρ,
where x is a point of N and ρ is an ALTL-sentence over AMx , that is over the
set of actions de�ned by the port that labels x.

The translation of speci�cations along morphisms of arns presents no
di�culties: for every morphism θ : N→ N′, the map Spec(θ) : Spec(N) →
Spec(N′) is given by

Spec(θ)(@x ρ) � @θ(x) SenALTL(θpt
x )(ρ)

for each point x ofN and each ALTL-sentence ρ over the actions of x. Further-
more, it can be easily seen that it inherits the functoriality of the translation of
ALTL-sentences, thus giving rise to the needed functor Spec : ARN→ Set.

ground orchestrations. Morphisms of arns can also be regarded as
re�nements, because they formalize the embedding of networks with an
intuitively simpler behaviour into networks that are more complex. This is
achieved essentially by mapping each of the requires-points of the source
arn to a potentially non-requires-point of the target arn, a point which can
be looked at as the ‘root’ of a particular subnetwork of the target arn. To
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explain this aspect in more detail we introduce the notions of dependency
and arn de�ned by a point.

definition 5.1.23 (Dependency). Let x and y be two points of an arn
N. The point x is said to be dependent on y if there exists a path from x
to y that begins with a computation hyperedge, that is if there exists an
alternating sequence x e1 x1 . . . en y of (distinct) points and hyperedges of
the underlying hypergraph 〈X, P, C, γ〉 of N such that x ∈ γe1 , y ∈ γen ,
xi ∈ γei ∩ γei+1 for every 1 ≤ i < n, and e1 ∈ P.

definition 5.1.24 (Network de�ned by a point). For any arn N and any
point x of N, the network de�ned by x (relative to N) is the full sub-arn Nx

of N determined by x and the points on which x is dependent.

One can now see that any morphism of arns θ : N1 → N2 assigns to each
requires-point x of N1 the sub-arn N2,θ(x) of N2 de�ned by θ(x).

example 5.1.25. In Figure 5.8, we outline an extension of the network
JourneyPlanner discussed in Example 5.1.17 that is obtained by attaching
the processes MS (for Map Services) and TS (for Transport System) to the
requires-points R1 and R2 of JourneyPlanner. Formally, the link between
JourneyPlanner and the resulting arn JourneyPlannerNet is given by a morph-
ism θ : JourneyPlanner → JourneyPlannerNet that preserves all the labels,
points and hyperedges of JourneyPlanner, with the exception of the requires-
points R1 and R2, which are mapped to MS1 and TS1, respectively.
In this case, the point MS1 only depends on itself, hence the sub-arn of

JourneyPlannerNet de�ned by MS1, that is the arn assigned to the requires-
point R1 of JourneyPlanner, is given by the process MS and its port, MS1. In
contrast, the point JP1 depends on all the other points of JourneyPlannerNet,
and thus it de�nes the entire arn JourneyPlannerNet.

JP

ΛJP

planJourney +
directions−

JP1
−getRoutes
+ routes
+ timetables

JP2
getRoutes +

routes −

MS1
MS

ΛMS

routes +
timetables −

TS1
TS

ΛTS

C

ΛC

figure 5.8. The arn JourneyPlannerNet

In view of the above observation, we may consider the requires-points of
asynchronous relational networks as counterparts of the (program) variables
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used in program expressions, and their morphisms as substitutions. This
leads us to the following de�nition of ground arns.

definition 5.1.26. An arn is said to be ground if it has no requires-points.

properties. The evaluation of speci�cationswith respect to ground arns re-
lies on the concepts of diagramof a network and automaton (i.e. ALTL-model)
de�ned by a point, whose purpose is to describe the observable behaviour of
a ground arn through one of its points. We start by extending Remarks 5.1.10
and 5.1.14 from processes and connections to arns.

fact 5.1.27 (Diagram of an arn). Every arn N � 〈X, P, C, γ,M, µ,Λ〉

de�nes a diagram DN : JN → SigALTL as follows:

· JN is the free preordered category given by the set of objects

X ∪ P ∪ C ∪ {〈c , x〉N | c ∈ C, x ∈ γc }

and the arrows
– {x → p | p ∈ P, x ∈ γp } for computation hyperedges, and
– {c ← 〈c , x〉N → x | c ∈ C, x ∈ γc } for communication hyperedges;

· DN is the functor that provides the sets of actions of ports, processes and
channels, together with the appropriate mappings between them. For ex-
ample, given a communication hyperedge c ∈ C and a point x ∈ γc ,

– DN(c) � AMc , DN(〈c , x〉N) � dom(µc
x), DN(x) � AMx ,

– DN(〈c , x〉N → c) � (dom(µc
x) ⊆ AMc ), and

– DN(〈c , x〉N → x) � µc
x .

We de�ne the signature of an arn by taking the colimit of its diagram,
which is guaranteed to exist because SigALTL (i.e. Set) is �nitely cocomplete.

definition 5.1.28 (Signature of an arn). The signature of an arn N is the
colimiting cocone ξ : DN ⇒ AN of the diagram DN.

The most important construction that allows us to de�ne properties of
ground arns is the one that de�nes the observed behaviour of a (ground)
network at one of its points.

definition 5.1.29 (Automaton de�ned by a point). Let x be a point of a
ground arn G. The observed automaton Λx at x is the reduct ΛGx�ξx , where

· Gx � 〈X, P, C, γ,M, µ,Λ〉 is the sub-arn of G de�ned by x,

· ξ : DGx ⇒ AGx is the signature of Gx ,
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· ΛGx is the product automaton
∏

e∈P∪C Λ
Gx
e , and

· Λ
Gx
e is the cofree expansion of Λe along ξe , for any hyperedge e ∈ P ∪ C.

example 5.1.30. Consider once again the (ground) arn represented in Fig-
ure 5.8. The automaton de�ned by the pointMS1 is justΛMS�AMS1

; this follows
from the observation that the arn de�ned by MS1 consists exclusively of the
process MS and the port MS1. On the other hand, to obtain the automaton
de�ned by the provides-point JP1, one needs to compute the product of
the cofree expansions of all four automata ΛJP, ΛC, ΛMS, and ΛTS. Based on
Propositions 5.1.4 and 5.1.5, the resulting automaton has to accept precisely
the projections to AMJP1

of those traces accepted by ΛJP that are compatible
with traces accepted byΛC, ΛMS, andΛTS, in the sense that together they give
rise, by amalgamation, to traces over the alphabet of the network.

We now have all the necessary concepts for de�ning properties of arns.

definition 5.1.31 (Property of an arn). Let @x ρ be a speci�cation over a
ground arn G. Then @x ρ is a property of G if and only if the automaton
Λx observed at the point x in G satis�es (according to the de�nition of
satisfaction in ALTL) the temporal sentence ρ.

Λx �
ALTL ρ

remark 5.1.32. It is important to notice that not only the signature of an
arn, but also the various cofree expansions and products considered in
De�nition 5.1.29 are unique only up to an isomorphism. Consequently, the
automaton de�ned by a point of a ground arn is also unique only up to an
isomorphism, which means that the closure of ALTL under isomorphisms
plays a crucial role in ensuring that the evaluation of speci�cations with
respect to ground arns is well de�ned.

All we need now in order to complete the construction of the orchestration
scheme of asynchronous relational networks is to show that the morphisms
of ground arns preserve properties. This result depends upon the last
of the four hypotheses we introduced at the beginning of the section: the
re�ection of the satisfaction of sentences by the model homomorphisms of
the institution used as foundation for the construction of arns.

proposition 5.1.33. For every morphism of ground arns θ : G1 → G2 and
every property @x ρ of G1, the speci�cation Spec(θ)(@x ρ) is a property of G2.

proof. Let Gx
1 and Gx

2 be the sub-arns of G1 and G2 determined by x and
θ(x) respectively, and let us also assume that Gx

i � 〈Xi , Pi , Ci , γi,M i, µi,Λi
〉
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and that ξ i : DGx
i
⇒ AGx

i
is the signature of Gx

i , for i ∈ {1, 2}. Since @x ρ is a
property ofG1, we know that the automaton Λ1

x observed at x inG1 satis�es
ρ. We also know that θ : G1 → G2 de�nes the ALTL-signature morphism
θ

pt
x : AM1,x→ AM2,θ(x) as the identity of AM1,x (because G1 is ground); hence,

the automaton Λ2
θ(x) observed at θ(x) in G2 is also a model of AM1,x .

By Proposition 5.1.6, ALTL-model homomorphisms re�ect the satisfaction
of sentences; therefore, in order to prove that Λ2

θ(x) satis�es ρ – and in this
way, that Spec(θ)(@x ρ) is a property of G2 – it su�ces to determine the
existence of a homomorphism Λ2

θ(x) → Λ1
x . To this end, recall that the

automata Λ1
x and Λ2

θ(x) correspond to the reducts ΛGx
1
�ξ1

x
and ΛGx

2
�ξ2

θ(x)
,

where, for i ∈ {1, 2},

· ΛGx
i
is the product

∏
e∈Pi∪Ci Λ

Gx
ie , equipped with projections πi

e : ΛGx
i
→ Λ

Gx
ie ,

· Λ
Gx

ie , for e ∈ Pi ∪ Ci , is the cofree expansion of Λi
e along ξ i

e , for which we
denote the universal morphism from _�ξi

e
to Λi

e by εi
e : ΛG

x
ie �ξi

e
→ Λi

e .

According to the description of the arns de�ned by given points, we can
restrict θ to a morphism of arns from Gx

1 to Gx
2 . Since Gx

1 is ground, we
further obtain, based on this restriction, a functor F : JGx

1
→ JGx

2
that makes

the following diagram commutative.

JGx
1

DGx
1
((

F

��

SigALTL

JGx
2

DGx
2

66

This allows us to de�ne the derived cocone F · ξ2 : DGx
1
⇒ AGx

2
, whose

components are given, for example, by (F · ξ2)x � ξ2
θ(x) . Since ξ1 is the

colimit of DGx
1
it follows that there exists a (unique) morphism of cocones

σ : ξ1
→ F · ξ2, that is an ALTL-signature morphism σ : AGx

1
→ AGx

2
that

satis�es, in particular, ξ1
e ; σ � ξ2

θ(e) for every hyperedge e ∈ P1 ∪ C1.
We obtain in this way, for every hyperedge e ∈ P1 ∪ C1, the composite

morphism π2
θ(e)�ξ2

θ(e)
; ε2

θ(e) from ΛGx
2
�ξ2

θ(e)
� ΛGx

2
�σ�ξ1

e
to Λ1

e � Λ
2
θ(e) .

Λ1
e � Λ

2
θ(e) Λ

Gx
1e �ξ1

e

ε1
e

oo Λ
Gx

1e

Λ
Gx

2
θ(e)�ξ2

θ(e)

ε2
θ(e)

OO

ΛGx
2
�ξ2

θ(e)
� ΛGx

2
�σ�ξ1

e

he�ξ1
e

OO

π2
θ(e)�ξ2

θ(e)

oo ΛGx
2
�σ

he

OO

Given that ΛG
x
1e is the cofree expansion of Λ1

e along ξ1
e , we deduce that there
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exists a (unique) morphism he : ΛGx
2
�σ → Λ

Gx
1e such that the above diagram is

commutative. This implies, by the universal property ofΛGx
1
, the existence of

a (unique) morphism h : ΛGx
2
�σ → ΛGx

1
such that h ; π1

e � he for e ∈ P1 ∪ C1.

Λ1
e ΛGx

1

π1
e

oo

ΛGx
2
�σ

h

OO

he

bb

It follows that the reduct h�ξ1
x
is amorphism fromΛGx

2
�σ�ξ1

x
toΛGx

1
�ξ1

x
. Then,

to complete the proof, we only need to notice that ΛGx
2
�σ�ξ1

x
� ΛGx

2
�ξ2

θ(x)
�

Λ2
θ(x) and ΛGx

1
�ξ1

x
� Λ1

x . �

5.2 A LOGICAL VIEW ON SERVICE DISCOVERY AND
BINDING

Building on the results of Section 5.1, let us now investigate how the semantics
of the service overlay can be characterized using fundamental computational
aspects of logic-programming such as uni�cation and resolution. Our ap-
proach is founded upon a simple and intuitive analogy between concepts of
service-oriented computing like service module and client application [see
e.g. FLB11], and concepts such as clause and query that are speci�c to the
relational variant of logic programming. In order to clarify this analogy,
we rely on the institutional framework that we put forward in Chapter 3 to
address the model-theoretic foundations of logic programming.
For the purpose of this section, it su�ces to consider de�nite clauses, that

is clauses of the form ∀X · C ← H, where X is a signature of variables (of a
given generalized substitution system), and C and H correspond to ‘atomic’
sentences and sets of ‘atomic’ sentences over X respectively. This enables
us to make explicit – at the level of logic-programming frameworks – the
layered construction of clauses and queries from the sentences of an arbitrary
generalized substitution system (regarded as ‘atomic’) by adding the neces-
sary implications and conjunctions similarly to the way in which we added
quanti�ers in Section 3.2.1; this type of extension of a given generalized sub-
stitution system follows the well-known institution-independent semantics
of Boolean connectives introduced in [Tar86; see also Bar74]. On that ac-
count, we will rely on a slightly di�erent (and simpler) logical foundation for
conventional logic programming, based on the atomic fragment of �rst-order
logic – whose generalized substitution system we denote by AFOL1

, – in-
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stead of the quanti�er-free fragment. Note that every single-sorted �rst-order
signature 〈F, P〉 determines a substitution system

(
AFOL1

,

)
〈F,P〉 : Subst〈F,P〉 → AFOL1

,(F, P) /Room7

in which Subst〈F,P〉 is simply the category whose objects are sets of vari-
ables de�ned over 〈F, P〉, and whose arrows are �rst-order substitutions
(see Section 3.1.1). The room AFOL1

,(F, P) accounts for the (ground) atomic
sentences given by 〈F, P〉, the models of 〈F, P〉, as well as the standard satis-
faction relation between them. Finally, the functor

(
AFOL1

,

)
〈F,P〉 maps every

signature (i.e. every set) of variables X to the corridor 〈α〈F,P〉,X , β〈F,P〉,X〉,

〈Sen(F, P),

α〈F,P〉,X

��

Mod(F, P), �〈F,P〉〉 〈Sen(F ∪ X, P),Mod(F ∪ X, P),

β〈F,P〉,X

OO
�〈F∪X,P〉〉

where α〈F,P〉,X and β〈F,P〉,X are the translation of sentences and the reduction
of models that correspond to the inclusion of signatures 〈F, P〉 ⊆ 〈F ∪ X, P〉.

5.2.1 a generalized substitution system of orchestration schemes

What is essential about orchestration schemes with respect to the develop-
ment of the service-oriented variant of logic programming is that they can
be organized as a category OS from which there exists a functor OrcScheme
into SubstSys that allows us to capture some of the most basic aspects of
service-oriented computing by means of logic-programming constructs.
More precisely, orchestration schemes form the signatures of a generalized
substitution system

OrcScheme: OS→ SubstSys

through which the notions of service module, application, discovery, and
binding emerge as particular instances of the abstract notions of clause,
query, uni�cation, and resolution. In this sense, OrcScheme and AFOL1

,

can be regarded as structures having the same role in the description of
service-oriented and relational logic programming, respectively.
Morphisms of orchestration schemes are, intuitively, a way of encoding

orchestrations. In order to understand how they arise in practice, let us

7 Through AFOL1
, we refer to the institution that corresponds to the atomic fragment of the

single-sorted variant of �rst-order logic without equality.
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consider a morphism ϕ between two algebraic signatures Σ and Σ′ used in
de�ning program expressions. For instance, we may assume Σ to be the
signature of structured programs discussed in Example 5.1.2, and ϕ : Σ→ Σ′

its extension with a new operation symbol repeat _ until _ : Pgm Cond →
Pgm. Then, it is easy to notice that the ϕ-translation of Σ-terms (de�ned
over a given set of program variables) generalizes to a functor F between
the categories of program expressions de�ned over Σ and Σ′. Moreover,
the choice of ϕ enables us to de�ne a second functor U, from program
expressions over Σ′ to program expression over Σ, based on the derived
signature morphism [see e.g. ST11] Σ′→ Σ that encodes the repeat _ until _
operation as the term 1 ; while not 2 do 1 done.8

The functorU is clearly a right inverse of F with respect to ground program
expressions, whereas in general, for every program expression pgm over Σ
we actually obtain a morphism ηpgm : pgm → U (F(pgm)) as a result of the
potential renaming of program variables; thus, the morphism ηpgm accounts
for the translation of the program variables of pgm along F ; U. Furthermore,
for every program expression pgm′ over Σ′, the translation of Σ-sentences
determined by ϕ extends to a map between the speci�cations over U (pgm′)
and the speci�cations over pgm′, which, as we will see, can be used to de�ne
a translation of the speci�cations over a program expression pgm (given by
the signature Σ) to speci�cations over F(pgm). With respect to the semantics,
it is natural to expect that every program expression pgm over Σ has the
same behaviour as F(pgm) and, even more, that every program expression
pgm′ over Σ′ (that may be built using repeat _ until _), behaves in the same
way as U (pgm′). These observations lead us to the following formalization
of the notion of morphism of orchestration schemes.

definition 5.2.1 (Morphism of orchestration schemes). Amorphism between
orchestration schemes 〈Orc, Spec,Grc, Prop〉 and 〈Orc′, Spec′,Grc′, Prop′〉 is
a tuple 〈F,U, η, σ〉, where

Orc
F
,,

Orc′
U
kk

· F and U are functors as above such that F(Grc) ⊆ Grc′ and U (Grc′) ⊆ Grc,

· η is a natural transformation 1Orc ⇒ F ; U such that ηg � 1g for g ∈ |Grc|,

· σ is a natural transformation U ; Spec⇒ Spec′ such that for every ground

8 In this context, 1: Pgm and 2: Cond are variables that correspond to the arguments of the
derived operation 1 ; while not 2 do 1 done.
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orchestration g′ ∈ |Grc′ | and speci�cation ρ ∈ Spec(U (g′)),

σg′ (ρ) ∈ Prop′(g′) if and only if ρ ∈ Prop(U (g′)).

example 5.2.2. Let 〈Υ, α, β〉 be a morphism [see GB92; GR02] between
two institutions I′ � 〈Sig′, Sen′,Mod′, �′〉 and I � 〈Sig, Sen,Mod, �〉 that are
suitable for de�ning orchestration schemes of arns (according to the hypo-
theses introduced in Section 5.1.2). If (a) the signature functor Υ : Sig′→ Sig
is cocontinuous, (b) the natural transformation β : Mod′ ⇒ Υop ; Mod pre-
serves cofree expansions and products, and, moreover, if (c) both Υ and β
admit sections, in the sense that there exist a functor Φ : Sig → Sig′ such
that Φ ;Υ � 1Sig and a natural transformation τ : Mod ⇒ Φop ; Mod′ such
that τ ; (Φop

· β) � 1Mod, then 〈Υ, α, β〉 gives rise to a morphism 〈F,U, η, σ〉
between the orchestration schemes of arns de�ned over I and I′.

In particular, the functor F maps the diagram and the models that label an
arn de�ned over I to their images under Φ and τ; similarly, U maps arns
de�ned over I′according to Υ and β; the natural transformation η is just an
identity, and σ extends the α-translation of sentences to speci�cations. The
additional properties ofΥ and β are essential for ensuring that the observable
behaviour of ground networks is preserved.

One may consider, for instance, the extension of ALTL (in the role of I)
with new temporal modalities such as previous and since, as in [Kna+10]; this
naturally leads to amorphism of orchestration schemes for which bothΥ and
β would be identities. Alternatively, one may explore the correspondence
between deterministic weak ω-automata – which form a subclass of Muller
automata – and sets of traces that are both Büchi and co-Büchi determin-
istically recognizable – for which a minimal automaton can be shown to
exist [see e.g. MS97; Löd01]. In this case, in the roles of I and I′ we could
consider variants of ALTL with models given by sets of traces and determ-
inistic weak automata, respectively;9 Υ and α would be identities, β would
de�ne the language recognized by a given automaton, and τ would capture
the construction of minimal automata.

It it easy to see that the morphisms of orchestration schemes compose in a
natural way in terms of their components, thus giving rise to a category of
orchestration schemes.

9 Note that, to ensure that model reducts are well de�ned for deterministic automata, one may
need to restrict signature morphisms to injective maps.
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proposition 5.2.3. Orchestration-schememorphisms can be composed as follows:

〈F,U, η, σ〉 ; 〈F′,U′, η′, σ′〉 � 〈F ; F′,U′ ; U, η ; (F · η′ ·U), (U′ · σ) ; σ′〉.

Under this composition, morphisms of orchestration schemes form a category OS.
�

The de�nition of the functor OrcScheme is grounded on two simple ideas:

1 Orchestrations can be regarded as signatures of variables; they provide sen-
tences in the form of speci�cations, and models as morphisms into ground
orchestrations – which can also be seen, in the case of arns, for example, as
collections of ground networks assigned to the ‘variables’ of the considered
orchestration. In addition, we can de�ne a satisfaction relation between
the models and the sentences of an orchestration based of the evaluation
of speci�cations with respect to ground orchestrations. In this way, every
orchestration scheme yields an institution whose composition resembles
that of the so-called institutions of extended models [see SML04].

2 There is a one-to-one correspondence between institutions and substitution
systems de�ned over the initial room 〈∅, 1, ∅〉 – the room given by the empty
set of sentences, the terminal category 1, and the empty satisfaction relation.
The e�ect of this is that a clause can be described as ‘correct’ whenever
it is satis�ed by the sole model of 〈∅, 1, ∅〉; therefore, we obtain precisely
the notion of correctness of a service module [FLB11]: all models of the
underlying signature of variables, that is of the orchestration, that satisfy the
antecedent of the clause satisfy its consequent as well.

Formally, the generalized substitution system OrcScheme results from the
composition of two functors, Ins : OS→ coIns and SS: coIns→ SubstSys,
that implement the general constructions outlined above.

OS
Ins

//

OrcScheme
��

coIns SS
// SubstSys

The functor Ins carries most of the complexity of OrcScheme, and is dis-
cussed in detail in Theorem 5.2.4. Concerning SS, we recall from Section 2.3
that the category coIns of institution comorphisms can also be described
as the category [_→ Room]] of functors into Room, and that any functor
G : K→ K′ can be extended to a functor [_→ K]] → [_→ K′]] that is given
essentially by the right-composition with G. In particular, the isomorphism
Room→ 〈∅, 1, ∅〉 /Room that maps every room 〈S,M, �〉 to the unique cor-
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ridor 〈∅, 1, ∅〉 → 〈S,M, �〉 generates an isomorphism of categories between
[_→ Room]], that is coIns, and [_→ 〈∅, 1, ∅〉 /Room]]. The latter is further
embedded into SubstSys, de�ning in this way, by composition, the required
functor SS. To sum up, SS maps every institution I : Sig → Room to the
substitution system S : Sig → 〈∅, 1, ∅〉 / Room for which S(Σ), for every
signature Σ ∈ |Sig|, is the unique corridor between 〈∅, 1, ∅〉 and I(Σ).

theorem 5.2.4. The map Ins : OS→ coIns is a functor, where

· for any orchestration schemeO � 〈Orc, Spec,Grc, Prop〉, Ins(O) is the institution
〈Orc, Spec, _ /Grc, �〉 whose family of satisfaction relations is given by

(δ : o→ g) �o SP if and only if Spec(δ)(SP) ∈ Prop(g)

for every orchestration o, every o-model δ (i.e. every morphism of orchestrations
δ : o→ g such that g is ground), and every speci�cation SP over o;10

· for any morphism of orchestration schemes 〈F,U, η, σ〉 : O→ O′, with O as above,
and O′ given by 〈Orc′, Spec′,Grc′, Prop′〉, Ins(F,U, η, σ) is the comorphism of
institutions 〈F, α, β〉 : Ins(O) → Ins(O′) de�ned by

αo � Spec(ηo) ; σF(o) and βo � υF(o) ; (ηo /Grc)

for every orchestration o ∈ |Orc|, where υ : (_ /Grc′) ⇒ Uop ; (_ /Grc) is the
natural transformation given by υo′ (x) � U (x) for every orchestration o′ ∈ |Orc′ |
and every object or arrow x of the comma category o′/Grc′.

proof. For the �rst part, all we need to show is that the satisfaction condition
holds; but this follows easily since for every morphism of orchestrations
θ : o1 → o2, every o1-speci�cation SP, and every o2-model δ : o2 → g,

δ �o2 Spec(θ)(SP) if and only if Spec(θ ; δ)(SP) ∈ Prop(g)

if and only if (θ /Grc)(δ) � θ ; δ �o2 SP.

As regards the second part of the statement, notice that α and β are the
natural transformations (η · Spec) ; (F · σ) and (ηop

· (_ /Grc)) ; (Fop
· υ),

respectively. In order to verify that 〈F, α, β〉 is indeed a comorphism between
Ins(O) and Ins(O′), consider an orchestration o in Orc, a model δ′ : F(o) → g′

of F(o), and a speci�cation SP over o. Assuming that �′ is the family of

10 Moreover, the institution Ins(O) is exact, because the functor _ /Grc : Orcop
→ Cat is con-

tinuous (see e.g. [Mes89]).
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satisfaction relations of Ins(O′), we deduce that

δ′ �′F(o) αo(SP)

i� Spec′(δ′)(αo(SP)) ∈ Prop′(g′) by the de�nition of �′F(o)

i� Spec′(δ′)(σF(o) (Spec(ηo)(SP))) ∈ Prop′(g′) by the de�nition of αo

i� σg′ (Spec(ηo ; U (δ′))(SP)) ∈ Prop′(g′) by the naturality of σ

i� Spec(ηo ; U (δ′))(SP) ∈ Prop(U (g′)) since Prop(U (g′))
� σ−1

g′ (Prop′(g′))

i� ηo ; U (δ′) �o SP by the de�nition of �o

i� βo(δ′) �o SP. by the de�nition of βo

Finally, it is easy to see that Ins preserves identities. To prove that it also
preserves composition, let 〈F,U, η, σ〉 and 〈F′,U′, η′, σ′〉 be morphisms of
orchestration schemes as below, and suppose that Ins(F,U, η, σ) � 〈F, α, β〉
and Ins(F′,U′, η′, σ′) � 〈F′, α′, β′〉.

〈Orc′, Spec′,Grc′, Prop′〉
〈F′,U′,η′,σ′〉

��

〈Orc, Spec,Grc, Prop〉

〈F,U,η,σ〉
//

〈F;F′,U′;U,η;(F·η′·U),(U′·σ);σ′〉

OO
〈Orc′′, Spec′′,Grc′′, Prop′′〉

In addition, let υ : (_ /Grc′) ⇒ Uop ; (_ /Grc) and υ′ : (_ /Grc′′) ⇒ U′op ;

(_ /Grc′) be the natural transformations involved in the de�nitions of β
and β′, respectively. Based on the composition of morphisms of orchestra-
tion schemes and on the de�nition of Ins, it follows that Ins(〈F,U, η, σ〉 ;

〈F′,U′, η′, σ′〉) is a comorphism of institutions of the form 〈F ; F′, α′′, β′′〉,
where α′′ and β′′ are given by

α′′o � Spec((η ; (F · η′ ·U))o) ; ((U′ · σ) ; σ′)(F;F′)(o)

β′′o � (υ′ ; (U′op
· υ))(F;F′)(o) ; ((η ; (F · η′ ·U))o /Grc).

In order to complete the proof, we need to show that α′′ � α ; (F · α′) and β′′ �
(F ·β′) ;β. Each of these equalities follows from a sequence of straightforward
calculations that relies on the naturality of σ (in the case of α′′), or on the
naturality of υ (in the case of β′′).

α′′o � Spec(ηo) ; Spec(U (η′F(o))) ; σ(F;F′;U′)(o) ; σ′(F;F′)(o)

� Spec(ηo) ; σF(o) ; Spec′(η′F(o)) ; σ′(F;F′)(o) � αo ; α′F(o)
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β′′o � υ′(F;F′)(o) ; υ(F;F′;U′)(o) ; (U (η′F(o)) /Grc) ; (ηo /Grc)

� υ′(F;F′)(o) ; (η′F(o) /Grc′) ; υF(o) ; (ηo /Grc) � β′F(o) ; βo �

corollary 5.2.5. Together with the category of orchestration schemes, the functor
OrcScheme: OS→ SubstSys de�nes a generalized substitution system. �

We recall from Section 3.3 that, in order to be used as semantic frameworks
for logic programming, generalized substitution systems need to ensure a
weak model-amalgamation property between the models that are ground
and those that are de�ned by signatures of variables. This property entails
that the satisfaction of quanti�ed sentences (and, in particular, of clauses
and queries) is invariant under change of notation. In the case of OrcScheme,
this means that the correctness property of service modules does not depend
on the actual orchestration scheme over which the modules are de�ned.

proposition 5.2.6. The generalized substitution system 〈OS,OrcScheme〉 has
weak model amalgamation.

proof. Let ϕ be a morphism 〈F,U, η, σ〉 between orchestration schemes
O and O′ as in De�nition 5.2.1, and let o be an orchestration of O. Since
orchestrations de�ne substitution systems over the initial room 〈∅, 1, ∅〉, we
can redraw the diagram of interest as follows:

|1| |1|
_�ϕ

oo

|o /Grc|

_�O

OO

|F(o) /Grc′ |

_�O′

OO

βϕ,o
oo

It is easy to see that the above diagram depicts a weak pullback if and only
if βϕ,o is surjective on objects. By Theorem 5.2.4, we know that βϕ,o(δ′) �

ηo ; U (δ′) for every object δ′ : F(o) → g′ of the comma category F(o) /Grc′.
Therefore, for every δ : o→ g in |o /Grc| we obtain

βϕ,o(F(δ)) � ηo ; U (F(δ)) by Theorem 5.2.4

� δ ; ηg by the naturality of η

� δ. because, by de�nition, ηg is an identity �

remark 5.2.7. In addition to model amalgamation, it is important to notice
that, similarly to AFOL1

,, in OrcScheme the satisfaction of sentences is pre-
served by model homomorphisms. This is an immediate consequence of the
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fact that, in every orchestration scheme, the morphisms of ground orchestra-
tions preserve properties: given an orchestration o, a speci�cation SP over o,
and a homomorphism ζ between o-models δ1 and δ2 as depicted below, if
Spec(δ1)(SP) is a property of g1 then Spec(δ2)(SP) � Spec(ζ)(Spec(δ1)(SP))
is a property of g2; therefore, δ1 �OrcScheme SP implies δ2 �OrcScheme SP.

o
δ1

��

δ2

��

g1 ζ
// g2

5.2.2 the clausal structure of services

Given the above constructions, we can now consider a service-oriented no-
tion of clause, de�ned over the generalized substitution system OrcScheme
rather than AFOL1

,. Intuitively, this means that we replace �rst-order sig-
natures with orchestration schemes, sets of variables with orchestrations,
and �rst-order sentences (over given sets of variables) with speci�cations.
Furthermore, certain orchestration schemes allow us to identify structures
that correspond to �ner-grained notions like variable and term: in the case
of program expressions, variables and terms have their usual meaning (al-
though we only take into account executable expressions), whereas in the
case of arns, variables and terms materialize as requires-points and sub-
arns de�ned by provides-points.

The following notion of service clause corresponds to the concepts of ser-
vice module and of orchestrated interface discussed in [FLB11] and [FL13b].

definition 5.2.8 (Service clause). A (de�nite) service-oriented clause over an
orchestration scheme O is a structure ∀o · P ← R, also denoted

P ←−
o

R

where o is an orchestration of O, P is a speci�cation over o – called the
provides-interface of the clause – and R is a �nite set of speci�cations over o –
the requires-interface of the clause.

The semantics of service-oriented clauses is de�ned just as the semantics
of �rst-order clauses, except that they are evaluated within the generalized
substitution system OrcScheme instead of AFOL1

,. As mentioned before,
this means that we can only distinguish whether or not a clause is correct.

definition 5.2.9 (Correct clause). A service-oriented clause ∀o · P ← R is
said to be correct if for every morphism of orchestrations δ : o→ g such that
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g is a ground orchestration and Spec(δ)(R) consists only of properties of g,
the speci�cation Spec(δ)(P) is also a property of g.

In other words, a service-oriented clause is correct if its provides-interface is
ensured by its orchestration and the speci�cations of its requires-interface.

example 5.2.10. We have already encountered several instances of service
clauses in the form of the program modules depicted in Figure 5.1. Their
provides-interfaces and requires-interfaces are placed on the left-hand and
right-hand side of their orchestrations, and are represented using symbolic
forms that are traditionally associated with services.
To illustrate how service modules can be de�ned as clauses over arns,

notice that the network JourneyPlanner introduced in Example 5.1.17 can
orchestrate a module named Journey Planner that consistently delivers the
requested directions, provided that the routes and the timetables can be
obtained whenever they are needed. This can be described in logical terms
through the following (correct) service-oriented clause:

@JP1 ρ
JP
←−−−−−−−−−−−
JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2
}

where ρJP, ρJP1 , and ρ
JP
2 are the ALTL-sentences�(planJourney¡⇒ ^directions!),

�(getRoutes¡⇒ ^routes!), and �(routes¡⇒ ^timetables!), respectively.

Client applications are captured in the present setting by service-oriented
queries. They are de�ned similarly to service clauses, but their semantics is
based on an existential quanti�cation, not on a universal one.

definition 5.2.11 (Service query). A service-oriented query over an orchestra-
tion scheme O is a structure ∃o ·Q, also written

7−−−
o

Q

such that o is an orchestration of O, and Q is a �nite set of speci�cations over
o that de�nes the requires-interface of the query.

definition 5.2.12 (Satis�able query). A service-oriented query ∃o · Q is
satis�able if there exists a morphism of orchestrations δ : o→ g such that g is
ground and all speci�cations in Spec(δ)(Q) are properties of g.

example 5.2.13. In Figure 5.9, we outline the arn of a possible client applic-
ation for the service module Journey Planner discussed in Example 5.2.10.
We specify the actual application, called Traveller, through the service query

7−−−−−−−−
Traveller

{
@R1 ρ

T
1
}
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given by the ALTL-sentence �(getRoute¡⇒ ^route!).

T

ΛT

−getRoute
+ route

T1

getRoute +
route−

R1

C
ΛC

figure 5.9. The arn Traveller

5.2.3 resolution as service discovery and binding

Let us now turn our attention to the dynamic aspects of service-oriented com-
puting that result from the process of service discovery and binding [FLB11].
Service discovery represents, as in conventional logic programming, the search
for a module (service clause) that can be bound to a given application (ser-
vice query) in order to take it one step closer to a possible solution, that is to
a ‘complete’ application capable of ful�lling its goal.
From a technical point of view, both discovery and binding are subject

to matching the requires-interface of the application, or more precisely, one
of its speci�cations, with the provides-interface of the module under con-
sideration. This is usually achieved through a suitable notion of re�nement
of speci�cations. For instance, in the case of program expressions, given
speci�cations ι1 : [ρ1 , ρ′1] and ι2 : [ρ2 , ρ′2] over programs pgm1 : eXp1 and
pgm2 : eXp2, respectively, ι2 : [ρ2 , ρ′2] re�nes ι1 : [ρ1 , ρ′1] up to a cospan

pgm1 : eXp1
〈ψ1 ,π1〉

// pgm : eXp pgm2 : eXp2
〈ψ2 ,π2〉
oo

if by translation we obtain speci�cations that refer to the same position of
pgm : eXp, that is π1 · ι1 � π2 · ι2, such that the pre-condition ψ2(ρ2) is weaker
that ψ1(ρ1), and the post-condition ψ2(ρ′2) is stronger than ψ1(ρ′1):

ψ1(ρ1) �POA ψ2(ρ2) and ψ2(ρ′2) �POA ψ1(ρ′1).

This re�ects the consequence rules introduced in [Hoa69] (see also [Mor94],
whence we adopt the notation ι1 : [ρ1 , ρ′1] v ι2 : [ρ2 , ρ′2] used in Figure 5.2).

In a similar manner, in the case of arns, a speci�cation @x1 ρ1 over a
network N1 is re�ned by another speci�cation @x2 ρ2 over a network N2

up to a cospan of morphisms of arns 〈θ1 : N1 → N, θ2 : N2 → N〉 when
θ1(x1) � θ2(x2) and θ

pt
2,x2

(ρ2) �ALTL θ
pt
1,x1

(ρ1) [see ŢF13]. Both of these
notions of re�nement generalize to the following concept of uni�cation.
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definition 5.2.14 (Service-oriented uni�cation). Let SP1 and SP2 be spe-
ci�cations de�ned over orchestrations o1 and o2, respectively, of an arbitrary
but �xed orchestration scheme. We say that the ordered pair 〈SP1 , SP2〉 is
uni�able if there exists a cospan of morphisms of orchestrations as below,

o1
θ1
// o o2

θ2
oo

called the uni�er of SP1 and SP2, such that θ2(SP2) �OrcScheme θ1(SP1).

Therefore, 〈θ1 , θ2〉 is a uni�er of SP1 and SP2 if and only if, for every morph-
ism of orchestrations δ : o → g such that g is a ground orchestration, if
Spec(θ2 ; δ)(SP2) is a property of g then so is Spec(θ1 ; δ)(SP1).
In conventional logic programming, the resolution inference rule sim-

pli�es the current goal and at the same time, through uni�cation, yields
computed substitutions that could eventually deliver a solution to the initial
query. This process is accurately re�ected in the case of service-oriented
computing by service binding. Unlike relational logic programming, however,
the emphasis is put not on the computed morphisms of orchestrations (i.e.
on substitutions), but on the dynamic recon�guration of the orchestrations
(i.e. of the signatures of variables) that underlie the considered applications.

definition 5.2.15 (Service-oriented resolution). Let ∃o1 · Q1 be a query
and ∀o2 · P2 ← R2 a clause de�ned over an arbitrary but �xed orchestration
scheme. A query ∃o ·Q is said to be derived by resolution from ∃o1 ·Q1 and
∀o2 · P2 ← R2 using the computed morphism θ1 : o1 → o when

7−−−−
o1

Q1 P2 ←−−o2
R2

7−−−
o
θ1(Q1 \ {SP1}) ∪ θ2(R2)

θ1

· θ1 can be extended to a uni�er 〈θ1 , θ2〉 of a speci�cation SP1 ∈ Q1 and P2,

· Q is the set of speci�cations given by the translation along θ1 and θ2 of the
speci�cations in Q1 \ {SP1} and R2.

example 5.2.16. Consider the service-oriented query and the service clause
detailed in Examples 5.2.10 and 5.2.13. One can easily see that the single
speci�cation @R1 ρ

T
1 of the requires-interface of the application Traveller and

the provides-interface@JP1 ρ
JP of themodule Journey Planner form a uni�able

pair: they admit, for instance, the uni�er 〈θ1 , θ2〉 given by

Traveller
θ1
// JourneyPlannerApp JourneyPlanner

θ2
oo
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· the arn JourneyPlannerApp depicted in Figure 5.10,

· the morphism θ1 that maps the point R1 to JP1, the communication hy-
peredge C to CJP and the messages getRoute and route of MR1 to planJourney

and directions, while preserving all the remaining elements of Traveller, and

· the inclusion θ2 of JourneyPlanner into JourneyPlannerApp.

T

ΛT

−getRoute
+ route

T1

planJourney +
directions−

JP1
JP

ΛJP

−getRoutes
+ routes
+ timetables

JP2 getRoutes +
routes −

R1

routes +
timetables −

R2
CJP
ΛCJP

C

ΛC

figure 5.10. The arn JourneyPlannerApp

It follows that we can derive by resolution a new service query given by the
arn JourneyPlannerApp and the requires-speci�cations @R1 ρ

JP
1 and @R2 ρ

JP
2 .

7−−−−−−−−
Traveller

{
@R1 ρ

T
1
}

@JP1 ρ
JP
←−−−−−−−−−−−
JourneyPlanner

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2
}

7−−−−−−−−−−−−−−−
JourneyPlannerApp

{
@R1 ρ

JP
1 ,@R2 ρ

JP
2
} θ1

the logic-programming framework of services. The crucial property
of the above notions of service-oriented clause, query, and resolution is
that, together with the generalized substitution system OrcScheme used
to de�ne them, they give rise to a logic-programming framework. The
construction is to a great extent self-evident, and it requires little additional
consideration apart from the fact that, from a technical point of view, in
order to de�ne clauses and queries as quanti�ed sentences, we need to
extend OrcScheme by closing the sets of sentences that it de�nes under
propositional connectives such as implication and conjunction. It should be
noted, however, that the properties that guarantee thewell-de�nedness of the
resulting logic-programming framework such as the fact that its underlying
generalized substitution system has weak model amalgamation (ensured
by Proposition 5.2.6), and also the fact that the satisfaction of speci�cations
is preserved by model homomorphisms (detailed in Remark 5.2.7), are far
from trivial, especially when taking into account particular orchestration
schemes (see e.g. Proposition 5.1.33).

By describing service discovery and binding as instances of uni�cation
and resolution (speci�c to the logic-programming framework of services)
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we obtain not only a rigorously de�ned analogy between service-oriented
computing and relational logic programming, but also a way to apply the
general theory of logic programming developed in Section 3.3 to the partic-
ular case of services. For example, we gain a concept of solution to a service
query that re�ects the rather intuitive service-oriented notion of solution
and, moreover, through Herbrand’s theorem, a characterization of satis�able
queries as queries that admit solutions.

definition 5.2.17 (Solution). A solution to a service-oriented query ∃o ·Q
consists of a morphism of orchestrations ψ : o→ o′ such that o′ has models,
and every one of them satis�es the ψ-translations of the speci�cations in Q.

proposition 5.2.18. A service query is satis�able if and only if it has a solution.
�

Even more signi�cant is the fact that logic programming provides us
with a general search procedure that can be used to compute solutions
to queries. The search is triggered by a query ∃o · Q and consists in the
iterated application of resolution, that is of service discovery and binding,
until the requires-interface of the derived service query consists solely of
trivial speci�cations (tautologies); these are speci�cations whose translation
along morphisms into ground orchestrations always gives rise to properties.
Thus, whenever the search procedure successfully terminates we obtain a
computed answer to the original query by sequentially composing the resulting
computed morphisms. This is the process that led, for example, to the
derivation of the program that calculates the quotient and the remainder
obtained on dividing two natural numbers illustrated in Figure 5.2. The
computed answer is given in this case by the sequence of substitutions

pgm 7→ pgm1 ; pgm2 7→ (pgm3 ; pgm4) ; pgm2 7→ · · ·

7→ (q B 0 ; r B x) ; while y ≤ r do
q B q + 1 ; r B r − y

done.

In a similar manner, we can continue Example 5.2.16 towards the derivation
of an answer to the Traveller application. To this purpose, we assume that
Map Services and Transport System are two additional service modules that
correspond to the processes MS and TS used in Example 5.1.25, and whose
provides-interfaces meet the requires-speci�cations of the module Journey
Planner. We obtain in this way the construction outlined in Figure 5.11.
The soundness of resolution, detailed in Proposition 5.2.19 below, entails
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that the search for solutions is sound aswell, in the sense that every computed
answer to ∃o ·Q is also a solution to ∃o ·Q. This fundamental result follows
from Theorem 3.3.24 and ensures, in combination with Proposition 5.2.18,
that the operational semantics of the service overlay given by discovery and
binding is sound with respect to the notion of satis�ability of a service query.

proposition 5.2.19. Let ∃o · Q be a service query derived by resolution from
∃o1 ·Q1 and ∀o2 · P2 ← R2 using the morphism θ1 : o1 → o. If ∀o2 · P2 ← R2 is
correct then, for any solution ψ to ∃o ·Q, θ1 ; ψ is a solution to ∃o1 ·Q1. �

The analogy between service-oriented computing and conventional logic
programming that we have established in this chapter is presented in a
condensed form in Table 5.1. To summarize, our approach to the logic-
programming semantics of services is based on the identi�cation of the
binding of terms to variables in logic programming with the binding of
orchestrations of services to those of software applications in service-oriented
computing; the answer to a service query – the request for external services
– is obtained through resolution using service clauses – orchestrated service
interfaces – that are available from a repository. This departs from other
works on the logic-programming semantics of service-oriented computing
such as [KBG07] that actually considered implementations of the service
discovery and binding mechanisms based on constraint logic programming.
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6
SOLVING QUERIES OVER
MODULAR LOGIC PROGRAMS

As in many other areas of computer science, in logic programming, modularization
or structuring techniques are an essential element in managing the inherent com-
plexity of large software systems – in this case, logic programs – at various stages of
their development. This chapter is devoted to the study of modularization over the
model-theoretic framework of abstract logic programming advanced in Section 3.3.
More speci�cally, we investigate a series of properties related to the preservation
and the re�ection of both solutions and computed answers along morphisms of pro-
grams. We show that the preservation of solutions holds in general, thus ensuring
that the general procedure for computing answers to queries is sound with respect
to the modularization of logic programs, and identify a set of su�cient conditions
under which the re�ection property holds as well.

To start with, let us brie�y examine how the speci�cation-building oper-
ators of [ST88a] – which correspond to one of the most important general
directions within the institution-independent studies of modularization –
can be used in constructing modular logic programs. This leads to an al-
ternative to the theory-oriented approach to structuring programs that we
discussed in Example 3.3.6 in the context of relational logic programming.
Both structuring mechanisms are particular instances of the general axio-
matic approach proposed in Section 3.3, hence we can treat them uniformly
by studying modularization over abstract logic-programming languages.

6.1 PROGRAM MODULES

In order to accommodate both the so-called loose semantics speci�c to rela-
tional logic programming and the free semantics necessary for specifying
abstract data types, the equational logic programs presented in Section 4.1
are de�ned by means of modules like NAT and ADD that are built from �nite
presentations over FOL� by iteration of structuring operators such as union,
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translation, and free semantics. Various other operators dedicated, for in-
stance, to the derivation or the extension of modules (often parameterized by
classes of signaturemorphisms or homomorphisms) have been considered in
the speci�cation literature [see Bor02; ST11; DŢ11]. To keep the presentation
simple, we focus here only on the three aforementioned operators.

The equational logic-programming language FOLstruc
� de�nes programs as

‘terms’ formed from the programs of FOLpres
� by repeated applications of the

union, translation, and free-semantics operators listed below – together with
the appropriate images of the resulting programmodules under the functors
Sign, Ax, and PMod. Similarly to the case of presentations, the morphisms
of programs ν : P → P′ are morphisms of signatures ν : Sign(P) → Sign(P′)
such that M′�ν ∈ |PMod(P) | for every model M′∈ |PMod(P′) |.

union. For any two programmodules P1 and P2 having the same signature
Σ, the union P1 ∪ P2 is also a program module, with

Sign(P1 ∪ P2) � Σ

Ax(P1 ∪ P2) � Ax(P1) ∪Ax(P2)

PMod(P1 ∪ P2) � PMod(P1) ∩ PMod(P2).

translation. For any program module P and any signature morphism
ϕ : Sign(P) → Σ′, translate P by ϕ is also a program module, with

Sign(translate P by ϕ) � Σ′

Ax(translate P by ϕ) � ϕ(Ax(P))

PMod(translate P by ϕ) � Mod(ϕ)−1(PMod(P)).

free semantics. For any two program modules P and P′, and any signa-
ture morphism ϕ : Sign(P) → Sign(P′), free P′ over P through ϕ is also a
program module, with

Sign(free P′ over P through ϕ) � Sign(P′)

Ax(free P′ over P through ϕ) � Ax(P′)

PMod(free P′ over P through ϕ) � the full subcategory of PMod(P′)

given by those P′-models that are free

with respect to ϕ over some P-model.

remark 6.1.1. To describe the modules NAT and ADD, note that, for any pro-
grammodule P, free P is an abbreviation for free P over ∅ through ι, where
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ι is the inclusion ∅ ⊆ Sign(P), and that, for any other program module P′

such that Sign(P) is a subsignature of Sign(P′), P then P′ is an abbreviation
for (translate P by ι) ∪ P′, where ι is the inclusion Sign(P) ⊆ Sign(P′).

6.2 FOUNDATIONS OF MODULAR LOGIC PROGRAMMING

Throughout this chapter, we will assume L to be an arbitrary but �xed logic-pro-
gramming language 〈LP, Sign, PMod,Ax〉 over a framework F � 〈GS,C,Q, 〉.

Our �rst result concerns the preservation of queries and solutions (the
denotational concept of answer to a query) along morphisms of programs.

proposition 6.2.1. Let ∃X · ρ be a query over a signature Σ.

1 For every morphism of signatures ν : Σ→ Σ′, ν(∃X · ρ) is a query over Σ′.
2 For every morphism of programs ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 and every 〈〈Σ, Γ〉〉-solution
ψ : X → Y to ∃X · ρ,Ψν (ψ) is a 〈〈Σ′, Γ′〉〉-solution to ν(∃X · ρ).

proof. For the �rst part, note that, by the de�nition of the translation of
quanti�ed sentences (see Section 3.2.1), ν(∃X · ρ) � ∃Ψν (X) · αν,X (ρ). Since
Q is a generalized subfunctor of LSen, it follows that αν,X (ρ) ∈ QΣ′ (Ψν (X)).
Therefore, the quanti�ed sentence ∃Ψν (X) · αν,X (ρ) is a Σ′-query.

For the second part, according to De�nition 3.3.8, we need to check that
Ψν (Y) is conservative and that 〈〈Σ′, Γ′〉〉 �lp

Σ′
∀Ψν (Y) ·Ψν (ψ)(αν,X (ρ)). Let

us thus suppose that M′ is a Σ′-model. Since Y is conservative (because ψ
is a solution), there exists a Y-expansion N of M′�ν. It follows that M′ and
N are models of Σ′ and Y, respectively, such that M′�ν � N�Σ. This further
implies, by the weak model-amalgamation property of GS, that there exists a
Ψν (Y)-expansion N′ of M′ such that βν,Y (N′) � N .
To prove that 〈〈Σ′, Γ′〉〉 entails ∀Ψν (Y) ·Ψν (ψ)(αν,X (ρ)), note that, by the

satisfaction condition for the institution of quanti�ed sentences over GS,
〈〈Σ, Γ〉〉 �

lp
Σ
∀Y · ψ(ρ) implies 〈〈Σ′, Γ′〉〉 �lp

Σ′
ν(∀Y · ψ(ρ)).1 This means that

〈〈Σ′, Γ′〉〉 �
lp
Σ′
∀Ψν (Y) · αν,Y (ψ(ρ)) because, by the de�nition of the ν-transla-

tion of quanti�ed sentences, ν(∀Y ·ψ(ρ)) � ∀Ψν (Y) · αν,Y (ψ(ρ)). Moreover,
according to the general properties of the morphism of substitution systems
〈Ψν , κν , τν〉 induced by ν, the square depicted below is commutative, from

1 Recall that, since ν is an LP-morphism, the ν-reduct of any 〈〈Σ′, Γ′〉〉-model is a 〈〈Σ, Γ〉〉-model.
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which we deduce that αν,Y (ψ(ρ)) � Ψν (ψ)(αν,X (ρ)).

SenΣ(X)
αν,X
//

ψ(_)
��

SenΣ′ (Ψν (X))

Ψν (ψ)(_)
��

SenΣ(Y) αν,Y
// SenΣ′ (Ψν (Y))

We thus conclude that 〈〈Σ′, Γ′〉〉 �lp
Σ′
∀Ψν (Y) ·Ψν (ψ)(αν,X (ρ)). �

Unlike the preservation property of Proposition 6.2.1, the re�ection of
solutions can only be guaranteed for those morphisms ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉
that are conservative – in the sense that every model of the program 〈〈Σ, Γ〉〉
admits a 〈〈Σ′, Γ′〉〉-expansion along ν – and that, moreover, lift substitutions.

definition 6.2.2 (Lifting substitutions). A morphism of logic programs
ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 is said to lift substitutions if for every Σ′-substitution
ψ′ : Ψν (X) → Y′ there is a Σ-substitution ψ : X → Y such thatΨν (ψ) � ψ′.

Although the use of conservativity to support modularization is often con-
sidered as one of the fundamental principles of structuring logic programs or
speci�cations [see e.g. ST11], this property is in general di�cult to verify, as
it is well known that even in the case of �rst-order logic it has no recursively
axiomatized complete calculus [see MAH01]. Nevertheless, we can easily
�nd additional assumptions that guarantee conservativeness. For instance,
in the logic-programming language Fpres, for any morphism of programs
ν : 〈Σ, Γ〉 → 〈Σ′, Γ′〉 such that Γ′ and ν(Γ) are semantically equivalent (or,
even more, equal), the property is independent of the set of clauses, and
thus it su�ces to consider ν as a signature morphism.2 In relational �rst-
order logic, this means that all we have to check is that ν is injective on both
operation and relation symbols [see e.g. Dia08]. The lifting-substitutions
property further requires that ν is surjective on operation symbols.

fact 6.2.3. In the generalized substitution system qf-FOL1
,, a signature

morphism ν : 〈F, P〉 → 〈F′, P′〉 is conservative and lifts substitutions if and
only if it is bijective on operation symbols and injective on relation symbols.

A similar result can be obtained for equational logic programming.

fact 6.2.4. In qf-FOL�, a signature morphism ν : 〈S, F〉 → 〈S′, F′〉 is con-
servative and lifts substitutions if and only if it is injective on all symbols
and, for every sort s ∈ S and operation symbol σ′ ∈ F′w′→νst(s) , there exists
an operation symbol σ ∈ Fw→s such that νst(w) � w′ and νop

w→s (σ) � σ′.

2 Alternatively, one could consider Fstruc-morphisms of logic programs ν : P → P′ whose
codomain P′ is semantically equivalent with translate P by Sign(ν).
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Note that, even though the conditions above may seem overly restrictive,
they are often the best that can be achieved. For example, assume that ν is
the inclusion of �rst-order signatures 〈{0 : 0}, {add : 3}〉 ⊆ 〈FNAT , PNAT〉, where
〈FNAT , PNAT〉 is the signature of natural numbers discussed in Section 3.1.1,
that Γ is the singleton set containing the clause ∀{M} · true⇒ add(M, 0,M),
Γ′ is ν(Γ), and consider the query ∃{X} · add(X, 0,X). Then the morphism
ν is conservative, and yet we may obtain solutions to the translated query
ν(∃{X} · add(X, 0,X)), such as X 7→ s 0, that are not in the image ofΨν.

proposition 6.2.5. Consider a morphism ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 and a Σ-query
∃X · ρ. If ν is conservative and lifts substitutions, then for every 〈〈Σ′, Γ′〉〉-solution
ψ′ to ν(∃X · ρ) there exists a 〈〈Σ, Γ〉〉-solution ψ to ∃X · ρ such thatΨν (ψ) � ψ′.

proof. Let ψ′ : Ψν (X) → Y′ be a 〈〈Σ′, Γ′〉〉-solution to ∃Ψν (X) · αν,X (ρ),
that is to the ν-translation of the query ∃X · ρ. Since the morphism ν lifts
substitutions, we know that there exists a Σ-substitution ψ : X → Y such
thatΨν (Y) � Y′ andΨν (ψ) � ψ′. Therefore, all we need to establish is that
the signature of Σ-variables Y is conservative and that 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · ψ(ρ).

The conservativeness of Y is an immediate consequence of the conser-
vativeness of ν and Ψν (Y): every Σ-model M admits a ν-expansion M′

(because ν is conservative), which further admits a Ψν (Y)-expansion N′

(becauseΨν (Y) is conservative); then, based on the commutativity of the
diagram below, βν,Y (N′) is a Y-expansion of M.

Mod(Σ) Mod(Σ′)
_�ν

oo

ModΣ(Y)

_�Σ

OO

ModΣ′ (Ψν (Y))

_�Σ′

OO

βν,Y
oo

For the second property, note that, sinceΨν (ψ) is a 〈〈Σ′, Γ′〉〉-solution to
the query ∃Ψν (X) · αν,X (ρ), we have 〈〈Σ′, Γ′〉〉 �lp

Σ′
∀Ψν (Y) ·Ψν (ψ)(αν,X (ρ)).

This means that ∀Ψν (Y) · αν,Y (ψ(ρ)) is a semantic consequence of 〈〈Σ′, Γ′〉〉,
because the sentence translations αν,X ;Ψν (ψ) and ψ ; αν,Y are equal. Thus,
by the de�nition of the translation of quanti�ed sentences, we deduce that

〈〈Σ′, Γ′〉〉 �
lp
Σ′
ν(∀Y · ψ(ρ)).

Suppose now that M is amodel of the program 〈〈Σ, Γ〉〉. Since themorphism ν

is conservative, there exists a ν-expansion M′ of M such that M′ �lp
Σ′
〈〈Σ′, Γ′〉〉.

As a result, M′ �qs
Σ′
ν(∀Y · ψ(ρ)), which further implies, by the satisfaction

condition for ν, that M �qs
Σ
∀Y · ψ(ρ). Therefore, 〈〈Σ, Γ〉〉 �lp

Σ
∀Y · ψ(ρ). �
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6.3 COMPUTING ANSWER SUBST ITUT IONS

From an operational point of view, it is also useful to investigate the pre-
servation and the re�ection of computed answers (to given queries) along
morphisms of programs, as this may enable us to overcome some of the
limitations imposed by query-completeness or conservativeness. For this
purpose, we will only consider morphisms that are simple, that is morphisms
of logic programs ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 for which ν(Γ) ⊆ Γ′.
Let us �rst notice that trivial queries are both preserved and re�ected

(under mild additional assumptions) along every signature morphism ϕ;
this follows from the satisfaction condition for the morphism of substitu-
tion systems 〈Ψϕ , κϕ , τϕ〉 determined by ϕ in combination with the model-
amalgamation property of the generalised substitution system GS or, in the
case of re�ection, with the conservativeness of ϕ.

fact 6.3.1. For every morphism of signatures ϕ : Σ → Σ′, the translation
of every trivial Σ-query ∃Y · > is a trivial query as well. Moreover, if ϕ is
conservative, then a query ∃Y · > is trivial whenever ϕ(∃Y · >) is trivial.

lemma 6.3.2. For every simple morphism of programs ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉,
every (one-step) Γ-derivation ∃X1 · ρ1 −�Γ,θ1 ∃X2 · ρ2 determines a Γ′-derivation

ν(∃X1 · ρ1) −�Γ′,Ψν (θ1) ν(∃X2 · ρ2).

proof. Assume that ∃X2 · ρ2 is a query derived by resolution from ∃X1 · ρ1

and Γ using the computed substitution θ1 : X1 → X2. It follows that there
exists a clause ∀Y1 · γ1 ∈ Γ and a substitution ψ1 : Y1 → X2 such that
θ1(ρ1), ψ1(γ1) Σ,X2 ρ2. Then, by the functoriality of , we know that
αν,X2 (θ1(ρ1)), αν,X2 (ψ1(γ1)) Σ′,Ψν (X2) αν,X2 (ρ2). This allows us to deduce,
based on the naturality of αν, that

Ψν (θ1)(αν,X1 (ρ1)),Ψν (ψ1)(αν,Y1 (γ1)) Σ′,Ψν (X2) αν,X2 (ρ2).

Therefore, the translated query ∃Ψν (X2) · αν,X2 (ρ2) can be derived by resol-
ution from ∃Ψν (X1) · αν,X1 (ρ1) and ∀Ψν (Y1) · αν,Y1 (γ1) using the computed
substitutionΨν (θ1). By the de�nition of the translation of quanti�ed sen-
tences along signaturemorphisms, we further deduce that ν(∃X2 · ρ2) can be
derived by resolution from ν(∃X1 · ρ1) and ν(∀Y1 · γ1) using the computed
morphismΨν (θ1). We can thus conclude, based on the fact that ν is simple,
that ν(∃X2 · ρ2) can be derived from ν(∃X1 · ρ1) and Γ′. �

The preservation of computed answers along simple morphisms of logic
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programs follows by repeated applications of Lemma 6.3.2 and by Fact 6.3.1.

proposition 6.3.3. Let ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 be a simple morphism of logic
programs and θ : X → Y a computed 〈〈Σ, Γ〉〉-answer to a Σ-query ∃X · ρ. Then
the substitutionΨν (θ) is a computed 〈〈Σ′, Γ′〉〉-answer to ν(∃X · ρ). �

As in the case of solutions, the re�ection of computed answers relies on
additional hypotheses, which correspond here to the re�ection of �nal rules.

definition 6.3.4 (Re�ection of �nal rules). A simple morphism of programs
ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 re�ects �nal (goal-directed) rules if for every conservative
signature of Σ-variables X, X-query ρ, and trivialΨν (X)-query >′ such that

αν,X (ρ),Ψν (X)(Γ′) ∗
Σ′,Ψν (X)>

′

there exists a trivial X-query > such that

ρ,X(Γ) ∗
Σ,X >.

It is rather straightforward to see that the re�ection of �nal rules is sat-
is�ed by most simple morphisms of logic programs used for structuring
purposes. For instance, in (FOL1

,)pres, a simple morphism of logic programs
ν : 〈〈F, P〉, Γ〉 → 〈〈F′, P′〉, Γ′〉 re�ects �nal goal-directed rules if it does not
introduce new information concerning the old predicates: for every clause
∀Y′ ·

∧
H′⇒ π′(t′1 , . . . , t

′
n) in Γ′\ν(Γ), π′ is a relation symbol in P′n \νrel

n (Pn).

lemma 6.3.5. Let ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 be a simple morphism of programs such
that Sign(ν) : Σ→ Σ′ is conservative. The following statements are equivalent:

1 For everyΣ-query ∃X · ρ and substitution θ : X → Y, θ is a computed 〈〈Σ, Γ〉〉-an-
swer to ∃X · ρ wheneverΨν (θ) is a computed 〈〈Σ′, Γ′〉〉-answer to ν(∃X · ρ).

2 The morphism ν re�ects �nal goal-directed rules.

proof.

1⇒ 2. Suppose X is a conservative signature ofΣ-variables, ρ is an X-query,
and>′ is a trivialΨν (X)-query such that αν,X (ρ),Ψν (X)(Γ′) ∗

Σ′,Ψν (X)>
′. By

Proposition 3.3.30, it follows that ∃Ψν (X) · αν,X (ρ) −�∗
Γ′,1Ψν (X)

∃Ψν (X) · >′.
Since X is conservative and GS has weak model-amalgamation, we deduce
thatΨν (X) is also conservative, and thus that ∃Ψν (X) · >′ is trivial. There-
fore, by hypothesis, there exists a trivial X-query > such that ∃X · ρ −�∗Γ,1X

∃X · >. As a result, by Proposition 3.3.30, we obtain ρ,X(Γ) ∗
Σ,X>.
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2⇒ 1. Let us now consider ∃X · ρ to be a Σ-query and θ to be a substitution
for which Ψν (θ) is a computed answer to ν(∃X · ρ), meaning that there
exists a trivialΨν (Y)-query >′ such that ν(∃X · ρ) −�∗

Γ′,Ψν (θ) ∃Ψν (Y) · >′.
By Proposition 3.3.30,Ψν (θ)(αν,X (ρ)),Ψν (Y)(Γ′) ∗

Σ′,Ψν (Y)>
′, from which

we deduce, by the naturality of αν, that αν,Y (θ(ρ)),Ψν (Y)(Γ′) ∗
Σ′,Ψν (Y)>

′.
Moreover, since both Sign(ν) andΨν (Y) are conservative, it follows that Y
is conservative as well. This means that we can use the re�ection of �nal
goal-directed rules to derive the existence of a trivial Y-query > such that
θ(ρ),Y(Γ) ∗

Σ,Y>. By applying Proposition 3.3.30 one last time, we conclude
that θ is a computed 〈〈Σ, Γ〉〉-answer to ∃X · ρ. �

Note that, as opposed to solutions, in the case of computed answers we are
able to fully characterize their re�ection along morphisms of logic programs.

proposition 6.3.6. Let ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 be a simple morphism of logic
programs, ∃X · ρ a Σ-query, and θ′ a computed 〈〈Σ′, Γ′〉〉-answer to ν(∃X · ρ). If
Sign(ν) is conservative, and if ν lifts substitutions and re�ects �nal goal-directed
rules, there is a computed 〈〈Σ, Γ〉〉-answer θ to ∃X · ρ such thatΨν (θ) � θ′. �

Propositions 6.3.3 and 6.3.6 enable the computation of all solutions to
certain queries even in situations in which the given logic program is not
query-complete, or in which it constitutes the result of an extension of logic
programs that is not known to be conservative.

corollary 6.3.7. Consider a simple morphism ν : 〈〈Σ, Γ〉〉 → 〈〈Σ′, Γ′〉〉 between
programs 〈〈Σ, Γ〉〉 and 〈〈Σ′, Γ′〉〉, and a Σ-query ∃X · ρ that admits an identity in Γ.

· If ν is conservative and lifts substitutions, and if 〈〈Σ, Γ〉〉 is query-complete, every
〈〈Σ′, Γ′〉〉-solution to ν(∃X · ρ) is also a computed 〈〈Σ′, Γ′〉〉-answer to ν(∃X · ρ).

· If 〈〈Σ′, Γ′〉〉 is query-complete, Sign(ν) is conservative, and ν lifts substitutions
and re�ects �nal goal-directed rules, then every 〈〈Σ′, Γ′〉〉-solution to ν(∃X · ρ) is
the image under ν of a 〈〈Σ, Γ〉〉-solution to ∃X · ρ. �

The schematic representation in Figure 6.1 summarizes the various re-
lationships between solutions and computed answers in connection with
morphisms of logic programs. To this end, we consider ν to be a morphism
between logic programs 〈〈Σ, Γ〉〉 and 〈〈Σ′, Γ′〉〉, and ∃X · ρ to be a Σ-query.
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〈〈Σ′, Γ′〉〉-solution
completeness of resolution2

//

re�ection
of solutions5

��

computed
〈〈Σ′, Γ′〉〉-answersoundness of resolution1

oo

re�ection of
computed
answers7

��

〈〈Σ, Γ〉〉-solution
completeness of resolution3

//

preservation
of solutions4

OO

computed
〈〈Σ, Γ〉〉-answersoundness of resolution1

oo

preservation of
computed
answers6

OO

figure 6.1. Relationships between solutions and computed answers

1 by Theorem 3.3.24
2 by Theorem 3.3.35, based on the query-completeness of 〈〈Σ′, Γ′〉〉 and on the

assumption that the translated query ν(∃X · ρ) admits an identity in Γ′
3 by Theorem 3.3.35, based on the query-completeness of 〈〈Σ, Γ〉〉 and on the

assumption that the original query ∃X · ρ has an identity in Γ
4 by Proposition 6.2.1
5 by Proposition 6.2.5, based on the conservativeness of ν and on the lifting of

substitutions
6 by Proposition 6.3.3, based on the assumption that ν is simple
7 by Proposition 6.3.6, based on the assumptions that ν is simple, it lifts sub-

stitutions and re�ects �nal goal-directed rules, and its underlying signature
morphism is conservative



7
CONCLUS IONS AND FURTHER WORK

In this thesis, we have advanced an abstract axiomatic theory of logic pro-
gramming by identifying and examining in an institution-theoretic setting
two of the most basic principles of the paradigm: (a) the fact that each logic
program has a rigorous mathematical semantics given by a class of models
(and often by a ‘standard’ model of that class) that determines the speci�c set
of queries that can be positively answered, and (b) the existence of a sound
(and in some cases complete) goal-directed procedure for computing answer-
-substitutions that con�rm the validity of the positive answer received by a
query. In this way, the present study uni�es the relational and the equational
variants of logic programming, and we can expect it to integrate with ease
many other derived forms of the paradigm, such as constraint [see Dia00] or
behavioural [see GMK02] logic programming, which share many similarities
with the equational variant presented in Section 4.1.

The logic-programming semantics of services discussed in Section 5.2
provides us a signi�cantly di�erent form of logic programming – even
though the logic programs (known in this case as repositories) and their
corresponding operational semantics are de�ned similarly to their relational
counterparts. This is mainly due to the fact that the signatures of variables
(formalized as labelled hypergraphs) can no longer be treated as extensions
of signatures (which provide the structures to be used as labels for the hy-
pergraphs that underlie the signatures of variables). Consequently, service-
oriented substitutions cannot be captured by the institution-independent
concept of substitution considered in [Dia04], nor can they be expressed as
generalized forms of signature morphisms as in [GFO12; MKMip].
To be more precise, the theory of services that we have developed in this

thesis is grounded on a declarative semantics of service clauses de�ned over a
novel logical system of orchestration schemes. The structure of the sentences
and of the models of this logical system varies according to the orchestration
scheme under consideration. For example, when orchestrations are de�ned
as asynchronous relational networks over the institution ALTL, we obtain
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sentences as linear-temporal-logic sentences expressing properties observed
at given interaction points of a network, and models in the form of ground
orchestrations of Muller automata. Other logics (with corresponding model
theory) could have been used instead of the automata-based variant of linear
temporal logic, more speci�cally any institution such that (a) the category
of signatures is (�nitely) cocomplete; (b) there exist cofree models along
every signature morphism; (c) the category of models of every signature
has (�nite) products; and (d) model homomorphisms re�ect the satisfaction
of sentences. Moreover, the formalism used in de�ning orchestrations can
change bymeans of morphisms of orchestration schemes. We could consider,
for instance, an encoding of the hypergraphs of processes and connections
discussed in Section 5.1.2 into graph-based structures that are similar to those
presented in [FL13a]; or we could change their underlying institution by
adding new temporal modalities (along the lines of Example 5.2.2) or by con-
sidering other classes of automata, like the closed reduced Büchi automata
used in [AS87; FL13b]. This encourages us to further investigate aspects
related to the heterogeneous foundations of service-oriented computing
based on the proposed logical system of orchestration schemes.

In the more general context of abstract logic-programming languages, our
e�orts have focused mainly on the development of a simple yet su�ciently
rich theoretical framework to allow the investigation of properties related
to the satisfaction of quanti�ed sentences, the generalization of Herbrand’s
theorem and, moreover, the de�nition of a sound and (conditionally) com-
plete procedure for computing solutions to queries. This procedure relies
on exploring a potentially in�nite search space of queries, related through
substitutions computed by means of resolution, in search of queries that are
trivial, i.e. known to admit the simplest possible solutions. Its implement-
ation is not complete because we do not commit to any particular search
strategy, which could make use, for example, of most general uni�ers and
backtracking. However, it should be noted that under the present formal-
ization of the search space, any such strategy would be sound, and even
complete if it ensured that the reachability of all trivial queries is maintained.

Thus, apart from the obvious need to consider various other forms of logic
programming, a very interesting direction for future research is to further
formalize and examine the notion of strategy, especially in connection with
the modularization of logic programs. To that end, one would have to take
into account the fact that the sets of clauses associated with logic programs
are often structured, in the sense that certain clauses take precedence over
others in the computation of the next (derived) query to be solved. Moreover,
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given strategies couldmake use only ofmost general uni�ers, hence imposing
additional restrictions on computed substitutions. All these aspects could
be dealt with abstractly by narrowing the search space of queries. In that
case, the challenge lies in determining the basic conditions under which
properties such as the preservation of computed answers still hold.
Another open problem of practical importance is the development of an

appropriate concept of map of logic-programming languages to capture, for
example, the encoding of relational logic programming into its equational
correspondent based on the representation of relations as Boolean-valued
operations [see e.g. Dia08]. Even though from a denotational perspective
we obtain an immediate answer in the form of the notion of morphism of
generalized substitution systems (suggested in De�nition 3.2.6), from an
operational point of view the answer does not appear to be equally obvious
since di�erent logic-programming frameworks may be founded on highly
di�erent kinds of goal-directed rules.
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Ms carrier set of a sort s in a model M, 54
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SI generalized substitution system derived from I, 67
qf-FOL� generalized substitution system of the quanti�er-free frag-
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c[t] substitution of a term t in a context c, 67
FOL� �rst-order equational logic-programming framework, 68
HNK higher-order equational logic-programming framework, 68
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Spec speci�cation functor of an orchestration scheme, 73
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Prop property functor of an orchestration scheme, 73
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〈_〉, 〈_, _〉 constructor operators for the sort Con�g, 76
Var set of program variables, 76
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ι : [ρ, ρ′] program speci�cation, 78
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ALTL automata-based variant of the institution LTL, 80
Inf(%) in�nity set of a run %, 81
λ(i..) the su�x of a trace λ that starts at λ(i), 81
M− set of published messages of a port M, 84
M+ set of delivered messages of a port M, 84
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AM+ set of delivery actions of a port M, 84
AM set of actions de�ned by a port or by a channel, 84
Mx port associated with a point x, 84
A−M set of publication actions of a channel 〈M,Λ〉, 85
A+

M set of delivery actions of a channel 〈M,Λ〉, 85
µx partial attachment injection of a point x to a channel, 86
γe set of vertices incident with a hyperedge e, 88
θ

pt
x polarity-preserving injection given by a morphism of arns

θ and a point x of its domain network, 89
Nx sub-arn of N de�ned by a point x, 91
DN diagram of an arn N, 92
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ξ : DN ⇒ AN signature of an arn N, 92
Λx , ΛGx�ξx automaton observed at a point x of a network G, 92
Λ
Gx
e cofree expansion of Λe (the automaton associated with a

hyperedge e of an arn Gx) along ξe , 93
∀X · C ← H de�nite clause, 95
AFOL1

, atomic fragment of relational �rst-order logic, 95
OS category of orchestration schemes, 96
OrcScheme logical system of orchestration schemes, 96
〈∅, 1, ∅〉 initial room, 99
SS(I) substitution system over 〈∅, 1, ∅〉 generated by I, 100
Ins(O) institution generated by an orchestration scheme O, 100
P ←−

o
R (de�nite) service-oriented clause, 103

7−−−
o

Q service-oriented query, 104
SP1 v SP2 re�nement of program speci�cations, 105
Fstruc language of program modules over a framework F, 113
P1 ∪ P2 union of program modules P1 and P2, 113
translate translation operator (for program modules), 113
free free-semantics operator, 113
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action, temporal, 80
delivery action, 84
publication action, 84

answer to a query
computed answer, 47
correct answer, see solution

asynchronous relational network
(arn), 88

de�ned by a point, 91

category
arrow, 16
comma, 16
functor, 17
of functors, 17
indexed, 17
of institutions, 21
of objects under A, 16
of representable substitutions,
63

channel, 85
clause, 38
de�nite, 95
identity, 47
instance, see instance of a set of
clauses

local clause, 37
equational, 67
relational, 38
of a logic program, 39
service-oriented, de�nite, 103
correct, 103
provides-interface, 103

requires-interface, 103
comorphism of institutions, 20
connection, 86
attachment injection, 86

conservative
morphism of programs, 115
signature of variables, 40

context, 67
corridor, 21

dependency, of a point, 91
diagram, of an arn, 92

expansion of a model, 19

functor
codomain functor, 17
domain functor, 17
indexed, 17
left-composition, 16, 17
local-sentence functor, 37
model functor, 19
quanti�ed-sentence functor, 34
reduct functor, 19
sentence functor, 19

generalized substitution system,
32

goal-directed derivation, 46
goal-directed rule, 37
equational, see paramodulation
extended, 48
relational, 38

Grothendieck
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category, 17
construction, 17

homomorphism, seemorphism
of models

of algebras, 54
of �rst-order models, 25
of Henkin models, 55
of hypergraphs, 89
of Muller automata, 81

hyperedge, 87
communication, 88
computation, 88

hypergraph, labelled, 87
edge-bipartite, 88

instance of a set of clauses, 48
institution, 19
of equational logic, 53
of extended models, 99
of �rst-order logic, 23
of �rst-order substitutions, 27
of higher-order logic, 54
of linear temporal logic, 80
of preorder algebra, 74
of quanti�ed sentences, 36

institution representation, see
comorphism of institutions

lifting substitutions, 115
logic programming
framework, 37
language, 38
query-complete, see query-
completeness

logic programs
query-complete, see query-
completeness

structured, 113
as theory presentations, 39

message, 84, 85
delivered, 84
published, 84

model, 19
algebra, 54
amalgamation, seemodel-
amalgamation property

�rst-order, 24
ground model, 29
Henkin, 55
of a logic program, 39
Muller automaton, 80
observed at a point, 92
preorder algebra, 76
projective, 69
reachable, 41
of a signature of variables, 29
trace, 81
accepted, 81

model-amalgamation property,
35

model-amalgamation square, 35
morphism
of arns, 89
of �rst-order signatures, 24
of institutions, 20, 98
of logic programs, 39
simple, 117
of many-sorted signatures, 53
of models, 19
of signatures
representable, 60
of orchestration schemes, 97
of orchestrations, 73
of program expressions, 77
signature extension, 56
of signatures, 19
derived, 97
of structured programs, 113
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of substitution systems, 31
of theory presentations, 39

orchestration, 73
arn, 90
ground, 92
ground, 73
program expression, 77
ground, 78

orchestration scheme, 73

paramodulation, 68
plain map, see comorphism of

institutions
point, 88
interaction point, 84, 89
provides-point, 89
requires-point, 89

port, 84
preservation
of computed answers, 118
of queries, 114
of satisfaction, 42
of solutions, 114

process, 84

quanti�cation space, 58
adequate, 58
�rst-order, 58
higher-order, 58

query, 38
derived, see resolution
local query, 37
equational, 68
relational, 38
service-oriented, 104
requires-interface, 104
satis�able, 104
trivial, 46

query-completeness, 50

reduct of a model, 19
reduction
of �rst-order models, 25
of ground models, 31
of models, seemodel functor
of Muller automata, 81

re�ection
of computed answers, 119
of �nal (goal-directed) rules,
118

of satisfaction, 80
of solutions, 116

representation
of a signature morphism, 60

resolution
service-oriented, 106

resolution, 44
completeness, 50
soundness, 47

room, 21
run, on a trace, 81
successful, 81

satisfaction condition
for an institution, 19
for an institution comorphism,
21

satisfaction relation, 19
equational, 54
�rst-order, 25
higher-order, 55
linear temporal, 81
for preorder algebra, 76
of a signature of variables, 30

semantic consequence, 19
sentence, 19
basic, 70
equational atom, 53, 55, 76
existentially quanti�ed, 34
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�rst-order, 24
�rst-order equational, 53
ground sentence, 29
higher-order, 55
linear temporal, 80
local sentence, 37
preorder atom, 76
relational atom, 24
of a signature of variables, 29
uni�cation, 44
universally quanti�ed, 34

service
binding, 106
discovery, 105
property, 73
of an arn, 93
of a program expression, 78
speci�cation, 73
of an arn, 90
of a program expression, 78
re�nement of, 105

signature, 19
of an arn, 92
�rst-order, 23
of �rst-order variables, 25, 56
higher-order, 54
of higher-order variables, 57
linear temporal, 80
many-sorted, algebraic, 53
of variables, 29

signature functor
of a comorphism, 20
of a logic-programming lan-
guage, 39

solution to a query, 40
structuring operator, 112
subfunctor, 18
generalized, 18

substitution, 29

compatible, 66
computed, 44
�rst-order, 26, 56
higher-order, 57
institution-independent, 55
representable, 63
of a term in a context, 67

substitution system, 29
generalized, 32

term
�rst-order, 24
higher-order, 55
many-sorted, 53
over a set of variables, 25

translation
of ground sentences, 31
of local sentences, 37
of relational �rst-order sen-
tences, 24

of sentences, see sentence func-
tor

of signatures of variables, 31
of terms, 24

twisted relation, see room

uni�cation, see sentence uni�ca-
tion

service-oriented, 106
uni�er, 44
instance, 44
most general, 44

variable
�rst-order, 24, 56
higher-order, 57
requires-point, 89
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