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Abstract. We study the group QV , the self-maps of the infinite 2-edge
coloured binary tree which preserve the edge and colour relations at cofinitely

many locations. We introduce related groups QF , QT , Q̃T , and Q̃V , prove

that QF , Q̃T , and Q̃V are of type F∞, and calculate finite presentations for
them. We calculate the normal subgroup structure of all 5 groups, the Bieri–

Neumann–Strebel–Renz invariants of QF , and discuss the relationship of all 5

groups with other generalisations of Thompson’s groups.

1. Introduction

R. Thompson’s groups F , T , and V were originally used to, among other things,
construct finitely presented groups with unsolvable word problem [Tho80, MT73].
Brown and Geoghegan proved F is FP∞ [BG84], giving the first example of a
torsion-free FP∞ group with infinite cohomological dimension, and later Brown
used an important new geometric technique to prove that F , T , and V are all of
type F∞ [Bro87]. For more background on Thompson’s groups, see [CFP96].

Recently many variations on Thompson’s groups have been studied, and using
techniques similar to Brown’s, many of these have been proven to be of type F∞.
These include Brin’s groups sV [FMWZ13], generalisations of these [MPMN14],
and the braided Thompson’s groups BV and BF [BFS+12] which were originally
defined by Brin [Bri07].

Let T2,c denote the infinite binary 2-edge-coloured tree and let QV be the group
of all bijections on the vertices of T2,c which respect the edge and colour relations
except for possibly at finitely many locations. The group QV was studied by
Lehnert [Leh08] who proved that QV is co-context-free, i.e. the co-word problem in
QV is context-free. He also gave an embedding of V into QV . More recently, Bleak,
Matucci, and Neunhöffer gave an embedding of QV into V [BMN13]. The group
QV was called QAut(T2,c) by Bleak, Matucci, and Neunhöffer, and was called both
QAut(T2,c) and G by Lehnert.

We write QV instead of QAut(T2,c) in order to follow the convention of naming
varations of Thompson’s groups using a prefix (e.g. BV for the braided Thompson’s
groups [BS08] and nV for the Brin–Thompson groups [Bri04]). The Q may be
thought of as standing for “quasi-automorphism”.

There is a natural surjection π : QV −→ V (Lemma 2.1), and we denote by QF
the preimage π−1(F ) and by QT the preimage π−1(T ). The group QF was studied
by Lehnert, where it is calledG0 [Leh08, Definition 2.9]. The surjection π : QV → V
is not split (Proposition 2.9), although it does split when restricted to QF (Lemma
2.5). This situation is similar to that of the braided Thompson groups—BF splits
as an extension of F by the infinite pure braid group P∞, whereas BV is a non-split
extension of V by P∞ [Zar14, §1.2]. There is no braided analogue of T .
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The following theorem appeared in Lehnert’s thesis, [Leh08, Satz 2.14, 2.30],
although his proof that QF is of type FP∞ uses Brown’s criterion, a different
approach from that used here.

Theorems 3.6 and 4.10. QF is F∞ and has presentation

QF =

〈
σ, α, β

∣∣∣∣∣∣
σ2, [σ, σα

2

], (σσα)3, σσασσαβ
−1α−1

,
[αβ−1, α−1βα], [αβ−1, α−2βα2],
[ν, σ] for all ν ∈ X.

〉
where

X =

{
β, βα, α3β−1α−2, α2β2α−1β−1αβ−1α−2

αβ2α−1β−1αβ−1α−1, αβα−1β2α−1β−1αβ−1αβ−1α−1

}
.

We write T2,c ∪ {ζ} for the disjoint union of T2,c and a single vertex labelled

ζ. We write Q̃V for the group of all bijections on the vertices of T2,c ∪ {ζ} which
respect the edge and colour relations except for possibly at finitely many locations.
Again, there is a surjection π : Q̃V → V and we write Q̃T for the preimage π−1(T ).

The groups Q̃V and Q̃T are easier to study than QV and QT because π : Q̃V → V
splits (Lemma 2.3).

In Section 3 we find finite presentations for Q̃V and Q̃T and in Section 4 we
show Q̃V , Q̃T and QF are of type F∞.

Section 5 contains a complete classification of the normal subgroups of QF , QT ,
QV , Q̃T , and Q̃V . We find that the structure is very similar to that of F , T , and
V .
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· · · · · ·
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· · · · · ·
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· · · · · ·
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· · · · · ·

Figure 1. T2,c, the rooted 2-edge-coloured infinite binary tree.

We identify the vertices of T2,c with the set {0, 1}∗ of finite length words on the
alphabet {0, 1}, denoting the empty word by ε (see Figure 1), and hence view QV
as acting on {0, 1}∗. Let Sym({0, 1}∗) denote the finite support permutation group
on {0, 1}∗ and Alt({0, 1}∗) the finite support alternating group on {0, 1}∗. Both
these groups are normal in QV , QT , and QF . Let Z = {0, 1}∗ ∪{ζ}, so that Z can
be identified with the set of vertices of T2,c∪{ζ}, then Sym(Z) and Alt(Z) have the

obvious definition and are normal in Q̃V and Q̃T . Recall that F/[F, F ] ∼= Z ⊕ Z,
but since T and V are simple and non-abelian, [T, T ] ∼= T and [V, V ] ∼= V [CFP96,
Theorems 4.1, 5.8, 6.9].
Theorem 5.1 (Normal subgroup structure).

(1) A non-trivial normal subgroup of QF is either Alt({0, 1}∗), Sym({0, 1}∗),
or contains

[QF,QF ] = Alt({0, 1}∗)o [F, F ].
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(2) A proper non-trivial normal subgroup of Q̃T is either Alt(Z), Sym(Z), or

[Q̃T, Q̃T ] = Alt(Z)o T.

(3) A proper non-trivial normal subgroup of Q̃V is either Alt(Z), Sym(Z), or

[Q̃V, Q̃V ] = Alt(Z)o V.

(4) A proper non-trivial normal subgroup of QT is one of either Alt({0, 1}∗),
Sym({0, 1}∗), or

[QT,QT ] = (Alt(Z)o T ) ∩QT.
Moreover, (Alt(Z)o T ) ∩QT is an extension of T by Sym({0, 1}∗).

(5) A proper non-trivial normal subgroup of QV is one of either Alt({0, 1}∗),
Sym({0, 1}∗), or

[QV,QV ] = (Alt(Z)o V ) ∩QV.
Moreover, (Alt(Z)o V ) ∩QV is an extension of V by Sym({0, 1}∗).

In Section 6 we calculate the Bieri–Neumann–Strebel–Renz invariants, or Sigma
invariants, of QF (they are uninteresting for the groups QT , QV , Q̃T , and Q̃V
since they all have finite abelianisation). They have previously been computed
for F by Bieri, Geoghegan, and Kochloukova [BGK10], and for BF by Zaremsky
[Zar14, §3]. We also show that QF is an ascending HNN extension

QF ∼= QF (1)∗θ,t,
where QF ∼= QF (1).

We find that Σi(QF ) ∼= Σi(F ) for all i. More precisely, we define π∗χ = χ ◦ π
for any character χ of F and prove that π∗ induces an isomorphism between the
character spheres S(F ) and S(QF ).

Let χ0 : F → R and χ1 : F → R be the two characters given by χ0(A) = −1,
χ0(B) = 1, and χ0(A) = χ1(B) = 1, where A and B are the standard generators
of F .

Theorem 6.3 (The Bieri–Neumann–Strebel–Renz invariants of QF ). The charac-
ter sphere S(QF ) is isomorphic to S1 and for any ring R,

(1) Σ1(QF,R) = Σ1(QF ) = S(QF ) \ {[π∗χ0], [π∗χ1]}.
(2) Σi(QF,R) = Σi(QF ) = S(QF ) \ {[aπ∗χ0 + bπ∗χ1] : a, b ≥ 0} for all i ≥ 2.

In Section 7 we study the relationship of the groups studied in this note to previ-
ously studied families of groups which generalise Thompson’s groups and are known
to be of type F∞. We show that the groups studied here cannot be proved to be of
type F∞ using Farley–Hughes’ study of Groups of Local Similarities [FH12, The-
orem 1.1], or Mart́ınez-Pérez–Nucinkis’ study of Automorphism Groups of Cantor
Algebras [MPN13]. We also show that one cannot use Thumann’s study of Operad
groups [Thu16] to determine whether QV is of type F∞ .

Remark 1.1 (Notation). A tree diagram representing an element of Thompson’s
group V is a triple (L,R, f) where L and R are rooted subtrees of the infinite
binary rooted tree with equal numbers of leaves, and f is a bijection from the
leaves of L to the leaves of R. To represent an element of Thompson’s group F
we require only the first two elements of the tuple—the bijection is understood to
preserve the left-to-right ordering of the leaves. For further background on tree
diagrams see [CFP96, §2].
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2. Introducing QF , QT , QV , Q̃T , and Q̃V

2.1. The group QV . As mentioned in the introduction the group QV is the group
of all bijections on the vertices of T2,c, the infinite binary 2-edge-coloured tree,
which respect the edge and colour relations except for possibly at finitely many
locations. Given some τ ∈ QV and a ∈ {0, 1}∗, let sa be the maximal suffix such
that a = xa · sa and τa = ya · sa for some xa, ya ∈ {0, 1}∗ (here the operation · is
concatenation of words). Bleak, Mattuci and Neunhöffer prove that the set

{(xa, ya) : a ∈ {0, 1}∗}

is finite [BMN13, Claim 8], and hence that the subset

Mτ = {(x, y) : There are infinitely many a ∈ {0, 1}∗ with (xa, ya) = (x, y)}

is finite also. Moreover, they show that the sets

Lτ = {x : (x, y) ∈Mτ}

and

Rτ = {y : (x, y) ∈Mτ}
both form finite complete anti-chains for the poset {0, 1}∗, where x ≤ x′ if x is a
subword of x′. Write bτ for the bijection

bτ : Lτ −→ Rτ .

Note that restricting τ to Lτ does not necessarily give the bijection bτ . This is
because if σ is any finite permutation of {0, 1}∗ then bσ◦τ = bτ .

Let L and R be the binary trees with leaves Lτ and Rτ respectively, then
(L,R, bτ ) is a tree-pair diagram for an element of V which we denote by vτ .

In fact, vτ can be viewed as the induced action on the space of ends of the
simplicial tree T2,c, the set whose elements are enumerated by the right-infinite
words {0, 1}N. With its natural topology the space of ends is homeomorphic to
a Cantor set with vτ acting as a homeomorphism. Explicitly, the action of vτ on
{0, 1}∗ is

vτ : {0, 1}N −→ {0, 1}N

x · s 7−→ y · s for (x, y) in Mτ .

This is well-defined since Lτ is a complete anti-chain in the poset {0, 1}∗.

Lemma 2.1. The map π : QV −→ V sending τ 7→ vτ is a group homomorphism.

Proof. For any topological space X let Ends(X) denote the space of ends of X.
If τ ∈ QV then τ may not be a simplicial automorphism of T2,c, but there will

always exist a rooted subtree L ⊆ T2,c such that

τ |T2,c\L : T2,c \ L −→ T2,c \ τ(L)

is a simplicial map. Thus τ determines a map

Ends(τ) : Ends(T2,c) −→ Ends(T2,c).

This is well-defined—if we choose to remove a different rooted subtree L′ instead
then, since removing a compact set doesn’t affect the ends of a space, we see that

T2,c \ (L ∪ L′) −→ T2,c \ τ(L ∪ L′)

and hence

T2,c \ (L′) −→ T2,c \ τ(L′)

induce the same map on Ends(T2,c).
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If σ is some other element of QV then choosing a large enough finite rooted
subtree L, both maps in the composition

T2,c \ L
τ7−→ T2,c \ τ(L)

σ7−→ T2,c \ σ ◦ τ(L)

are simplicial maps. Now use that Ends(−) is a functor. �

The kernel of π are those permutations of {0, 1}∗ which are the identity on all
but finitely many points, the finite support permutation group Sym({0, 1}∗). Thus
there is a group extension

1 −→ Sym({0, 1}∗) −→ QV −→ V −→ 1.

This extension does not split, see Proposition 2.9.

2.2. The group Q̃V . Recall that T2,c ∪ {ζ} denotes the 2-edge-coloured tree T2,c

together with an isolated vertex ζ, so the vertex set of T2,c∪{ζ} is Z = {0, 1}∗∪{ζ}.
There is a map π from Q̃V to V defined as previously, whose kernel is Sym(Z).

Let ≤lex be the total order on {0, 1}∗ defined by following rule: Given a word
x, y ∈ {0, 1} let x̃, ỹ ∈ {0, 1

2 , 1}
N be the words obtained by concatenating x and

y respectively with the infinite word containing only the symbol 1
2 , now we say

that x ≤lex y if and only if x̃ is smaller that ỹ in the lexicographical order where
0 � 1

2 � 1. For example, 00 ≤lex 0 but 01 ≥lex 0. We extend the ≤lex order to Z
so that ζ is strictly larger than all elements of {0, 1}∗.

Remark 2.2. If T is any finite binary tree, there is an order preserving bijection

bT : nodes(T ) ∪ {ζ} −→ leaves(T ).

Moreover, adding a caret to T at any leaf doesn’t affect the bijection on the re-
maining leaves.

Lemma 2.3. The short exact sequence

1 −→ Sym(Z) −→ Q̃V
π−→ V −→ 1

is split.

Using the computer algebra package GAP Bleak, Matucci, and Neunhöffer provide
the same splitting [BMN13, Lemma 15].

Proof. Let (L,R, f) be a tree diagram for an element v of V , we define the element

ι(v) of Q̃V by

ι(v) : {0, 1}∗ ∪ {ζ} −→ {0, 1}∗ ∪ {ζ}

x 7−→
{
b−1
R ◦ f ◦ bL(x) if x ∈ nodes(L) ∪ {ζ},
f(x) if x ∈ leaves(L),

and extend ι(v) onto all {0, 1}∗ by having ι(v) preserve all edge and colour relations
below leaves(L).

If (L′, R′, f ′) is an expansion of (L,R, f) then (L′, R′, f ′) determines the same
element ι(v) (use Remark 2.2). Since any two tree diagrams representing the same
element of V have a common expansion this proves ι(v) is independent of choice of
tree diagram.

We claim that ι : v 7→ ι(v) is a group homomorphism. Let v and w be two
elements of V represented by tree diagrams (L,R, f) and (R,S, g) (by performing
expansions we may assume any two elements of V are represented by tree pair
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diagrams in this form). Thus the composition of the two elements of V has tree
pair diagram (L, S, g ◦ f). Now one verifies that for x ∈ nodes(L) ∪ {ζ},

ι(v) ◦ ι(w)(x) = b−1
S ◦ g ◦ bR ◦ b

−1
R ◦ f ◦ bL(x)

= b−1
S ◦ g ◦ f ◦ bL(x)

= ι(vw)(x).

Similarly, for x ∈ leaves(L), ι(v) ◦ ι(w) and ι(vw) agree. �

Remark 2.4. For an explicit description of this splitting for the generators of V ,
let A, B, C and D denote the generators of V as denoted by A, B, C and π0 in
[CFP96, Figures 16 and 17]. Then ι(A), ι(B), ι(C), and ι(D) are shown in Figures
2–5.

Hereafter we define α = ι(A), β = ι(B), γ = ι(C), and δ = ι(D).

ε

0 1

10 11

ζ 1

ε

0 10

11

ζ

Figure 2. Element α = ι(A).

ε

0 1

10 11

110 111

ζ ε

0 11

1

10 110

111

ζ

Figure 3. Element β = ι(B).

ε

0 1

10 11

ζ 1

10 ζ

11 0

ε

Figure 4. Element γ = ι(C).

2.3. The group QF . We define the group QF to be the preimage π−1(F ) of
Thompson’s group F under π : QV → V .

Lemma 2.5. The short exact sequence

1 −→ Sym({0, 1}∗) −→ QF
π−→ F −→ 1

is split.
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ε

0 1

10 11

ζ 1

10 ε

0 11

ζ

Figure 5. Element δ = ι(D).

Proof. Restrict the splitting map ι defined in Lemma 2.3 to QF . Since elements
(L,R) of F always map the right-hand leaf of L to the right-hand leaf of R, we see
that ι(f) fixes ζ for all f ∈ F . �

Remark 2.6. If (L,R) is a tree-diagram for an element f of F , where L has nodes
(x1, . . . , xn) and R has nodes (y1, . . . , yn) then, assuming xi ≤lex xi+1 and yi ≤lex

yi+1 for all 1 ≤ i ≤ n− 1, ι(f) maps xi 7→ yi. The action on all other elements of
{0, 1}∗ is determined by L and R—if li is the ith leaf of L and ri is the ith leaf of
R then ι(f) takes the full subtree with root li to the full subtree with root ri.

In particular, for all f ∈ F , the image ι(f) preserves the ≤lex order on {0, 1}∗.

2.4. The group QT . We define the group QT to be the preimage π−1(T ) of
Thompson’s group T under π : QV −→ V .

Restricting the map π to QT gives a short exact sequence

1 −→ Sym({0, 1}∗) −→ QT
π−→ T −→ 1.

In [Leh08, Lemma 2.10], Lehnert proves that the splitting ι : F → QF does not
extend to an embedding of T into QV . Examining the proof, he in fact shows the
stronger statement below. Recall that A and B denote the standard generators of
F .

Lemma 2.7. [Leh08, Lemma 2.10] Let j be an embedding of F into QV such that
j(A) = ι(A), then j does not extend to an embedding of T into QV .

Lemma 2.8. Let f be an element of F and let j : F → QF be a splitting of
π : QF → F , then the actions of ι(f) and j(f) on {0, 1}∗ agree on cofinitely many
points.

Proof. Recall from Section 2.1 that given τ ∈ QV , for all but finitely many a ∈
{0, 1}∗ we have a = xa · sa for some xa ∈ Lτ and τ(a) = bτ (xa) · sa. Since the
tree pair diagram for π(τ) is (L,R, bτ ), bτ is determined completely by π(τ). We
conclude that ι(f) and j(f) agree on all but finitely many elements of {0, 1}∗, since
by assumption π ◦ ι(f) = π ◦ j(f). �

Proposition 2.9. The group extension

1 −→ Sym({0, 1}∗) −→ QT
π−→ T −→ 1.

is not split.

Proof. Let j : T → QT be a splitting of π, by Lemma 2.8 we have that j(A) and
ι(A) agree on cofinitely many points. Hence, after possibly extending via adding
carets, we can find a tree-pair diagram (L,R, f) and positive integer k such that in
L every leaf under 0 has length exactly k, and every leaf under 1 has length exactly
k+ 1 and similarly in R every leaf under 0 has length exactly k+ 1, and every leaf
under 1 has length exactly k.

Following the argument of the proof of Lemma 2.7, we see that this is incompat-
ible with every possible choice of j(C). �



8 BRITA E.A. NUCINKIS AND SIMON ST. JOHN-GREEN

3. Finite presentations

In this section we compute finite presentations for the groups QF , Q̃T , and Q̃V .
We use a method for finding a finite presentation for a semi-direct product N oQ,
whereby we find a presentation for N such that Q acts by permutations and with
finitely many orbits on both the generating set and the relating set. Then as long
as Q is finitely presented, and the Q-stabilisers of the generating set are finitely
generated, one can write down a finite presentation for N oQ [MPMN14, Lemma
A.1]. This technique predates the referenced paper of Mart́ınez-Pérez, Matucci,
and Nucinkis, but we are not aware of anywhere else where the proof is given.

We apply this method to QF , Q̃T and Q̃V using their decompositions as semi-
direct products with kernel an infinite symmetric group and quotient F , T , and V
respectively.

Let N = 〈SN |RN 〉 and Q = 〈SQ|RQ〉 be groups such that Q acts on SN by
permutations and the action induces an action on RN with Q(RN ) = RN . Let S0

be a set of representatives for the Q-orbits in SN and R0 a set of representatives
for the Q-orbits in RN .

For any set X, we write X∗ for the finite length words of X and we write q−1sq
to denote the action of q ∈ SQ on s ∈ S0. Let r ∈ R0, then r is a word in S∗N and
hence can be expressed as a word in (S0 ∪SQ)∗ using the conjugation notation just

defined. Denote the set of these words, one for each r ∈ R0, by R̂0.

Lemma 3.1 ([MPMN14, Lemma A.1]). With the notation above,

N oQ ∼= 〈S0, SQ|R̂0, RQ, [x, s] for all s ∈ S0 and all x ∈ Xs〉,
where Xs is a generating set for StabQ(s) and the semi-direct product is built using
the given action of Q on N .

3.1. A finite presentation for QF .

Lemma 3.2. F acts transitively on

Σn =

{
(x1, . . . , xn) ∈

n∏
1

{0, 1}∗ : x1 �lex x2 �lex · · · �lex xn

}
for all n ∈ N, where the action is via the splitting ι : F −→ QF , the inclusion
QF −→ QV , and the usual action of QV on {0, 1}∗.

Proof. For i ≥ 1, let 0i be the following element of {0, 1}∗

0i =

i-times,︷ ︸︸ ︷
0 · · · 0,

and let 00 = ε. For 1 ≤ i ≤ n, let yi = 0n−i.
For any (x1, . . . , xn) ∈ Σn, we build an element of γ of F such that

ι(γ) : (y1, y2, . . . , yn) 7→ (x1, . . . , xn)

Let R be the smallest rooted subtree of T2,c containing all the xi as nodes and let
L0 be the smallest subtree of T2,c containing all the yi as nodes.

For any two nodes z1 �lex z2 in a finite rooted subtree T of T2,c we define

dT (z1, z2) = |{z ∈ nodes(T ) : z1 �lex z �lex z2}|

dT (z1, ∗) = |{z ∈ nodes(T ) : z1 �lex z}|
dT (∗, z2) = |{z ∈ nodes(T ) : z �lex z2}|.

Thus dL0
(∗, y0) = dL0

(yi, yi+1) = dL0
(yn, ∗) = 0 for all 0 ≤ i ≤ n− 1.

Expand L0 to L by adding carets until dL(yi, yi+1) = dR(xi, xi+1) for all i. This
is possible because adding a caret at a leaf between yi and yi+1 increases dL(yi, yi+1)
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by 1. Now use the description of Remark 2.6 to check that the element (L,R) maps
(y1, . . . , yn) onto (x1, . . . , xn). �

Lemma 3.3.

(1) The F -stabiliser of any element in Σn is isomorphic to the group
∏n+1

1 F .
(2) The F -stabiliser of (0, ε) ∈ Σ2 has generating set

StabΣ2
((0, ε)) =

〈
β, βα, α3β−1α−2, α2β2α−1β−1αβ−1α−2

αβ2α−1β−1αβ−1α−1, αβα−1β2α−1β−1αβ−1αβ−1α−1

〉
.

We use the method in [Bel04, §1] to translate from tree diagrams to words in
the generators α and β.

Proof. Recall that yi = 0n−i for 0 ≤ i ≤ n− 1 and yn = ε. For any x ∈ {0, 1}∗, let
x · {0, 1}∗ denote all finite words beginning with x. We calculate the stabiliser of
(y1, . . . , yn) ∈ Σn, since F acts transitively on Σn this determines the stabilisers of
all elements of Σn up to conjugacy.

We claim the stabiliser of (y1, . . . , yn) is exactly those elements of F for which
ι(F ) preserves setwise y0 · {0, 1}∗ and yi · 1 · {0, 1}∗ for all 1 ≤ i ≤ n.

If f ∈ F and ι(f) maps some x ∈ y0 · {0, 1}∗ to an element in yi · 1 · {0, 1}∗
for some 1 ≤ i ≤ n then, since ι(f) preserves the �lex ordering, it is impossible
for ι(f) to map y1 to y1 as required. Similarly, again because ι(f) respects the
�lex ordering, any ι(f) setwise preserving these sets will necessarily map y1 to y1.
Repeating this argument for elements in yj · 1 · {0, 1}∗ completes the proof of (1).

Rephrasing the above, the stabiliser of (0, ε) is exactly those elements of F which
preserve setwise the setwise the subtrees under 00, 01, and 1. Those elements
preserving, for example the subtree under 00, and acting trivially elsewhere give
a copy of F on that interval. Since we have three such intervals, the stabiliser is
F × F × F .

Generators of the elements setwise preserving the subtree under 1 and acting
trivially elsewhere are {β, βα} where α = ι(A) and β = ι(B). Generators of the
elements setwise preserving the subtree under 00 and acting trivially elsewhere are
α3β−1α−2 and α2β2α−1β−1αβ−1α−2. Generators of the elements setwise preserv-
ing the subtree under 01 and acting trivially elsewhere are αβ2α−1β−1αβ−1α−1

and αβα−1β2α−1β−1αβ−1αβ−1α−1. �

Lemma 3.4. The finite support symmetric group on Sym({0, 1}∗) has presentation

Sym({0, 1}∗) =

〈
σx,y

∀x, y ∈ {0, 1}∗
x �lex y

∣∣∣∣∣∣∣∣
σ2
x,y ∀(x, y) ∈ Σ2

[σx,y, σz,w] ∀(x, y, z, w) ∈ Σ4

(σx,yσy,z)
3 ∀(x, y, z) ∈ Σ3

σx,yσy,zσx,yσx,z ∀(x, y, z) ∈ Σ3

〉

where σx,y denotes the transposition of x and y.

Proof. Let x1, . . . , xn be some collection of elements of {0, 1}∗ with xi �lex xi+1

for all 1 ≤ i ≤ n− 1. The finite symmetric group on {x1, . . . , xn} has a well-known
presentation

Sym({x1, . . . , xn}) =

〈
σx1,x2

, . . . , σxn−1,xn

∣∣∣∣ σ2
xi,xi+1

, (σxi,xi+1σxi+1,xi+2)3,

[σxi,xi+1 , σxj ,xj+1 ] ∀ |i− j| ≥ 2,

〉
where σxi,xj denotes the transposition of xi and xj . We expand this presentation
using Tietze transformations. First add new generators σxi,xi+2

for each suitable
1 ≤ i ≤ n− 2, each such generator can be added with the relator

σxi,xi+1σxi+1,xi+2σxi,xi+1σxi,xi+2
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Next add new generators σxi,xi+3
, each can be added with the relator

σxi,xi+2
σxi+2,xi+3

σxi,xi+2
σxi,xi+3

and so on adding σxi,xi+j for all i and increasing j, until all the required generators
are present. Finally we can add all relators

σxi,xjσxj ,xkσxi,xjσxi,xk∀i � j � k

which are not already present. We’ve obtained the presentation

Sym({x1, . . . , xn}) =

〈
σxi,xj ∀ i � j

∣∣∣∣∣∣∣∣
σ2
xi,xj ∀ i � j,

(σxi,xjσxj ,xk)3 ∀ i � j � k,
[σxi,xj , σxk,xl ] ∀ i � j � k � l
σxi,xjσxj ,xkσxi,xjσxi,xk ∀ i � j � k.

〉

It is now easy to check that this can be extended to the entire finite support
symmetric group Sym({0, 1}∗). �

Proposition 3.5 ([CFP96, §3]). Thompson’s group F has presentation

F = 〈α, β | [αβ−1, α−1βα], [αβ−1, α−2βα2]〉.

Theorem 3.6. QF has presentation

QF =

〈
σ, α, β

∣∣∣∣∣∣
σ2, [σ, σα

2

], (σσα)3, σσασσαβ
−1α−1

,
[αβ−1, α−1βα], [αβ−1, α−2βα2],
[ν, σ] for all ν ∈ X.

〉
where

X =

{
β, βα, α3β−1α−2, α2β2α−1β−1αβ−1α−2

αβ2α−1β−1αβ−1α−1, αβα−1β2α−1β−1αβ−1αβ−1α−1

}
and σ = σ0,ε.

Proof. We apply Lemma 3.1 to the description of QF as the semi-direct product
Sym({0, 1}∗) o F (Lemma 2.5), using the presentation of Sym({0, 1}∗) given in
Lemma 3.4, and the presentation of F given in Proposition 3.5.

Let f ∈ F , then necessarily f(x) �lex f(y) (see Remark 2.6) and f−1σx,yf =
σf(x),f(y). Hence by Lemma 3.2, F acts transitively on the generating set of
Sym({0, 1}∗) and acts with three F -orbits on the relating set.

Let σ = σ0,ε, this is a representative of the generating set. We take the repre-
sentatives of the relating set,

{σ2, [σ, σ1,11], (σσε,1)3, σσε,1σσ0,1}.
Let α and β be the generators of F from Proposition 3.5. We can express the
transpositions appearing in the relating set as

σ1,11 = σα
2

σε,1 = σα

σ0,1 = σαβ
−1α−1

Since the stabiliser of σx,y for some x �lex y is equal to the stabiliser of the pair
(x, y) in Σ2, Lemma 3.3 gives that the stabiliser of the F -action on the generators
of Sym({0, 1}∗) is a copy of F × F × F , generated by the set

X =

{
β, βα, α3β−1α−2, α2β2α−1β−1αβ−1α−2

αβ2α−1β−1αβ−1α−1, αβα−1β2α−1β−1αβ−1αβ−1α−1

}
.

In summary, with the notation of Lemma 3.1, Xσ = X is as above, S0 = {σ},
SQ = {α, β},

R̂0 = {σ2, [σ, σα
2

], (σσα)3, σσασσαβ
−1α−1

},
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and

RQ = {[αβ−1, α−1βα], [αβ−1, α−2βα2]}.
�

Corollary 3.7.

QF/[QF,QF ] ∼= Z⊕ Z⊕ C2

Proof. Abelianising the relators we find that the only surviving relation is σ2. �

3.2. A finite presentation for Q̃T . Recall that Q̃T denotes the preimage of T
under π : Q̃V −→ V . In this section we compute a finite presentation for Q̃T .

Let [−,−,−]lex be the cyclic order induced by the ≤lex ordering, so [x, y, z]lex if
and only if x ≤lex y ≤lex z or y ≤lex z ≤lex x or z ≤lex x ≤lex y.

The next lemma is an analogue of Lemma 3.2.

Lemma 3.8. Let Z = {0, 1}∗ ∪ {ζ}. T acts transitively on

Λn =

{
(x1, . . . , xn) ∈

n∏
1

Z : [x1, x2, . . . , xn]lex, xi 6= xj for all i 6= j

}

for all n ∈ N, where the action is via the splitting ι : T −→ Q̃T , the inclusion
Q̃T −→ Q̃V , and the usual action of Q̃V on Z.

Proof. As in Lemma 3.2, let yi = 0n−i for all 1 ≤ i ≤ n. We build an element γ of
T such that ι(γ) maps an arbitrary element (x1, . . . , xn) ∈ Λn onto (y1, . . . , yn).

Let L be the smallest rooted subtree of T2,c such that L contains all the xi as
nodes. Let f be the cyclic permutation of the leaves of L such that the element t
of T represented by (L,L, f) satisfies ι(t)xi ≤ ι(t)xi+1 for all i.

If ι(t)xn 6= ζ then, via Lemma 3.2, there exists f ∈ F such that ι(ft)xi = yi for
all i.

Assume ι(t)xn = ζ. Let L′ be formed from L by adding a caret on the left-hand-
most leaf, and let f ′ be the cyclic permutation of the leaves of L′ which sends each
leaf to it’s immediate left-hand neighbour. Let t′ be the element of T represented
by (L′, L′, f ′), then ι(t′t)xi �lex ι(t

′t)xi+1, and ι(t′t)xn 6= ζ. Once again we may
use Lemma 3.2. �

Lemma 3.9.

(1) The T -stabiliser of any element in Λn is isomorphic to
∏n

1 F .
(2) The T -stabiliser of (ε, ζ) ∈ Λ2 has generating set

Stab((ε, ζ)) = 〈β, βα, α2β−1α−1, αβ2α−1β−1αβ−1α−1〉.

Proof. The T -stabiliser of (y1, . . . , yn−1, ζ) is exactly the F -stabiliser of (y1, . . . , yn−1),
which is isomorphic to

∏n
1 F by Lemma 3.3, this proves part (1).

Finally, the stabiliser of the subtree with root 1 is 〈β, βα〉 and that of the subtree
with root 0 is 〈α2β−1α−1, αβ2α−1β−1αβ−1α−1〉. �

The proof of the next lemma is identical to that of Lemma 3.4.

Lemma 3.10. The finite support symmetric group on Sym(Z) has presentation

Sym(Z) =

〈
σx,y ∀x, y ∈ Λ2

∣∣∣∣∣∣∣∣
σ2
x,y ∀(x, y) ∈ Λ2

[σx,y, σz,w] ∀(x, y, z, w) ∈ Λ4

(σx,yσy,w)3 ∀(x, y, z) ∈ Λ3

σx,yσy,zσx,yσx,z ∀(x, y, z) ∈ Λ3

〉
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Proposition 3.11 ([CFP96, §5]). Thompson’s group T has presentation

T =

〈
α, β, γ

∣∣∣∣∣∣
[αβ−1, α−1βα], [αβ−1, α−2βα2],
γ−1βα−1γβ, α−1β−1αβ−1γ−1αβα−2γβ2,
α−1γ−1(α−1γβ)2, γ3,

〉

Theorem 3.12. Q̃T has presentation

Q̃T =

〈
σ, α, β, γ

∣∣∣∣∣∣∣∣∣∣
σ2, [σ, σα

2

], (σσα)3, σσασσαβ
−1α−1

,
[αβ−1, α−1βα], [αβ−1, α−2βα2],
γ−1βα−1γβ, α−1β−1αβ−1γ−1αβα−2γβ2,
α−1γ−1(α−1γβ)2, γ3,
[ν, σ] for all ν ∈ X.

〉

where

X = {β, βα, α2β−1α−1, αβ2α−1β−1αβ−1α−1}
and σ = σ0,ε.

Proof. The proof is similar to that of Theorem 3.6, except using Lemma 3.10 and
Proposition 3.11. �

Question 3.13. Is QT finitely presented?

Corollary 3.14.

Q̃T/[Q̃T, Q̃T ] ∼= C2

Proof. Abelianising the relators kills the generators α, β, and γ, leaving only the
generator σ and the relation σ2. �

In Corollary 5.3 we show that the abelianisation of QT is also isomorphic to the
cyclic group of order 2.

3.3. A finite presentation for Q̃V . In this section we compute a finite presen-
tation for Q̃V . Recall that Z = {0, 1}∗ ∪ {ζ}. We also define

βn = α−(n−1)βαn−1 for all n ≥ 1,

γn = α−(n−1)γβn−1 for all n ≥ 1,

δ1 = γ−1
2 δγ2,

δn = α−(n−1)δ1α
n−1for all n ≥ 2.

These definitions will allow us to express the presentation of Q̃V in a simpler form.
The same definitions appear in [CFP96, p.13,p.16], where they are called Xn, Cn,
and πn respectively.

Lemma 3.15. V acts transitively on

∆n =

{
(x1, . . . , xn) ∈

n∏
1

Z : xi 6= xj for all i 6= j

}
,

for all n ∈ N, where the action is via the splitting ι : V −→ Q̃V and the usual
action of Q̃V on Z.

Proof. Let (x1, . . . , xn) ∈ ∆n and let L be the smallest subtree of T2,c containing
all the xi as nodes. Choose a bijection f on the leaves of L such that the element
γ of V represented by (L,L, f) has ι(f)xi ≤lex ι(f)xi+1. Now use Lemma 3.8. �
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Lemma 3.16. The V -stabiliser of (ε, ζ) ∈ ∆2 has generating set

Stab((ε, ζ)) = 〈α′, β′, γ′, δ′, λ, µ〉,

where

α′ = (α2)(β−1γ−1αδα−1γβ)(α−1β−1),

β′ = (αβ2
2)(β−1

3 β−1
2 α−1),

γ′ = (αβ2)(δδ2δ1δ)(β
−1
2 α−1),

δ′ = (αβ2)(δ1δ0δ1)(β−1
2 α−1),

λ = α2β−1α−1,

µ = β.

See Figures 6–11 for representatives of the elements α′, β′, γ′, δ′, λ, and µ as tree
diagrams.

Between them, the elements α′, β′, γ′, and δ′ generate the subgroup V ′ of V
which fixes the subtrees under 01 and 11.

The method of finding expressions in the generators α, β, γ, δ is adapted from
that in [Bel04, §1], and the applet [Kog08] was used for checking these calculations.

Proof. Let T be a finite rooted subtree of T2,c with at least two leaves and let S
be the rooted subtree with leaves 00, 01, 10, and 11. We denote by T ′ the subtree
obtained by taking the subtree of T with root 0 and glueing 0 to the node 00 of S,
similarly we take the subtree of T with root 1 and glue it to the leaf 10 of S.

If f : leaves(L) → leaves(R) is a bijection between the leaves of finite rooted
subtrees of T2,c then we write f ′ : leaves(L′) → leaves(R′) for the corresponding
bijection (which fixes the leaves 01 and 11).

The homomorphism

ϕ : V −→ V

(L,R, f) 7−→ (L′, R′, f ′)

is an injection whose image is V ′.
Let α′ = ϕ(A), β′ = ϕ(B), γ′ = ϕ(C), and δ′ = ϕ(D) and let λ and µ be the

elements shown in Figures 10 and 11. By construction, α′, β′, γ′, and δ′ generate
V ′.

The elements λ, µ, and the group V ′ stabilise ε and ζ, we claim that they also
generate StabV ((ε, ζ)). Let τ ∈ V be an element of the stabiliser represented by
(L,R, f), via Lemma 3.17 we may assume that τ fixes the subtrees under 01 and
11, and thus is an element of V ′.

Finally, we calculate α′, β′, γ′, and δ′. Each is a product of three elements
of V : the first is an element of F which maps the tree L to a right-vine (a tree
formed from the trivial tree by adding carets to the right-hand most leaf only) , the
second is the necessary permutation of the leaves on the right vine, and the third
is the element of F which maps the right-vine to the tree R. The outcome of these
calculations is as shown in the statement of the lemma. Note that the word length
of these elements may not be minimal. �

Let T be a rooted subtree of T2,c and recall the definition of

bT : nodes(T ) ∪ {ζ} −→ leaves(T )

from Section 2.1. We define lε(T ) to be the word length in {0, 1}∗ of the leaf bT (ε)
and define lζ(T ) to be the word length of the leaf bT (ζ).
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ε

00 01

100 101

11

ζ ε

00 100

01 101 11

ζ

Figure 6. Element α′ = (α2)(β−1γ−1αδα−1γβ)(α−1β−1) from
Lemma 3.16.

ε

00 01

100

1010 1011

11

ζ ε

00 01

100 1010

1011

11

ζ

Figure 7. Element β′ = (αβ2
2)(β−1

3 β−1
2 α−1) from Lemma 3.16.

ε

00 01

100 101

11

ζ ε

100 01

101 00

11

ζ

Figure 8. Element γ′ = (αβ2)(δδ2δ1δ)(β
−1
2 α−1) from Lemma 3.16.

ε

00 01

100 101

11

ζ ε

100 01

00 101

11

ζ

Figure 9. Element δ′ = (αβ2)(δ1δ0δ1)(β−1
2 α−1) from Lemma 3.16.

Lemma 3.17. Let v ∈ V satisfy ι(v)(ζ) = ζ and ι(v)(ε) = ε. There exist non-
negative integers a, b, c, and d such that ι(λ−aµ−bvλcµd) fixes the subtrees under
01 and 11.
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ε

10

010 011

1

ζ ε

10 010

011

1

ζ

Figure 10. Element λ = α2β−1α−1 from Lemma 3.16.

ε

0

10

110 111

ζ ε

0

10 110

111

ζ

Figure 11. Element µ = β from Lemma 3.16.

Proof. Note that ι(λ)(ε) = ι(µ)(ε) = ε and ι(λ)(ζ) = ι(µ)(ζ) = ζ. To prove the
lemma, it suffices to find non-negative integers a, b, c, and d and tree diagram
representative (L,R, f) for λ−aµ−bvλcµd such that

lε(L) = lε(R) = lζ(L) = lζ(R) = 2.

Consider the element λn for some non-negative integer n. This element has tree
diagram representative (L,R, f), where lε(L) = n + 2, lε(R) = 2, lζ(L) = 1, and
lζ(R) = 1. Similarly consider the element µn for some non-negative integer n. This
element has tree diagram representative (L,R, f), where lζ(L) = n+ 2, lζ(R) = 2,
lε(L) = 1, and lε(R) = 1.

Let v ∈ V be such that ι(v)(ζ) = ζ and ι(v)(ε) = ε and let (L,R, f) be a tree
diagram representative for v. If either lζ(L), lζ(R), lε(L), or lε(R) are strictly less
than 2 than expand L and R by adding carets until they are equal or greater than
2.

Let a = lε(L) − 2, b = lζ(L) − 2, c = lε(R) − 2, and d = lζ(R) − 2. Then, one
calculates that λ−aµ−bvλcµd has tree diagram representative (L,R, f) with

lε(L) = lε(R) = lζ(L) = lζ(R) = 2,

as required. �

Modifying Lemma 3.10 slightly we obtain the following.

Lemma 3.18. The finite support symmetric group on Sym(Z) has presentation

Sym(Z) =

〈
σx,y ∀x, y ∈ ∆2

∣∣∣∣∣∣∣∣∣∣
σx,y = σy,x ∀(x, y) ∈ ∆2

σ2
x,y ∀(x, y) ∈ ∆2

[σx,y, σz,w] ∀(x, y, z, w) ∈ ∆4

(σx,yσy,w)3 ∀(x, y, z) ∈ ∆3

σx,yσy,zσx,yσx,z ∀(x, y, z) ∈ ∆3

〉
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Proposition 3.19 ([CFP96, p.18]). Thompson’s group V has presentation

V =

〈
α, β, γ, δ :

[αβ−1, β2], [αβ−1, β3], βγ2γ
−1
1 , βγ3(γ2β2)−1, γ2

2(γ1α)−1

γ3
1 , δ

2
1 , δ3δ1(δ1δ3)−1, (δ2δ1)3, δ1β3(β3δ1)−1,

βγ2γ1(γ1β2)−1, βδ3(δ2β)−1, γ3δ2(δ1γ3)−1, (δ1γ2)3

〉
.

Theorem 3.20. Q̃V has presentation

Q̃V =

〈
σ, α, β, γ, δ

∣∣∣∣∣∣∣∣∣∣
σσαδα

−1

, σ2, [σ, σα
2

], (σσα)3, σσασσαβ
−1α−1

,
[αβ−1, β2], [αβ−1, β3], βγ2γ

−1
1 , βγ3(γ2β2)−1, γ2

2(γ1α)−1

γ3
1 , δ

2
1 , δ3δ1(δ1δ3)−1, (δ2δ1)3, δ1β3(β3δ1)−1,

βγ2γ1(γ1β2)−1, βδ3(δ2β)−1, γ3δ2(δ1γ3)−1, (δ1γ2)3

[ν, σ] for all ν ∈ X.

〉

where

X =

{
(α2)(β−1γ−1αδα−1γβ)(α−1β−1), (αβ2

2)(β−1
3 β−1

2 α−1),
(αβ2)(δδ2δ1δ)(β

−1
2 α−1), (αβ2)(δ1δ0δ1)(β−1

2 α−1), α2β−1α−1, β

}
and σ = σ0,ε.

Proof. As in Theorems 3.6 and 3.12, except using the presentations from Lemma
3.18 and 3.19.

Explicitly, we have:

SQ = {α, β, γ, δ}

RQ =

 [αβ−1, β2], [αβ−1, β3], βγ2γ
−1
1 , βγ3(γ2β2)−1, γ2

2(γ1α)−1

γ3
1 , δ

2
1 , δ3δ1(δ1δ3)−1, (δ2δ1)3, δ1β3(β3δ1)−1,

βγ2γ1(γ1β2)−1, βδ3(δ2β)−1, γ3δ2(δ1γ3)−1, (δ1γ2)3


S0 = {σ} = {σ0,ε}

R̂0 = {σσαδα
−1

, σ2, [σ, σα
2

], (σσα)3, σσασσαβ
−1α−1

}

Xσ =

{
(α2)(β−1γ−1αδα−1γβ)(α−1β−1), (αβ2

2)(β−1
3 β−1

2 α−1),
(αβ2)(δδ2δ1δ)(β

−1
2 α−1), (αβ2)(δ1δ0δ1)(β−1

2 α−1), α2β−1α−1, β.

}
Compared to the calculation for Q̃T , there is one new element of R0, namely

σσαδα
−1

which corresponds to the relation

{σx,y = σy,x for all x, y ∈ ∆2}.

�

Corollary 3.21.

Q̃V/[Q̃V, Q̃V ] ∼= C2

Proof. Abelianising the presentation leaves the generator σ and the relator σ2. �

In Corollary 5.3 we show that the abelianisation of QV is also isomorphic to C2.

Question 3.22 ([Leh08, p.31]). Is QV finitely presented?

4. Type F∞

In this section we show that the groups QF , Q̃T and Q̃V are of type F∞. The
idea of the proof for QF is to consider Sym({0, 1}∗) as a countably generated
Coxeter group then to form the Davis complex U (a certain contractible CW-
complex on which Sym({0, 1}∗) acts properly), and then extend this to an action of

QF on U which has stabilisers of type F∞. For Q̃T and Q̃V we substitute Sym(Z)
for Sym({0, 1}∗).
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Let (W,S) be a countably generated Coxeter group, so W is generated by a
countable set of involutions S. We start by giving a quick overview of the construc-
tion of the Davis complex of a Coxeter group, for background see [Dav08, §5, §7].
After this we show that if Q is a group acting by automorphisms on W such that
q(S) = S for all q ∈ Q then there is an action of W o Q on the Davis complex,
where the semi-direct product is formed using the given action of Q on W . This is
already well-known, see for example [Dav08, §9.1], so we only give an overview.

For any subset T of S we denote by WT the subgroup of W generated by T .
Recall that a spherical subset is a finite subset T of S for which WT is finite. The
group WT is known as a spherical subgroup. Let S denote the poset of spherical
subsets in (W,S) and C the poset of cosets of spherical subgroups, thus elements of
C may be written as wWT for w ∈W and T ∈ S. The poset C admits a left action
by W ,

w′ · wWT = (w′w)WT .

The Davis Complex U is the geometric realisation of C and thus admits a left action
by W as well. Note that the W -orbits of n-simplices in U are (n+1)-element subsets
of S generating a finite subgroup of W [DL98, p.2].

Proposition 4.1. [DL98, p.3] The Davis complex U is contractible.

Consider a group Q acting by automorphisms on W such that every q ∈ Q
satisfies q(S) = S. We denote by G the semi-direct product W o Q formed using
this action.

The action of Q on S extends to an action of Q on S, by setting

q{s1, . . . , sn} = {qs1, . . . , qsn}.

We use this to define a G-action on C by

(h, q) · wWT = hwq
−1

WqT .

One checks that this is well-defined and preserves the poset structure. The G-action
on C induces a G-action on U .

The next lemma appears in [Dav08, Propostion 9.1.9], as does the first part of
Proposition 4.3.

Lemma 4.2. The W oQ-isotropy subgroup of wWT ∈ C is (WT )w
−1 oQT , where

QT is the Q-isotropy of T ∈ S.

Let Sn denote the set of unordered n-element subsets of S, equivalently the
spherical subsets of size n. The set Sn admits a Q-action, the restriction of that on
S.

Proposition 4.3. If, for all positive integers n, Q acts on Sn with finitely many
Q-orbits and with stabilisers of type F∞, then G is of type F∞.

Proof. Since the set of W -orbits of n-simplices in U is exactly the set Sn+1, there are
as many G-orbits of n-simplicies in U as Q-orbits in Sn+1. Thus G acts cocompactly
on U .

By construction, the Q-isotropy of any point in U is the Q-isotropy of some
spherical subgroup WT . Thus assumption (2) implies that the Q-stabiliser of any
point has type F∞, so combining with Lemma 4.2 and [Bie81, Proposition 2.7], the
G-stabiliser of any point in U is F∞. Theorem 4.4 below completes the proof. �

Theorem 4.4. [Geo08, Theorem 7.3.1] If there exists a contractible G-CW complex
which is finite type mod G and has stabilisers of type F∞, then G is of type F∞.
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At this point we specialise to the Coxeter group Sym(Z). Let S be the set of
unordered 2-element subsets of Z. This is the set of generators of Sym(Z) given
in Lemma 3.10. Recall from Section 3.3 that ∆n is the set of ordered n-element
subsets of Z, so there is a surjective V -map ∆2 → S, given by projection. Recall
that Sn denotes the set of unordered n-element subsets of elements of S (note this
is not equivalent to the set of unordered 2n-element subsets of S). There is also a
surjective V -map ∆2n → Sn.

Lemma 4.5. The V -stabiliser of {(x1, y1), . . . , (xn, yn)} ∈ Sn is of type F∞ for all
{(x1, y1), . . . , (xn, yn)} ∈ Sn.

Proof. Since V acts transitively on Sn it is sufficient to check that the stabiliser
StabV ({(02n−2, 02n−1), . . . , (ε, ζ)}) is F∞.

Let {(02n−2, 02n−1), . . . , (ε, ζ)} ∈ Sn, and let A be the preimage of this element
under the V -map ∆2n → Sn. There is an homomorphism π : StabV (A) → Sym2n

which records the permutation on the elements {02n−2, . . . , 0, ε, ζ}. The kernel of
π is exactly StabV ({(02n−2, 02n−1), . . . , (ε, ζ)}) which is F∞ by Corollary 4.17 so
combining with [Bie81, Proposition 2.7] and the fact that Symn is finite and hence
F∞, we deduce that StabV (A) is F∞.

Observing that StabV (A) = StabV ({(02n−2, 02n−1), . . . , (ε, ζ)}) completes the
proof for the V -stabiliser. �

Theorem 4.6. The group Q̃V is of type F∞.

Proof. We prove the statement for Q̃V first, using Proposition 4.3. Since V acts
transitively on ∆2n, it acts transitively on Sn also. The stabilisers are of type F∞
is Lemma 4.5. �

Next, we will prove the group Q̃T is F∞, for which we require the following
technical lemma.

Lemma 4.7. T acts with finitely many orbits and stabilisers of type F∞ on ∆n.

Proof. Let Cycn denote the subgroup of Symn generated by the cyclic permutation
(1, 2 . . . , n). Let R be a set of representatives of the cosets Symn /Cycn. For any
σ ∈ R, we define a T -map

iσ : Λn −→ ∆n

(x1, . . . , xn) 7−→ (xσ(1), . . . , xσ(n)).

Taking a product of these gives an T -map,∐
σ∈R

Λn

∐
iσ−→ ∆n,

which one checks is a bijection. Since the T -stabiliser of any element of Λn is F∞
(Lemma 3.9), the T -stabiliser of any element of ∆n is also. �

Theorem 4.8. The group Q̃T is of type F∞.

Proof. Again, we let S be the unordered 2-element subsets of Z. Using the argument
of Lemma 4.5 we deduce from Lemma 4.7 that T acts with finitely many orbits and
with stabilisers of type F∞ on Sn. The statement follows from Proposition 4.3. �

To prove that QF is of type F∞, we will again use Proposition 4.3, but now we
are considering the F -action on the symmetric group Sym({0, 1}∗) so we let S be
the unordered 2-element subsets of {0, 1}∗. Thus the correct analogue of Lemma
4.7 is the following.
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Lemma 4.9. F acts with finitely many orbits and stabilisers of type F∞ on

Xn = {(x1, . . . , xn) ∈
n∏
1

{0, 1}∗ : xi 6= xj ∀i 6= j}.

Proof. The proof is similar to that of Lemma 4.7, we construct a bijection of F -sets∐
σ∈Symn

Σn

∐
iσ−→ Xn,

where iσ is the map

iσ : Σn −→ Xn

(x1, . . . , xn) 7−→ (xσ(1), . . . , xσ(n)).

Now, since the F -stabiliser of any element of Σn is F∞ (Lemma 3.3), the F -stabiliser
of any element of Xn is also. �

Theorem 4.10. The group QF is of type F∞.

Proof. Using the argument of Lemma 4.5 we deduce from Lemma 4.9 that F acts
with finitely many orbits and stabilisers of type F∞ on Sn. The statement now
follows from Proposition 4.3. �

4.1. The group StabV ((0n−2, . . . , 0, ε, ζ)) is of type F∞. In this section we study
the action of V on ∆n and prove in Corollary 4.17 that it acts with stabilisers of
type F∞.

Let T be a rooted subtree of T2,c and recall the definition of

bT : nodes(T ) ∪ {ζ} −→ leaves(T )

from Section 2.1. For x ∈ {0, 1}∗ we define lx(T ) to be the word length in {0, 1}∗
of the leaf bT (x). This definition has already been seen in Section 3.3, just before
Lemma 3.17.

Let v ∈ V satisfy ι(v)(x) = x and let (L,R, f) be a representative for v. We
define

χ̃x(v) = lx(L)− lx(R).

Lemma 4.11. For any x ∈ Z, the map χ̃x is a group homomorphism StabV (x)→
Z.

Proof. Since χ̃x is defined only on StabV (x), the values of χ̃x are invariant under
adding carets. Thus, since any two tree diagram representatives of an element of
V have a common expansion, values taken by χ̃x don’t depend on the tree diagram
representative. Let v, w be any two elements of StabV (x), let (L,R, f) be a tree
diagram representative for v and let (R,S, g) be a tree diagram representative for
w. Then,

χ̃x(vw) = lx(L)− lx(S) = lx(L)− lx(R) + lx(R)− lx(S) = χ̃x(f) + χ̃x(g).

�

Let T1 be the tree with 2 leaves and let Tn be obtained from Tn−1 by adjoining
carets to the first and second leaves (measuring from smallest to largest using
≤lex). In particular, Tn has 2n leaves. See Figure 12 for a picture of T3. Let
Ln be the subgroup of V consisting of elements which fix the full subtrees with
root the 2ith-leaf of Tn for all 1 ≤ i ≤ n. For example, the group L3 is the
subgroup of V fixing the full subtrees under 001, 011, and 11. One checks that
Ln ∈ StabV ((0n−2, . . . , 0, ε, ζ)).

Lemma 4.12. The group Ln is isomorphic to V for all n ≥ 2.
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Figure 12. The tree T3 from the proof of Lemma 4.12.

Proof. The group Ln is a copy of V2,n, Thompson’s group V but on the disjoint
union of n-trees. These trees are exactly the full subtrees with roots the (2i− 1)th-
leaves of Tn for each 1 ≤ i ≤ n. There is a result of Higman that V2,n is isomorphic
to V [Hig74]. �

For 1 ≤ i ≤ n, let λn,i be the element of F with tree diagram representative
(Ln,i, Rn,i) where Ln,i is obtained from Tn by adjoining a caret to the 2ith-leaf,
and Rn,i is obtained from Tn by adjoining a caret to the (2i− 1)th-leaf of Tn. For
example, λ2,1 and λ2,2 are the elements λ and µ of Section 3.3 and λ3,2 is shown in
Figure 13.

One calculates that:

Lemma 4.13. For all positive integers n, all integers i such that 1 ≤ i ≤ n − 2,
and all integers j with 1 ≤ j ≤ n,

χ̃ζ : Ln 7−→ 0,

χ̃ε : Ln 7−→ 0,

χ̃0i : Ln 7−→ 0,

χ̃ζ : λn,j 7−→
{

1 if j = n,
0 else,

χ̃ε : λn,j 7−→
{

1 if j = n− 1,
0 else,

χ̃0i : λn,j 7−→
{

1 if j = n− 1− i,
0 else.

Lemma 4.14. Let v ∈ StabV ((0n−2, . . . , ε, ζ)). For 1 ≤ i ≤ n, there exist non-

negative integers ai and bi such that the element λ−a1n,1 · · ·λ−ann,n vλ
b1
n,nλ

bn
n,1 is contained

in Ln.

Proof. In the case n = 2 this is Lemma 3.17, for n > 2 the proof is similar. �

Lemma 4.15. The group StabV ((0n−2, 0n−1, . . . , ε, ζ)) is generated by Ln and λn,i
for i = 1, . . . , n.

Proof. This follows from Lemma 4.14. �

If G is a group, θ : G→ G an endomorphism, and λ̃ any symbol, then we denote
by G∗λ̃,θ the corresponding HNN-extension. Recall that an HNN-extension is said
to be ascending if θ is injective.

Proposition 4.16.

StabV ((0n−2, 0n−2, . . . , ε, ζ)) ∼= Ln ∗λ̃1,θ1
∗λ̃2,θ2

· · · ∗λ̃n,θn ,

where the injective homomorphisms θi correspond to conjugation by λ−1
n,i.
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Figure 13. λ3,2

Proof. Let θi : Ln → Ln be the injective homomorphism v 7→ λn,ivλ
−1
n,i, and let

Φ : (V ′∗µ̃,θ1)∗λ̃i,θ2 −→ StabV ((0n−2, 0n−1, . . . , ε, ζ)),

be the map specialising λ̃i to λ−1
n,i. Since Ln together with the λn,i generate

StabV ((0n−2, . . . , ε, ζ)) (Lemma 4.15), the map Φ is a surjection. Let v ∈ Ker Φ,
since the HNN-extensions are ascending, we can write

v = λ−a11 λ−a22 · · ·λ−ann wλbnn · · ·λ
b1
1 ,

for some w ∈ Ln and some non-negative integers ai and bi for 1 ≤ i ≤ n.
For any fixed i, the homomorphism

Ln ∗λ̃1,θ1
∗λ̃2,θ2

· · · ∗λ̃n,θn −→ Z
Ln 7−→ 0

λ̃j 7−→
{

1 if i = j,
0 else,

factors through StabV ((0n−2, . . . , ε, ζ)) using Lemma 4.13, thus ai = bi for all i.
In particular, w ∈ Ker Φ, thus w = 1, since Φ is the identity when restricted to
Ln. �

Corollary 4.17. Given (x1, . . . , xn) ∈ ∆n, the group StabV ((x1, . . . , xn)) is of type
F∞.
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Proof. Since V acts transitively on ∆n it is sufficient to check that the stabiliser
StabV ((0n−2, . . . , ε, ζ)) is F∞. This follows since by Lemma 4.12 Ln is isomorphic
to V and hence F∞ and HNN-extensions of groups of type F∞ are themselves F∞
[Bie81, Proposition 2.13(b)]. �

5. Normal subgroups

In this section we give a complete description of the normal subgroups of QF ,
QT , QV , Q̃T , and Q̃V .

Recall that Sym({0, 1}∗) has only one non-trivial proper normal subgroup, this is
the finite support alternating group Alt({0, 1}∗), the subgroup of all permutations
with even parity. Moreover, Sym({0, 1}∗) and Alt({0, 1}∗) are normal in the infinite
support symmetric group on {0, 1}∗, because conjugating any finite permutation by
any bijection {0, 1}∗ → {0, 1}∗ preserves the cycle type of the finite permutation.

Recall also that F/[F, F ] ∼= Z⊕Z but, since T and V are simple and non-abelian,
[T, T ] ∼= T and [V, V ] ∼= V [CFP96, Theorems 4.1,5.8,6.9].

Theorem 5.1 (Normal subgroups of QF ).

(1) A non-trivial normal subgroup of QF is either Alt({0, 1}∗), Sym({0, 1}∗),
or contains

[QF,QF ] = Alt({0, 1}∗)o [F, F ].

(2) A proper non-trivial normal subgroup of Q̃T is either Alt(Z), Sym(Z), or

[Q̃T, Q̃T ] = Alt(Z)o T.

(3) A proper non-trivial normal subgroup of Q̃V is either Alt(Z), Sym(Z), or

[Q̃V, Q̃V ] = Alt(Z)o V.
(4) A proper non-trivial normal subgroup of QT is one of either Alt({0, 1}∗),

Sym({0, 1}∗), or

[QT,QT ] = (Alt(Z)o T ) ∩QT.
Moreover, (Alt(Z)o T ) ∩QT is an extension of T by Sym({0, 1}∗).

(5) A proper non-trivial normal subgroup of QV is one of either Alt({0, 1}∗),
Sym({0, 1}∗), or

[QV,QV ] = (Alt(Z)o V ) ∩QV.
Moreover, (Alt(Z)o V ) ∩QV is an extension of V by Sym({0, 1}∗).

This theorem is similar to results for the braided Thompson groups Fbr and Vbr.
The braided Thompson group Fbr is a split extension with kernel the group Pbr,
a direct limit of finite pure braid groups, and quotient F . The braided Thompson
group Vbr is a non-split extension with kernel Pbr and quotient V . Zaremsky shows
that for any normal subgroup N of Fbr, either N ≤ Pbr or [Fbr, Fbr] ≤ N [Zar14,
Theorem 2.1], and a proper normal subgroup N of Vbr is necessarily contained in
Pbr [Zar14, Corollary 2.8]. There is no braided version of Thompson’s group T . We
borrow some of the methods in this section from [Zar14, §2].

The next proposition should be compared with [Ore51, Theorem 5], that every
element of the full permutation group on an infinite set is a commutator, so in
particular the commutator subgroup of the full permutation group on {0, 1}∗ is
itself.

We write 〈〈H〉〉G for the normal closure in G of a subgroup H ≤ G, and for an
element g ∈ G we write 〈〈g〉〉G for the normal subgroup generated by g.

Proposition 5.2.

(1) 〈〈[ιF, ιF ]〉〉QF = [QF,QF ] = Alt({0, 1}∗)o [F, F ].
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(2) 〈〈[ιF, ιF ]〉〉Q̃T = [Q̃T, Q̃T ] = Alt(Z)o T.
(3) 〈〈[ιF, ιF ]〉〉Q̃V = [Q̃V, Q̃V ] = Alt(Z)o V.
(4) 〈〈[ιF, ιF ]〉〉QT = [QT,QT ] = (Alt(Z)o T ) ∩QT , moreover this subgroup is

an extension with kernel Sym({0, 1}∗) and quotient T .
(5) 〈〈[ιF, ιF ]〉〉QV = [QV,QV ] = (Alt(Z)oV )∩QV , moreover this subgroup is

an extension with kernel Sym({0, 1}∗) and quotient V .

Proof. For part (1), consider [α, β] ∈ [ιF, ιF ] then for σ1,11 ∈ Sym({0, 1}∗), we have

σ1,11[α, β]−1σ1,11[α, β] ∈ 〈〈[ιF, ιF ]〉〉.

Calculating explicitly,

σ1,11[α, β]−1σ1,11[α, β] = σ1,11,1110.

The smallest normal subgroup of Sym({0, 1}∗) containing a 3-cycle is Alt({0, 1}∗)
so Kerπ|〈〈[ιF,ι,F ]〉〉 = Alt({0, 1}∗). Combining this with the fact that [F, F ] ≤
π(〈〈[ιF, ιF ]〉〉) gives

Alt({0, 1}∗)o [F, F ] ≤ 〈〈[ιF, ιF ]〉〉.

Since 〈〈[ιF, ιF ]〉〉QF ≤ [QF,QF ], we know that Alt({0, 1}∗)o [F, F ] ≤ [QF,QF ]
and we now show they are equal.

Consider the following map induced by π,

π′ : QF/(Alt({0, 1}∗)o [F, F ]) −→ F/[F, F ].

Applying π′ to the quotient [QF,QF ]/(Alt({0, 1}∗)o [F, F ]) gives the trivial group.
Since the kernel of π′ is contained in Sym({0, 1}∗)/Alt({0, 1}∗) = C2, the quotient
[QF,QF ]/(Alt({0, 1}∗) o [F, F ]) is either trivial or C2. However, if the quotient
[QF,QF ]/(Alt({0, 1}∗) o [F, F ]) was C2 then [QF,QF ] = Sym({0, 1}∗) o [F, F ]
which would contradict Corollary 3.7. Hence [QF,QF ] = Alt({0, 1}∗) o [F, F ].
This completes the proof of (1).

For parts (2) and (3) substitute Corollary 3.14 or Corollary 3.21 for Corollary
3.7 and use that [T, T ] ∼= T and [V, V ] ∼= V [CFP96, Theorems 5.8,6.9].

For part (5), by the argument at the beginning of this proof, Alt({0, 1})∗ is con-
tained in 〈〈[ιF, ιF ]〉〉QV and 〈〈[ιF, ιF ]〉〉QV cannot contain any finite cycle with odd
parity, else 〈〈[ιF, ιF ]〉〉Q̃V would also, and we already know that it doesn’t. Also,

〈〈[ιF, ιF ]〉〉QV projects onto a non-trivial normal subgroup of V , so it must project
onto V . We conclude that 〈〈[ιF, ιF ]〉〉QV is an extension of V by Alt({0, 1}∗).
Observe that,

〈〈[ιF, ιF ]〉〉QV ≤
(
〈〈[ιF, ιF ]〉〉Q̃V

)
∩QV = (Alt(Z)o V ) ∩QV.

Since (Alt(Z)o V ) ∩QV is also an extension of V by Alt({0, 1}∗), we necessarily
have

〈〈[ιF, ιF ]〉〉QV = (Alt(Z)o V ) ∩QV.
The proof of (4) is similar to that of (5). �

Corollary 5.3. The abelianisation of QF is isomorphic Z⊕Z⊕C2 and the abelian-
sations of QT , QV , Q̃T , and Q̃V are all isomorphic to C2.

Lemma 5.4.

(1) Let σ ∈ Sym({0, 1}∗) and 1 6= f ∈ ιF be arbitrary, then there exists h ∈ ιF
such that [h, σ] = 1 but [h, f ] 6= 1.

(2) Let σ ∈ Sym(Z) and 1 6= v ∈ ιV be arbitrary, then there exists h ∈ ιF such
that [h, σ] = 1 by [h, f ] 6= 1.
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Proof. Let T be the full sub-tree under some x ∈ {0, 1}∗, where T is chosen to
intersect the support of f but not the support of σ, this is possible since the
support of f is infinite but the support of σ is finite. Thus any h with supp(h) ⊆ T
satisfies [h, σ] = 1.

Let F ′ denote the copy of F acting on T , with the usual generators denoted α′

and β′. If f restricts to an action on T then, since F ′ is centreless, there exists
some h ∈ F ′ which doesn’t commute with f . If f doesn’t restrict to an action on
T then there is necessarily an orbit {xi}i∈Z which is neither contained in T nor its
complement. Since α′ acts non-trivially on all of T , one of the α′ orbits intersects
{xi}i∈Z but is not equal to {xi}i∈Z, thus α′ and h do not commute.

The proof of (2) is analagous. �

Lemma 5.5. Let G be one of QF , QT , QV , Q̃T , and Q̃V , and let f ∈ G such
that π(f) 6= 1, then 〈〈f〉〉G ∩ ιF 6= {id}.

Proof. Let σf ∈ QF , so that σ ∈ Sym({0, 1}∗) and f ∈ ιF with π(f) 6= 1. Let
h ∈ ιF be as in Lemma 5.4(1), then

σhfh−1 = hσfh−1 ∈ 〈〈σf〉〉.

So,

[f, h] = (σf)−1σhfh−1 ∈ 〈〈σf〉〉,
since [f, h] is a non-trivial element of ιF , this is sufficient. This proves the statement
for QF .

For G = Q̃T or Q̃V , start with an element σt ∈ Q̃T (respectively σv ∈ Q̃V ), so
that σ ∈ Sym(Z) and t ∈ ιT (resp. t ∈ ιV ). Let h ∈ ιF be as in Lemma 5.4(2),
then the proof is as for QF .

For G = QT or QV , start with σt ∈ QT (respectively σv ∈ QV ), so that
σ ∈ Sym({0, 1}∗) and t ∈ ιT (resp. t ∈ ιV ). Let h ∈ ιF be as in Lemma 5.4(1),
then the proof is as for QF . �

Proof of Theorem 5.1. Let N be a normal subgroup of QF with N 6≤ Sym({0, 1}∗),
then using Lemma 5.5 N contains an element f ∈ ιF . For any g ∈ ιF , we have
g−1f−1g ∈ N and hence

[g, f ] = g−1f−1gf ∈ N.
Without loss of generality, f ∈ [ιF, ιF ].

Since [ιF, ιF ] is simple [CFP96, Theorem 4.5], we deduce that [ιF, ιF ] ≤ N , and
thus 〈〈[ιF, ιF ]〉〉 ≤ N . Proposition 5.2(1) completes the proof.

For the other parts, start with an element f of either Q̃T , Q̃V , QT , or QV and
then use the appropriate parts of Lemmas 5.5 and Proposition 5.2. �

6. Bieri–Neumann–Strebel–Renz invariants

In this section we compute the Bieri–Neumann–Strebel–Renz invariants Σi(QF )
and Σi(QF,R) for any commutative ring R. The invariant Σ1(G) was introduced
by Bieri, Neumann, and Strebel in [BNS87] and the higher invariants Σi(QF ) for
i ≥ 2 were introduced in [BR88]. In general, for any group G, there is a hierachy
of invariants

Σ1(G) ⊇ Σ2(G) ⊇ · · · ⊇ Σi(G) ⊇ · · · ,
furthermore we set Σ∞(G) =

⋂∞
i=1 Σi(G). There are also homological versions

Σi(G,R) for any commutative ring R fitting into a similar hierachy. Furthermore,
Σi(G) ⊆ Σi(G,R) for all i all commutative rings R and also Σ1(G,R) = Σ1(G) for
all commutative rings R.
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Some of the interest in the Bieri–Neumann–Strebel–Renz invariants comes from
the following theorem, which classifies the finiteness length of normal subgroups N
of a group G which contain the commutator subgroup [G,G].

Theorem 6.1 ([BR88, Theorem B][Ren89]). Let G be a group of type Fn (respec-
tively FPn over R) and let N be a normal subgroup containing the commutator
[G,G]. Then N is Fn (resp. FPn over R) if and only if every non-zero character
χ of G such that χ(N) = 0 satisfies [χ] ∈ Σn(G) (resp. [χ] ∈ Σn(G,R)).

Recall that a character of a group G is a group homomorphism G → R, where
R is viewed as a group under addition, and the character sphere S(G) is the set of
equivalence classes of non-zero characters modulo multiplication by a positive real
number. Thus S(G) is isomorphic to a sphere of dimension n − 1 where n is the
torsion-free rank of G/[G,G].

Since F/[F, F ] ∼= Z ⊕ Z, the character sphere S(F ) is isomorphic to S1. We
denote by χ0 and χ1 the two characters of F given by χ0(A) = −1, χ0(B) = 0,
χ1(A) = 1, and χ1(B) = 1, these two characters are linearly independent and hence
do not represent antipodal points on S(F ).

Theorem 6.2 (The Bieri–Neumann–Strebel–Renz invariants of F [BGK10]). The
character sphere S(F ) is isomorphic to S1 and, for any commutative ring R,

(1) Σ1(F,R) = Σ1(F ) = S(F ) \ {[χ0], [χ1]}.
(2) Σi(F,R) = Σi(F ) = S(F ) \ {[aχ0 + bχ1] : a, b ≥ 0} for all i ≥ 2.

Since the abelianisation of QF also has torsion-free rank 2, the character sphere
S(QF ) is again isomorphic to S1. By pre-composing χ0 and χ1 with π : QF → F
we obtain characters π∗χ0 and π∗χ1. Once again these are linearly independent.
In this section we prove the following theorem.

Theorem 6.3 (The Bieri–Neumann–Strebel–Renz invariants of QF ). The charac-
ter sphere S(QF ) is isomorphic to S1 and, for any ring R,

(1) Σ1(QF,R) = Σ1(QF ) = S(QF ) \ {[π∗χ0], [π∗χ1]}.
(2) Σi(QF,R) = Σi(QF ) = S(QF ) \ {[aπ∗χ0 + bπ∗χ1] : a, b ≥ 0} for all i ≥ 2.

Remark 6.4 (ν-symmetry). For x ∈ {0, 1}∗, let x̄ be the element obtained by
swapping 0 and 1 in the word x. The map x 7→ x̄ induces an automorphism
ν : QV → QV , which projects to the automorphism of F denoted ν in [BGK10,
§1.4]. Furthermore, ν induces an automorphism ν∗ of Σi(QF ) for all i, and one
checks that ν∗[χ0] = [χ1]. Following Bieri, Geoghegan, and Kochloukova we will
call this the ν-symmetry of Σi(QF ). Recall that for any group G the invariants
Σi(G) and Σi(G,R) are invariant under automorphisms of G.

Lemma 6.5 ([Mei97, Corollary 2.8][Mei96, Corollary 3.12]). Let π : G −� Q be
an split surjection and χ a character of Q. Then if [π∗χ] ∈ Σi(G) (respectively
Σi(G,R)) then [χ] ∈ Σi(Q) (resp. Σi(Q,R)).

Theorem 6.6 ([BGK10, Theorems 2.1(1), 2.3]). Let H be a group of type F∞ and
let G = H∗θ,t be an ascending HNN-extension such that θ is not surjective.

(1) Let χ : G → R be the character given by χ(H) = 1 and χ(t) = 1, then
[χ] ∈ Σ∞(G).

(2) Let χ : G → R be a character such that χ|H 6= 0 and [χ|H ] ∈ Σ∞(H) then
[χ] ∈ Σ∞(G), for any i ≥ 0.

Recall that the characters π∗χi are completely determined by the values they
take on α and β (defined in Remark 2.4) and satisfy π∗χi(α) = χi(A) and π∗χi(β) =
χi(B) for all i, where A and B are the standard generators of F .
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We now show that QF can be written as an ascending HNN-extension similarly to
those of F [BG84, Proposition 1.7] and BF [Zar14, Lemma 1.4].

Let QF (1) be the subgroup of QF which fixes all of {0, 1}∗ except the subtree
with root 1. It is easy to see that QF (1) is isomorphic to QF . Using Theorem 3.6 we
see that QF is generated by {α, β, σε,1}. This shows that QF (1) is generated by β,
βα and σ1,11 = σαε,1. Moreover, conjugatingQF (1) by αmapsQF (1) isomorphically
onto the subgroup of QF which fixes all but the subtree with root 11.

Lemma 6.7. The group QF can be written as an ascending HNN-extension QF =
QF (1)∗θ,t, where QF (1) ∼= QF .

The proof is similar to [Zar14, Lemma 1.4].

Proof. Let θ : QF (1) → QF (1) be the monomorphism τ 7→ α−1τα and let ψ :
QF (1)∗θ,t → QF be the map given by setting t to be α. The map ψ is surjective

since ψ(β) = β, ψ(t) = α, and ψ(σt
−1

1,11) = σε,1.
Let g ∈ Kerψ, since QF (1)∗θ,t is an ascending HNN-extension we can write g in

normal form as g = tnht−m where n,m ≥ 0 and h ∈ QF (1). Let χ : QF (1)∗θ,t −→
Z be the homomorphism sending t to 1 and sending QF (1) to 0. The homomor-
phism χ factors through ψ—one can check there is a homomorphism QF → Z
sending α to 1 and β, σε,1 to 0. Thus, if g ∈ Kerψ then g ∈ Kerχ and so n = m. In
particular, αnψ(h)α−n = idQF so h ∈ Kerψ. However ψ is the identity on QF (1),
thus h = 1 and ψ in injective. �

Proof of Theorem 6.3. Lemma 6.5 implies that for all i, we have Σi(QF,R) ⊆
Σi(F,R). In particular,

Σ2(QF,R) ⊆ S(QF ) \ {[aπ∗χ0 + bπ∗χ1] : a, b ≥ 0}
The character which takes 1 on α and 0 elsewhere is exactly −π∗χ0 so using

Theorem 6.6(1) we find that [−π∗χ0] ∈ Σ∞(QF ) and by Remark 6.4, [−π∗χ1] ∈
Σ∞(QF ) as well.

Next we claim that

{[χ] ∈ S(QF ) : χ(β) < 0} ⊆ Σ∞(QF ),

the argument is similar to that of [BGK10, Corollary 2.4]. Let χ : QF → R be a
character with χ(β) < 0, then

ψ∗[χ|QF (1)](α) = χ(β) < 0,

ψ∗[χ|QF (1)](β) = χ(βα) = χ(β) < 0.

So ψ∗[χ|QF (1)] = −[χ1] and thus [χ|QF (1)] ∈ Σ∞(QF (1)). Since QF (1) is iso-
morphic to QF and hence of type F∞ (Theorem 4.10), applying Theorem 6.6(2)
completes the claim.

The above implies that [aχ0 + bχ1] ∈ Σ∞(QF ) if b < 0, so by ν symmetry
[aχ0 + bχ1] ∈ Σ∞(QF ) if a < 0 also. Thus,

{[aπ∗χ0 + bπ∗χ1] : a, b ≥ 0} ⊆ Σ∞(QF )c

which completes the descriptions of Σi(QF ) and Σi(QF,R) for all i ≥ 2.
It remains to complete the description of Σ1(QF ), we use Theorem 6.1 for this.

Let χ ∈ S(QF ) \ {[π∗χ0], [π∗χ1]} and consider the normal subgroup N = Kerπ∗χ.
We will show that N is finitely generated, so necessarily χ ∈ Σ1.

From Theorem 6.2 we know that π(N) is finitely generated. Since Kerπ|N =
Sym({0, 1}∗) we have a group extension

1 −→ Sym({0, 1}∗) −→ N −→ π(N) −→ 1.

Thus, using the method of Section 3 it is sufficient to find a generating set of
Sym({0, 1}∗) on which π(N) acts by permutations and with finitely many orbits,
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this is given by Lemma 6.8 below, since a generating set for Sym({0, 1}∗) is given
by the set Σ2, which we recall below. �

Recall from Section 3.1 that for all n,

Σn =

{
(x1, . . . , xn) ∈

n∏
1

{0, 1}∗ : x1 �lex x2 �lex · · · �lex xn

}
,

and Σn admits an action of F via the splitting ι : F −→ QF , the inclusion QF −→
QV , and the usual action of QV on {0, 1}∗.

Recall the definition of χ̃ζ from Section 4.1. By comparing the values they take
on α and β, one checks that π∗χ1 = χ̃ζ .

Lemma 6.8. Let χ ∈ S(QF ) and N = Kerχ then π(N) acts transitively on Σ2.

Proof. Let (x1, x2) ∈ Σ2 and let (L,R) be a representative for an element f of F
such that ι(f)(x1) = 0 and ι(f)(x2) = ε (use, for example, Lemma 3.2). Applying
Lemma 6.9 below with a = −χ1(f) gives an element f1, and applying the lemma a
second time with a = −χ0(f) gives a second element f0.

We claim that ν(f0)f1f is the required element of F . Note that since f0 fixes ε
and 1 by construction, the element ν(f0) fixes 1̄ = 0 and ε̄ = ε. Finally,

χ0(ν(f0)f1f) = χ0(ν(f0)) + χ0(f1) + χ0(f) = χ1(f0) + χ0(f) = 0,

and similarly one shows that χ1(ν(f0)f1f) = 0.
Let τ = ι(ν(f0)f1f). Since χ1(ν(f0)f1f) = χ0(ν(f0)f1f) = 0, also π∗χ1(τ) =

π∗χ0(τ) = 0, so the element τ is in the kernel of any character in S(QF ). �

Lemma 6.9. For any integer a there exists an element f ∈ F such that ι(f) ·ε = ε,
ι(f) · 0 = 0, ι(f) · 1 = 1, χ0ι(f) = 0, and χ1ι(f) = a.

Proof. Assume for now that a > 0. Let T be the smallest tree containing ε, 1, and
11 as nodes. Let L be obtained from T by attaching a carets iteratively to the
largest leaf of T (using the ≤lex ordering). Let R be obtained from T by attaching
a carets iteratively to the second largest caret of T . Denote by f the element of F
with tree diagram representative (L,R). For example when a = 2 we obtain the
element of Figure 14. One checks that χ1(f) = a and that ι(f) fixes ε, 0, and 1.

If a < 0 then perform the steps above for −a and then replace f0 by f−1
0 . �

Figure 14. Element f from Lemma 6.9 when a = 2.
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7. Relationships with other generalisations of Thompson’s groups

In [Thu16] Thumann studies the class of Operad groups, this class contains the
generalised Thompson groups Fn,r and Vn,r, the higher dimensional Thompson
groups nV , and the braided Thompson groups BV . Moreover, the class of diagram
groups appearing in [GS97] may be described as Operad groups, as may the class
of self-similarity groups described by Hughes [Hug09]—for a proof of these facts see
[Thu16, §3.5]. For each of these classes of groups there exist results showing that
certain groups in the class are of type F∞ [Far03, Theorem 1.3][FH12, Theorem
1.1][Thu16, Theorem 4.3]. We show in Section 7.1 that while QV admits an easy
description in all three of these classes, it cannot be proved to be of type F∞ using
these descriptions and the results listed above.

There is a generalisation of Thompson’s groups due to Mart́ınez-Pérez and
Nucinkis, describing a family of automorphism groups of Cantor algebras [MPN13].
We show in Proposition 7.4 that none of the groups studied in this paper appear
in this family of groups.

Witzel and Zaremsky have introduced Thompson groups for systems of groups
[WZ14], this class contains the Thompson groups F and V and also the braided
Thompson groups BF and BV . They study the finiteness lengths of some groups
in this class. We do not know of a way to express any of the groups studied here
as a group in this class and we are unsure of the relationship between Witzel–
Zaremsky’s class of Thompson groups for systems of groups and either Thumann’s
class of Operad groups or the class of groups of Mart́ınez-Pérez and Nucinkis.

7.1. Operad groups. Following [Thu16] we denote by

End : MON→ OP

the endomorphism functor taking a strict monoidal category C to the endomorphism
operad End(C). Let S denote the left adjoint of End. Given a category C and
an object X ∈ C we write π1(C, X) for the fundamental group of C based at X.
The operad group associated to an operad O and object X ∈ S(O) is the group
π1(S(O), X).

Let OQV be the operad with colours l and n (one should think of these as
representing a leaf and a node of a finite subtree of T2,c) and with a single operation
O(l, n, l; l) = {ϕ} (one should think of this operation as adding a caret).

Lemma 7.1. There is an isomorphism

QV ∼= π1(S(OQV ), l).

Proof. This is essentially [FH14, Example 4.4], where Farley and Hughes describe
QV as a braided diagram group over the semi-group presentation

P = 〈l, n : (l, lnl)〉.

One can then convert this to a description of QV as a group acting on a compact
ultrametric space via a small similarity structure [FH14, Theorem 4.12] and then
in turn to a description as an operad group [Thu16, §3.5]. Following this method
one obtains the operad OQV given above. �

The next lemma demonstrates that one cannot use the result of Thumann
[Thu16, Theorem 4.3]) to show that QV is F∞ because OQV is not colour-tame,
see [Thu16, Definition 4.2]. Recall that a colour word is said to be reduced if no
subword is in the domain of a non-identity operation.

Lemma 7.2. OQV is not colour-tame.
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Proof. The operad OQV is planar and has a finite set of colours, however the colour
word

i times︷ ︸︸ ︷
n · n · · ·n,

is reduced for all i ≥ 0. �

Using [FH14, Theorem 4.12] to convert the description of QV as a braided di-
agram group over the semi-group presentation P to a description of QV as a self-
similarity group gives the following. Let TP be the tree obtained from T2,c by
forgetting the colouring and adding to every node a single child. Let X be the
ultrametric space X = Ends(TP) obtained by setting dX(p, p′) = e−i if p and p′ are
any two paths (without backtracking) which contain exactly i edges in common.
Balls in X are all of the form

Bv = {p ∈ Ends(TP) : v lies on p},

for some vertex in v. If v and w are both leaves or both nodes then SimX(Bv, Bw)
contains a single element and otherwise SimX(Bv, Bw) is empty.

The next lemma demonstrates that one cannot use the result of Farley and
Hughes [FH12, Theorem 1.1] together with the description of QV as the self-
similarity group associated to the ultrametric space X and the similarity structure
SimX to prove that QV is F∞. This is because [FH12, Theorem 1.1] requires that
SimX is rich in simple contractions [FH12, Definition 5.11].

Lemma 7.3. SimX is not rich in simple contractions.

Proof. Given an arbitrary constant k ∈ N>0 it suffices to exhibit a pseudo-vertex
v of height k such that for every pseudo vertex w ⊆ v, either ‖w‖ = 1 or there is
no simple contraction of v at w.

Let k ∈ N>0 be an arbitrary constant and choose k leaves n1, . . . , nk ∈ Ends(TP)
with no children. Each of these leaves is a ball Bni and so

v = {[inclBni , Bni ] : i = 1, . . . , k}

is a pseudo-vertex of height k. Since any simple expansion of any pseudo-vertex
necessarily introduces balls containing leaves with children, there can be no simple
contraction of v. �

7.2. Automorphisms of Cantor algebras. In [MPN13], Mart́ınez-Pérez and
Nucinkis study certain automorphism groups Gr(Σ), Tr(Σ), and Fr(Σ) of certain
Cantor algebras.

Proposition 7.4. None of QV , Q̃V , QT , Q̃T , and QF are isomorphic to either
Gr(Σ), Tr(Σ), or Fr(Σ) for any Σ and r.

Proof. By [MPN13, Theorems 4.3, 4.8], any group Gr(Σ) or Tr(Σ) has at most
finitely many conjugacy classes of finite subgroups isomorphic to a given finite
subgroup. This is false however for QV and QT as one can find infintely many non-
conjugate subgroups isomorphic to the cyclic group of order 2: let {x1, . . . , xn, . . .}
and {y1, . . . , yn, . . .} be two disjoint countably infinite subsets of {0, 1}∗ and let Gi
be the subgroup of QF which tranposes xj and yj for all j ≤ i. Clearly Gi ∼= C2

for all i, but the Gi are all pairwise non-conjugate (this is because conjugation
preserves cycle type in infinite support permutation groups). Thus none of QV ,

Q̃V , QT , Q̃T , and QF may be isomorphic to Gr(Σ) or Tr(Σ).

Since Fr(Σ) is always torsion-free [MPN13, Remark 2.17], none of QV , Q̃V , QT ,

Q̃T , or QF may be isomorphic to Fr(Σ). �
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