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Abstract 14 

Astronomically calibrated cyclostratigraphy relies on correct matching of observed 15 

sedimentary cycles to predicted astronomical drivers such as eccentricity, obliquity and 16 

climate-precession.  However the periods of these astronomical cycles, in the past, are not 17 

perfectly known because: (i) they drift through time; (ii) they overlap; (iii) they are affected 18 

by the poorly constrained recession history of the Moon.   This paper estimates the resulting 19 

uncertainties in ancient Milankovitch cycle periods and shows that they lead to: (i) problems 20 

with using Milankovitch cycles for accurate measurement of durations (potential errors are 21 

around 25% by the start of the Phanerozoic);  (ii) problems with correctly identifying the 22 

Milankovitch cycles responsible for observed period ratios (e.g. the ratio for long-23 

eccentricity/short-eccentricity overlaps, within error, with the ratio for short-24 

eccentricity/precession);  (iii) problems with verifying that observed cycles are Milankovitch 25 

driven at all (the probability of a random period-ratio matching a predicted Milankovitch-26 

ratio, within error, is 20-70% in the Phanerozoic).  Milankovitch-derived ages and durations 27 

should therefore be treated with caution unless supported by additional information such as 28 

radiometric constraints. 29 

 30 

INTRODUCTION 31 

Astronomically calibrated cyclostratigraphy (Hinnov, 2000; Weedon, 2003) has been used to 32 

refine the geological time-scale (e.g. Weedon et al., 1999; Gradstein et al., 2004; Peterson, 33 

2011), estimate sedimentation rates (e.g. Meyers, 2008) and improve understanding of 34 

sedimentary processes in the past (e.g. Herbert, 1992).  There are several approaches but 35 
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they are generally equivalent to spotting multiple orders of cyclicity in the sedimentary 36 

record and matching their wavelength-ratios to the expected period-ratios of astronomical 37 

drivers.  For example, “bundling” of packages of five cycles into larger repeated sequences 38 

may indicate the sedimentary effects of climate precession (with a period ~20ky) 39 

superimposed upon eccentricity (with a period ~100 ky) (Sander, 1936; Schwarzacher, 1947; 40 

Goldhammer et al., 1987; Gong et al., 2001).  More sophisticated analyses utilize spectral 41 

techniques to identify the principal wavelengths in the data (Thomson, 1990; Williams; 42 

1991; Paul et al., 2000; Tian et al., 2014) along with rigorous statistical techniques to reject 43 

statistically insignificant identifications and to evaluate uncertainty (e.g. Myers 2012; 44 

Hinnov, 2013; Zeeden et al., 2015).  It is also possible to independently confirm longer cycles 45 

using radiometric dating (Hinnov and Hilgen, 2012; Boulila et al., 2014) and this greatly 46 

increases confidence in the analyses.  Furthermore, “tuning” can considerably enhance 47 

results by forcing exact-regularity onto one of the observed cycles to compensate for 48 

fluctuations in sedimentation rate (e.g. Weedon et al. 1999; Huang et al., 2010).     49 

However, Milankovitch cycle periods (and hence their ratios) are imperfectly known in the 50 

past and this may cause problems for cyclostratigraphy.   In particular, any uncertainties in 51 

predicted periods give rise to corresponding uncertainties in estimates of observed time-52 

durations and this, in turn, impacts on attempts to use cyclostratigraphy to refine the 53 

geological time-scale.  Furthermore, sufficiently large uncertainties in period-ratios would 54 

make the hypothesis, that observed cycles are Milankovitch driven, difficult to test as any 55 

such contention will lack statistical significance (i.e. there is a high probability of hitting a 56 

plausible ratio by chance).  It also becomes impossible to unambiguously assign cycles if the 57 
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uncertainties are large enough to cause overlaps of adjacent ratios.  Incorrect assignment of 58 

cycles would, in turn, undermine cyclostratigraphically estimated time-durations.   59 

This paper makes first-order estimates of Milankovitch-period uncertainties so that the 60 

potential seriousness of these difficulties can be assessed.  It does not discuss the 61 

considerable problems associated with analysing sediments to extract periodicities.  Instead, 62 

it confines itself to issues that will arise even if the wavelengths of sedimentary cycles have 63 

been measured with zero error.  In practice, data-derived wavelengths are far from perfect 64 

but such issues have been discussed by many authors (e.g. Hinnov, 2000 and 2013; Meyers 65 

2013; Vaughan et al., 2012, 2014) and will not be discussed further here.   66 

One source of uncertainty in predicted Milankovitch periods is that the cycles are not 67 

perfectly periodic but undergo “diffusive drift” as the mutual interactions between the 68 

planets chaotically perturb their orbits over tens of millions of years.  For example, using 69 

Laskar et al.’s (2011) numerical modelling of the last 100 Ma, the “long eccentricity” 70 

variations can be approximated by a sinusoidal signal with a period of 405.6 ky but this 71 

period has a drift-generated variation of 2.4 ky.  Table 1 shows the principal Milankovitch 72 

cycles investigated in this paper, along with their diffusive drift variation (after Laskar et al., 73 

2011).  Diffusive drift makes it impossible to extrapolate Earth’s detailed orbital parameters 74 

more than 40 Ma into the past (Laskar et al. 2004).  In particular, the chaotic dynamics of 75 

the solar system makes it impossible to predict where we were, in a particular Milankovitch 76 

cycle, at distant times.  For example, we can say that the ~124 ky eccentricity cycle almost 77 

certainly existed at 1 Ga but we cannot say where we were in the cycle, i.e. whether the 78 

eccentricity was small or large at that precise time.  The current paper therefore estimates 79 
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ancient Milankovitch periods but makes no attempt to estimate the amplitudes or phases of 80 

ancient Milankovitch cycles. 81 

In addition to diffusive-drift, a further source of uncertainty is that several of the periods 82 

shown in Table 1 are sufficiently close to each other to make unique identification difficult.  83 

For example, two of the contributing periods to “short eccentricity” lie at 94.9±1.4 ky and 84 

98.9±1.5 ky and so any identified spectral peak in sediments at around 95 ky could be 85 

produced by either of these cycles or by a combination of them both.   86 

Uncertainties produced by diffusive drift and by overlap of nearby periods are included in 87 

this paper but most of the work reported here concerns another potential source of 88 

Milankovitch-period uncertainty; the poorly constrained recession history of our Moon 89 

(Webb, 1982; Williams, 1989; Berger et al. 1992; Berger and Loutre, 1994; Sonett et al., 90 

1996; Bills and Ray, 1999; Williams, 2000; Mazumder and Arima; 2005).  Friction, from 91 

tidally driven ocean currents, gradually slows the Earth’s rotation and increases the Earth-92 

Moon separation through time.   The falling rotation rate reduces the size of Earth’s 93 

equatorial bulge whilst lunar-recession produces a drop in tidal-forces and, together, these 94 

changes reduce the rate at which Earth’s axis precesses.  This precession rate is specified by 95 

the precession constant, k, which gives the change in orientation of the axis in seconds of 96 

arc per year (“/y) but which can be converted to a precession period = 1296/k thousand 97 

years. 98 

Climate-precession cycles and obliquity cycles both result from interaction between axial-99 

precession (which changes the orientation of Earth’s axis) and orbital-precession (which 100 

changes the orientation of Earth’s orbit).  Climate precession is produced by the changing 101 

relationship between the timing of solstices (as Earth’s axis precesses) and the timing of 102 
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Earth’s closest approach to the Sun (as Earth’s orbit precesses).  Obliquity cycles, on the 103 

other hand, are produced by the changing difference between the orientation of Earth’s axis 104 

and the orientation of its orbit.  Hence, the periods of climate precession and obliquity both 105 

change through time as Earth-Moon system evolution produces a changing Earth-axis 106 

precession rate.  The uncertain recession history of the Moon therefore leads to uncertainty 107 

in predicted climate-precession-cycle and obliquity-cycle periods. 108 

To address this problem, ancient obliquity and climate-precession frequencies have 109 

previously been estimated by assuming that lunar-recession rate is constant (Berger et al., 110 

1992); Berger and Loutre, 1994) or that the tidal-time-lag (a measure of tidal energy 111 

dissipation) is constant (Laskar et al., 2004).  Unfortunately, neither assumption is valid.  112 

Constant recession at the present-day rate implies Moon formation at ~9.6 Ga whilst 113 

assuming that the present-day time-lag applies throughout Earth-history predicts Moon 114 

formation at ~1.5 Ga (Gerstenkorn, 1967).  In contrast, age estimates for formation of the 115 

Earth-Moon system are around 4.5 Ga (e.g. Kleine et al., 2005; Taboul et al., 2007).  The 116 

modern recession rate therefore overestimates the Earth-Moon separation in the past 117 

whilst the modern tidal-time-lag systematically underestimates it.   118 

The underestimated time since Moon-formation, predicted by the constant tidal-time-lag 119 

model, implies that correct timing of Moon formation requires the typical tidal-time-lag, 120 

over Earth’s history, to be substantially smaller than the observed value at the present day.  121 

The high, modern tidal-dissipation results from resonance effects in the Earth’s oceans; 122 

some combinations of natural oscillation frequencies in ocean-basins are close to 123 

frequencies excited by the tides (Gotlib and Kagan, 1980, 1981; Platzman et al., 1981; Webb, 124 
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1982; Green 2010;  Green and Huber, 2013).  Hence relatively strong tidal currents are 125 

excited which produce increased tidal-friction at the sea-floor.   126 

The strength of this resonance varied through time as a result of eustatic sea-level change, 127 

plate-tectonic reorganization of the basins and decreasing tidal-frequency as Earth’s 128 

rotation slows.   Hence, fluctuations in tidal-time-lag (resulting from eustacy and plate-129 

tectonics) are superimposed upon a long-term trend (resulting from a gradually lengthening 130 

day).  Some studies (e.g. Webb, 1982) imply that the resulting evolution is dominated by the 131 

long-term trend whilst others (e.g. Green and Huber, 2013) support the idea of large 132 

fluctuations.  Settling this question by computer simulation of ancient tides is prevented by 133 

the computational-cost of the many, high-resolution models needed and by a lack of 134 

sufficiently well-constrained ancient ocean bathymetries.  There has been some progress 135 

but only for the relatively recent past (e.g. Green and Huber (2013) model Eocene tides) and 136 

it is unlikely that sufficiently detailed bathymetries will soon be available for more distant 137 

periods of Earth history. 138 

Given these difficulties, it is clearly desirable to find observational constraints on ancient 139 

Earth-Moon separation.  In principle, these can be obtained using ancient tidal rhythmites; 140 

sediments that retain a record of the number of days per neap-spring tide-cycle and the 141 

number of neap-spring tide-cycles per year (Williams, 1989, 2000; Sonett et al., 1996a, 142 

1996b; Bills and Ray, 1999; Mazumder and Arima, 2005).  The Elatina and Reynella 143 

rhythmites of South Australia are the best published examples of tidal rhythmites since they 144 

record three independent measurements of Earth-Moon distance (Williams, 1989, 2000; 145 

Deubner, 1990). Together, these self-consistent determinations produce a combined 146 

separation estimate of 371±2 thousand km at 620±20 Ma.  147 
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However, as a consequence of errors resulting from missing laminations (Williams, 2000; 148 

Archer, 1996) and difficulties with correct recognition of cycles (Archer, 1996; Kvale et al., 149 

1999), other rhythmites are not as well constrained as those from Elatina/Reynella and 150 

interpretations of all rhythmite deposits (including Elatina/Reynella) remain highly 151 

contentious.  Alternate approaches have attempted to use banded iron formations (Walker 152 

and Zahnle, 1986) or stromatolites (Vanyo and Awramik, 1985; Cao, 1991) but none of these 153 

methods are widely accepted.  Thus, there are no uncontentious measurements of Earth-154 

Moon separation except for the present day value.   155 

However, one other constraint is available.  It is widely, but not universally, accepted that 156 

the Earth-Moon system formed as a consequence of a massive impact in the early solar 157 

system.  This produced debris, orbiting the newly formed Earth, which coalesced to create 158 

the Moon just outside the Roche limit (Canup and Asphaug, 2001).  Hence, an Earth-Moon 159 

separation of around 30 thousand km at 4.5 Ga is reasonably secure.  In this paper, these 160 

two endpoints (i.e. 384 thousand km today and around 30 thousand km at 4.5 Ga) will be 161 

used to constrain reconstructions of Earth-Moon separation though time.   162 

This leaves a great deal of uncertainty at other times and the effects of this, on Milankovitch 163 

cycle predictions, are the main focus of this paper.  This paper does not provide significant, 164 

new advances in our understanding of the celestial mechanics of the Earth-Moon system.  165 

Neither does it provide new observational constraints.  The paper’s ambition is simply to 166 

take what we already know, and use this to make first-order estimates of uncertainties in 167 

cyclostratigraphic frequencies.   The paper then looks at the consequences of those 168 

uncertainties for cyclostratigraphic interpretation of sediments.  It must be emphasised that 169 

the uncertainties discussed here result from our ignorance concerning the details of Earth-170 
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Moon system evolution and these uncertainties can in principle be removed by an improved 171 

understanding of that history (e.g. through better modelling of ancient tidal-drag or by 172 

obtaining better constraints from analysis of ancient sediments).  However, such 173 

improvements lie outside the scope of this paper which is only concerned with quantifying 174 

the level and impact of current uncertainties. 175 

In the next section a range of plausible Earth-Moon separation histories, consistent with the 176 

known end-points and celestial mechanics, will be investigated and used to place lower-177 

limits on lunar recession uncertainties through time.  Following this, these modelled lunar 178 

histories are used to calculate uncertainties in the Earth’s axial precession rate.  These 179 

uncertainties are then combined with those resulting from diffusive-drift and from 180 

overlapping-adjacent-periods, to produce estimates of uncertainties in Milankovitch periods 181 

and in their ratios.  The paper concludes by discussing the resulting impacts on 182 

cyclostratigraphy and, in particular, on: (i) estimates of time-durations; (ii) identification of 183 

cycles; (iii) testing of the hypothesis that cycles are Milankovitch driven. 184 

 185 

LUNAR RECESSION MODELLING 186 

A Simplified Model 187 

The first step is to investigate the Earth-Moon separation history.  The theory of lunar 188 

recession was developed by Darwin (1880) and modern treatments can be found in Goldreich 189 

(1966), Murray and Dermott (1999), Atobe and Ida (2007) and Laskar et al. (2004).  These 190 

papers provide detailed and comprehensive solutions to the problem of modelling Earth-191 

Moon evolution but, throughout this paper, the simplifying assumptions of a zero-192 

eccentricity, zero-inclination lunar-orbit will be made.  These simplifications are necessary 193 
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for the methods used here but the errors introduced are insignificant compared to those 194 

produced by lunar-recession uncertainty.  If solar tides are also neglected (Deubner (1990) 195 

shows the effect is small) the evolution of the Earth-Moon separation becomes (Lambeck, 196 

1980; Murray and Dermott, 1999; Bills and Ray, 1999) 197 

    da/dt = f a-5.5,      (1) 198 

where a is Earth-Moon separation, t is time and the tidal drag factor, f, is 199 

    f = 3 (k2/Q) (m/M ) R5 μ0.5,    (2) 200 

with k2 the Earth’s Love-number (a measure of rigidity), Q the tidal quality factor (a measure 201 

of the rate of energy dissipation into heat), m and M the masses of the Moon and Earth 202 

respectively, R the radius of the Earth and μ = G( M + m).  (Note that equations (1) and (2) 203 

can also be derived from the coplanar, zero-eccentricity, zero-solar-drag approximation to 204 

Laskar et al. (2004), equation (12) with Q-1 playing a role equivalent to their tidal-lag, Δt.) 205 

The stripped-down model given by equation (1) is used in preference to a numerical 206 

treatment of the full system of equations because it has the analytical solution 207 

    a6.5 =  ao
6.5 – 6.5 Ft t     (3) 208 

where ao is the present day lunar distance, t is now age (i.e. there has been a change of sign 209 

from t representing time in equation (1)) and Ft is the age-averaged drag factor  210 

Ft = 0 ∫ 
t

 f dt’ / t .      (4) 211 

This simplified approach is surprisingly accurate as can be seen in Figure 1 which compares 212 

its predictions to Laskar et al.’s (2004) full solution.   In Figure1, I have assumed a constant 213 

tidal drag of Ft = 2.075 x 1038 m6.5 s-1 (equivalent to Laskar et al.’s (2004) assumption of a 214 

constant time-lag of 639 s) which produces an rms difference between the models of only 215 

0.015%. 216 

 217 

218 
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Model Constraints 219 

The tidal drag factor used in Figure 1 can be validated using lunar laser-ranging (Dickey et 220 

al., 1994) which gives a current recession rate of 38.2±0.7 mm/y and hence, from equation 221 

(1),  f = 1.99±0.04x1038 m6.5 s-1.  This compares reasonably well to estimates from analysis of 222 

eclipse locations from 700 BC to 1990 AD (Stephenson and Morrison, 1995) which give a 223 

tidally generated reduction in day-length of 2.3±0.1 ms/century and, by conservation of 224 

angular momentum, a lunar-recession rate of 42.1±1.8 mm/y to yield f=2.2±0.1 x1038 m6.5s-1.   225 

Formal combination of these two estimates yields f = 2.01±0.04x1038 m6.5 s-1 but the larger 226 

uncertainty in the eclipse-based estimate may reflect true, longer-term fluctuations not 227 

captured by the 40-year lunar-ranging datatset.  The remainder of this paper will therefore be 228 

conservative by using a slightly larger estimate of uncertainty and assuming a present-day 229 

tidal-dissipation of f = 2.1±0.1x1038 m6.5s-1 which encompasses the best estimates from these 230 

two approaches and also ensures good agreement with the full model of Laskar et al. (2004).  231 

However, in the remainder of this paper, I assume that tidal dissipation varies through time so 232 

that Ft is no longer constant.  Hence, F0 = 2.1±0.1x1038 m6.5s-1 but, for all other times, Ft must 233 

be estimated. 234 

The first stage is to find F4500, i.e. the drag averaged over the entire history of the Earth-235 

Moon system.  Assuming the Moon formed as the result of a large impact at 4500±50 Ma 236 

(Touboul et al., 2007) just outside the Roche limit (i.e. a=3±1x107 m, Canup and Asphaug 237 

(2001)), equation (3) yields F4500 = 6.85±0.08 x1037 m6.5s-1  = (0.33±0.03)F0.  The mean tidal 238 

drag, averaged over the last 4.5 Gy, is therefore only one third of its present value.     239 

This section will now model a range of plausible lunar-recession histories using equation (3) 240 

and the constraints that ao=3.84x108m, Fo=2.1±0.1x1038 m6.5s-1 and F4500 = 6.85±0.08 x1037 241 

m6.5s-1.   These constraints, along with equation (3), ensure that a middle-path is taken for 242 
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the predicted Earth-Moon separation which is neither biased towards too large a value (e.g. 243 

as produced by assuming the modern recession rate) nor too small a value (e.g. as produced 244 

by assuming a constant tidal-lag-time).  Nevertheless, the constraints are not particularly 245 

restrictive and allow a wide range of possible scenarios.  246 

To allow progress, this paper investigates two specific scenarios which are compatible with 247 

the constraints.  First, I assume Ft increases smoothly through time as a consequence of a 248 

decelerating Earth-rotation rate.  This produces a range of outcomes since the precise form 249 

of the smooth function is unknown.  Following this, I look at a model in which f is assumed 250 

to slowly fluctuate around a long-term mean.   This too produces a range of outcomes since 251 

there are many fluctuating sequences of f that have a long-term mean equal to F4500.   252 

Between them, these models predict a range of lunar-recession histories.  If additional 253 

plausible models were also investigated, they could only serve to increase the range of 254 

predicted recession histories and so, provided the two models investigated here are 255 

plausible, they give a lower-bound estimate on the uncertainty.  As will be shown, even this 256 

lower-bound is sufficient to demonstrate that astronomically-calibrated cyclostratigraphy is 257 

severely compromised. 258 

 259 

Smooth Change Model 260 

Ocean-tide models (Gotlib and Kagan, 1980, 1981; Platzman et al., 1981; Webb, 1982) based 261 

upon simplified ocean basin geometries (e.g. a constant-depth, hemispherical ocean in 262 

Webb (1982)) predict that tidal-drag increases, as Earth’s rotation slows, until a resonance 263 

peak is reached at a slightly lower tidal-frequency than that experienced today.  Thus, in 264 
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these simplified models, f has increased through time and has not yet reached its maximum 265 

value.  The broad effect of this form of f-history on predicted lunar distance can be 266 

demonstrated by using exponential growth to approximate this behaviour, i.e. 267 

    f = f∞ + ( f0 - f∞ )exp(-t/τ),    (5) 268 

where f∞ is a background value and τ characterizes the timescale over which significant 269 

changes in resonance strength occur.  This time-scale is poorly constrained, because of the 270 

simplifying assumptions of ocean-tide models, but since it is largely controlled by the time-271 

scale for significant changes in Earth rotation rate, it should be on the order of 100s My or 272 

longer.  Here, I will assume it falls in the range 100 My to 1 Gy. 273 

Equation (3) requires the time-averaged drag Ft, rather than the instantaneous drag f, but 274 

integration of equation (5) gives  275 

   Ft = f∞ + (τ / t)( f0 - f∞ )[ 1 - exp(-t/τ) ].   (6) 276 

The solid lines in Figure 2 show the resulting range of mean-tidal-drag histories with f∞ 277 

chosen to ensure the correct value of F4500.  Figure 3 shows the resulting lunar-recession 278 

history.  Both graphs only show the past 700 Ma because the Phanerozoic is the period of 279 

most interest in cyclostratigraphy whilst extending out to 700 Ma allows Figure 3 to 280 

compare models to the Earth-Moon distance derived from the Elatina/Reynella rhythmites. 281 

 282 

  283 
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Fluctuating Model 284 

Time variation in f may have been dominated by eustatic sea-level changes or by plate-285 

tectonic reorganization of ocean basins rather than by increasing day-length.  Direct 286 

modelling of this is problematic, as already indicated, but the little modelling that has been 287 

done indicates that small changes in sea-level and basin geometry can produce dramatic 288 

changes in tidal dissipation (e.g. see Green and Huber, 2013). Hence, f may be better 289 

modelled as a complex fluctuation around a typical value.  On this interpretation, the 290 

present-day high tidal-dissipation is a chance outlier.   291 

The requirement for positive f, together with a modern value which exceeds the long-term 292 

mean by a factor of three, is inconsistent with the assumption that the fluctuations are 293 

normally-distributed around the mean but fully consistent with a log-normally distributed 294 

process. This subsection therefore builds a tidal-drag model based upon the assumption 295 

that drag fluctuated with a log-normal distribution having the correct long-term mean-drag 296 

and having fluctuations large enough to allow the high present-day value. 297 

The mean, M, of a log-normal distribution is (DeGroot and Schervish, 2002) 298 

  M = exp( m + σ2/2 )      (7) 299 

where m is the location parameter and σ the scale parameter of the distribution.  300 

Furthermore, the cumulative probability is (DeGroot and Schervish, 2002) 301 

   P(x<X) = Φ[ { ln(X) – m } / σ ],     (8) 302 

where Φ is the cumulative distribution function of the normal distribution.   303 
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Combining equations (7) and (8), the probability of a randomly chosen value being at least 304 

three times the mean value is 305 

P(x>3M) = 1.0 – Φ[ ln(3)/σ + σ/2 ].   (9)   306 

Equation (9) is plotted in Figure 4 as a function of σ and shows that it is plausible for an 307 

outlier to exceed the mean by a factor of three (i.e. it has a probability >5%) but only for a 308 

narrow range of scale parameter.  Hence, a log-normal-fluctuation explanation for the 309 

observed, large, modern f is statistically plausible (at 5% significance) and the remainder of 310 

this section approximates the Earth’s tidal-drag history by a time-series of f-values extracted 311 

from a log-normal process.   312 

The f-values in this time-series should be spaced sufficiently far apart that they are 313 

uncorrelated, independent specimens from the distribution.  The appropriate time-interval 314 

depends upon the speed of the process causing changes in resonance strength.  The longest 315 

relevant time-scale is that for significant reconfiguration of ocean basins whilst the shortest 316 

time-scale is associated with eustatic sealevel fluctuations.  This unknown time-scale is the 317 

main source of uncertainty for the fluctuating-drag model but, in this paper, I will assume 318 

values in the range 0 to 100 My. 319 

Over a period significantly greater than the time-scale, the mean value of f should converge 320 

onto the long-term mean.  However, this simple situation is altered because the present-day 321 

value is known, rather than extracted from the distribution.  As a result, the observed long-322 

term mean is skewed away from the true mean and towards a higher value according to 323 

   F4500 = ( nM + f0 ) / ( n + 1 )     (10) 324 

where n is the sample size, i.e. 325 
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   n = 4500 / Δt       (11) 326 

and Δt is the time-scale of the process (i.e. the gap between uncorrelated f values).  327 

Equation (10) allows the true-mean, M, of the distribution to be estimated from the 328 

observed long-term mean, F4500.  To completely specify the log-normal distribution a scale 329 

factor is also needed and I assume σ=1.48 since this gives the distribution for which the 330 

modern high-drag is least unlikely. 331 

Given M and σ, the envelope of reasonable Ft functions can be found by noting that, for 332 

normal distributions, the sample mean fluctuates with a standard error equal to standard-333 

deviation/√n (where n is sample size).  Thus, for a log-normal distribution, the sample mean 334 

fluctuates around the population mean, M, with an asymmetric spread given by 335 

Mexp(±σ/√n) (i.e. ~68% of the sample means will lie in the range Mexp(-σ/√n) to 336 

Mexp(+σ/√n)).   Adding the constraint that f0 is known then gives 337 

   FkΔt = [ f0 + kMexp(±σ/√k) ] / ( k + 1 )     (12) 338 

as the envelope of time-averaged drags, Ft, at time t=kΔt.   339 

The dashed lines in Figure 2 show the resulting envelope of F-histories assuming 0 < Δt < 340 

100 My.  The lower limit corresponds to control by eustatic sea level (fluctuations can occur 341 

on time scales << 1 My) whilst the upper limit corresponds to the time-scale for significant 342 

reorganization of ocean basins.  This fluctuating-drag model produces generally lower 343 

predictions for F than the smooth-change model because the values fall towards the long-344 

term mean more quickly as we go back in time.  This is expected given that the assumed 345 

time-scale for the fluctuating model was 0-100 My whilst the assumed time-scale for the 346 

smooth-change model was 100-1000 My.   347 
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Comparison of Models and Data 348 

The Earth-Moon separations produced by this paper’s models are shown in Figure 3 along 349 

with the results from analysis of the tidal-rhythmites at Elatina/Reynella discussed in the 350 

introduction.  The results of modelling lunar-recession assuming a constant tidal drag factor 351 

(i.e. the model of Laskar et al. (2004)) are also shown for comparison.  The key observations 352 

are that the models introduced in this paper show significantly greater Earth-Moon 353 

separation than the constant-drag-factor model and much better agreement with the 354 

rhythmite data.  Furthermore, the generally smaller drag-values of the fluctuating-drag 355 

model, compared to the smooth-change model, results in generally higher Earth-Moon 356 

separations at any given moment in time.  This is the consequence of the smaller time-scale 357 

in the fluctuating model, as discussed above.  358 

 359 

EARTH’S AXIAL PRECESSION FREQUENCY 360 

The next step is to calculate Earth’s precession frequency from the Earth-Moon separations 361 

found above.  Following the methods described in Berger et al. (1992) but, as before, 362 

assuming a circular lunar-orbit, the axial precession frequency, k, is  363 

   k = A cos(o) Ω [ (m/a3) + (m /a 3) ]    (13) 364 

where A is a constant (chosen to make present day k=50.476 “/y, after Laskar et al. (2004)), 365 

o is obliquity, Ω is Earth's rotation frequency and  indicates solar values.  Earth’s rotation 366 

rate and the obliquity can be calculated using the approach of Goldreich (1966) and Atobe 367 

and Ida (2007) which, under this paper’s standard assumptions of circular, coplanar orbits 368 

and small solar effects, simplify to the equations 369 
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  dx/da = -h( 1 – x2 )( Ωx –2n ) / 4aCxΩ ( Ωx – n )    (14) 370 

    CxΩ = Lo – h      (15) 371 

where C is Earth’s moment of inertia, x=cos(o), h is the angular momentum of the lunar 372 

orbit (=m’μ1/2a1/2), n is the lunar mean motion (=μ1/2a-3/2), Lo is the conserved total angular 373 

momentum perpendicular to the lunar orbit, m’ is the reduced lunar mass (=mM/(m+M) ) 374 

and μ=G(m+M).  Explicit finite-difference solution of these equations (Press et al., 2002) 375 

gives Figure 5 which is indistinguishable from the full solution shown graphically in Goldreich 376 

(1966). 377 

Using equations (13), (14) and (15), together with the previously derived results for lunar-378 

recession, then produces the Earth-axis precession history shown in Figure 6.  The key 379 

observation, from the point of view of this paper, is that the uncertainty in k increases with 380 

age and reaches around 10 “/yr by the early Phanerozoic.  381 

 382 

THE IMPACT ON CYCLOSTRATIGRAPHY 383 

Figure 7 shows the obliquity and climate-precession periods, along with their uncertainties, 384 

that result from combining Table 1 with Figure 6.  Note that two of the climate-precession 385 

cycles given in Table 1 (P3 and P4) are indistinguishable on this plot and, hence, there are 386 

only four distinct cycles shown.  The main conclusion is that the uncertainty in all the cycles 387 

increases rapidly with age, as a consequence of the uncertainty in Earth-Moon separation.  388 

Furthermore, by 150 Ma the uncertainties make two of the climate-precession cycles 389 

indistinguishable and, by 500 Ma, all of the climate-precession cycles have merged. 390 
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For obliquity, uncertainty rises from 0% today to 25% at the beginning of the Phanerozoic 391 

(~8 ky from the bottom of the range to the top, centred ~32 ky).  As a consequence, any 392 

sedimentation durations calculated using obliquity cycles will also have errors of the same 393 

relative size and these could undermine attempts to use cyclostratigraphy to refine the 394 

geological time-scale.    395 

Similar sized relative-errors also occur for the climate-precession cycles but, in this case, the 396 

situation is made more complex by the existence of four separate cycles.  Two of the cycles 397 

(P3 and P4) are indistinguishable at all times and another two (P1 and P2) become 398 

indistinguishable before 150 Ma.  All four cycles are indistinguishable before 500 Ma.  By the 399 

start of the Phanerozic the uncertainty exceeds 35% (~7ky range centred ~19ky). 400 

However, as discussed in the introduction, the true observables determined from analysis of 401 

sedimentary cycles are not usually cycle periods but, rather, ratios of sedimentary 402 

wavelengths.  Figure 8 uses the periods (and associated uncertainties) from Figure 7 to 403 

calculate Milankovitch period ratios (and their uncertainties).  Note that the 10 cycles listed 404 

in Table 1 give rise to 45 ratios but, for clarity, Figure 8 does not display them all.  Firstly, 405 

related ratios which overlap have been collected together (e.g. the top of Figure 8 shows 406 

the 4 long-eccentricity/precession ratios as a single zone).  Secondly, the 4 ratios of long-407 

eccentricity/short-eccentricity are not plotted as they do not change with time (after 408 

including overlaps, these ratios are 4.19±0.17 and 3.19±0.17). 409 

The first conclusion that can be drawn from Figure 8 is that some period-pairs are non-410 

unique.  Before 400 Ma, an observed period ratio of ~4.5 could result from short-411 

eccentricity/precession or short-eccentricity/obliquity.  Even more seriously, one of the 412 

long-eccentricity/short-eccentricity ratios (4.19±0.17) always overlaps with short-413 
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eccentricity/precession whilst the other long-eccentricity/short-eccentricity ratio 414 

(3.19±0.17) always overlaps with short-eccentricity/obliquity.  As a consequence, there is 415 

potential to misidentify cycles.   For example, an observed ratio of 4.2 might indicate that 416 

the shorter cycle is ~20 ky if it’s precession-related or ~100 ky if it’s short-eccentricity 417 

related.  This would produce a five-fold difference in estimated time-duration. 418 

A further problem indicated by Figure 8 is that, even at 0 Ma, there is a 20% probability that 419 

a randomly chosen ratio will fall within a predicted ratio-range.  By the time we get to the 420 

start of the Phanerozoic there is a 70% chance of a randomly chosen ratio hitting a 421 

predicted Milankovitch-ratio uncertainty range.  Under these circumstances, we cannot 422 

claim that finding a predicted ratio, in a sedimentary dataset, is a reliable indication that the 423 

cycles really are Milankovitch driven.  Ideally, for identification of Milankovitch-cyclicity to 424 

be statistically significant, the probability of hitting a predicted ratio by chance should be 425 

below 5% (taking the standard assumption in Earth Sciences of a 5% significance level).   426 

Clearly, from Figure 8, this threshold is never met for a single observed ratio.   427 

However, in most analyses of sedimentary data, several superimposed cycles will be 428 

observed allowing more than one wavelength-ratio to be estimated.  If n independent 429 

wavelength ratios are found in the data, the probability of this occurring by chance is pn 430 

where p is the probability of hitting a single ratio by chance.  The number of independent 431 

ratios is, in turn, given by the number of cycles minus one (e.g. 3 cycles give only 2 432 

independent ratios because the third ratio is simply related to the other two).  Figure 9 433 

shows the number of observed cycles required to bring the joint probability below 5%.  For 434 

example, at 200 Ma, five different Milankovitch cycles should be identified to make the 435 

assumption of Milankovitch cyclicity statistically significant.  Given this issue, it is important 436 
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that additional constraints (e.g. radiometric dates) are available when claims are made of 437 

the identification of Milankovitch-driven cycles in sedimentary sequences. 438 

 439 

CONCLUSIONS 440 

This paper has, for the first time, made estimates of the uncertainties in Milankovitch cycle 441 

periods and their ratios.  It has also investigated the impacts of these uncertainties on 442 

astronomically-calibrated cyclostratigraphy.  The key conclusions are: 443 

1. Obliquity-cycle and precession-cycle period uncertainties grow with time and are 444 

typically 10s of percent within the Phanerozoic.  These uncertainties will produce 445 

similar sized uncertainties in sedimentation-duration estimates made using 446 

cyclostratigraphy. 447 

2. These uncertainties in Milankovitch periods are large enough to produce substantial 448 

overlaps between adjacent periods.  As a consequence, there is frequently ambiguity 449 

concerning correct identification of cycles and, hence, serious problems with 450 

estimation of sedimentation durations. 451 

3. Cyclostratigraphy often relies on identification of ratios of Milankovitch cycle pairs 452 

(e.g. 5:1 bundling of eccentricity to precession) rather than direct identification of 453 

individual cycles.  However, these ratios have substantial uncertainties and the 454 

resulting overlaps produce severe non-uniqueness in the identification of cycles.  455 

These will translate into substantial uncertainties concerning estimation of 456 

durations. 457 
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4. Once uncertainties are taken into account, the predicted ratios of Milankovitch 458 

cycles cover a large percentage of the available space.  Hence, finding a wavelength-459 

ratio in sedimentary cycles which matches predicted Milankovitch-ratios is not 460 

statistically significant.  Several ratios must therefore be identified before 461 

Milankovitch cyclicity can be confidently established and this difficulty gets worse 462 

the further back in time we go. Hence, in the absence of independent methods for 463 

estimating durations (e.g. radio-active decay based methods), it is difficult to 464 

demonstrate that cycles are Milankovitch driven. 465 

5. Previous estimates of lunar recession have systematically overestimated Earth-Moon 466 

separation in the past (if they assumed constant recession rate) or systematically 467 

underestimated Earth-Moon separation (if they assumed constant tidal time-lag).  468 

The estimates produced in this paper do not have either bias and, for the first time, 469 

include estimates of uncertainty.  They should therefore be used in preference to 470 

earlier estimates until better observational constraints become available. 471 

6. The uncertainties for obliquity and climate-precession periods are dominated by the 472 

effect of uncertainties in lunar-recession history.  Hence, the effectiveness of 473 

cyclostratigraphy would be significantly enhanced if better estimates of past Earth-474 

Moon separation could be produced. 475 

7. The calculations used in this paper have been incorporated into a JavaScript program 476 

that can be run on any modern browser on any device (Fig 11).  The program 477 

calculates Earth-Moon separation, day-length, axial precession period, the main 478 

obliquity period and the four main climate-precession periods for any time in Earth 479 

history.  It also gives the corresponding uncertainties.  The program is released under 480 

a creative commons licence and can be freely downloaded from 481 
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http://nm2.rhul.ac.uk/project/cyclostratigraphy-evolution-earth-moon-system/. 482 

Once downloaded, the program can be distributed without restriction. 483 
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Figure Captions 636 

Figure 1.  Comparison of equation (3) to the full numerical solution of Laskar et al. (2004).  637 

The rms difference is 0.015%. 638 

Figure 2.  Time-averaged tidal-drag factor, F, through time.  Solid lines show the plausible 639 

range assuming tidal drag has risen smoothly through time.  Dashed lines show the plausible 640 

range assuming the drag factor has fluctuated through time.    641 

Figure 3.  Lunar-recession history.  Solid lines and dashed lines correspond to equivalent 642 

lines from Figure 2.  The single point, with error bars, shows results from analysing the 643 

Elatina/Reynella rhythmites.  The dotted line shows the constant-drag model (i.e. the model 644 

of Laskar et al. (2004)). 645 

Figure 4.  Probability of the modern tidal-drag exceeding three-times the long-term mean, 646 

as a function of log-normal scale parameter, σ.    This probability exceeds 5% for a (narrow) 647 

range of σ and it is therefore plausible that the modern high value represents an outlier 648 

from a log-normal distribution. 649 

Figure 5.  Obliquity of Earth’s axis as a function of Earth-Moon separation.  Calculations 650 

assumed a circular lunar orbit and neglected solar effects.  Separation is expressed in Earth-651 

radii to allow easy comparison to the full solution of Goldreich (1966). 652 

Figure 6.  Earth’s axial precession rate history.  Solid lines and dashed lines correspond to 653 

those shown in figs. 2 and 3. 654 

Figure 7.  Climate-precession and obliquity periods, together with uncertainties, as a 655 

function of age.  Two of the precesion periods (P3 and P4 from Table 1) are combined into a 656 
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single range as they are very close to one-another.  Note that, by the start of the 657 

Phanerozoic, the period uncertainty (i.e. the range) is ~25% of the central estimate for both 658 

obliquity and precession.  659 

Figure 8.  Ratios of Milankovitch cycles as a function of time.  Note that the cycles listed in 660 

Table 1 give rise to 45 separate ratios but, since uncertainties produce overlaps in many of 661 

these, the ratios are represented by the 5 zones shown here plus two zones for the ratios of 662 

long eccentricity to short eccentricity (4.19±0.17 and 3.19±0.17, not shown). 663 

Figure 9.  Probability that a randomly chosen ratio will agree, by chance, with a predicted 664 

Milankovitch cycle ratio within error.  Note that, even at 0 Ma, a single observed ratio is 665 

insufficient to give a statistically significant identification (i.e. p>5%).   666 

Figure 10.  Number of observed cycles required for a statistically significant attribution to 667 

Milankovitch cyclicity.  If the number of observed cycles is below this threshold, additional 668 

constraints are required (e.g. radiometric dating) to support a claim of Milankovitch 669 

cyclicity. 670 

Figure 11.  JavaScript Program for calculating ancient Milankovitch periods, and their 671 

uncertainties, using the methods described in this paper.  The program is available at 672 

http://nm2.rhul.ac.uk/project/cyclostratigraphy-evolution-earth-moon-system/ and can be 673 

downloaded and redistributed freely.  674 



Table 1.  The major Milankovitch cycles, focussed on in this paper, along with their variability resulting from 

diffusive drift.  The present day axial precession rate, k, is taken to be 50.476 “/y. Values in Table 1 are taken 

from Laskar et al (2011).  Letters after precession cycles (P1, P2 etc) refer to abbreviations used in Fig. 7. 

Cycle Freq ("/y) Present Day Period (ky) 
Long Eccentricity 3.196 ± 0.019 405.6 ± 2.4 
Short Eccentricity 13.66 ± 0.20 94.9 ± 1.4 
Short Eccentricity 10.46 ± 0.20 123.9 ± 2.6 
Short Eccentricity 13.11 ± 0.20 98.9 ± 1.5 
Short Eccentricity 9.92 ± 0.20 130.8 ± 2.9 
Obliquity k - 18.848 ± 0.066 ± Δk 40.977 ± 0.086 
Climate Precession, P1 k +  4.257482 ± 0.00003 ± Δk 23.678377 ± 0.000013 
Climate Precession, P2 k + 7.453 ± 0.019 ± Δk 22.3722 ± 0.0074 
Climate Precession, P3 k+ 17.92 ± 0.20 ± Δk 18.950 ± 0.055 
Climate Precession, P4 k + 17.37 ± 0.20 ± Δk 19.103 ± 0.056 
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