
Algebraic Cryptanalysis and RFID
Authentication

C. Cid1, L. Ferreira2, G. Procter1, and M.J.B. Robshaw3

1 Information Security Group, Royal Holloway University of London
Egham, TW20 OEX, UK

2 Applied Cryptography Group, Orange Labs
38–40 rue de General Leclerc, 92794 Issy les Moulineaux, France

3 Impinj, 701 N. 34th Street, Suite 300,
Seattle, WA 98103, USA

Abstract The standardization group ISO/IEC SC31/WG7 is working
on a set of cryptographic suites to provide security to wireless devices in-
cluding UHF RFID tags. These cryptographic suites are presented as
independent parts to a single standard ISO/IEC 29167. Within this
multi-part standard 29167-15 is based around very simple operations
and intended to provide tag, interrogator, and mutual authentication.
Here we show that these proposals can be fully compromised using al-
gebraic cryptanalytic techniques; the entire key can be recovered after
eavesdropping on just four authentications.

1 Introduction

It is perhaps a sign of commercial maturity that standardization on cryptography
for low-cost UHF RFID tags has begun. With such standards to hand tag, inter-
rogator, and mutual authentication, along with secure tag-interrogator commu-
nications, can all be considered and securely implemented in the future. Increas-
ingly referred to as RAIN RFID after the foundation of the RAdio IdentificatioN
(RAIN) Industry Alliance [20], the technology will be widely deployed and is
likely to become an integral part of the Internet of Things (IoT). However, such
tags pose a major challenge when deploying cryptography since they are very
limited in terms of the space available in silicon and the power available for
on-tag computation. By comparison HF RFID tags that we find in public trans-
port ticketing and NFC applications are positively luxurious. It is within this
context that ISO/IEC 29167-15 has been proposed; to provide security services
to resource constrained devices.

One goal of this paper is to highlight the poor—in fact non-existent—security
provided by ISO/IEC 29167-15. While the scheme can be compromised in many
ways, this paper uses algebraic cryptanalysis to provide an elegant and effi-
cient attack. But an arguably more important goal is to provide a warning of
how even technically poor proposals can advance far into the standardization
process. Given that there already exist many sound (and standardized) cryp-
tographic designs for HF and UHF RFID tags, we hope our analysis will deter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77297393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


standardization bodies and product developers from adopting schemes that have
had little technical scrutiny.

1.1 The Standardization Landscape for UHF RFID

It may not be immediately apparent why yet another group within ISO/IEC
is standardizing cryptographic mechanisms. To see why this important work is
underway we need to understand the role of other standards in the field.

The commands that can be sent to a (standardized) UHF RFID tag are
defined in two documents that have been published1 by EPCglobal, part of GS1.
The dominant standard covering all current large-scale deployments is known as
Gen2v1 [8] and the final update to this standard was published in 2008. In 2013,
however, the Gen2v2 standard was published [9] and as the version number
implies, this extends the functionality of Gen2v1. The most significant and far-
reaching additions are optional over-the-air commands that allow the deployment
of security functionality.

Gen2v2 defines the over-the-air commands for UHF RFID but this is all it
does. For instance, a command authenticate is defined and this can be used
to develop a solution for tag, interrogator, or mutual authentication. However
all the security commands in Gen2v2, including authenticate, have been de-
liberately designed to be both flexible and crypto-agnostic; they are completely
independent of any specific cryptographic technology. By way of illustration, the
format of the authenticate command is given below, with the field descrip-
tions, lengths, and possible values given by the three rows of the table. The
handle and CRC-16 are part of the communication protocol while SenRep and
IncRepLen are application options. The most important fields for our purposes
are marked ? and their values are not defined by Gen2v2. The CSI field identifies
the cryptographic algorithm/protocol while the Length/Message fields identify
the cryptographic payload being carried by the command.

command RFU SenRep IncRepLen CSI Length Message RN CRC

length 8 2 1 1 8 12 variable 16 16

value d5x 00b 0b/1b 0b/1b ? ? ? handle CRC-16

For the cryptographic technology itself we would likely turn to the usual
sources. NIST standardizes cryptographic technologies such as the Advanced
Encyption Standard (AES) [16]. Other cryptographic technologies have been
standardized within ISO/IEC SC27 and some, such as present [2,14] and cryp-
toGPS [10,15], are explicitly targeted at constrained environments.

However we can see there is an implementation gap between the over-the-air
commands and the cryptographic primitives. For example, the authenticate
command says nothing about how to achieve tag authentication using, say, a
challenge-response authentication protocol. It doesn’t even say what algorithms
might be supported on the tag or interrogator. Similarly, the AES standard

1 The Gen2v1 specifications are also standardized within ISO/IEC 18000-63 with
Gen2v2 standardization underway as a revision.



(FIPS-197 [16]) doesn’t tell us how to use the AES block cipher to perform tag
authentication; instead FIPS-197 tells us how a 128-bit output is derived from
a 128-bit input and a key. It is the goal of the work in ISO/IEC SC31/WG7,
therefore, to provide a mapping between the cryptographic primitive and the
generic over-the-air command; that is, to fill in the information marked ? in
the command above. This mapping is referred to as a cryptographic suite and
the ISO/IEC 29167 standard consists of several parts, each describing a crypto-
graphic suite and a solution. If one wishes to perform tag authentication using
AES-128 then ISO/IEC 29167-10 is the cryptographic suite of interest. For tag
authentication with present-80, Grain-128a or cryptoGPS, parts 29167-11,
29167-13, and 29167-17 are, respectively, the ones to use.

Many cryptographic suites in ISO/IEC 29167 are built on trusted or stan-
dardized primitives. Some, however, are built around new and immature pro-
posals. Despite very negative comments during the development of 29167-15,
the ISO/IEC voting structure is such that even a technically poor proposal can
advance far through the standardization process. The current status of 29167-15
is unclear, though it may be moved to a Technical Specification. Technical speci-
fications are sometimes used when there are irreconcilable differences of opinion
and they provide the opportunity for public comment. After three years the work
in the technical specification is then either abandoned or re-introduced to the
standards process. This paper can be viewed, therefore, as input to this process
and provides compelling support for the view that future work on this standard
should be resisted.

2 Early Versions

One reason for the longevity of ISO/IEC 29167-15 is that patches have been
applied at several stages during the process. All variants propose mechanisms
for tag authentication, interrogator authentication, and mutual authentication.
All variants are simple and built around the supposed difficulty of analyzing the
combination of bitwise exclusive-or and integer addition, though first proposals
were even simpler; see Table 1.

There are many problems with the proposal in Table 1 but the most pressing
is that there is no security. The sole use of a single operator (in this case bitwise
exclusive-or) gives a differential attack. By eavesdropping an attacker recovers
RI, RT, A, and B. The adversary can then make a fake tag that fools a legitimate
reader without knowing the secret key K. The attack is outlined in Table 2 where
variables in a subsequent run of the protocol are denoted *. To confirm that the
fake tag is always accepted as genuine we observe that

reverse(T*) = reverse(SK* ⊕ B⊕ reverse(X)⊕∆SK)

= reverse(SK⊕ B)⊕ X = reverse(SK⊕ (SK⊕ RCI))⊕ X

= CI⊕ X = CI⊕∆A ⊕∆SK

= (SK⊕ A)⊕ (A⊕ A*)⊕ (SK⊕ SK*) = A* ⊕ SK* = CI*

A tag can be cloned after eavesdropping one legitimate authentication.



Interrogator (secret key K) Tag (secret key K)

Choose random RI
RI−−−−−→
RT←−−−−− Choose RT

SK = K⊕ RI⊕ RT SK = K⊕ RI⊕ RT

Choose CI

A = SK⊕ CI
A−−−−→

CI = SK⊕ A

RCI = reverse(CI)
B←−−−− B = SK⊕ RCI

T = SK⊕ B

reverse(T)
?
= CI

Table 1. The first version of the tag authentication scheme where all variables are 64
bits long.

Interrogator (secret key K) Fake Tag

Choose random RI*
RI*−−−−−−→
RT*←−−−−−− Choose RT*

SK* = K⊕ RI* ⊕ RT* SK* is unknown

∆I = RI⊕ RI*

∆T = RT⊕ RT*

Save ∆SK = ∆I ⊕∆T

Choose CI*

A* = SK* ⊕ CI*
A*−−−−−→

A⊕ A* = ∆A

X = ∆A ⊕∆SK

B*←−−−−− B* = B⊕ reverse(X)⊕∆SK

T* = SK* ⊕ B*

reverse(T*)
?
= CI*

Table 2. Fooling a legitimate reader during tag authentication. The attacker has eaves-
dropped on one run of the protocol in Table 1. The (changing) parameters in this second
run are indicated using *.



Interrogator (secret key K) Tag (secret key K)

Choose random R

S = R⊕ K
S−−−−→ R = S⊕ K

A = R + 0x55 · · · 55
B = T⊕ K

T←−−−− T = A⊕ K

B
?
= R + 0x55 · · · 55

Table 3. A second tag authentication scheme. The shared secret key K and all inter-
mediate values are 64 bits long, ⊕ denotes bitwise exclusive-or, and + denotes integer
addition modulo 264.

After this inauspicious start a second proposal is illustrated in Table 3. Inter-
rogator authentication is provided by reversing the roles of the two participants
while mutual authentication is derived by interleaving two sessions that establish
tag and interrogator authentication.

The weaknesses are immediately apparent and, as before, there are too many
problems to list. It is sufficient to show that we can recover the key in a passive
attack with high reliability. Indeed, suppose an attacker intercepts S and T from
a legitimate authentication session. We then have that

S⊕ T = (R + 0x55 · · · 55)⊕ R.

The least significant bit of S⊕ T is always set to 1 and further analysis of S⊕ T

is easy to make. For instance, the 232 values of R for which R ∧ 0x55 · · · 55 =
0x00 · · · 00 will give S ⊕ T = 0x55 · · · 55 and other observations based on S ⊕ T

can be used to recover R and, via S, the shared secret key K.
For an alternative approach we simplify the notation by setting X = S⊕T and

C = 0x55 · · · 55. This means that X = R⊕ (R + C) and considering this equation
bit-by-bit gives, for bit position j with j ≥ 0,

Xj = Rj ⊕ ((Rj + Cj + cj−1) mod 2) = Cj ⊕ cj−1

where cj−1 denotes the carry given at bit j − 1 generated within the integer
addition R + C. Setting c−1 = 0, the carry bit cj for j ≥ 0 is computed as:

cj = maj(Rj , Cj , cj−1) = (Rj ∧ Cj)⊕ (Rj ∧ cj−1)⊕ (Cj ∧ cj−1)

= (Rj ∧ (Cj ⊕ cj−1))⊕ (Cj ∧ cj−1)

where maj denotes the majority function. Hence, for j ≥ 0,

Xj+1 = Cj+1 ⊕ (Rj ∧ (Cj ⊕ cj−1))⊕ (Cj ∧ cj−1)

= Cj+1 ⊕ (Rj ∧ Xj)⊕ (Cj ∧ (Xj ⊕ Cj))

= Cj+1 ⊕ (Rj ∧ Xj)⊕ (Cj ∧ (Xj ⊕ 1))



This means that, for j ≥ 0, we have Rj ∧ Xj = Xj+1 ⊕ Cj+1 ⊕ (Cj ∧ (Xj ⊕ 1)),
which we write, setting Vj = Rj ∧ Xj , as

Vj = Xj+1 ⊕ Cj+1 ⊕ (Cj ∧ (Xj ⊕ 1)) for j ≥ 0.

Looking at the expression for Vj we see that it consists entirely of arguments
from X, which is available to an eavesdropper, and C which is fixed and known.
Thus if Xj = 1 for bit j, which we expect half the time, then we can compute Rj
directly and the corresponding bit of the shared secret K is given by

Kj = Rj ⊕ Xj .

Each bit Kj , for 0 ≤ j ≤ 62 can be recovered and we expect to be able to
recover all but the most significant bit of Kj with two intercepted authentications.
The work-effort is negligible. Note that this gives us two possible values for the
full 64-bit shared secret K. However these two keys are equivalent, that is they
behave identically in the authentication protocol, and so they can both be used
to impersonate a tag.

3 More Advanced Versions

Those not involved in ISO/IEC standardization may be somewhat mystified by
what is happening with ISO/IEC 29167-15. Early versions were clearly weak
and offered little promise. Yet voting was such that the scheme moved forward
towards standardization anyway. Once we arrive at a committee draft (CD) the
document should, in theory, be technically mature since each subsequent stage
of the process, namely draft international standard (DIS) and final draft inter-
national standard (FDIS) provide little opportunity for technical modification
before publication. Yet as we will show in this section, even advanced versions
of these schemes were far from being technically mature and were, in fact, com-
pletely insecure.

3.1 Applying Algebraic Cryptanalysis

To repair earlier weaknesses a patched version was briefly proposed; see Table 4.

Conventional observations. Again, we can immediately see that the least
significant bit of S ⊕ T is always set to 0. It is easy to find other faults and by
setting C = 0x55 · · · 55 we have S = (RI + C)⊕ K and T = (K + C)⊕ RI so

S⊕ K = ((K + C)⊕ T) + C. (1)

We can use Equation 1 as a distinguisher to check if a possible value for the
key K is a correct candidate. This can be done in several ways, but we illustrate a
byte-by-byte approach, first considering the least significant byte of K. Suppose
k, a, b are the least significant bytes of K, S, and T respectively. Then any x



Interrogator (secret key K) Tag (secret key K)

Choose RI

S = (RI + C)⊕ K
S−−−−→ RI = (S⊕ K)− C

T⊕ RI
?
= K + C

T←−−−− T = (K + C)⊕ RI

Table 4. Another patched version of the tag authentication scheme. All variables are
64 bits long and C = 0x55 · · · 55.

satisfying a⊕ x = ((x+ 0x55)⊕ b) + 0x55 is a good candidate for k. After eight
to sixteen runs, one value should be predicted with close to 100% reliability
and the least significant byte of the key is recovered. In parallel we can process
other bytes of K in the same manner. There is a slight complication due to the
possibility of a carry from one byte to another in the integer addition; at the
same time the most significant bit of each byte might also need some attention.
However, closer analysis when using particular values S and T can be used to
avoid significant carry propagation. This allows us to filter incorrect values and
the few key candidates that remain can be tested against the tag to find the right
one. Passively eavesdropping on eight to sixteen authentication runs appears to
be sufficient to recover each byte of the key K with good reliability. The work
effort is negligible since all bytes can be treated in parallel.

Algebraic cryptanalysis. Algebraic attacks are powerful techniques that have
been successfully applied against several stream ciphers (e.g. [5,6]) and consid-
ered against block ciphers and other cryptographic primitives [3,4]. In algebraic
attacks, one writes the entire cryptographic operation as a large set of multivari-
ate polynomial equations and then uses equation-solving techniques to recover
the value of some of the unknown variables (e.g. the encryption key). The scheme
in ISO/IEC 29167-15 uses a set of very simple operations and algebraic crypt-
analysis proves to be very effective. We describe our attack below.

Let n be the size of the set of all variables in the protocol; in our case we
have n = 64. We will assume that an attacker can eavesdrop on m runs of a
uni-directional (tag or interrogator) authentication protocol. Since the mutual
authentication protocol consists of two interleaved runs of a uni-directional pro-
tocol, observing m runs of the mutual authentication protocol will give identical
results to 2m runs of the uni-directional protocol.

Without loss of generality we have implemented the attack on the protocol
for uni-directional (tag or interrogator) authentication. Denote the value of S on
the tth run of the protocol by St, similarly for T and RI. We use variables pi,
st i, rt i, sot i, at i, and bt i for 0 ≤ i ≤ 63 and 0 ≤ t < m assuming that all
strings are written using big-endian convention with the most significant bit on
the left, i.e K = pn−1 . . . p1p0.



We represent the computation of St using the equations

st i = pi + rt i + at i + ci

for 0 ≤ i < n, 0 ≤ t < m and where at i is the carry bit during the modular
addition of RIt and C. This gives, for 1 ≤ i ≤ n,

at 0 =0

at i =maj(rt (i−1), ci−1, at (i−1))

=rt (i−1) ∗ ci−1 + rt (i−1) ∗ at (i−1) + at (i−1) ∗ ci−1

Similarly the computation of Tt can be represented, for 1 ≤ i < n and 0 ≤ t < m,
as:

bt 0 =0

sot i =pi + rt i + bt i + ci

bt i =pi−1 ∗ ci−1 + pi−1 ∗ bt (i−1) + bt (i−1) ∗ ci−1

where the b variables denote the carry bits. Finally, we define equations to rep-
resent the observed values of St and Tt and the defined value of C; st i = Sti,
sot i = Tti, and ci = Ci. Our system is presented as polynomials over the finite
field F2, i.e. all variables and coefficients take values in {0, 1}. We may therefore
include the equations of the form x2 = x for every variable x.

The complete set of equations can be summarized as follows:

st i = pi + rt i + at i + ci 0 ≤ i < n 0 ≤ t < m
at (i+1) = rt i ∗ ci + rt i ∗ at i + at i ∗ ci 0 ≤ i < n− 1 0 ≤ t < m
at 0 = 0 0 ≤ t < m
sot i = pi + rt i + bt i + ci 0 ≤ i < n 0 ≤ t < m
bt (i+1) = pi ∗ ci + pi ∗ bt i + bt i ∗ ci 0 ≤ i < n− 1 0 ≤ t < m
bt 0 = 0 0 ≤ t < m
st i = Sti 0 ≤ i < n 0 ≤ t < m
sot i = Tti 0 ≤ i < n 0 ≤ t < m
ci = Ci 0 ≤ i < n
x2 = x for all x

This system of polynomial equations includes 5nm+2n variables and 11nm+3n
equations of degree at most two. Of course this system can be greatly simplified,
by substituting the variables that have a fixed value (e.g. ci, at 0, bt 0), as well as
the ones observed in the protocol runs (st i and sot i). This reduces the number
of variables to (3n − 2)m + n, and the number of equations to (7n − 4)m + n.
For the parameter values of relevance to ISO/IEC 29167-15, the entire system
will consist therefore of 444m+ 64 equations in 190m+ 64 variables, which can
be constructed for the very small values of m that are required to recover the
key. We use Gröbner bases algorithms to solve this system [4].



Figure 1. Results from experiments on the scheme of Section 3.1. The number of
protocol runs is given by k in this figure and each set of experiments was repeated 45
independent times.

Results. The average number of key bits recovered and the average time re-
quired to solve the system of equations are given in the following table.

Number of protocol runs 1 2 3 4
Average number of key bits recovered 19.7 51.1 59.4 61.7
Average run time (s) 8 83 113 255

The attack was implemented on SageMathCloud [21] and timed using Python’s
timeit function; any set-up time is assumed to be pre-computed or amortized
over many protocol runs. Figure 1 provides a visualization of the number of
key bits recovered after observing m runs of the uni-directional authentication
protocol and performing 45 sets of experiments. The values (K, RI1) were chosen
randomly for each trial when m = 1. As the number of protocol runs was in-
creased K remains unchanged but fresh random choices were used for RI2, RI3,
and RI4 as would be expected in a real-life implementation.

Our experiments suggest that after witnessing four uni-directional runs of
the protocol – or just two mutual authentication runs – the attacker would be
able to recover 62 out of 64 bits of the secret key in around 84% of the time.
While the entirety of the key can often be recovered, we conjecture that the



“missing” bits that occur from time-to-time are neutral bits; the values of these
bits cannot be determined by that particular instance of the equation system.
This is a feature to many cryptanalytic techniques and is often exhibited in the
most significant bits of operations such as integer addition. While it might be
an interesting exercise to provide an exact explanation of this phenomenon, it is
not relevant to the essential message of our cryptanalysis.

3.2 The Most Advanced Version

The fourth iteration to be described in this paper is the mutual authentica-
tion protocol outlined in Table 5. As in previous versions tag and interrogator
authentication are derived from the relevant halves of the full authentication
protocol. Several changes have been made to this latest proposal to complicate
the task of the cryptanalyst. The use of the (unknown) bitwise rotation seems
to prevent the attacker from aligning bits in the challenge and response in a
trivial way. For example a single bit change in the challenge will change the
Hamming Weight of the candidate RI derived by the tag; this would result in
different rotation amounts being used for the computation of the final response.
Despite these complications it is straightforward to compromise the scheme. Our
initial analysis suggested that even with the rotation operation, the scheme can
be compromised using conventional cryptanalysis after intercepting around 32
uni-directional authentication runs. However, as demonstrated in the previous
section, it is more elegant and efficient to use algebraic cryptanalysis against the
scheme. This technique allows us again to recover the shared secret key K after
eavesdropping on as few as four authentication runs.

Algebraic cryptanalysis. As before, we need to set up a system of multivariate
polynomial equations. The system used to describe this latest scheme is similar
to that of Section 3.1. However it is helpful to introduce some additional variables
to take account of the rotation: mt i corresponds to K′i in the tth protocol run and
nt i corresponds to RI′i in the tth protocol run. In truth these variables have been
introduced to improve the exposition of the attack. It would be straightforward
to work without them if there were significant advantage in doing so.

In this variant of the scheme we need to take account of the unknown rotation
amount. The simplest way to do this is to guess the rotation amount, and to
solve each set of equations that arise for each guess. To include this within the
equation system we introduce an array rot guess where rot guess[t] is a guess for
the Hamming weight of RIt.

The complete set of equations is summarized overleaf and the system includes
7nm+ 2n variables and 15nm+ 3n equations of degree at most two. Again, this
system can be greatly simplified by substituting fixed/known value variables, as
well as redundant ones, to a system with (3n−2)m+n variables, and (7n−4)m+n
equations. For the parameter values of relevance to ISO/IEC 29167-15, the entire
system consists of 444m + 64 equations in 190m + 64 variables, which can be
constructed for the small values of m that are required to recover the key.



Interrogator (secret key K) Tag (secret key K)

Choose RI

S = (RI + C)⊕ K
S−−−−→ RI = (S⊕ K)− C

wi = hw(RI)
K′ = K ≪ wi

RI′ = RI ≪ wi

T = (K′ + C)⊕ RI′

Choose RT

wi = hw(RI)
T, U←−−−−−− U = (RT + C)⊕ K

K′ = K ≪ wi

RI′ = RI ≪ wi

(T⊕ RI′)
?
= (K′ + C)

tag authenticated

RT = (U⊕ K)− C

wt = hw(RT)
K′′ = K ≪ wt

RT′′ = RT ≪ wt

V = (K′′ + C)⊕ RT′′
V−−−−→ wt = hw(RT)

K′′ = K ≪ wt

RT′′ = RT ≪ wt

(V⊕ RT′′)
?
= (K′′ + C)

interrogator authenticated

Table 5. The last version of the mutual authentication scheme. The Hamming weight
of A is denoted hw(A) while A ≪ w (resp. A ≫ w) denotes a left (resp. right) bitwise
rotation of A by w bits. The constant C takes the value 0x55 · · · 55.



st i = pi + rt i + at i + ci 0 ≤ i < n 0 ≤ t < m
at (i+1) = rt i ∗ ci + rt i ∗ at i + at i ∗ ci 0 ≤ i < n− 1 0 ≤ t < m
at 0 = 0 0 ≤ t < m
mt i = p(i+rot guess[t]%n) 0 ≤ i < n 0 ≤ t < m
nt i = rt (i+rot guess[t]%n) 0 ≤ i < n 0 ≤ t < m
sot i = mt i + nt i + bt i + ci 0 ≤ i < n 0 ≤ t < m
bt (i+1) = mt i ∗ ci + mt i ∗ bt i + bt i ∗ ci 0 ≤ i < n− 1 0 ≤ t < m
bt 0 = 0 0 ≤ t < m
st i = Sti 0 ≤ i < n 0 ≤ t < m
sot i = Tti 0 ≤ i < n 0 ≤ t < m
ci = Ci 0 ≤ i < n
x2 = x ∀x



Guessing the rotation amount. The equation-system depends on rot guess,
a guess for the Hamming weight of RI. We expect that a correct guess for the
Hamming weight of RI will yield a system of equations that is easily solved to
reveal many key bits. The values RI are random and so assuming that they are
generated uniformly the random variable hw(RI) will be distributed according
to a binomial distribution with parameters (64, 12 ). It is therefore straightforward
to compute the probability that a randomly chosen RI has a particular Hamming
weight. Of particular relevance to our attack is the fact that a substantial fraction
of all possible RI have a Hamming weight lying within a small range.

x 32 33 34 35 36
PrRI [hw(RI) = x] 0.10 0.10 0.09 0.08 0.06

This means that the probability hw(RI) lies in the interval [32− δ, 32 + δ] is:

δ 0 1 2 3 4
PrRI [hw(RI) ∈ [32− δ, 32 + δ]] 0.10 0.29 0.46 0.62 0.74

Now assume an attacker who eavesdrops on one uni-directional authentication
session. He could simply run the equation solving algorithm three times with
the guesses of 31, 32, and 33 for the rotation amount. With a probability close
to 30% one of these guesses would be correct. Alternatively, he could elect to
further try the values 28, 29, 30, 34, 35, and 36 which would require nine runs of
the equation solving algorithm. The probability that the eavesdropped session
is covered by one of these nine guesses is close to 74%. This has been confirmed
by experiments.

It turns out that the polynomial system solving algorithm is a good method
to verify whether the guessed rotation amount is correct. Empirically it seems
that selecting the wrong rotation makes the system inconsistent, i.e. there will
be no valid solution and this is quickly detected by the Gröbner bases algorithm.
Of course it cannot be ruled out that cases exist when an incorrect guess of rota-
tion results in a system for which solutions exist (corresponding to an incorrect
key). However this does not appear to be common; in over 20 experiments we
never recovered false solutions for any δ ≤ 5. Of course, even if they did occur,
false alarms could easily be filtered out using further intercepted authentication
attempts or even a forgery attempt.

Results. The average number of key bits recovered and the average time re-
quired to solve the system of equations are given in the following table.

Number of protocol runs 1 2 3 4
Average number of key bits recovered 21.3 51.4 60.6 63.2
Average run time (s) 10 53 87 193

Again, the attack was implemented on SageMathCloud [21] and timed using
Python’s timeit function; any set-up time is assumed to be pre-computed or
amortized over many protocol runs. Figure 2 provides a visualization of the



Figure 2. Results from experiments on the scheme of Section 3.2. The number of
protocol runs is given by k in this figure and 45 random instances were generated.

number of key bits recovered after observing m runs of the uni-directional au-
thentication protocol over all 45 sets of experiments. The values (K, RI1) were
chosen randomly for each trial when m = 1. As the number of protocol runs
was increased K remains unchanged but fresh random choices were used for RI2,
RI3, and RI4 as would be expected in a real-life implementation. These results
assume a correct guess for hw(RIj), as discussed in the previous section.

Witnessing four uni-directional runs, or two mutual authentication runs, of
the scheme in Section 3.2 and guessing the rotation amount correctly gives a
probability of approximately 85% for recovering all but two bits of the key.
However different attack strategies are possible.

Note that the attack using a single observed run is much faster than the
attack with four observed runs, although it would recover a smaller proportion
of the secret key bits. Moreover, as discussed above, when attempting to solve
the resulting system of equations it is straightforward to recognize when an
incorrect rotation has been guessed. Thus an efficient way to perform the full
attack is as follows: we try the attack on four individual single authentications
with different guesses to hw(RIt). Once we have identified the correct rotation for
four runs of the protocol we apply the four-run attack that simultaneously uses
the information from all four authentications to recover almost all bits of the key



with high probability. For example, using this method, one could mount the full
attack to recover all except two bits of the key with probability of approximately
69%, taking around 30 minutes to run on SageMathCloud.

4 Results and Discussion

Over the course of this paper we have seen several incremental versions of a tag,
reader, and mutual authentication scheme. We have shown that none offer any
substantive security. The results are summarized here, with most of the results
in this paper being confirmed by implementations.

Version Type of Attack Net Result # Authentications

Table 1 Passive Tag cloning 1
Table 3 Passive Key recovery 2
Table 4 Passive Key recovery 8–16
Table 4 Passive (Algebraic) Key recovery 4
Table 5 Passive (Algebraic) Key recovery 4

We have concentrated on uni-directional authentication but mutual authen-
tication consists of two inter-leaved versions of a tag and interrogator authen-
tication. This means that all attacks will also apply to mutual authentication,
but often with less effort since twice as much information is leaked during each
protocol run. For all but the first variant the long term K key can be recovered.

For completeness we note that there have also been a proposal for a method
to provide a secure channel, but first versions of the encryption method were
wholly insecure. It might also be noted that there is some ambiguity at times
as to whether protocol variables should be considered 64-bit values or 65-bit
values. However this is likely to be a case of poor notation since (i) 65-bit values
make little mathematical sense and (ii) they carry a significant implementation
penalty. Even if we set these objections aside, the discussion quickly becomes
academic since our attacks apply in a similar fashion either way.

We note that there will be many other opportunities for the attacker; we
happily recognize that our application of algebraic techniques has been straight-
forward. A little more analysis might yield more efficient attacks, both algebraic
and non-algebraic. However, in our view the point is already made and there is
little to be gained by adding other incremental attacks to the mix. Those inter-
ested at looking at things more will find other work in a similar vein by other
authors, e.g. [11], as well as other simple proposals [18,19]. Our code is available
via www.isg.rhul.ac.uk/~ccid/publications/iso-iec-29167-15.htm.

5 Conclusion

The schemes described in this document are intrinsically weak due to the sim-
ple operations used by the tag and the interrogator. Future versions, if based on
identical principles, are unlikely to provide additional security (see Appendix A).



In fairness, it should be noted that the combination of exclusive-or, integer addi-
tion, and bitwise rotation can be a good basis for the design of a secure primitive.
So-called ARX designs are rightly popular and they featured prominently in the
NIST SHA-3 initiative [17]. However these are typically multi-round algorithms
while the most advanced variant of the schemes under analysis has probably
just achieved a “single round” of computational complexity (if one can make the
analogy).

The project editors for 29167-15 motivate their use of the simplest operations
by stating that this will result in a low-area solution. However this is misguided.
The bulk of the area for an implementation comes from the cryptographic state
which is governed by the size of the variables. So even though ISO/IEC 29167-
15 uses simple operations it doesn’t lead to a dramatic implementation advan-
tage. More importantly, there are already very good cryptographic solutions
for RAIN RFID tags that provide good security; the AES is one option while
present [14,13] or Grain128a [1] provide different implementation trade-offs.

One goal of the paper was to demonstrate that the simple authentication
schemes being considered for standardization are flawed; this helps to emphasize
the contributions cryptographers can make to a variety of ISO/IEC initiatives [7].
But a second, more important, goal was to stress that cryptography for RFID
does not need to be bad cryptography. The state of the art is such that well-
studied standardized schemes are available and these can be deployed in even
the most demanding environments.

Acknowledgements

The computations in this work were carried out using Sage [21] and SageMath-
Cloud, which is supported by National Science Foundation Grant No. DMS-
0821725. The figures in this work were generated using Matplotlib [12].

References

1. M. Ågren, M. Hell, T. Johansson, and W. Meier. Grain-128a: A New Version of
Grain-128 with Optional Authentication, International Journal of Wireless and
Mobile Computing, 5, (1), pp. 48–59, Inderscience, 2011.

2. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe. present: An Ultra-Lightweight Block Cipher. In
P. Paillier and I. Verbauwhede, editors, Proceedings of CHES 2007, Lecture Notes
in Computer Science, vol. 4727, 450–466, Springer, 2007.

3. C. Cid, S. Murphy, and M.J.B. Robshaw. Algebraic Aspects of the Advanced En-
cryption Standard. Springer, 2006.

4. C. Cid and R.P. Weinmann. Block ciphers: algebraic cryptanalysis and Groebner
bases. In Groebner bases, coding, and cryptography. pp. 307–327. Springer, 2009.

5. N. Courtois. Cryptanalysis of Sfinks. Proceedings of ICISC 2005, LNCS 3935, pp.
261–269. Springer, 2005.

6. N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feed-
back. Proceedings of EUROCRYPT 2003, LNCS 2656, pp. 345–359. Springer, 2003.



7. J. P. Degabriele, V. Fehr, M. Fischlin, T. Gagliardoni, F. Günther, G. Azzurra
Marson, A. Mittelbach, and K. G. Paterson. Unpicking PLAID - A Cryptographic
Analysis of an ISO-standards-track Authentication Protocol. Cryptology ePrint
Archive, Report 2014/728, 2014, Available via http://eprint.iacr.org/.

8. EPCglobal. EPC Radio Frequency Identity Protocols, Generation 2 UHF RFID.
Specification for RFID Air Interface Protocol for Communications at 860 MHz
960 MHz Version 1.2.0. Available via www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.

9. EPCglobal. EPC Radio Frequency Identity Protocols, Generation 2 UHF RFID.
Specification for RFID Air Interface Protocol for Communications at 860 MHz
960 MHz Version 2.0.0. Available via www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.

10. M. Girault, G. Poupard and J. Stern. On the Fly Authentication and Signature
Schemes Based on Groups of Unknown Order. Journal of Cryptology, vol. 19, num-
ber 4, 463–488, 2006.

11. D. Han. Gröbner Basis Attacks on Lightweight RFID Authentication Protocols.
Journal of Information Processing Systems, Vol. 7, number 4, 691–706, 2011

12. J. D. Hunter, Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 9 (3) pp.90–95, IEEE 2007.

13. ISO/IEC 29167-11:2014 – Information technology – Automatic identification and
data capture techniques – Part 11: Crypto suite PRESENT-80 security services
for air interface communications.

14. ISO/IEC 29192-2:2011 – Information technology – Security techniques –
Lightweight cryptography – Part 2: Block ciphers.

15. ISO/IEC 29192-4:2013 – Information technology – Security techniques –
Lightweight Cryptography – Part 4: Asymmetric Techniques.

16. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard, November 2001.

17. National Institute of Standards and Technology. SHA-3 competition. Available via
csrc.nist.gov/groups/ST/hash/sha-3/index.html.

18. P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and A. Ribagorda,
M2AP: A Minimalist Mutual-Authentication Protocol for Low-cost RFID tags. In
H. Jin, L.T. Yang, and J. Tsai, editors, Proceedings of UIC 2006, Lecture Notes in
Computer Science, vol. 4159, 912–923, Springer, 2006.

19. P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and A. Ribagorda,
EMAP: An Efficient Mutual Authentication Protocol for Low-cost RFID tags.
In Z. Tari, editor, On the Move to Meaningful Internet Systems 2006: OTM 2006
Workshops, Lecture Notes in Computer Science, vol. 4277, 352–361, Springer, 2006.

20. RAIN RFID. Available via www.rainrfid.org.
21. W. A. Stein et al., Sage Mathematics Software (Version 6.3), The Sage Develop-

ment Team, 2014, www.sagemath.org.



Appendix A: Obvious Variants are Not Secure

It is our belief that the entire rationale for ISO/IEC 29167-15 is misguided. With
the hope of discouraging further patches we pro-actively anticipate some modi-
fications that might be made with the hope of increasing security. We show that
none of the obvious variants provide a significantly increased level of security.

One variant would be to increase the size of all parameters, using a secret
key of size n = 64 + n′ bits. The intention would be to increase the size of
the equations systems since algebraic cryptanalytic schemes do not scale well.
However this is particularly ineffective for the scheme of Table 4 since one can
simply discard the n′ high bits of the transmitted values and run precisely the
same attack, recovering many of the lower 64 bits. We could then guess the
value of the carry bit aj 64 which would allow the remaining bits to be attacked
independently. We view this kind of attack as “slicing” the problem and we will
return to this below.

We can apply a similar technique to remove any advantage from increased
parameters in the scheme of Table 5. The rotation r = hw(RI) will, with high
probability, lie in an interval (n

2 − δ, n2 + δ) for small δ. This means we can

consider a subset of equations consisting of Sj0 . . . S
j
s−1 and Tjr . . . T

j
r+s−1 (and

the corresponding pi, rj i, aj i, bj i, etc.) for some value of the rotation r. This
attack requires us to guess the values of the rotations and, additionally, we must
guess bj r. But this does not significantly affect the complexity of the attack.
(In this case we do not need to guess aj 0, however had we considered a subset

of equations not including S
j
0 we would have needed to guess another carry bit.)

From two runs of the uni-directional authentication the attacker guesses the
value of four bits and, for the correct rotation amount, the number of key bits
recovered when using a single 16-bit or 24-bit slice in experiments is shown in
Figure 3.

One strategy that may improve the attack would be to first attack a small
number of bits (via the slicing attack) for several guessed values of hw(RIj). Then
we could carry out a full attack against multiple protocol runs (simultaneously)
once the correct rotation values have been identified. This way one could recover
almost all the key bits without having to run the full attack many times.

An alternative modification to the protocol might be to change the value
of the constant C. We implemented an attack assuming that two runs of the
uni-directional authentication protocol were observed. We implemented a 16-bit
slice attack and repeated the whole set of experiments for 256 different values
of C. The 256 C values were built up as a single byte pattern repeated eight
times. The number of key bits that was recovered in our attacks for different C

is illustrated in Figure 4. Zero is the only value for C that leaked no key bits.
However 00 · · · 00 is a particularly bad choice for C since this makes S = T and
forgeries are trivial. Every other choice of C leads to at least four key bits out
of 16 being recovered. This suggests that changing the value of C is unlikely to
improve the security of the proposed protocol.



Figure 3. Implementing the “slicing” attack against the scheme of Table 5 with slices
of size s. Dashed lines (green and yellow) highlight the size of the slice used, which
is an upper bound on the number of key bits that can be recovered within that slice.
In both cases two runs of the uni-directional authentication scheme were used and the
value of the four bits were guessed (highlighted by the black, dashed line).

Figure 4. A set of variants of the scheme in Table 5 were tested where the constant C is
varied to take 256 different values (see text). Experiments were run over two instances
of the uni-directional authentication scheme and the left and right charts give the
results for two randomly generated keys.


