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ABSTRACT 

Time perception is often thought of as arising from a centralised 

mechanism. Recently, there has been a shift away from this perspective, 

with evidence showing that adaptation to particular visual properties at 

specific locations and stimulus predictability affects perceived event 

duration, implying that sensory systems carry out duration processing. This 

thesis investigates the following three questions: (1) Does adaptation 

induced duration compression affect other visual processes? (2) Can 

sensory systems encode duration using their basic response properties? (3) 

What is the relationship between predictability, perceived duration and 

neural response to a visual stimulus? The first question was investigated 

using a visual illusion called Flash-Lag, commonly thought to possess a 

fixed time component. After pilot investigations comparing psychophysical 

techniques, results from a behavioural experiment show that adapting to a 

high temporal frequency stimulus reduces the time component of the Flash-

Lag illusion, implying a role for duration in positional and/or motion 

computations. We demonstrate that a model using labelled lines and the 

varying temporal responses of neurons can encode the duration of a 

temporally normalised input. The model exhibits effects similar to those 

observed in the literature, including adaptation induced duration 

compression, central tendency and perceived duration scaling with the 

magnitude of various stimulus properties. Finally, a new paradigm is 

developed to test if stimulus duration decreases with stimulus predictability. 

Although behavioural results show no effect of predictability, event related 

fMRI shows significant differences in BOLD signal. Area MST demonstrates 

reduced response to expected events in a duration judgement task, but not 

an orientation judgement task, suggesting response is reduced by 

predictability, dependent on the task. These results show that duration may 

be encoded in sensory systems and is used in perceptual tasks. 

Furthermore, it is proposed that duration is estimated using ramping or 

climbing activity within neural populations in the dorsal visual pathway. 
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1. CHAPTER ONE - BACKGROUND 

 INTRODUCTION 

Time perception and its basis in the brain is a broad and complex topic 

and the timescales humans and other animals operate on are extremely 

variable. From the precise millisecond timing of spikes fired from individual 

neurons, through to circadian rhythms controlling the wake-sleep cycle over 

the course of a day and onto the ability to conceive of events many months 

and years into the past or imagine ourselves along similar timescales in the 

future. The ability to operate on such wide timescales requires a range of 

different brain functions. Circadian rhythms are driven by autonomous 

cellular and molecular mechanisms (Dunlap, 1999). While the timing of 

spikes is crucial in audition for the detection of interaural time differences 

(Wagner & Takahashi, 1992), these time differences are perceived 

‘indirectly’ as auditory locations rather than differences in timing. 

Structures such as the hippocampus have been identified as important in 

the storage and retrieval of long-term memory (Corkin, 2002), but again 

this can be considered a less directly perceived quantity of time.  

The material covered here will concentrate upon the timescale of sub-

second to second duration required for perception, cognition and action, 

where, arguably durations are a sensory property of a stimulus, as opposed 

to being indirectly coded  from other attributes or more 

cognitively/semantically encoded. Informed by studies on both human and 

animal behaviour this area has historically been the domain of ‘central 

clock’ models. Such models provide the first focus for discussion before 

concentrating on the experimental results concerning the visual perception 

of time on these shorter (not more than a couple of seconds) timescales. 

Discussing this work will lead onto identifying the research questions that 

will form the motivation behind the experimental and theoretical work 

carried out in the rest of this thesis. 
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 CENTRALISED MODELS OF TIMING 

 INTERNAL CLOCK 

A mechanism commonly proposed to account for the perception of time 

is the internal clock (Gibbon, Church, & Meck, 1984; Treisman, 1963). The 

internal clock consists of a central pacemaker emitting pulses typically 

according to a Poisson distribution so over a given time period the same 

amount of pulses occur, although not equally spaced), which transmits to an 

accumulator counting the pulses to give a measure of time. When learning a 

task where an explicit measure of duration is behaviourally relevant the 

learnt duration is stored in long-term memory for future reference. By 

comparing this learnt duration to the current or a more recently acquired 

duration from the accumulator stored in short-term memory, a decision can 

be made to guide behaviour appropriately (Figure 1-1). While originally used 

to explain animal behaviour (Church & Gibbon, 1982) pacemaker-

accumulator model also have been applied to human timing (Wearden, 

1991), though human judgments appear more variable, possibly due to 

effects of attention and arousal.  

Figure 1-1: A block diagram showing the clock model typically used to explain time 

perception in humans.  
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The internal clock model was extended by Treisman, Faulkner, Naish, 

and Brogan (1990) to include effects of attention and arousal. This model is 

made up of a central pacemaker with multiple, task-specific control units 

that receive input from the central pacemaker, which transforms the input 

from the pacemaker to an output - a timing signal tuned to a particular task 

or sensory domain. As each control unit’s output is task specific, the timing 

signal can change in response to the requirements of the task or directed 

attention, whilst overall arousal levels can speed up or slow down the 

internal clock depending on the prevailing environmental and organism 

states. It has been used to explain various experimental findings in human 

sensory time perception, showing that perceived duration is affected by 

attention (Seifried & Ulrich, 2011), arousal (Stetson, Fiesta, & Eagleman, 

2007) and body temperature (Wearden & Penton-Voak, 1995). Some have 

used attention to explain why the first event in a sequence appears to last 

longer than subsequent events that are of the same length (Rose & 

Summers, 1995) or, why an unexpected or ‘oddball’ stimulus appears to last 

longer than a non-oddball stimulus (Tse, Intriligator, Rivest, & Cavanagh, 

2004). These results are interpreted using internal clock models as a change 

in control unit tick speed or a speeding up of the central clock. There is also 

evidence showing that faster moving stimuli appear to last longer (Brown, 

1995), suggesting stimulus properties could also speed up the internal clock. 

This claim was backed-up by Kanai, Paffen, Hogendoorn and Verstraten 

(2006), who control for spatial frequency, pinning the velocity temporal 

expansion effect onto the temporal frequency of the stimulus and propose 

an event related timing mechanism, so that stimulus duration is estimated 

by the rate of change of the stimulus. Clock models affect perceived duration 

by tuning their tick rate to the environment so that an environment where 

events are occurring rapidly requires a faster clock rate to discern when 

events happen. This leads to more ‘ticks’ from the timing mechanism over 

the same actual duration causing the temporal expansion effects observed 

and an increase in perceived duration. Other stimulus properties such as 

size (Xuan, Zhang, He, & Chen, 2007), brightness (Bowen, Pola, & Matin, 

1974; Brigner, 1986) and magnitude in general (Alards-Tomalin, Leboe-

McGowan, Shaw, & Leboe-McGowan, 2014) have also been shown to 
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change perceived duration. While these phenomena cannot be attributed to 

the event related mechanisms, attention can be drawn to differences in 

stimulus properties (Bernardino, Cavallet, Sousa, & Galera, 2013; Camgoz, 

Yener, & Guvenc, 2004; Proulx, 2010), so they may be explained in terms of 

attentionally driven increases in internal clock speed. 

 SCALAR EXPECTANCY AND WEBER’S LAW 

One of the more dominant theories arising from the central clock 

approach is Scalar Expectancy Theory (SET) proposed by Gibbon (1977). 

SET is a model of time perception stating that time across all modalities is 

measured against a centralised clock that uses a pacemaker with a variable 

tick rate changing on a trial-to-trial basis (Church & Gibbon, 1982). This 

explains why time perception appears to be unified across senses and that, 

on average, accurate measures of duration can be made, with the variability 

of such estimates scaling with the estimates’ mean duration. This feature of 

timing is termed, the scalar property, which is an example of Weber’s Law. 

Weber's law is a long established property of sensory perception whereby 

the sensitivity of the sensory system to differences in stimulus properties is 

inversely proportional to the magnitude of the stimulus property. As 

sensory systems are noisy processes (Faisal, Selen, & Wolpert, 2008), 

sensory judgements are variable across different presentations of the same 

stimulus. The variability can be computed by taking the standard deviation 

of a number of judgements and dividing by the mean judgement, giving the 

Weber fraction: the ratio between the stimulus property magnitude and the 

variability. If Weber's law holds then this ratio should be approximately 

constant across a range of stimuli with differing magnitudes as when the 

magnitude increases, sensitivity decreases in proportion and more 

variability in judgements is observed. SET was originally informed by 

studies on non-human primates, performing a task where they learn they 

have to respond a particular amount of time after stimulus onset to receive a 

reward rather than immediately afterwards. The distribution of the delay of 

these responses for this task follows Weber’s law, i.e. the scalar property 

(Figure 1-2). Gibbon (1977) posits the animals in these experiments have an 
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internal representation of time provided by the internal clock mechanism to 

explain the animal’s ability to perform the task.  

 

 
Figure 1-2: Graphs showing Weber’s law in Scalar Expectancy Theory expressing the scalar 
property labelled anticlockwise. a) Shows the distribution of timing judgements for a shorter 
duration (red) and a duration twice as long (blue), where the distribution of longer duration 
judgements is twice that of the shorter duration as according to Scalar Expectancy Theory. 
b) Shows a computationally generated example set of duration judgements (judgement: 
black cross) following Weber’s law, as the duration increases so does the variance in the 
judged durations, the blue line shows equality. c) Gives the Weber fractions (σ/µ) for the 
example data shown in b) demonstrating that the Weber fraction is approximately constant 
(~0.1) across all the durations. 
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 IS SCALAR EXPECTANCY A FUNDAMENTAL PROPERTY 

OF TIME PERCEPTION? 

Gibbon (1977) also proposed the existence of multiple timing 

mechanisms over different timescales, claiming that behavioural data shows 

an abrupt change in Weber fractions across shorter (<1.5s) and longer 

(>1.5s) durations, implying two different mechanisms i.e. different clocks 

with different variability for the two different timescales. However, the data 

presented to underpin this claim are from a meta-analysis across 

experiments using different animal species with different methodologies, so 

this could be an artefact of various experimental factors. Lewis and Miall 

(2009) performed experiments collecting duration judgements from human 

participants across a similar range of durations to Gibbon (1977), finding 

some suggestion of a difference in Weber fractions between durations of less 

than and greater than 3s. However, fitting the data at above and below 3s 

with two different regression models and comparing this to a single model 

for the whole data set did not produce a significantly better fit, indicating 

that this difference is not necessarily due to separate mechanisms. While 

there may be separate mechanisms for different durations, they do not show 

differences in Weber fractions.  

One other result of Lewis and Miall (2009) is that Weber fractions are 

not constant but instead are inversely proportional to perceived event 

duration. Other studies find that the scalar property does not hold for 

shorter durations of less than 0.3s (Wearden, Edwards, Fakhri, & Percival, 

1998) or that Weber fractions decrease initially, then increase with duration 

(Bizo, Chu, Sanabria, & Killeen, 2006) or increase with duration (Grondin, 

2010b). As Weber’s law traditionally provides the basis for SET and internal 

clock models these findings poses significant theoretical challenges. It is 

possible to accommodate some of these results without modifications, for 

example Bizo et al., (2006) and Wearden et al., (1998) could be interpreted 

to show a breakdown of Weber's law at extremes where the internal clock 

mechanisms are not capable of consistent measurement. The Lewis and 

Miall (2009) claim is more difficult to explain, especially given their result is 

a conceptual replication of Gibbon (1977) in humans as opposed to animals 

with a cleaner, less variable dataset, though they may simply show a 
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difference between human and other animals’ perception of time. This is a 

problem for those who support SET as common, cross species timing 

mechanism. Staddon and Higa (1999) argue this has long been a problem 

for the internal clock model, as its use of a Poisson pacemaker, where there 

is variation in the exact time each clock ‘tick’ occurs, does not explain the 

scalar property of time. Over increasing durations, the noise would cancel 

out, leading to a decrease in the Weber fraction with duration, which is 

observed by Lewis and Miall (2009). Church (1999) states the Poisson 

pacemaker’s noise is not responsible for the scalar property and suggests it 

is a strength of the model, as it does not require a pacemaker with a specific 

tick output distribution. The subject of pacemaker noise and the scalar 

property is noted in Church and Gibbon (1982), who instead explain the 

scalar property as resulting from drift in the mean clock rate, creating trial-

by-trial variability. While originally used as a fundamental property of time 

perception and clock models, there is considerable evidence suggesting that 

SET does not always hold. Instead, it depends on various aspects of the 

environment and experimental task, which casts doubt on the claim that the 

scalar property of timing is fundamental aspect of time perception, thus 

undermines one of the original foundations of central clock models (Gibbon, 

1977). This was addressed by Church and Gibbon (1982) with the use of a 

Poisson timer with the presence or absence of clock-rate drift, which means 

the pacemaker-accumulator model can be made to follow or not follow the 

scalar property depending on the particular variables used, so does account 

for occasions where the scalar property is not observed in behaviour. 

Therefore, it is not possible to falsify this model based upon the scalar 

property of timing so the lack of consistency in measuring the scalar 

property is not fatal for clock models in itself but cannot be used to support 

them either. 



18 

18 
 

  NEUROPHYSIOLOGICAL EVIDENCE FOR CENTRALISED 

TIMING  

One clear prediction from internal clock models is that timing is a 

centralised process and therefore it should be possible to localise brain 

areas responsible for time perception. Initial work suggests the cerebellum 

as a key structure in temporal perception (Ivry, Spencer, Zelaznik, & 

Diedrichsen, 2002) as patients with cerebellar lesions or other cerebellar 

atrophy have difficulty in timing actions with short (<1s) (Ivry, 1996; Ivry & 

Keele, 1989) and longer (400ms to 4s) delays (Mangels, Ivry, & Shimizu, 

1998). Neuroimaging experiments also show cerebellar activation in an 

interval comparison task (Jueptner et al., 1995; Mathiak, Hertrich, Grodd, & 

Ackermann, 2004). The extent to which timing is associated centrally with 

the cerebellum has been debated (Harrington, Lee, Boyd, Rapcsak, & 

Knight, 2004; Ivry & Spencer, 2004) and numerous studies show that 

multiple areas are associated with interval timing.  

Single cell electrophysiology shows  an increase in spike rate in 

anticipation of an event in macaque LIP (Janssen & Shadlen, 2005), cells in 

motor and premotor areas show estimation of temporal intervals before 

performing an action (Lebedev, O'Doherty & Nicolelis, 2008). Cells in 

prefrontal cortex also show temporal properties, with time interval related 

activity (Constantinidis, Williams, & Goldman-Rakic, 2002). There is also 

evidence from neuroimaging; Coull, Vidal, Nazarian, and Macar (2004) and 

Macar, Coull, and Vidal (2006) show BOLD increases in a number of areas 

with increasing attention to time, including pre-supplementary motor and 

right frontal areas, making up a corticostriatal network. Frontal areas also 

show activity related to timing, as does the striatum and thalamus (Hinton 

& Meck, 2004).  

With this literature, there appears to be a shift away from the proposal 

that timing is solely a function of the cerebellum. However, one issue, 

particularly with neuroimaging studies showing large networks as being 

involved in timing is that it is difficult to separate brain areas that are 

involved in other processes such as attention, decision making and memory, 

which are required in time perception tasks, from those that may be 

involved in pure time perception. During a time perception task in a study 
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Rao, Mayer and Harrington (2001) examine the BOLD time course to 

separate out the roles of different brain areas in interval timing. Early onset 

of BOLD activation in basal ganglia, right inferior parietal cortex and 

bilateral premotor cortex is claimed to indicate these regions are active in 

time perception, while later activation of the cerebellum during interval 

timing tasks implies its involvement in non-timing tasks such as movement 

planning and execution. Late activity in right dorsolateral prefrontal cortex 

in a duration comparison task and not a pitch comparison task suggests its 

involvement in time interval comparisons. Another fMRI study (Livesey, 

Wall, & Smith, 2007) aims to isolate areas purely responsible for timing. 

This is performed by comparing BOLD response between a hard and easy 

timing task to remove those areas more involved with other processes such 

as attention and memory as the harder task places greater demands on such 

functions. Results show small areas of the supramarginal gyrus, the 

confluence of the inferior frontal gyrus and anterior insula as well as the 

putamen in the basal ganglia to have significant BOLD response in both 

tasks. So, a much smaller number of areas are revealed as responsible for 

pure timing than in some of the previous studies. However, the role of the 

anterior insular may be acting as a decision maker rather than directly 

involved in timing (Kosillo & Smith, 2010).  

Of particular interest in Livesey et al., (2007) and Rao et al., (2001) is the 

inclusion of activations in basal ganglia, which is theorised as having a 

crucial role in timing tasks (Nenadic et al., 2003). Parkinson’s patients have 

also been identified as a special population that show deficits in time 

perception (Harrington, Haaland, & Hermanowitz, 1998). The pathology of 

Parkinson’s disease involves reduction in the production of dopamine in 

areas of the midbrain including the basal ganglia (Bernheimer, Birkmayer, 

Hornykiewicz, Jellinger, & Seitelberger, 1973). It has been proposed that the 

dopamergic system has a role in time perception (Rammsayer, 1999). GABA 

is another neurotransmitter that may influence timing (Meck, 1996) as 

GABAergic neurons influence timing and pattern of cell firing in the 

neostratium (Tepper & Bolam, 2004), which includes the putamen. Other 

research has identified correlations with increased GABA in visual cortex 

and underestimation of duration in sub-second interval time perception 
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(Terhune, Russo, Near, Stagg, & Cohen Kadosh, 2014). This evidence may 

seem to suggest that the basal ganglia performs central timing functions. 

However, one proposed role of the basal ganglia is its involvement in 

executive function and decision-making (Hazy, Frank, & O'Reilly, 2007; 

Packard & Knowlton, 2002). Therefore, a non-centralised view of timing is 

that the basal ganglia integrates information from multiple systems that are 

involved in a timing task as part of the decision making process. The fact 

that areas within the basal ganglia often appear to be activated in time 

perception task and not other areas can be explained as, depending on 

factors such as the task and modality, different information from different 

brain areas and networks is used to make decisions and guide behaviour. 

For example for longer durations (several seconds and longer), frontal and 

prefrontal areas involved in working memory are activated (Hinton & Meck, 

2004) and tasks that require orientation of attention in time show activity in 

parietal and pre-motor areas (Coull, 2004; Coull et al., 2004; Macar et al., 

2006).  

While there has been considerable progress in identifying areas and 

neurotransmitters involved in time perception and data showing individual 

neurons responding to elapsed time in different areas, the consensus of this 

research is that there are multiple areas and systems involved in time 

perception. The underlying theme of these results suggests the use of 

multiple functions including attention, working memory, motor planning 

and perceptual systems in timing, implying that duration perception is not 

processed by a single, centralised mechanism but involves functions that are 

performed across networks in the brain. Thus, this research shows a shift 

away from centralised explanations of timing. Though there are some 

caveats to this argued by Ivry and Schlerf (2008) who claim non-centralised 

models have difficulty explaining cross-modal transfer, for which there is 

some evidence. For example,  participants show improvements in timing 

action when trained using a perceptual timing task that lack a time critical 

motor component (Meegan, Aslin, & Jacobs, 2000). Central clock models 

have proven to be a powerful tool in conceptualisation of results, 

particularly in behavioural measures, of time perception but there is little 

evidence supporting a single, central area acting as a timer that one would 
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expect in a strict interpretation of the internal clock models previously 

discussed.  

 CONCEPTUAL ISSUES IN INVESTIGATING THE 

PERCEPTION OF TIME 

An implicit assumption of centralised timing mechanisms, whether an 

internal clock or other model, is that they take a Cartesian approach to the 

problem of conscious perception. This can be understood using the 

Cartesian theatre analogy. All sensory information is projected on a screen 

in a theatre where there sits a homunculus observing the screen and 

perception is considered to be what the homunculus sees. This does not 

solve the problem of perception, it just shifts the question to how does the 

homunculus perceive? Thus, this explanation creates an infinite regress. 

The central clock implies that there is a central reference point for the 

perception of time so acts as the homunculus in the theatre. It may be 

argued that the central clock does not imply an infinite regress as it 

attempts to describe the mechanism, thus provides some explanation of the 

perception of time, taking a weaker Cartesian stance, but does not remove 

the concept of a perceptual ‘end’.  

However, another problem remains; in sensory systems, there is a 

divergence in processing. Different sensory properties are processed in 

increasingly separate areas and it is not clear where these converge, which is 

a problem for centralised models of timing that would require such a 

convergence. It might be tempting to think that a distributed view of timing 

would automatically avoid some of the pitfalls here. While not referring 

directly to time perception, one example of an explanation that attempts to 

explain sensory perception using a distributed sensory system is provided 

by Zeki (2003) and Zeki and Bartels (1999). They use the concept of micro-

conciousness, where each property is encoded separately in a distinct area 

and each area produces its own independent conscious awareness of the 

property being encoded. Each individual micro-conscious area is distributed 

in time as well as space so some visual properties are processed faster and 

perceived sooner than others are. This means visual properties are not 

represented according to a centralised process. While this argument can 
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make a convincing case without automatically assuming that there is a 

single, unified conscious ‘process’ within the brain, in attempting to explain 

consciousness, it makes the same pitfalls as centralised explanations. It does 

not explain what consciousness is, just that it is made up of smaller, 

localised micro-consciousnesses, which begs the question, what makes 

these, micro-conscious? Is each micro-conscious made up of yet smaller 

nano-consciousnesses, and so on? Clearly, this does not get around the 

problem of infinite regression. That different micro-consciousness process 

properties which reach awareness at different times is also a problem, it 

implies a final end-point for perception, similar to the homunculus in the 

Cartesian theatre. It is clear these problems are not exclusive to central 

clock models or other centralised timing mechanisms. Therefore, it is not 

safe to assume that proposing a distributed scheme can get around the 

conceptual issues apparent in centralised timing explanations. Therefore, 

this needs to be a consideration when formulating alternatives to 

centralised mechanisms. The next section of this review will focus on results 

from experiments investigating the visual perception of time, which a 

central clock cannot explain. 



23 

23 
 

 PERCEPTION OF SHORT DURATIONS IN THE 

VISUAL SYSTEM 

 EFFECTS OF ADAPTATION ON VISUAL DURATION 

In the previous sections an event related clock model of visual timing, 

proposed to account for results in visual experiments showing faster moving 

objects are perceived to last longer (Brown, 1995), was described. Kanai et 

al., (2006) show that this duration expansion effect is due to increased 

temporal frequency of the stimulus. An event related clock accounts for 

these findings as the tick rate increases in response to a more rapidly 

changing stimulus, effectively increasing temporal resolution of the visual 

system allowing for more precise temporal precepts. However, results from 

Johnston, Arnold, and Nishida (2006) demonstrate a decoupling of 

temporal frequency adaptation and perceived duration. They show 20Hz 

adaptation reduces the perceived duration and temporal frequency (TF) of a 

grating stimulus but 5Hz adaptation increases perceived temporal 

frequency, but does not cause an increase in perceived duration, which the 

event related model would predict if the tick rate were dependent on 

perceived temporal frequency. The fact that the adaptor may attract 

attention cannot explain the effect either, as attending to a stimulus 

generally results in it being perceived as longer (Brown, 1995; Mattes & 

Ulrich, 1998). Further work adapting to contrast (Bruno & Johnston, 2010) 

and luminance (Ayhan, Bruno, Nishida, & Johnston, 2011) also suggests 

that the visual system does not use an event related (TF dependent) timing 

signal to measure duration.  

The magnocellular layer in the lateral geniculate nucleus (LGN) is an area 

of the thalamus that makes up part of the pre-cortical visual pathway and 

receives input from the retina. It is sensitive to high temporal frequency and 

low contrast stimuli, saturating at higher contrast levels (Xu et al., 2001). 

Therefore, it is likely adaptation to stimuli with these properties reflects 

changes in the response of M-cells that make up the magnocellular layer. It 

is claimed (Bruno & Johnston, 2010; Johnston et al., 2006) these results 

provide evidence that contrast gain control in M-cells (Solomon, Peirce, 

Dhruv, & Lennie, 2004) plays a role in visual time perception. This is a 
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process where adaptation to a high temporal frequency or a high contrast, 

transient stimulus, causes a subsequent reduction in M-cell contrast 

response. This results in these cells becoming more sensitive to fine changes 

in high contrast stimuli. As adaptation to both high temporal frequency and 

high contrast stimuli affects perceived duration, this implies duration is 

encoded in the Magnocellular layer in LGN, so duration or processes that 

influence duration perception are represented in the early visual system.  

Further evidence shows a compression of time with stimuli presented 

immediately preceding or early into a long horizontal saccade (Morrone, 

Ross, & Burr, 2005). Saccades also elicit a suppression of the magnocellular 

pathway (Ross, Burr, & Morrone, 1996), which implicates a similar 

mechanism to that used to explain the visual adaptation findings. One other 

aspect of saccades is the remapping of receptive fields in LIP around 

saccades (Colby & Goldberg, 1999) and, as already discussed the finding 

that LIP neurons also appear to encode duration (Janssen & Shadlen, 2005; 

Leon & Shadlen, 2003). Overall, this research implicates LIP and the 

Magnocellular pathway in visual duration perception.  

There is debate regarding the use of contrast gain in LGN M-cells as an 

explanation. Burr, Tozzi, and Morrone, (2007) have replicated the result of 

Johnston et al., (2006) but claim that when changes in perceived speed due 

to adaptation are factored out, there is no retinotopic, only spatiotopic 

adaptation. They propose that duration adaptation occurs in MT and MST, 

citing fMRI evidence from their own lab of spatiotopic maps in these areas 

(d'Avossa et al., 2007) however this finding is contentious and attempts to 

replicate this have not found such maps (Gardner, Merriam, Movshon, & 

Heeger, 2008). A counter claim from the same lab as the original fMRI 

study (Crespi et al., 2011) argues that visual attention is necessary for the 

spatial coding of visual stimuli, hence the difference in results between 

d'Avossa et al., (2007) and Gardner et al., (2008). The behavioural findings 

of spatiotopic specificity of duration adaptation in Burr et al., (2007) have 

also been subject to debate. Bruno, Ayhan, and Johnston, (2010) dispute the 

existence of  a spatiotopic duration mechanism, arguing that the speed 

matching of stimuli in Burr et al., (2007) to show duration affects factor out 

in retinotopic co-ordinates does not hold up. In a reply Burr, Cicchini, 
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Arrighi, and Morrone (2011) state that Bruno et al., (2010) do measure a 

spatiotopic duration compression but of a smaller magnitude than they did 

previously, which they put down to fewer participants and different 

instructions given to them. Other work previously mentioned, shows 

contrast adaptation (Bruno et al., 2010) and luminance (Ayhan et al., 2011) 

affecting duration, which both implicate retinotopic, lower level 

mechanisms, contrary to Burr et al., (2007). While it is possible that as 

parietal areas appear to encode position egocentrically/spatiotopically as 

lesions lead to hemispatial neglect (Driver & Mattingley, 1998) and these 

maps are attentionally selective, it is odd why the retinotopic effects should 

disappear. 

 A contribution of Burr et al., (2007) is to suggest that visual duration is 

computed across multiple stages in the hierarchy of the visual system 

including cortical areas which is expanded upon in further work (Morrone, 

Cicchini, & Burr, 2010). Experimental evidence for this view comes from 

Curran and Benton (2012), who use moving random dot and plaid stimuli to 

activate motion sensitive cells in the cortex, particularly in MT+ (Dubner & 

Zeki, 1971), which are directionally selective when adapting to motion (Kohn 

& Movshon, 2004; Krekelberg, Boynton, & van Wezel, 2006). The findings 

show duration adaptation only when the adaptor moves in the same 

direction to the adapted stimulus, demonstrating that duration perception 

is processed cortically as well as pre-cortically and appears to be retinotopic 

(Latimer, Curran & Benton, 2014). No matter, which view, retinotopic, 

spatiotopic/egocentric or perhaps both, depending on attention, is correct, 

the fact that duration perception is affected by sensory adaptation in the 

particular area of the visual field where the adaptor is positioned suggests 

that duration is encoded locally in a similar manner to other visual 

properties. Evidence also suggests both pre-cortical and cortical areas are 

involved in duration perception demonstrating that visual duration is not 

computed by an event-based clock at a single processing level but is instead 

computed across the visual hierarchy with contributions at multiple levels. 

The implication that the Magnocellular pathway and/or medial temporal 

areas are involved may broadly localise time perception to the dorsal stream 

(Goodale & Milner, 1992). 
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 THE EFFECT OF TOP DOWN PROCESSES ON DURATION 

 

Sensory adaptation is not the only process that can influence perceived 

time. Other factors can play a part, for instance, highly emotional/arousing 

events such as falling from a tower (Stetson et al., 2007), are reported to last 

longer. Increases in body temperature also result in increases in perceived 

time (Wearden & Penton-Voak, 1995). As mentioned previously, time is 

reported to change with attention so that increased attention results in 

increases in perceived duration (Thomas & Weaver, 1975). Splitting 

attention between temporal and non-temporal tasks results in a decrease in 

perceived duration (Grondin & Macar, 1992).  

One behavioural paradigm that has been shown to affect perceived 

duration is the oddball paradigm and is explained using cognitive 

mechanisms such as the effects of attention and expectation as opposed to 

bottom up sensory adaptation. The oddball paradigm is where the 

participant is presented with a succession of stimuli where one stimulus or 

more within the stream are unexpected, termed the ‘oddball’. One example 

of the oddball paradigm in vision is where a low probability ‘oddball’ 

stimulus appears unexpectedly in a stream of high probability stimuli. Upon 

each trial, a series of stimuli are presented, all of which are the same 

stimulus except one different or ‘oddball’ stimulus, inserted at a random 

position toward the middle of the series. This experimental design has a 

duration effect where the oddball is perceived to persist longer in vision as 

first reported by Rose and Summers (1995). This oddball duration effect is 

Figure 1-3: Oddball paradigm showing oddball and debut relative temporal expansion effects. 
All stimuli are displayed for the same amount of time, but the debut and oddball stimuli are 
perceived to last longer relative to the other stimuli in the sequence. 
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illustrated in Figure 1-3 along with the debut effect, where the first stimulus 

in a series is perceived to last for a longer duration (Pariyadath & Eagleman, 

2012).  

Tse et al., (2004) show that the oddball stimulus appears to persist in 

vision for approximately 10% longer than the expected stimulus, where the 

actual stimulus duration is greater than 120ms. This effect is consistent for 

oddballs defined by different visual properties such as colour, shape and 

velocity and holds for auditory tones. Tse et al., (2004) explain the effect in 

terms of a central clock in that attention increases the tick rate of an internal 

clock, resulting in a perceived increase in subjective time (Treisman et al., 

1990). Tse et al., (2004) also claim that the lag between offset and 

attentional orientation explains why this effect does not apply to stimuli of 

durations shorter than 120ms as this is not enough time to direct attention 

to the stimulus. Pariyadath and Eagleman, (2007) expand upon this finding, 

showing that time does not expand during stimulus presentation of an 

oddball in all aspects. When an auditory tone is played at the same time as 

the oddball, participants do not report the tone to have a lower frequency. 

The same result was found when the visual stimulus was made to flicker at 

10Hz, there was no change in the temporal frequency of the perceived 

flicker, meaning the temporal expansion effect is one of duration alone and 

does not carry over to rate-of-change judgements. As the effect does not 

carry across different judgements, this suggests the internal clock 

mechanism can only be used for duration judgements, not rate-of-change. 

Another test of the internal clock model carried out by Pariyadath and 

Eagleman (2007) uses oddball stimuli with increased emotional salience, 

comparing these to emotionally neutral stimuli. Treisman et al., (1990) 

claim the internal clock rate increases with arousal and attention, predicting 

a difference in oddball temporal expansion effects between stimuli of 

differing emotional salience as these would increase either arousal, 

attention or both. No effect is found by Pariyadath and Eagleman (2007). 

Thus they suggest instead that the effect is driven by stimulus 

unpredictability; hypothesising that perceived duration is inversely 

proportional to the predictability of the stimulus.  
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Pariyadath and Eagleman (2007) reinforce this idea by showing that the 

first stimulus in a sequence of identical images also shows an oddball effect 

and by showing one of three different numerical sequences; where the same 

number is repeated (e.g. 1,1,1,1,1), an incremental sequence (e.g. 1,2,3,4,5) 

and a scrambled sequence (e.g. 1,4,2,5,3). They find an oddball effect with 

both the sequential and repeated presentations but not the scrambled, 

demonstrating that a sequence of visually dissimilar stimuli related by only 

abstract properties exhibits temporal expansion when expectations are 

violated. This result is backed up by a further study (Schindel, Rowlands & 

Arnold, 2011)that uses Troxler fading; a gradual reduction in perceived 

brightness of a persistent visual stimulus caused by low-level neural 

adaptation (Martinez-Conde, Macknik, & Hubel, 2004). It shows that the 

oddball is always perceived as brighter than the standard, no matter which 

eye it is presented to and the effect is stronger when shown in different eyes 

for both repeated and persistent initial presentations of the standard. If 

temporal expansion is caused by low-level adaptation, the same underlying 

mechanism that causes Troxler fading, then the oddball temporal expansion 

effect should exhibit a similar pattern to perceived brightness. However, it 

does not. Temporal expansion only occurs with flickering (i.e. a stimulus 

repeated over time), not persistent initial presentation of the standard and 

there is no significant difference depending on eye of presentation. This 

provides clear behavioural evidence disassociating oddball temporal 

expansion effects from low-level adaptation mechanisms, clearly showing 

that the oddball temporal expansion effect is separate to the effects of 

adaptation described in section 1.3.1. Pariyadath and Eagleman (2012) show 

that the temporal expansion of the oddball is influenced by the number of 

repetitions and the difference in orientation between the standard and 

oddball that scales in a way that was consistent with a predication error 

signal.  

The consensus is that the subjective temporal expansion observed in the 

oddball effect is not a result of sensory adaptation but one of top down 

cognitive processes of attention (Tse et al., 2004) or expectation (Eagleman 

& Pariyadath, 2009; Pariyadath & Eagleman, 2007; Pariyadath & Eagleman, 

2012; Schindel et al., 2011).  
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It is also argued (Pariyadath & Eagleman, 2007; Pariyadath & Eagleman, 

2012) that the duration expansion of unexpected events is directly related to 

neural suppression. This is observed as a decrease in ERP magnitude in 

EEG experiments (Pazo-Alvarez, Cadaveira, & Amenedo, 2003) and when 

using fMRI as a reduction in BOLD signal (Grill-Spector, Henson, & Martin, 

2006; Larsson & Smith. 2012) on subsequent presentations of a stimulus 

relative to the initial presentation. This may provide a way of linking 

duration perception directly to neurophysiology, which in turn could 

provide insight into the neural mechanism behind duration perception. This 

work is of particular relevance as predictability takes a central role in some 

recent theories of brain function (e.g. Friston, 2010), which claim that the 

brain optimises encoding based upon an internal model so that events 

predicted by the internal model beforehand are encoded more efficiently. 

This avenue of research may then provide a way to link duration effects, 

neural suppression and more general theories of brain function. 

  DOES DURATION PERCEPTION HAVE OTHER 

FUNCTIONS? 

The previous sections cover a range of literature on time perception 

representing the current ‘state-of-the-art’ on the topic. An influential model 

of time perception is the central clock model with its foundations in the 

scalar property of timing. However, the scalar property does not appear to 

be as hard a rule as first thought and there is little neurophysiological 

evidence for a centralised timing mechanism. Instead, there appears to be a 

wider distributed network of timing. Focusing more on visual perception of 

time over shorter (generally sub-second) durations, clock models do not 

appear to account for low-level adaptation effects nor higher-level 

expectation effects. This leaves a significant gap in knowledge on time 

perception in explaining why the sensory perception of time is altered by 

adaptation to particular visual properties and expectation, what 

mechanisms are behind the time sense and what the neurophysiological 

correlates of time perception are. The focus will now shift to examine the 

research questions that arise from this body of research and the specific 

literature surrounding them, as they will make the focus of this thesis.  
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We have seen that sub-second durations are susceptible to distortions, so 

a question arising from this is why do these distortions exist? A good 

starting point for any such question is to examine the possible evolutionary 

advantages of such distortions. So how does the inclusion of a mechanism 

coding duration in the perceptual system assist an organism’s survival? 

When an organism perceives an object in the world, the information the 

perceptual system gathers needs to be useful in inferring its effect on the 

organism’s survival. So such questions as, ‘Is the object a threat?’, ‘A food 

source?’, ‘A potential mate?’, ‘Another organism I can co-operate with?’ and 

so on are the type that the organism needs answering. It is important for the 

perceptual system to provide answers to these questions. So how does time 

perception fit into this? While implicit time in motion is useful, motion 

perception does not rely on explicit measures of space or time. Two flashes, 

separated in space and time but at too small a distance or timing difference 

to be distinguished, are perceived as a single moving object (Exner, 1875). 

The key conclusion from adaptation studies on duration perception (Section 

1.3.1) is there are separate mechanisms for temporal frequency, which 

involves an implicit, not an explicit measure of duration, and time. What the 

explicit measure does is inform how long an object has been present in the 

visual field and it is not immediately clear how this would be of benefit 

behaviourally.  

Therefore, from a purely perceptual view an explicit measure of time is 

not obviously critical to survival. One hypothesis is that the duration 

mechanism has ‘piggy backed’ onto other mechanisms to give a crude 

estimate on the few occasions where it is required. The estimates produced 

by such a mechanism distort easily when neurons that have a primary 

purpose other than encoding duration are adapted. Another possibility is 

that other processes require a measure of duration for more survival critical 

features of the environment such as in the timing of action and that 

duration changes caused by adaptation may serve useful functions. One 

such possibility is that visual duration is used in timing of actions, which is 

explored in the following section.  
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 DURATION ADAPTATION AND ANTICIPATORY ACTION 

TIMING 

A possibility investigated by Marinovic and Arnold (2012) is that visual 

time perception influences precise timings required for anticipatory action. 

They measured the effects of fast (68.4 rpm) and slow (5.7rpm) rotating 

motion adaptation over five rotation circles on perceived speed and 

duration of a single rotation circle (34.2 rpm). They found these match the 

results of Johnston et al., (2006), where the faster speed shows duration 

and speed compression, analogous to 20Hz temporal frequency adaptation 

and the slower only shows speed adaptation, analogous to 5Hz temporal 

frequency adaptation. Further experiments show adaptation to cause 

mismatches between actual and perceived onset of a round object moving 

along a circular path. Fast speed adaptation causes the object to appear 

earlier in time in a position behind the actual starting point, while after slow 

speed adaptation, the object  appears ahead of the starting position. The 

moving object is perceived forward or backward in time at onset after slow 

and fast motion adaptation respectively by approximately 50ms in both 

instances. Johnston et al., (2006) measure stimulus onset to be earlier after 

both 5 and 20Hz adaptation but this is not reported as significant. This is 

smaller (<20ms) than that reported by Marinovic and Arnold (2012) and  

the slower speed adaptation (equivalent to 5Hz adaptation) in Marinovic 

and Arnold (2012) has the opposite effect to the fast speed (20Hz 

equivalent), so the changes in onset time reported in Johnston et al., (2006) 

are not the same as the effect here.  

To test if changes in duration map onto changes in timing of actions, a 

final experiment requires participants to view either a fast or slow adapting 

stimulus as before, then they are asked to indicate when a round object 

moving in a circular path, in the same area as the adapting stimulus, passes 

between two markers. A fast moving adapting stimulus in the same 

direction as the test stimulus sped anticipatory actions, whilst slow moving 

adaptation in the same direction slowed anticipatory action. This result is 

down to changes in perceived motion after adaptation but not duration, as 

the fast adapting stimulus causes the round object to slow down and the 

slower adaptor causes it to speed up. Marinovic and Arnold (2012) conclude 
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that anticipatory action time and perceived visual duration have separate 

mechanisms to compute temporal measures as action timing changes in line 

with an increase in perceived speed but not perceived duration, showing 

that adaptation based duration compression is not carried over to timing of 

action.  

Another study (Tomassini, Gori, Burr, Sandini & Morrone, 2012), claims 

to show that duration compression of a tactile stimulus caused by 

adaptation to tactile motion disappears when participants make voluntary 

movements, suggesting that actions reset temporal biases induced by 

adaptation, which might be applicable to Marinovic and Arnold, (2012). 

This does not provide evidence that duration adaptation does not affect 

other mechanisms beyond the perception of duration itself, thus does not 

provide any insight into why adaptation to particular visual properties 

changes perceived duration. However, it does add further evidence against 

central clock models, as with a central, multimodal timer, distortions should 

be common across different modalities. 

 MIGHT DURATION COMPRESSION CAUSED BY 

ADAPTATION AFFECT VISUAL PROCESSES? 

If there is no effect on action timing, perhaps duration is used in 

mechanisms processing visual properties. This might also explain why 

adaptation to particular visual properties changes perceived duration as 

these changes might prove advantageous in creating a more informative 

percept of the environment. Such a process must be reasonably robust and 

have a temporal dependence. The Flash-Lag illusion, discovered by Mackay 

(1958), later rediscovered and quantified by Nijhawan (1994) is 

characterized by an erroneous perception of a moving object’s spatial 

position at the time of a brief visual event such as a flash. As such, it gives 

insight into mechanisms responsible for the perception of space and motion 

and their interactions. This erroneously perceived displacement increases 

with the moving object’s speed linearly within a certain range (Nijhawan, 

1994; Wojtach, Sung, Truong, & Purves, 2008). Dividing distance by speed 

gives a measurement of time, in the Flash-Lag illusion this temporal 

component is consistently measured at around 80ms and is fairly robust 
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(Durant & Johnston, 2004). So why does this effect exist? In the visual 

system, there is a delay of about 100ms between photons hitting the retina 

and perceptual awareness of the object reflecting the photons. Encoding and 

transmitting information about the object causes this delay (Nijhawan, 

2002). This presents the visual system with a problem if the object in 

question is moving as it moved to a new location in the world by the time 

the brain perceives it. This error is significant; for an object that is moving 

at a velocity of 20mph (~ 9ms-1) the error will be 90cm. As this is plainly not 

the case otherwise, actions like catching a ball would be impossible, the 

visual system must then have mechanisms to compensate for these 

perceptual errors. The Flash-Lag illusion can be interpreted in terms of such 

mechanisms and as it appears to be an illusion with a temporal component, 

it gives insight as to how estimates of time might be used in visual system. 

 WHAT CAUSES THE FLASH-LAG ILLUSION? 

There are a number of explanations for the Flash-Lag illusion, Nijhawan 

(1994) hypothesized that the erroneous offset in the Flash-Lag illusion is 

caused by motion extrapolation in the visual system. At the time of the flash 

the position of the moving object is extrapolated ahead in space, so what is 

perceived is a prediction of where the object is, not its physical position. 

Later, it was observed that motion after the flash, not before, generates the 

Flash-Lag illusion (Whitney & Murakami, 1998; Brenner & Smeets, 2000), 

debunking this, though alternative extrapolation models have been 

proposed (Khoei, Perrinet, & Masson, 2014) that account for this.  

Whitney and Murakami (1998) argue that each visual property (motion, 

colour etc.) has its own, largely autonomous and independent process for 

perception (Zeki & Bartels, 1998) in a ‘race to awareness’. So the percept 

that arrives first is perceived to happen the earliest,  in the case of Flash-Lag 

motion is processed faster than the flash. This latency difference 

explanation hinges upon a regress to a point of awareness at the process’ 

end-point, where the exact mechanism of racing to consciousness is left 

unexplained as discussed in Section 1.2.5. 

Krekelberg and Lappe (2000a) explain the Flash-Lag illusion as a 

positional averaging error, where the moving object’s position at the time of 
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the flash is computed by integrating position over a temporal window after 

the time of the flash. So the moving object’s perceived position is shifted 

along its motion trajectory.  

Eagleman and Sejnowski (2000) argue for a postdictive explanation of 

Flash-Lag whereby, the unexpected appearance of the flash causes the visual 

system to reset its predictions about visual objects. The perceived relative 

position of the moving object compared to the flash is computed using 

information about the moving object after the event, the appearance of a 

flash, to calculate what happened in the immediate past. This causes a shift 

in perceived position of the moving object, in a similar manner to the 

integration explanation.  

Each explanation uses time in some manner to explain the Flash-Lag 

effect, with either a temporal window (motion integration and postdiction), 

difference in processing time (latency delay), or predicting forward in time 

(extrapolation). 

 USING FLASH-LAG TO FIND A FUNCTIONAL ROLE 

FOR EXPLICIT DURATION 

There is little consensus as to the mechanism behind the Flash-Lag 

illusion (e.g. Eagleman & Sejnowski, 2007; Krekelberg & Lappe, 2000b; 

Patel, Ogmen, Bedell, & Sampath, 2000). However, one thing is clear. Each 

explanation (extrapolation, attentional shift, latency delay, integration) all 

agree that there is a temporal component of Flash-Lag. This is either the 

amount of time the bar is predicted forward in time, the amount of time 

taken to shift attention from one object to another, a difference in 

processing time of the two objects or a temporal window after the flash 

where the position is averaged in extrapolation, attentional shift, latency 

delay, integration respectively. This means if an adaptor, known to 

compress duration (e.g. 20Hz flicker), is presented before showing the 

Flash-Lag stimulus, this might have an effect on the time component of the 

Flash-Lag illusion.  

The obvious prediction from the literature would be that the Flash-Lag 

time component would shrink in line with the duration compression effects 

(Bruno & Johnston, 2010; Burr et al., 2007; Curran & Benton, 2012b; 
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Johnston et al., 2006). However, the position of a moving object has been 

reported to shift along its trajectory after 20Hz adaptation (Hogendoorn, 

Verstraten, & Johnston, 2010) so any effect of duration on Flash-Lag is not 

clear-cut. Evidence showing that a measure of duration is responsible for 

changing the Flash-Lag illusion would implicate explicit duration coding in 

motion and position computations within the visual system. This would 

show explicit duration estimation has a functional role outside of pure 

duration perception measures and must be encoded explicitly in the visual 

system. The next step would be to investigate how duration might be 

encoded in the visual system. 

 FURTHER MODELS OF DURATION PERCEPTION 

As the previous sections describe, there is a general trend in time 

perception research that indicates event duration is not computed by 

centralised clock mechanisms but is instead computed using a wide network 

of brain areas and represented in sensory systems alongside other visual 

properties across multiple stages in the their hierarchy. As such duration as 

computed in sensory systems is influenced by the stimulus properties 

(Alards-Tomalin et al., 2014) and functions such as adaptation (Johnston et 

al., 2006), attention (Mattes & Ulrich, 1998) and expectation (Pariyadath & 

Eagleman, 2007). Other models of duration perception have been proposed 

based upon this idea that duration is encoded as an emergent property of 

processing in sensory systems. Two of the more influential are the neural 

energy hypothesis (Eagleman & Pariyadath, 2009), whereby subjective time 

is encoded within one or more components of neural activity that correlate 

with perceived duration of an event and the use of state dependent networks 

to encode duration (Buonomano & Maass, 2009; Karmarkar & Buonomano, 

2007). Each of which shall now be discussed in more detail.  
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 NEURAL ENERGY 

Arising from research on oddball durations (section 1.3.2), where an 

unexpected stimulus is perceived to last longer, and evidence showing a 

reduction in neurophysiological activity associated with expected versus 

unexpected events influenced the proposal made by (Eagleman & 

Pariyadath, 2009) that duration is encoded by the amount of neural activity 

associated with an particular event. Time, encoded in this way can be 

represented at any point in the visual system where a representation of a 

stimulus exists thus is encoded at multiple stages in the processing 

hierarchy. Such a framework aims to explain changes in perceived time 

caused by adaptation, as perceptual adaptation can broadly be considered to 

cause reductions in the firing rates of neural populations encoding a 

particular stimulus property.  

The neural energy hypothesis can also explain other effects of time 

perception, such as the shortest duration required between two flashes to 

perceived them as separate is larger than flicker fusion threshold in a 

stream of flashes (Herrick, 1974). This can be considered a manifestation of 

the oddball duration effect. As each individual flash in a stream is 

predictable, the duration of the flash in a sequence is reduced, leaving a 

larger perceived gap between them to make the separate flashes in a stream 

more easily discernible. The first flash in a pair of flashes does not exhibit a 

perceived reduction in each flash’s duration, as no expectation is created, so 

no reduction in perceived flash duration occurs.  

Other effects are explained in a similar manner to flicker fusion. These 

include the time shrinking effect, where a second stimulus is perceived to be 

shorter in duration than the first (Nakajima, Ten Hoopen, Hilkhuysen, & 

Sasaki, 1992), where the appearance of the first stimulus creates an 

expectation so the perceived duration of the second stimulus is reduced, 

similar to the debut effect in Pariyadath and Eagleman, (2007). The stopped 

clock illusion; where a second hand of a clock is perceived to linger longer 

than subsequent ticks (Yarrow, Haggard, Heal, Brown, & Rothwell, 2001), is 

also suggested as similar as the first ‘tick’ is perceived to last longer. 

Increases in magnitude of perceptual properties such as size, brightness and 
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numerosity are claimed by Eagleman and Pariyadath (2009) to correlate 

positively with perceived duration and result in increased neural activity.  

It has also been proposed that the properties of time, space and number 

are encoded using a common magnitude mechanism (Walsh, 2003) where 

magnitude is represented in the parietal cortex (Bueti & Walsh, 2009). This 

would help explain why properties such as time, size, brightness etc. would 

influence perception of each other. As Eagleman and Pariyadath, (2009) 

state, currently neural energy hypothesis has not yet been expressed as a 

formal model nor has a specific foundation in neurophysiology and as such 

needs further work to develop the hypothesis. 

 STATE DEPENDENT NETWORKS  

It has been proposed that temporal information can be encoded 

intrinsically in recurrent neural networks that exist everywhere in the brain, 

where the interconnectivity between the neurons in such a network means 

the response of the network to a particular input evolves over time 

(Buonomano & Merzenich, 1995). In such a network properties that change 

in response to the stimulus (e.g. spike rate), provide variables to encode 

information. Each variable is represented as a single dimension that 

combine to make up a multidimensional space where a single point within 

this space represents the combined state of each variable within the 

network. This network state is used to encode information. For example, 

there is one point in the network space that encodes input X and another for 

input Y so the network is able to discriminate between two types of input. 

The importance of the theory described in Buonomano and Merzenich 

(1995) is that they show a neural network made up of integrate and fire 

model neurons can discriminate between different durations separating two 

inputs i.e. there is a network state that encodes input X followed by input X 

100ms later and another where input X happens 200ms after the original. 

State dependent networks have been proposed as a general timing 

mechanism (Buonomano & Maass, 2009; Karmarkar & Buonomano, 2007). 

An important property of these state dependent networks is the inability 

for the network to switch instantly to its default resting state as, by their 

nature, they rely on the temporal dynamics of the network to encode 
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duration. This dependence on the initial state of the network prior to any 

input to code duration places limitations on this method of encoding time. 

Buonomano and Maass (2009) and Karmarkar and Buonomano (2007) 

show that this property is reflected in behaviour by demonstrating that the 

presence of a distractor appearing at unpredictable times increases 

variability in interval discrimination which does not occur when the 

distractor appears at a predictable time. This is predicted by state 

dependent network models as a distractor acts as additional input into the 

network and would therefore change the network state. In cases where the 

distractor appears at the same time, the state of the network changes in the 

same way every time, therefore the duration encoded is internally 

consistent. With an unpredictable distractor the network state alters 

differently upon each trial, therefore duration comparisons are less 

consistent. This property may also explain adaptation effects described in 

Section 1.3.1. The adapting stimulus changes the way a population of 

neurons responds to subsequent stimuli, affecting the state of the network 

and thus, perceived duration. In fact, any mechanism that changes how 

neurons respond to stimuli, such as attention, expectation and even the 

exact properties of the stimuli themselves could potentially affect perceived 

duration, so it is plausible that state dependent networks could be used to 

explain duration effects discussed in Section 1.3. 

State dependent models are a computationally efficient way of encoding 

duration within local networks of neurons responding to the same stimulus 

property in sensory systems and provide an intriguing alternative to central 

clock models. One problem is that computationally, they are almost too 

good. It may be possible, with sufficient training and optimisation of 

network parameters for state dependent networks to extract information 

about almost any property of the stimulus. Therefore, it may be difficult to 

falsify them, beyond the lack of an instant reset previously discussed. The 

fact that an unpredictable distractor increases variability in interval 

discrimination highlights a vulnerability in this type of encoding scheme as 

it demonstrates state dependent networks are sensitive to variations in 

input i.e. noise. Since noise exists at every level in sensory systems (Faisal et 
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al., 2008), this presents a serious limitation in these models, though this 

may be overcome with future modifications to the model. 

 A PREDICT AND COMPARE CLOCK 

Internal clocks (Gibbon, 1977; Gibbon et al., 1984; Treisman et al., 1990; 

Wearden, 1991) and event related clocks (Kanai et al., 2006) cannot explain 

the adaptation effects on perceived time described in Section 1.3.1. These 

adaptation effects implicate early visual mechanisms in the magnocellular 

pathway (Solomon et al., 2004). Johnston (2010) proposed a content 

dependent clock based upon the temporal filter properties of early visual 

neurons (Hess & Snowden, 1992; Johnston & Clifford, 1995) which contains 

at least two, possibly three temporal filter channels, one low pass and one or 

two band pass filters. Johnston (2010) describes how these filters can be 

used to predict the luminance of the current stimulus either backward or 

forward in time. A clock can be built by storing a forward prediction in time 

then cross correlating the stored component with the current visual input. 

When the cross correlation output peaks, this produces a ‘tick’, the ticks are 

counted by an accumulator to get a measure of duration. Adapting the band 

pass filter which peaks at around 15-20Hz using a 20Hz flickering adaptor 

Johnston et al., (2006) induces a phase shift in the output of the band-pass 

filter, equivalent in the model to magnocellular output (Benardete & 

Kaplan, 1999). This has the effect of shifting the forward prediction further 

along in time meaning it takes longer for the cross correlation between the 

predicted and current visual input to peak, leading a longer duration 

between each tick. Fewer ticks mean a shorter perceived duration, thus 

demonstrating how selectively adapting the magnocellular pathway might 

affect perceived duration.  

There are some unresolved stages in this model, such has how the 

forward prediction is stored, how the cross correlation peak is detected and 

where in the visual system these processes might be performed. This model 

does show how a clock mechanism can be built on top of other mechanisms 

and how adapting these mechanisms might change the functioning of a 

clock. Johnston (2010) also states that this type of predict and compare 

clock mechanism can exist outside the early visual system using other 
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mechanisms, so forms the basis for a distributed view of timing throughout 

the brain. As this makes use of predictive mechanisms, this means that 

prediction/expectation and time may be inseparably linked in the brain.  

 A POSSIBLE NEUROPHYSIOLOGICAL SIGNATURE OF 

DURATION IN VISION 

Pariyadath and Eagleman (2012) argue that the temporal expansion of 

unpredictable events is related to the repetition suppression of BOLD 

signal, thus supporting the neural energy hypothesis - where subjective 

event time is represented in the brain by the amount of neural activity 

associated with a particular event. There are several proposed causes of 

repetition suppression. Fatigue: where neurons responsive to a stimulus 

monotonically reduce their response upon repeated presentations of the 

stimulus. Sharpening: where the neurons most responsive to a stimulus 

retain their response on repeated presentations but those moderately 

responsive become less so. Facilitation: neurons respond faster to stimulus 

repetitions initially producing a strong response that quickly reduces 

compared to the initial stimulus presentation. BOLD response has a 

temporal resolution of seconds, so it gives an average of neural response 

that, over time, is reduced for repeated stimuli. Both fatigue and sharpening 

are bottom-up processes that facilitate metabolically and computationally 

efficient processing, while facilitation is often framed in terms of predictive 

coding with the neuronal firing rate representing an error signal: the 

difference between bottom-up sensory input and top-down expectations. As 

repeated stimuli are expected, top down signals effectively cancel bottom up 

input (Grill-Spector et al., 2006). 

The hierarchical organisation of sensory systems with recurrent top-

down feedback to lower levels lends itself well to processes like facilitation 

listed here. Bottom up sensory signal from sense organs provide a driving 

input. At various stages in the hierarchy, the sensory signal is subject to 

processing so various properties of the environment can be explicitly 

represented within the system. These representations can be used to make 

predictions about future sensory input, which are fed back to lower levels in 

the hierarchy. One role of these lower stages is to compute the error 
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between the prediction from higher levels and the sensory input, which is 

fed forward to the higher levels. This error signal is used to update the 

representation of the world, so increasingly accurate predictions can be 

made in future.  

This process is formalised using empirical Bayes (Friston, 2005) and has 

been referred to as the free energy principle. The central claim regarding 

this is that one important, if not the most important role of neural systems 

is to construct accurate representations of the environment that minimise 

the amount of ‘free energy’, defined as the upper bound for the surprise 

(negative log probability), and so free energy can be considered the 

prediction error within the system (Friston, 2009, 2010). In summary, there 

are multiple viable theoretical explanations for repetition suppression 

positing both top-down and bottom-up mechanisms.  

Summerfield et al., (2008) investigate the nature of repetition 

suppression in an fMRI experiment, finding evidence for repetition 

suppression as an encoding of error signal. They present trials where two 

faces are shown. These faces are either two different images of the same 

person for (repeated trial) or images of two different people (different trial). 

These were shown in two separate blocks with different frequencies so that 

in one block repeated trials appeared more and the other different trials 

appeared more often. Additionally, depending on the block, the participant 

is cued to expect two of the same or two different faces. The BOLD signal, 

averaged across the fusiform face area (FFA) shows that repeated trials 

invoked a smaller response than different trials. In comparing BOLD 

response for the two trial types across blocks shows a decrease in BOLD 

when the trial type was expected relative to blocks where it was unexpected, 

showing evidence of an error signal.  

Larsson and Smith (2012) conducted a follow up fMRI study inducing 

suppression of BOLD by fMRI adaptation as well as repetition suppression 

through expectation, by repeatedly showing stimuli over four seconds to act 

as an adaptor. Furthermore, the experiment manipulates attention using a 

distractor. This study shows significant suppression across multiple visual 

areas in both conditions where attention is manipulated but shows 

significantly more suppression where attention is focused compared to 
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when attention is distracted. This implies that when attention is diverted the 

observed repetition suppression is a bottom-up effect, not the effect of 

repetition on expectation, and when participants attend to the task the 

repetition suppression is due to both bottom up adaptation and top down 

expectations, so multiple mechanisms contribute toward repetition 

suppression of BOLD in fMRI. This is an important finding as it shows the 

effect of expectation is task dependant and separable from low-level 

mechanisms. As the effects of stimulus specific adaptation and probability 

rule based expectation are separable it implies that there are at least two 

mechanisms that contribute to BOLD suppression, so it is possible that 

more than one, if not all of the mechanisms discussed by Grill-Spector et al., 

(2006) contribute to BOLD suppression. This has implications for the 

hypothesised link between repetition suppression and perceived duration: is 

the temporal expansion effect observed using the oddball paradigm due to 

bottom-up, top-down repetition suppression or both?  

The research already discussed in Section 1.3.2 indicates that top down 

suppression created by expectations is responsible for the temporal 

expansion effect in oddball. If the temporal expansion effect is associated 

with repetition suppression it must be repetition suppression induced by 

perceptual expectation, not adaptation. This provides a potential link 

between the effects of repetition suppression induced by expectation and 

perceived duration which if confirmed would show a neurophysiological 

signature of duration. The proposed mechanism for this is facilitation, 

where the reduction in BOLD for repeated stimuli is a reduced error signal 

which is the result of perceptual expectations being met.  

If it can be shown that duration is associated with repetition suppression 

of BOLD, it would also implicate particular predictive mechanisms in 

duration perception. Predictive mechanisms require a hierarchical system 

(Friston, 2005) with top-down feedback generating and passing down 

predictions as well as bottom-up sensory input. The effect of prolonged 

sensory input has been studied using adaptation (Section 1.3.1) effectively 

investigating the effect of bottom up input on perceived duration so the 

oddball paradigm and repetition suppression provides a method to 
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investigate the contribution of stages further up the hierarchy and top down 

feedback to duration perception. 

 SUMMARY 

Three questions have been highlighted in this review of the literature on 

time perception and will be investigated in this thesis. The first is do 

perceptual measures of duration have functional roles within the visual 

system? Secondly, how might neural systems encode duration? Finally, are 

there neurophysiological correlates of perceived duration in the visual 

system? Each of these questions shall require different paradigms to 

investigate. The functional role of duration in vision is explored using 

behavioural experiments using a visual adapter previously shown to 

compress perceived duration. A computational model is developed to show 

how neural systems might encode duration. The aim of this is to investigate 

if basic properties of neurons and neural systems can be used to encode 

duration in a distributed manner across sensory hierarchies and might exist 

in early sensory areas. Finally a study using both behavioural and fMRI 

experiments is performed to look for neural correlates of perceived 

duration. Overall, this thesis presents a multi-modal investigation of crucial 

questions in field of visual time perception and in particular the mechanism 

for encoding visual perception of time. 
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2.  CHAPTER TWO - CONTRASTING 

PSYCHOPHYSICAL METHODS FOR 

MEASURING DIFFERENCES IN THE FLASH-

LAG ILLUSION 

 INTRODUCTION 

A central finding of Johnston et al., (2006) is that the explicit perception 

of duration can be adapted separately from the perception of temporal 

frequency (TF), which may be interpreted as an implicit duration measure. 

Further experiments show that perceived duration is also affected by 

adapting to high contrast (Bruno & Johnston, 2010), luminance (Ayhan et 

al., 2009) and motion (Curran & Benton, 2012; Marinovic & Arnold, 2011), 

so explicit duration detectors must share common mechanisms with the 

encoding of these  visual properties. These mechanisms have been theorized 

to be localized in the Magnocellular pathway of LGN (Bruno & Johnston, 

2010; Johnston, 2010; Johnston et al., 2006) and dependent on contrast 

gain adaptation in M-cells (Solomon et al., 2004). Marinovic and Arnold 

(2011) show that adaptation to motion, which compresses perceived 

duration does not change action timings, so this adaptation and the 

resulting change in judgments of explicit duration does not have a 

functional role in guiding movements.  

The question asked in this and in Chapter 3 is why does explicit duration  

share common encoding mechanisms with these visual properties? I.e. is 

explicit duration used for further computations within the visual system or 

does it piggy back onto other mechanisms because it is not as important to 

have an accurate estimate of duration as other visual attributes? Perhaps, 

for the rare occasions when an explicit duration judgment is required, the 

visual system computes an estimate of duration from other visual properties 

thus, adaptation of these other properties also affects perceived duration.  

It was decided to examine this question using an effect known as the 

Flash-Lag illusion. This is characterized by an illusory displacement of a 

moving object’s position in the direction of motion relative to the position of 
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a flash (Nijhawan, 1994). When both the flash and a moving object are 

aligned exactly an observer perceives them to be misaligned, with the 

moving object positioned further along the direction of motion than it is in 

reality, this is shown in Figure 2-1. Note the object is moving in a linear path 

as opposed to circular path or rotating, which is often the case. The reasons 

for this are discussed later in Section 2.3. 

 
Figure 2-1: The Flash-Lag illusion. A flash (a) appears and the moving bar is perceived at 

(b) along the direction of motion (indicated by the arrow), when it is actually at (c) with an 
illusory displacement offset (d)that scales with the speed of the moving object. 

 

The proposed mechanisms that cause Flash-Lag are fiercely debated and 

are discussed previously in Section 1.5.1. As each involves a temporal 

component, for the purposes of this study the argument over which provides 

the best model of the Flash-Lag Illusion is moot. The objective is to see if 

adaptation induced duration compression changes this time component in 

some way that would indicate that perceived duration is used in other visual 

mechanisms.  

As Flash-Lag changes with object speed, it is likely that a change in 

perceived speed caused by TF adaptation (Hess & Snowden, 1992; Smith & 

Edgar, 1994) also affects the Flash-Lag illusion. Therefore, adapting to TF 

could change the Flash-Lag illusion irrespective of whether or not TF 

induced duration compression occurs, as TF adaptation changes perceived 

speed. It is necessary to measure the perceived change in speed in order to 

factor out its effect when measuring the effect of duration compression on 

Flash-Lag. Before conducting the experiment, it is important to show it is 

possible to separate the effects of adaptation on the Flash-Lag illusion, 
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which is demonstrated in Section 2.2. The rest of this chapter will detail the 

methodologies used to measure the Flash-Lag illusion, first examining 

different stimulus designs to test that they cause the observer to perceive a 

Flash-Lag effect comparable to previous reports in literature. This will then 

lead to a comparison of psychophysical techniques for efficiently evaluating 

the effects of adaptation on Flash-Lag. Once a suitable methodology has 

been established, this will be used in Chapter 3 to measure the effect of 

temporal frequency adaptation on Flash-Lag. 

  PREDICTING EFFECTS OF TEMPORAL FREQUENCY 

ADAPTATION ON FLASH-LAG 

Motion perception can be considered based upon two or three TF 

channels (Hess & Snowden, 1992; Smith & Edgar, 1994) where motion can 

be computed as a ratio of these channels (Smith & Edgar, 1994). Adaptation 

to a particular TF causes a relative reduction in sensitivity of one channel 

that has a repellent effect on perceived speed, so relatively faster moving 

objects are perceived to be even faster while slower objects are perceived to 

be slower still. As Flash-Lag is dependent on perceived speed of a moving 

object this means it is likely adaptation to TF will change the magnitude of 

the Flash-Lag illusion as well as any potential effects on the Flash-Lag time 

component. 

Johnston et al., (2006) show an effect on duration after 20Hz TF 

adaptation only and an effect on perceived TF after both 5 and 20Hz 

adaptation. Since this work is based upon the duration compression effect 

reported by Johnston et al., (2006) it makes sense to use the same 

adaptation conditions. From which arise several different possible 

scenarios. If there is an effect at 20Hz and not 5Hz, this suggests it is change 

in the temporal component of Flash-Lag, not perceived speed causing the 

observed effect. However, this is not conclusive as the null 5Hz effect could 

be an artefact of TF adaptation similar to Smith and Edgar (1994) where the 

TF of the adaptor and adapted stimulus are closely matched so there is little 

adaptation. Alternatively, if there is an effect at both 5 and 20Hz adaptation 

on Flash-Lag this might mean there are effects of both perceived duration 

and perceived speed. In both cases, there needs to be a second experiment 
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measuring the change in perceived speed so this can be factored out. If there 

is a significant difference in Flash-Lag after 20Hz adaptation and not 5Hz 

that cannot be explained by speed effects alone then this provides evidence 

of an effect of duration on the temporal component.  

It is possible to show this quantitatively. Taking the data from Johnston 

et al., (2006) it is possible to estimate the perceived speed and duration 

effects caused by TF adaptation on Flash-Lag by distance, speed, time 

relationships. Here, distance relates to the Flash-Lag illusion magnitude, 

speed is the speed of the moving object and time is the Flash-Lag time 

component. The results of Johnston et al., (2006) where 5Hz adaptation 

increases and 20Hz adaptation reduces perceived TF (Smith & Edgar, 1994) 

broadly predict 5Hz adaptation should increase Flash-Lag while 20Hz 

adaptation reduces it, assuming Flash-Lag is dependent on perceived speed. 

The duration compression caused by 20Hz TF adaptation would suggest 

that it should shorten this time component by approximately 25% as 

Johnston et al., (2006) report, leading to a reduction in Flash-Lag. The 

alternative possibility is that the temporal component of Flash-Lag expands 

after adaptation, which while counterintuitive to Johnston et al., (2006), is 

observed as an effect of 20Hz TF adaptation on the perceived position of a 

moving object during a study by Hogendoorn et al., (2010).  

Like speed, we can make predictions for the effect of adapting duration 

on Flash-Lag by using speed, distance, time equations, based on either 

duration compression or expansion. The time component of Flash-Lag is 

calculated by Distance/Speed using the same data as the speed prediction. If 

the effect of 20Hz adaptation on Flash-Lag is a compression of the temporal 

component, which reduces the Flash-Lag illusion, this is the same direction 

as the expected effect of the reduction in perceived speed caused by 

adaptation.  

Therefore, the goal of this experiment is to measure the effects of 5Hz 

and 20Hz adaptation on Flash-Lag and perceived speed then to compare the 

pattern of adaptation between the two measures in the adaptation 

conditions and a control condition. The predicted effects of these are shown 

in Figure 2-2. If there were a significant deviation between the two, this 

would be a suggestion that 20Hz TF adaptation is changing the time 
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component of Flash-Lag. TF adaptation has different effects on different 

speeds (Smith & Edgar, 1994). When adapting a particular speed using a 

particular TF, this might result in little change on perceived speed due to 

the TF of the adaptor being closely matched to the speed of the moving 

object. Thus, at least two speeds are required to observe a range of speed 

adaptations, whereas duration adaptation should remain the same. 

Figure 2-2: Data is taken from Wojtach et al, (2008). Predicted change in Flash-Lag caused 

by 5Hz and 20Hz adaptation. 5Hz adaptation is only expected to increase perceived speed 

of the moving bar, which should cause an increase in Flash-Lag magnitude as Flash-Lag 

scales with speed. 20Hz adaptation is expected to adapt speed but might adapt the time 

component of Flash-Lag also, causing either a compression or expansion effect. 
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 MEASURING FLASH-LAG: STIMULUS DESIGN 

The experiment requires a consistent and accurate measure of the Flash-

Lag illusion so the experimental stimulus must be designed and tested to 

make sure it produces a consistent, and large enough illusion. The aim of 

the experiment is to measure change in the time component of Flash-Lag 

after temporal frequency adaptation by measuring the magnitude of the 

Flash-Lag illusion. Based upon previous work (Johnston et al., 2006), it is 

anticipated that should there be an effect on the time component of Flash-

Lag that this will be a fractional reduction of the time component of 

approximately 25%. As Flash-Lag magnitude scales with speed, the faster 

the speed of the moving object the greater the magnitude of the Flash-Lag 

illusion, which would mean the larger any post-adaptation reduction of 

Flash-Lag would be in absolute terms. To measure a large Flash-Lag the 

stimulus needs to display the flash a large displacement away from the bar, 

so the experimental set up needs to accommodate this as well. 

However, we need to take into account an implication of Weber’s Law, a 

commonly reported property of sensory systems, that with increasing 

magnitude of a sensory property, errors in judgements also increase 

proportionally. For this experiment, it is likely there is a point where 

increasing speed of the moving object stops becoming helpful as the 

variability in participant responses will outweigh benefit from increases in 

the Flash-Lag magnitude for measuring any change in absolute Flash-Lag 

magnitude.  

The Flash-Lag illusion is robust and there exists a variety of different set-

ups that have been used successfully by a number of different researchers. 

In fact, there is evidence showing Flash-Lag is cross modal (Alias & Burr, 

2003). Some examples of common stimuli include a rotating bar with the 

flash appearing at opposite sides of the bar, the stimulus originally used by 

Nijhawan (1994) and other setups using rotating stimuli, such as the 

annulus and disk stimuli used by Eagleman and Senjowski (2000) produce 

reliable Flash-Lag illusions.  

These rotating stimuli do produce consistent Flash-Lag illusions and a 

rotating bar and flash setup was successfully used to investigate the 
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temporal nature of the Flash-Lag illusion (Durant & Johnston, 2004). These 

stimuli are limited in the Flash offsets that can be shown, and the speed of 

the moving object is limited (in Durant & Johnston, 2004 the speed at the 

outermost edge was 5.7°s-1) and are not suitable for the purposes of this 

experiment. So which set ups are best for measuring high speed Flash-Lag? 

Wojtach et al (2008) use a set up with mirrors and stimuli projected using 

lasers for very high spatial precision to measure Flash-Lag accurately at 

much higher speeds than previous experiments. We do not require the full 

range of speeds in  Wojtach et al (2008), but we will also use a linear, rather 

than rotating or circular bar path, this will allow a suitable range of offsets 

given the bar speed. The object path will be horizontal as, on a 4:3 ratio 

screen this is allows the longest path possible, required as we want to reduce 

the predictability of the flash and bar appearance points in space as 

predictability appears to reduce Flash-Lag magnitude (Namba & Baldo, 

2004; Murakami, 2001). Similar set ups have been used before to 

investigate whether Flash-Lag occurs because of motion before or after the 

Flash (Nijhawan 2001). This set up allows for a consistent retinal speed 

across the length of the bar and an offset that is measured in visual distance 

rather than the angle of the bar. In later versions, we will see that flash and 

bar can be presented at the same distance from fixation. Due to the need to 

find the best set up that provides a large Flash-Lag effect using a high object 

speed that does not show too much variability, the stimulus design needs to 

be developed and tested before the full experiment takes place.  

Another consideration for the final experiment is at least two speeds are 

required as TF adaptation has differing effects depending on the speed of 

the test object (Smith & Edgar, 1994). The possibility remains open that 

temporal frequency adaptation will have different effects on Flash-Lag 

depending on the speed of the moving object within the illusion. As 

discussed in Section 2.2 this could help tease apart any differing effects on 

the speed and the time component of Flash-Lag, so could prove useful. Or 

perhaps 20Hz temporal frequency adaptation, a stimulus that drives 

predominantly Magnocellular input (Xu et al, 2001) may have a greater, or 

exclusive effect on Flash-Lag using high speed stimuli that also drives 

Magnocellular response. The rest of this section is motivated by the need to 



51 

51 
 

develop a stimulus set up that can produce a reliable and consistent Flash-

Lag illusion with a high speed moving object and decide upon which two (or 

more) speeds the final experiment will use. Once a suitable stimulus has 

been found it will be tested with an adaptor to check if it produces reliable 

pilot results with adaptation. Later on, this chapter will move on to 

investigating psychophysical techniques for measuring Flash-Lag and 

perceived speed in the most efficient, unbiased way.  
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 FIXED PARAMETERS 

Participants are required to fixate throughout the experiment upon a 

centrally positioned red circle (0.5° diameter) with a mid-grey background 

(63 cdm-2). Each trial consisted of a white moving bar of size 0.33 x 0.66°, 

luminance: 124 cdm-2 that appeared on one side of the screen and moved 

horizontally toward the opposite side (path length 8°). At a point along the 

bar’s trajectory a flash appeared (radius 0.33°, luminance: 124 cdm-2, 

duration time 10ms/1 frame) and the participants judged if the bar was to 

the left or right of the flash when the flash appeared, in a two alternative 

forced choice design. The exact position of the flash, relative to the bar 

varied according to a Method of Constants (MoC) procedure, randomly 

chosen one each trial within a range of -1.5 to 2° with 0.5° steps. The exact 

appearance and disappearance position of the bar and flash position on 

screen was randomly jittered 1° trial to trial, so that it was impossible to 

predict exactly when and where the flash would appear. This setup meant 

that the participant could not predict in advance of onset where the flash 

would appear and where the bar would be in relation to the flash, while 

keeping the flash and bar reasonably close to central fixation. It also 

separates the flash and moving object in space, as opposed to an annulus 

and disc configuration that might lead to perceptual grouping confounds. 

 MEASURING FLASH-LAG MAGNITUDE 

In this section, to measure the effect at each speed, each flash position is 

repeated multiple times (specified in each section), to generate a percentage 

judgment of where the participant perceived the bar to be relative to flash 

for each offset. A logistic psychometric function is fitted to these data where 

the 50% point is taken as the point of subjective equality (PSE), giving a 

measure of the illusion, whilst Section 2.4 details the use of adaptive 

methods to measure Flash-Lag. 
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 EQUIPMENT  

Stimuli were displayed on a linearized display Sony Trinitron monitor in 

a darkened room using a resolution of 800600 pixels and refresh rate of 

100Hz with a Cambridge Research Systems (CRS) ViSaGe system controlled 

by Mathworks MATLAB v7.5.0. Participants viewed stimuli with aid of a 

chinrest at a distance of 57cm from the screen, giving responses on a CRS 

CT6 remote button box with a CRS VET eye tracking system used to check 

fixation. Data analysis was performed using Mathworks MATLAB v7.5.0. 

Participants were the author and supervisor for initial piloting.  

 FIRST FLASH-LAG PILOT 

 

Figure 2-3: Stimuli for the first Flash-Lag pilot: a) shows central fixation and the appearance 
and disappearance positions (X) of the moving bar which are both jittered by 1°. B) shows 
the position of the flash relative to the moving bar, which is jittered by 2°.  
 

Figure 2-3 shows a diagram of the initial pilot stimuli used. The vertical 

centre of the bar is 2° above the centre of fixation and the vertical centre of 

the flash is 2° above that of the bar. Flash-Lag was measured for two speeds: 

9.1°s-1 and 18.2 °s-1, chosen as these speeds should elicit a measurable effect 

(approx. 0.75° and 1.5° respectively with a 80ms time component typical for 

the Flash-Lag illusion (e.g. Nijhawan, 1994; 2002; Wojtach et al., 2008)). 

The bar moved from right to left. Each Flash-Lag illusion measurement was 

carried out once to produce a single psychometric function. The results in 

Figure 2-4 show the psychometric functions for the two speeds measured 

for a single participant. Each function forms a sigmoid from 0 to 100% 

response rate, which demonstrates the participant is responding sensibly 

and the range of Flash-Lag offsets is suitable for the task. This was fitted 
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used the logistic function in Equation 2-1 (where the fitted function y is a 

function of the observed data x where α is PSE and β is slope) using a 

Newton-Gauss algorithm implemented by the MATLAB nlinfit function.  

Equation 2-1 

𝑦 =
1

1 + 𝑒
− 

𝑥−𝛼
𝛽

 

The first results with the author as observer are shown in Figure 2-4. The 

fitted function for the faster speed shows a shallower gradient, meaning 

there is more uncertainty in the judgments, which is expected at higher 

speeds due to Weber’s law. However, the PSEs (9.1°s-1: 0.3°, 18.2°s-1: 0.1°) 

for both show no effect or possibly a very small Flash-Lag at the slower 

speed. Much smaller than expected with a 80ms time constant (9.1°s-1: 

~0.75°, 18.2°s-1: ~1.5°). It is not possible to get an accurate estimate of 

Flash-Lag from a single measure from a single participant, but since this 

first attempt produces an effect that is much smaller than expected, it 

suggests the setup is not producing a strong illusion and not fulfilling the 

requirements laid out in Section 2.3, thus prompting changes in the 

stimulus.  
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Figure 2-4: Responses showing the position of the bar relative to the flash (negative 
means flash is positioned ahead of the bar) and responses indicating when the bar was 
judged ahead of the flash. Psychometric functions are shown for a single participant for two 
bar speeds 9.1°s-1 and 18.2°s-1. Both speeds show a barely distinguishable Flash-Lag that is 
much smaller than commonly reported. 

 SECOND FLASH-LAG PILOT: TWO DIRECTIONS OF 

MOTION 

The experiment is changed to show the bar in both right to left and left to 

right motion paths to avoid motion adaptation, which may have affected 

previous results. Bar direction is interleaved in each block and the offset 

range is increased to +/- 2° with 0.5° steps. Otherwise, the stimulus is the 

same as shown in Figure 2-3 and described in Sections 2.3, 2.3.3 and 2.3.1, 

except the start and end-points for right to left motion are reversed. Only 

the 18.2°s-1 condition is shown. The two main experimenters were the 

participants in this experiment. Figure 2-5 shows the shape of the 

psychometric function, indicating that the range is suitable. Only one of the 

two participants shows a Flash-Lag effect (participant 1:-0.5, participant 2 

shows a Flash-Lead of 0.3), though this is much smaller than expected 

(~1.5°), indicating that, further changes are required.  
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Figure 2-5 : Psychometric functions and for the mean and standard deviations (n=4) of 
the data collected plotted as the position of the bar at the time of the flash versus the 
percentage the bar is judged ahead of the flash for a particular offset where a shift toward the 
negative indicates a Flash-Lag illusion. a) Participant 1 shows a significant Flash-Lag effect, 
but smaller than expected. b) While participant 2 (right) shows no effect, if anything is 
exhibiting a slight Flash-Lead effect in the opposite direction to Flash-Lag. 
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 THIRD FLASH-LAG PILOT: CHANGING FLASH 

POSITION  

 

Figure 2-6: This shows the Flash-Lag stimulus design for the third Flash-Lag Pilot. a) The 
main change is the bar can now appear either side of fixation as marked using X. The distance 
the bar travels has increased to 20° from 8° and the jitter to 2° from 1°. b) shows bar and 
Flash with the Flash position jitter increased to 4° from 2°.  

 

A possible explanation for the previous results is that the current 

arrangement, where both the flash and bar appear on the same side of 

fixation, encourages the participant to track the bar or shift fixation above 

the fixation point. Tracking the moving object by smooth pursuit removes 

the Flash-Lag effect (Nijhawan, 2001). A saccade to above fixation could 

also modulate the Flash-Lag effect as saccades are reported to compress 

perceptions of time and space (Morrone et al., 2005). At this point, we had 

no eye tracking to confirm this so this was set up using a CRS eye tracker so 

gaze could be checked via visual inspection of the traces.  

A redesign of the stimulus overcomes this by having the flash and the bar 

on opposite sides of the fixation point instead of both above it (Figure 2-6). 

Therefore, the optimum strategy for the participant is to fixate in the centre 

to judge the position of both flash and bar equally well. A further change is 

the range of flash offsets which are set to +/- 4° and the bar path distance 

increased to 20°, with the start and end points jittered by 2° allowing 

greater speeds to be used to accommodate the larger Flash-Lag magnitude. 

 This set up will be tested for three different speeds 18.2, 27.3 and  

36.4°s-1. The aim of adding two faster speeds is to see if this will produce a 

larger Flash-Lag illusion. The side of fixation the bar appears on is 

randomly selected for each trial and counter-balanced. The centre of the 
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flash is now positioned 2 degrees vertically from the centre of fixation and 

each speed is now repeated for 12 trials so the four combinations of bar 

position (above or below fixation) and direction (left to right and right to 

left) are each shown 3 times. Other parameters are the same as Section 

2.3.5.  

The results are shown in Figure 2-7Error! Reference source not 

ound.. An increase in speed results in a shallower psychometric function 

slope to the point where the 36.4 °s-1 speed condition does not drop below 

30% ‘bar ahead of flash’ response rate indicating the range of offsets do not 

extend far enough. The results show the flash offsets are suitably set to 

measure the effect for the other two speeds. Naïve, less practiced 

participants may not have as steep a sinusoidal function as this so it would 

be prudent to extend the range of flash offsets. The PSEs for each speed 

(1.6°,2.0° and 2.8° for 18.2°s-1, 27.3°s-1, 36.4°s-1 respectively) demonstrate a 

Flash-Lag effect, which is comparable to the expected illusion magnitude in 

literature given an 80ms time component (1.5, 2.2, 2.9° for 18.2°s-1, 27.3°s-1, 

36.4°s-1 respectively). This is a statistically significant Flash-Lag as shown 

by one-sample t-tests (18.2°s-1: T3 = 22.266, p < 0.001. 27.3°s-1: T3 =11.166, 

p < 0.01. 36.4°s-1: T3 = 6.780, p < 0.01.). Flash-Lag is significantly different 

across the differing speeds, as shown by repeated measures ANOVA (F3, 6 = 

5.52, p < 0.05). Overall these data show this methodology can produce a 

robust Flash-Lag effect comparable with previous reports for all speeds and 

an accurate estimate of psychometric function for 18.2 and 27.3 °s-1 speeds 

thus, fulfilling some of the objectives set out in Section 2.3 and provides the 

basis for the Flash-Lag experiments carried out in this and Chapter 3.  
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Figure 2-7: Psychometric functions and standard deviations (n=4) showing percentage of trials 
the bar is judged ahead of the flash for the bar’s position relative to the flash. Both motion 
directions are collapsed, so a shift toward the negative indicates a Flash-Lag illusion. Each graph 
shows a different speed, which all show significant flash-lag effects. a) shows 18.2°s-1 speed, b) 
shows 27.3°s-1 speed and c) shows faster 36.4°s-1 speed.  
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 ADDING TEMPORAL FREQUENCY ADAPTATION 

Figure 2-8: This shows the Flash-Lag stimulus with an adapting stimulus a) the adaptor 
covering the whole width of the screen appears in both the 5Hz and 20Hz adaptation 
conditions but not the control b) Shows the positions the bar starts and stops in c) shows 
bar and Flash with the Flash position jitter.  

For measuring Flash-Lag with adaptation two changes were made, firstly 

the range of flash offsets was increased from 4 to 5° to make sure the full 

psychometric function is fully sampled and to shorten the experiment the 

number of repetitions is reduced to 8 and the flash offset step size is set to 

1°. To adapt the Flash-Lag stimulus a squarewave grating (2 cycles per ° of 

visual angle) with a sinusoidal counterphase luminance flicker (Luminance: 

41 - 82cdm-2, Michelson contrast: 0.333) is used. This is set as counterphase 

flickering to avoid luminance after-effects and squarewave to avoid areas 

where no luminance change occurs, and thus no adaptation. This is shown 

in Figure 2-8.  

Participants fixate as before and the grating appears centred in the 

middle of the screen on fixation for an initial 15s adaptation with 5s top up 

between trials to match Johnston et al., (2006). After adaptation, the Flash-

Lag stimuli appear as in Section 2.3.6. There are two adaptation conditions 

5Hz and 20Hz, making up three conditions altogether with the no 

adaptation control condition.  
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Figure 2-9: Shows measured Flash-Lag effects for two participants across all conditions. 
Flash-Lag magnitude is shown as a positive value, different to previous figures showing 
psychometric functions where a Flash-Lag is shown as negative. Bar grouping organised by 
speed. Both participants show similar changes because of adaptation with both 5 and 20Hz 
reducing Flash-Lag except participant 1 for 5Hz. 

 
Results of adaptation for two participants are shown in Figure 2-9. The 

Flash-Lag effect for both participants in the control condition compares well 

to that expected with a 80ms time constant (participant 1 18.2°s-1:1.6° 

27.3°s-1:2.0° participant 2 18.2°s-1:1.4° 27.3°s-1:2.1° and expected 18.2°s-1: 

~1.5 27.3°s-1: ~2.2). The pattern of change across the two participants shows 

adaptation reduces the magnitude of the Flash-Lag illusion with the 

exception of 5Hz adaptation at the 18.2°s-1 speed for participant 1. The effect 

of adaptation is significant for participant 1 across both speeds (18.2°s-1: F3, 6 

= 7.00, p < 0.05. 27.3°s-1: F3, 6 = 4.44, p < 0.05) but not participant 2 

(18.2°s-1: F3, 6 = 3.07, p =0.10. 27.3°s-1: F3, 6 = 0.78, p < 0.22). There are no 

significant contrasts, indicating it is a combination of the adaptation effects 

at both 5Hz and 20Hz causing the significant difference for participant 1. 

These data show two things. First, there is some indication of an effect of 

adaptation on Flash-Lag as shown by the significant results for participant 
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1, however though participant 2 shows similar trends in the results these are 

not significant, meaning that any effect on Flash-Lag may only be 

observable across a group.  

Table 2-1: Shows the results from Section 2.3.7 using MoCs to measure the Flash-Lag 

illusion 
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 MEASURING FLASH-LAG: ADAPTIVE METHODS TO 

MEASURE EFFECT SIZE 

The problem with the experiment so far is that to measure Flash-Lag 

across a range of speeds with TF induced flicker it will take 1 - 1.5 hours per 

condition, totalling up to 9 hours for the Flash-Lag experiment, depending 

on the number of flash offsets and repetitions required. This is not a 

reasonable demand on participant’s time. An adaptive psychophysical 

method would reduce the number of trials the experiment requires. In this 

section, we test two adaptive methods: the Psi method and a simple 

up/down staircase as well as bootstrapping a single psychometric function 

to test if errors can be estimated rather than measured.  

The Psi method (Kontsevich & Tyler, 1999) uses a range of pre-defined 

psychometric functions as a Bayesian Prior and indicates the likelihood that 

each function matches the real psychometric function. It chooses the 

independent variable value that is estimated to most reduce the entropy, 

and thus be most informative for the next trial estimating the function. It 

can accurately measure the PSE within 60 trials (MoC: 288) making it 

possible to measure Flash-Lag for all conditions in under two hours.  
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To determine the correct prior and the overall suitability of the Psi 

method it must be tested to see if it converges on a similar PSE to MoC. A 

psychometric function fitted to method-of-constants stimulus data is used 

to generate responses (with a 5% guess rate) input into the Psi method 

algorithms to estimate the PSE. This estimate can be compared to the MoC 

estimate testing if the Psi method can theoretically provide comparable 

estimates of Flash-Lag. Participant 1’s control measure psychometric 

functions are used to test the Psi method, the results of which are shown in 

Figure 2-10. The Psi method prior consists of a range of logistic functions 

(Equation 2-1) with PSEs ranging between -4° to 4° in 0.5° steps and a 

gradient range set as 0° to 32° with steps of 4°.  

Upon visual inspection of the Psi method estimate plots (Figure 2-10), 

they converge upon the experimental PSE within 30 trials (estimates, 

18.2°s-1: 1.63° 27.3°s-1: 2.07° actual, 18.2°s-1: 1.6° 27.3°s-1: 2.0°) and 

remained stable throughout. The entropy, a measure of uncertainty in the 

PSE estimate, also showed an overall decrease, indicating the algorithm was 

able to measure PSE with increasing accuracy with more trials. This is also 

observed in the standard error of the PSE estimate, which decreases with 

increasing number of trials. This demonstrates that with a simulated 

observer producing responses based upon experimental data the Psi method 

produces an accurate measure of the Flash-Lag illusion. 
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Figure 2-10: Flash-Lag estimates using Psi method for a simulated participant using MoC 
data for two speed conditions. Black lines show estimates from the Psi algorithm with 
dashed showing the MoC PSE. Blue shows the error estimate. Green shows the estimate 
entropy with red circles showing the flash-offset shown chosen by the algorithm. Both show 
convergence of the estimated PSE with the MoC PSE and a reduction in the error estimates 
and entropy. 
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 PSI METHOD: MEASURING THE FLASH-LAG ILLUSION 

Using the same experimental set up as Section 2.3.7, Flash-Lag is 

measured for two speeds, 18.2°s-1 and 27.3°s-1, across three adaptation 

conditions, control, 5Hz and 20Hz adaptation for a single participant 

(author). The Psi method is implemented as before, with the exception that 

the number of trials is reduced to 30 and instead of one, two are run 

concurrently and randomly interleaved. With a single estimate, it is not 

possible to know if the Psi method is accurate or if it has found a local 

minimum in the error of the PSE estimate, so does not accurately estimate 

the PSE. Using two concurrent PSE estimates reduces this problem. If both 

PSE estimates differ drastically, this is indicative of one or both estimates 

representing a local minimum. The final estimate of Flash-Lag magnitude is 

given as an average between the two PSEs and the standard deviation 

computed as the square root of the sum of the estimated variance from both 

measures.  

Figure 2-11 : Shows estimates of the Flash-Lag effect measured by the Psi function. 
Bars are grouped by speed and coloured to indicate the adaptation condition. Error bars 
show the mean standard deviation calculated by the root of the squared variance estimate 
for each Psi method estimate for each condition 

  
Shown in Figure 2-11, the control condition, the PSI method estimates 

Flash-Lag to be 1.45° for the slow speed and 2.49° for the faster speed. 

Comparing this to the MoC measures (1.5° and 2.0° for slow and fast speed 

respectively) shows that for the slower speed both methods give similar 

estimates, the MoC estimate is within one standard deviation of the Psi 
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estimate. The Psi Flash-Lag estimates scale with speed as expected, so this 

appears to be a good measure of Flash-Lag, despite the slight difference 

with method of constant stimulus estimates.  

The adaptation conditions however, show a different pattern to that 

observed in method of constant stimuli. 20Hz adaptation at the faster speed 

reduces Flash-Lag in line with the MoC estimates but shows the opposite 

trend for the slower speed, indicating an increase in Flash-Lag. However, in 

both the MoC and Psi results the error bars of both the control and 

adaptation conditions overlap indicating there is not much difference 

between the two conditions. Examining the two separate Psi method 

estimates for each condition shows that for the 18.2°s-1 control, 20Hz and 

27.3°s-1 20Hz give quite different estimates (Table 2-2). Such that when 

comparing to the MoC results in Table 2-1, three of the estimate pairs in 

Table 2-2 exceed the largest standard deviation across all conditions for 

both participants in Table 2-1. 

Table 2-2: Shows the estimated Flash-Lag effect for each concurrent run (labelled 1 and 
2) of the psi method for each speed and adaptation condition for a single participant. 

Speed 
18.2°s-1 27.3°s-1 

Psi Measure 1 2 1 2 

Control 1.86° 0.99° 2.62° 2.35° 
5Hz 1.76° 1.97° 2.02° 2.28 

20Hz 2.50° 1.66° 3.61° 0.22° 
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 RANDOMISING FLASH OFFSET WITH THE PSI METHOD 

The results described in the previous section are not due to the Psi 

method failing to converge, although this convergence is less meaningful 

when the two estimates differ greatly. Instead, methodological differences 

between the Psi and MoC might cause this. MoC displays a wider range of 

flash offsets in than the Psi method and in a random order. The Psi 

algorithm uses a greedy search to find local minima in choosing the next 

independent variable. This assumes moving from one local minima to the 

next is a sensible trajectory to find the global minima, which might not be 

true. Selecting the offset of the flash for half the trials at random so it 

samples across the entire search space could help solve this and by 

introducing more randomness into the experimental stimuli this would 

reduce any effect of predictable offsets on the participants’ perception 

and/or responses.  

The stimuli used for this experiment are as before in Section 2.3.5 with 

two speeds and only Flash-Lag in the control condition measured for a 

single participant. The number of trials in each Psi estimate increased to 40 

with half chosen at random from +/- 4° according to a uniform distribution 

and half chosen from the Psi algorithm.  

Figure 2-12: Shows Flash-Lag estimates using the Psi method for two speeds with no 
adaptation with 50% of the Flash offsets chosen at random rather than the PSI algorithm. 
This shows a smaller Flash-Lag with the faster speed, opposite to what is expected. Error 
bars show the mean standard deviation calculated by the root of the summed variance 

estimates for each Psi method estimate for each condition.  
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Figure 2-12 shows for the slower speed both estimates converge on 

similar PSE estimates though, this is larger than the estimate from MoC 

(Psi: 2.8°, Constants: 1.5°). For the faster speed the two estimates do not 

give comparable PSE estimates despite the estimate for each individual Psi 

algorithm estimate converging. One even measures a Flash-Lead as opposed 

to a Flash-Lag effect (Table 2-3).  

This could be due to the non-informative points delaying the conversion 

towards an estimate and can be fixed with more trials though this would 

defeat the point of using the Psi method in the first place. Adding random 

flash offsets does not improve the Psi method for measuring Flash-Lag even 

though the Psi method is probably not drawn to mistaking local points of 

minimum error for the PSE estimate. 

Table 2-3: Shows the estimated Flash-Lag effect for each concurrent run of the psi 
method for two speed conditions for a single participant. 

Speed 
18.2°s-1 27.3°s-1 

Psi Measure 1 2 1 2 
PSE 

estimate 
3.10° 2.57° -0.35° 2.09° 

 MEASURING FLASH-LAG WITH A SIMPLE STAIRCASE 

To test if the inconsistent estimates using the Psi method are an artefact 

of the particular algorithm or something we find with other adaptive 

algorithms,  a simple up/down staircase is tested here. To check if a 

staircase works in theory, two staircases are used to estimate the PSE of 

response from a simulated participant set up before as in Section 2.3.  

Both staircases choose flash offsets from +/- 4° with 1° steps for 30 trials 

each and are randomly interleaved starting at each extreme. PSE and error 

estimates for each staircase are taken as mean and standard deviation of the 

last five reversals. The final PSE estimate is the mean PSE from the two 

staircases and error given as the square root of the sum of the variance from 

each staircase computed from the last five reversals. Figure 2-13 shows that 

both staircases converge upon the MoC data PSE indicating an accurate 

measure of Flash-Lag. 
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Figure 2-13: Flash-Lag magnitude estimate by staircase with simulated responses from 
method of constant stimulus data. x and o show the flash offsets chosen by each staircase 
starting at the minimum and maximum flash offsets respectively. Dark grey line shows the 
PSE as measured using method of constant stimulus while the light grey line shows the 
staircase PSE estimate as taken by the mean of the two staircases estimates. Each staircase 
estimate is computed from the mean of the flash-offsets at the last five reversals. Both 
staircases converge and the PSE estimate closely matches that of MoC. 

 

There were some changes made to the staircase setup for the experiment 

compared to the stimulations. The range was increased from + /- 4° to +/- 5° 

and step sizes reduced to 0.5°, and the number of trials increased to 32 to 

show the same number of trials with each bar position (above or below 

fixation) and direction (left or right motion) combination.  

These results are shown in Figure 2-14 and Table 2-4 for two bar speeds 

(18.2 and 27.3°s-1). The estimated Flash-Lag magnitude for the slower speed 

is 1.9°, larger than the MoC estimate 1.4°, with the faster Flash-Lag estimate 

of 2.0° matching the MoC estimate at 2.0°. There is no real difference 

between the faster and slower speed Flash-Lag estimates. This is not 

expected considering Flash-Lag scales with speed in the literature and is a 

concern. In addition, the staircases for the slower speed do not converge on 

similar estimates, listed in Table 2-1. These experiments are piloting checks 

on the experimental methodology, limiting any interpretation of these 

results. These results show neither Psi nor staircase method provide a 

constant measure of Flash-Lag, comparable with the literature with the 

setup here.  
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Figure 2-14: Shows Flash-Lag estimates using staircases for two speeds with no 
adaptation. There is little difference in Flash-Lag estimate for the two speeds where it is 
expected that Flash-Lag scales with perceived speed. Error bars show the mean standard 
deviation calculated by the root of the squared variance estimate for each staircase estimate 
for each condition 

 
Table 2-4: Shows the estimated Flash-lag effect for each concurrent staircase run 

(labelled 1 and 2) for two speed conditions for a single participant. 

Speed 
18.2°s-1 27.3°s-1 

Staircase 
Measure 

1 2 1 2 

 PSE 
Estimate 

0.90° 2.90° 2.1° 1.8° 

 BOOTSTRAPPING ERRORS FROM A SINGLE 

PSYCHOMETRIC FUNCTION 

The problem of how to reduce effectively the number of trials and 

therefore, time required for this experiment remains. MoC was the only 

method that measured the Flash-Lag effect consistently (in line with the 

literature) and accurately (with approximately similar results from multiple 

estimations) with the setup used here. Instead of four repetitions per 

measure, the procedure is performed once and individual error bars are 

estimated using bootstrapping. 

Bootstrapping takes the fitted psychometric function and generates 

multiple data sets from the function, i.e. simulating multiple experiments 
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based upon the original psychometric function. The PSE is estimated for 

each experiment simulation and a Gaussian function is fitted to the 

distribution of PSEs for all simulations(N=500), with the PSE and slope as 

free variables and error rate fixed at 0%. The standard deviation of the 

Gaussian fit is taken as an indication of the PSE estimate’s accuracy. We test 

the bootstrapped standard deviations by comparing them to those 

computed from running Method of Constant Stimulus four times. These are 

shown in Table 2-5. 

 Overall there is no significant difference between standard deviations 

estimated from bootstrapping (Participant 1; T5 = -2.08, p = 0.092. 

Participant 2; T5 = 0.65, p = 0.545), this means bootstrapped standard 

deviations provide a sensible estimate of error for the Flash-Lag effect. The 

best way to measure Flash-Lag efficiently is collecting data to fit a single 

psychometric function and using bootstrapped standard deviations as 

measures of individual error.  

Table 2-5: Shows the standard deviations of Flash-Lag effect measures from MoC 

compared to bootstrapped estimates (N=500) for two participants.  

Speed 
Adaptation 

condition 
Participant 1 Participant 2 

Bootstrap 
estimate (°) 

MoCs 
estimate 
(°) 

Bootstrap 
estimate (°) 

MoCs 
estimate 
(°) 

 
18.2°s-1 

Control .18 .15 .28 .30 

5Hz .38 .37 .28 .26 

20Hz .34 .50 .29 .23 

 
27.3°s-1 

Control .25 .36 .35 .19 

5Hz .41 .60 .33 .52 

20Hz .46 .52 .28 .10 
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 GENERAL DISCUSSION 

This chapter demonstrates how it is possible to measure a Flash-Lag 

effect with a stimulus moving at high speed, and of a magnitude comparable 

with that found in literature with the typically recorded ~80ms time 

component. Initially there were problems, hypothesised as caused by 

adaptation to motion and/or uninstructed eye movements. However, it is 

not possible to confirm this without further measurements. The final 

stimulus design avoids these possible issues by randomly selecting half the 

trials to have the opposite direction of motion and designing the stimuli so 

that fixating upon the central point is the optimum viewing strategy for this 

experiment. It is worth bearing in mind for any experiment requiring visual 

fixation, to, where possible, design the stimuli so that fixating is the sensible 

option to perform the task. Overall, the method of measuring Flash-Lag 

presented here provides a good basis for further experiments in Chapter 3 

investigating the effect of temporal frequency adaptation on the Flash-Lag 

illusion. The two established adaptive methods tested here: a simple 

staircase and Psi method in practice yielded less reliable results. This is 

unexpected as both methods are theoretically able to measure accurately the 

Flash-Lag effect when simulating responses from the MoC data and both 

methods converge as expected on an estimate, but two concurrent staircases 

or Psi algorithms converge on different estimates when used 

experimentally. That the adaptive methods appear to work as expected 

when simulating responses from experimental data might imply that the 

participant responses shown here were affected by the distribution of offsets 

shown. In both adaptive methods, the tendency is to show flash offsets 

across a small range as the estimate converges compared to MoC, which 

shows offsets from a wide range. An explanation for this is the adaptive 

methods affect participant perceptions of Flash-Lag by showing only offsets 

from a small range thus the distance between bar and flash on a particular 

trial is more predictable. This could result in a response bias or it could be 

that the Flash-Lag illusion is affected by the predictable nature of the 

stimuli. There is experimental evidence showing Flash-Lag changes based 

on the predictability of stimulus, (Namba & Baldo ,2004; Krekelberg & 
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Lappe, 2000b; Murakami, 2001) but as the results presented here are 

preliminary at best, this needs to be demonstrated by further experiments. 

Currently, it is more prudent to presume that adaptive methods struggle 

with measuring an accurate Flash-Lag illusion at higher speeds as 

participant responses tend to be more variable, which would provide a more 

straightforward explanation for the results here.  

 CONCLUSION  

It is possible to measure a Flash-Lag illusion with a high object speed 

moving in a linear path reasonably consistently using a method of constants 

stimulus. For stimuli design, it is hypothesised that adaptation to motion 

and unwanted eye movements are factors that might prevent an accurate 

measure of Flash-Lag. We also show that method of constants stimuli 

provides a more consistent measure of Flash-Lag with a high-speed object 

than adaptive techniques for estimating PSE. The stimulus set up developed 

in this chapter can form the basis of future experiments using the Flash-Lag 

illusion with higher speed stimuli than has been typically used in other 

studies. 
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3. CHAPTER THREE - HIGH TEMPORAL 

FREQUENCY ADAPTATION COMPRESSES 

TIME IN THE FLASH-LAG ILLUSION 

 INTRODUCTION 

The previous chapter details experimental data demonstrating how a 

Flash-Lag effect can be measured, giving consistent results comparable to 

previous findings. This chapter builds upon this work investigating whether 

adapting to visual stimuli shown to compress perceived duration can also 

affect the Flash-Lag illusion. Research shows that the perceived duration of 

visual events is compressed in specific spatial locations after adapting to 

properties of visual stimuli in those locations. Such properties include 

temporal frequency (TF) (Burr et al., 2007; Johnston et al., 2006), contrast 

gain (Bruno & Johnston, 2010) and motion (Curran & Benton, 2012; 

Marinovic & Arnold, 2011). These findings indicate that the visual system 

computes event duration based upon localized low-level visual properties 

and perceived duration is malleable in a spatially specific manner. One 

question that arises from this is does this effect of adaptation on perceived 

duration have other effects or is it simply a pure duration effect.  

Investigating whether this duration mechanism has a functional role 

Marinovic and Arnold, (2011) find compressing perceived visual duration 

does not affect action timing, concluding there must be separate timing 

mechanisms responsible for vision and action. We ask a similar question by 

exploring if duration perception has a functional role in the visual 

perception of space and motion. To do this, the study measures the effect of 

20Hz TF adaptation, shown to compress perceived duration (Johnston et 

al., 2006) on the Flash-Lag illusion where an observer views an object 

moving on a predictable path, perceiving the object displaced further along 

its motion path relative to a spatially localized flash. The Flash-Lag induced 

displacement can be described as increasing in proportion to object speed 

(Nijhawan, 1994). Although Wojtach et al., (2008) found a nonlinear 

relationship when extending the tested range over faster speeds, over the 
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range 10°/s - 40°/s a linear relationship provides a good approximation. 

This linear relationship can be expressed as perceiving the bar advanced by 

a fixed amount of time relative to the flash (Durant & Johnston, 2004), i.e. 

the same time travelled at a higher speed leads to larger displacement.  

Flash-Lag is often explained as an artefact arising from perceptual 

mechanisms compensating for delays in processing position of moving 

objects (Nijhawan, 2002). Delays in visual processing, e.g.: Retina -

(Shapley, Kaplan, & Soodak, 1981) and V1 -(Maunsell & Gibson, 1992) pose 

a problem for estimating positon of objects in motion as by the time object 

position has been computed, the object has moved to a new position, 

meaning the visual representation of the environment is out of date. This 

delay is thought to be approximately 72ms for V1 neurons (Lamme & 

Roelfsema, 2000), so it is proposed that the visual system has developed 

compensatory mechanisms, otherwise interaction with moving objects 

would be prohibitively difficult. For example, a delay of 72ms means an 

object travelling at 30kph would result in a perceived positional error of 

60cm. This is why according to the extrapolation explanation of Flash-Lag 

the flash apparently lags behind the moving object as the position of the 

moving object is shifted along its motion path in the direction of travel by 

the visual system to compensate for delays.  

However there is little consensus as to whether such mechanisms lie 

behind this ‘lag’. Evidence showing Flash-Lag illusion is affected by motion 

after, not before the flash (Brenner & Smeets, 2000) suggests it is not a 

result of motion extrapolation, thus, others have proposed different 

mechanisms. Whitney and Murakami (1998) claim Flash-Lag is down to 

differences in processing speed between the flash and moving object so the 

moving object reaches a perceptual end point earlier than the flash creating 

the misalignment, a specific example of micro-consciousness (Zeki & 

Bartels, 1999). Two other explanations, motion integration (Krekelberg & 

Lappe, 2000a) and postdiction (Eagleman & Sejnowski, 2000; Eagleman & 

Sejnowski, 2007), both focus on the fact that motion after the flash 

continues to influence the illusion. Motion integration suggests that the 

position of the moving object is perceived as an average computed over a 

temporal window after the flash, so results in the shift observed in Flash-
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Lag. Eagleman and Sejnowski (2000) apply a postdiction mechanism, 

similar to those used to explain effects such as colour-phi ( a version of 

another motion illusion with a colour change) by Kolers and von Grunau 

(1976) and visual masking (Bachmann, 1989). This posits the visual system 

estimates position based upon expected events and when an unexpected 

event occurs, the visual system resets expectations, discarding information 

before the unexpected event and estimates the position of the bar at the 

time of the flash post-hoc, using motion after the flash only. This biases 

perceived position along the motion path of the moving object, creating the 

perceived offset.  

All these proposed mechanisms use a temporal component. 

Extrapolation; how far ahead in time the moving object position is 

estimated, neural delays; difference in latency between moving and 

stationary objects, integration and postdiction; the size of the temporal 

window used for averaging the object position. Therefore, it is not necessary 

to know or make any claim as to which of these is the best explanation as 

any effect of duration adaptation on Flash-Lag can be accommodated by all 

these explanations.  

One interesting suggestion from the pilot data from the previous chapter 

is that the Flash-Lag effect may be affected by the distribution of the relative 

spatial displacements between flash and moving object experienced over a 

period, such that, to measure reliably a Flash-Lag illusion, a wide range of 

spatial displacements is required across experimental trials. One feature of a 

wider range of displacements, as opposed to a narrow one is that the 

position of the flash is less predictable on a trial-to-trial basis. Stimulus 

predictability has been shown to change perception of time, such that 

predictable events are perceived shorter than unpredictable events 

(Pariyadath & Eagleman, 2007; Pariyadath & Eagleman, 2012; Schindel et 

al., 2011). Flash-Lag is reliably measured only with a wider, random 

distribution of displacements so trial-to-trial predictability is low. An 

unpredictable stimulus is perceived to last longer so one prediction from the 

research showing this is that if the time component of Flash-Lag and 

perceived event duration are linked, it could be that Flash-Lag is easier to 
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observe, the less predictable the stimulus, similar to findings made by 

(Murakami, 2001).  

Hogendoorn et al., (2010) indirectly investigated the same question using 

a paradigm reliant on the presentation of several moving clock faces, one of 

which was cued at a given time point, with participants reporting the 

position of the clock hand at the cued time. The perceived positions were 

compared with and without flicker adaptation. Although they never 

explicitly report the size of the Flash-Lag effect, from their results we can 

infer an increased temporal component – in the opposite direction to what 

we would hypothesize, as high temporal frequency adaptation compresses 

duration (Johnston et al., 2006), so would be expected to reduce the 

temporal component.  

Our work aims to investigate this further by using the simplest form of 

the Flash-Lag effect and reducing it to a purely perceptual question of 

perceived alignment, removing any possible effect of shifting attention to 

the cued clock and reducing reliance on memory to judge position. 

Furthermore, by comparing the effect of adaptation on two speeds we can 

build a fuller description of the specific effect of flicker adaptation on the 

Flash-Lag illusion. High TF adaptation also reduces perceived speed 

(Hammett, Thompson, & Bedingham, 2000; Johnston et al., 2006; Smith & 

Edgar, 1994; Thompson, 1983), which could also reduce the Flash-Lag effect 

if it is dependent on perceived speed, thus the effect of perceived speed must 

be ruled out to infer direct duration adaptation, as in the Hogendoorn et al., 

(2010) study. Therefore, this study contains two main experiments, one 

measuring the effect of low and high TF adaptation on the Flash-Lag 

illusion and a second measuring the effect of low and high TF adaptation on 

the perceived speed of the moving object. Additionally we run a control 

experiment to verify that temporal duration compression has been induced 

in our stimulus set up. We find change in perceived speed cannot fully 

explain the change in Flash-Lag, concluding that TF adaptation compresses 

the Flash-Lag time component. This chapter is adapted from an article by 

Rowland and Durant (2014). 
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 MATERIALS AND METHODS 

 PARTICIPANTS AND EQUIPMENT 

The same six participants (authors ER and SD with four naive 

participants) with normal or corrected to normal visual acuity participated 

in Flash-Lag and speed experiments. An internal ethics board granted 

approval to perform this experiment in accordance with guidelines from the 

British Psychological Society, which follows the declaration of Helsinki. 

Stimuli were displayed on a linearized display Sony Trinitron monitor in a 

darkened room using a resolution of 800600 and refresh rate of 100Hz 

with a Cambridge Research Systems (CRS) ViSaGe system controlled by 

Mathworks MATLAB v7.5.0. Participants viewed stimuli with aid of a 

chinrest at a distance of 57cm from the screen, giving responses on a CRS 

CT6 remote button box with a CRS VET eye tracking system used to check 

fixation. Data analysis was performed using Mathworks MATLAB v7.5.0 

with the Palamedes toolbox (Kingdom & Prins, 2009) used for 

bootstrapping  
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 FLASH-LAG EXPERIMENT PROCEDURE 

Figure 3-1: Stimulus diagrams. Frame a) shows adaptation phase, common to all 
conditions except the Flash-Lag control and duration experiment. Frames b) and c) 
show the Flash-Lag condition. In b) the bar appears at one of four crosses positioned 
10° horizontally and 2° vertically from fixation, marking the points where the bar may 
appear on a particular trial before moving toward the opposite cross and disappearing. 
The appearance and disappearance position is chosen randomly on each trial with a 2° 
horizontal jitter. Frame c) shows the bar below and flash above fixation. The flash 
appears on the opposite side of fixation to the bar randomly jittered 4° horizontally 
about fixation for each trial. The centre of the flash is positioned 2° from the centre of 
fixation. Frames d) and e) show the speed condition with d) showing the positioning 
of the bars where the standard bar appears at one of two points 8° horizontally and 2° 
above from fixation with the comparison bar again appears at one of two points 11° 
below and 8° horizontally from fixation. Similar to Flash-Lag the appearance and 
disappearance of each bar is jittered by 4°. Both bars are shown in e), they appear at 
diagonally opposite locations so move in opposite directions. f) shows the adaptor for 
the duration experiment. g) shows positions of bars, the top two crosses and associated 
arrows give the position and jitter for the standard bar of duration 600ms for the high 
and low speed condition in the form low||high. The bottom two crosses and arrows 
give the position and jitter for the comparison bar, the distances vary depending on 
speed and duration of the comparison in the form min-max. h) shows the two bars 
moving in opposite directions. 
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The methods for this experiment are similar to those described in 

Chapter 2, section 2.5. Participants fixate on a centrally positioned red circle 

(0.5° diameter) with a mid-grey background (63 cdm-2). In the 5Hz and 

20Hz conditions, an adapting square-wave grating (36.4° x 6°, spatial 

frequency 2 cycles/degree - chosen to lie within a detectable range, allowing 

for many cycles to be displayed and it also approximates bar width) appears 

centred on screen (Figure 3-1a), counter-phase flickering in a sinusoidal 

temporal pattern (Luminance: 41 - 82cdm-2, Michelson contrast: 0.333). 

For the control, no adapting grating was shown. A white (124 cdm-2) 

horizontally moving bar (0.33° x 0.67°) appears in one of four points , either 

2° above/below fixation and 10° left/right of fixation and moves toward 

fixation (all measurements are to the centre of the bar). The bar appeared 

~0.6s after the adaptor with the exact appearance and disappearance 

positions are jittered +/- 1° trial-to-trial (Figure 3-1b). At a point along the 

bar’s trajectory, a white circular flash (diameter: 0.33°) appears (10ms, 1 

frame) vertically on the opposite side to the bar, 2° away from fixation, 

horizontally jittered +/- 2° from fixation (Figure 3-1c) and the bar continues 

to move until reaching the horizontally opposite side of fixation, where it 

disappears. The participant judges if the bar was to the left or the right of 

the flash by button press as a 2AFC. The displacement between bar and 

flash is varied across a range of +/- 5° with 1° steps in a method of constants 

procedure. Each displacement is shown 8 times except for ER where the 

range was +/- 4° with 0.5° steps, shown 12 times. We chose three adaptation 

conditions: a no adaptation control, 5Hz and 20Hz TF adaptation (15s 

initial, 5s top-up) with the two speed (18.2°s-1, 27.3°s-1) conditions, this 

makes six conditions in total. Trials are blocked according to adaptation 

condition. Blocks were carried out in separate sessions. The no adaptation 

block was shown first to confirm the Flash-Lag illusion was apparent at least 

one of the two speed conditions with each adapting condition randomly 

ordered afterwards, with the two speeds and flash displacements randomly 

interleaved.  
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 SPEED EXPERIMENT PROCEDURE 

We measure perceived speed by asking participants to indicate which of 

two bars moving in opposite directions has the greatest speed by button 

press to measure the effect of TF adaptation on perceived speed. One bar 

acting as the standard moves at one of two speeds (18.2° s-1, 27.3°s-1), the 

same as in the Flash-Lag condition. The comparison bar is varied in speed 

trial-by-trial in a range from 9.1° s-1 to 27.3° s-1 for the 18.2°s-1 standard 

condition and 18.2° s-1 to 36.4° s-1 for 27.3°s-1 standard condition, with 

2.3°steps, each shown 8 times in a random order, in a method of constant 

stimulus procedure. As our aim with this experiment is to measure the effect 

of the above TF adaptation on perceived speed of the moving bar, we need 

to make sure the comparison bar is unaffected by adaptation otherwise this 

would underestimate the effect of adaptation. Receptive fields in motion 

sensitive retinotopic maps across the Medial Temporal area are quite large 

(~9° in humans - Amano, Wandell, & Dumoulin, 2009) , so we position the 

comparison bar 11° away from the adapting stimulus, where no adaptation 

will occur, in fact Ayhan et al., (2009) show that the change in speed caused 

by TF adaptation induced duration compression drops off by around 3° 

distance from the adaptor. The difference in the eccentricity of the bars may 

affect relative perceived speed even with no adaptation (baseline), but it is 

change from measured baseline that is of interest. The adaptation 

conditions and adaptation length are the same as Flash-Lag (Figure 3-1a). 

Except, a very low TF (0.1Hz) adaptor is used to equate attentional effects in 

the control condition as, unlike in Flash-Lag the adapter only covers part of 

the stimulus, so without this the adaptor would draw attention to the top 

over the bottom bar in the 5Hz and 20Hz conditions but not the control. 

This control adaptor TF should not affect the perceived speed of the moving 

bar. Comparing this baseline condition to the effect of 5/20Hz flicker 

adaptation is the best, most comparable way of measuring the effect of 

5/20Hz flicker on the perception of the speed of the bar. Particularly when 

considering we are interested in the perceived difference in speed caused by 

adaptation. Participants fixate as in the Flash-Lag experiment. Two bars 

(0.33°x0.67°) appear (Figure 3-1d) on diagonally opposite sides of fixation 

(8° horizontally and 2° above fixation for the standard and 17° below for the 
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comparison bar) and move on a horizontal trajectory to the horizontally 

opposite side of fixation (Figure 3-1e). The appearance and disappearance 

positions of both bars are jittered +/- 4° trial-by-trial as is the onset time 

+/- 35ms for the slower speed and +/-17.5ms for the higher speed, making it 

impossible for the participant to accurately judge which bar is fastest by 

indicating which bar moved across the length of its trajectory first. Separate 

blocks are presented for each adaptation/speed combination each 

adaptation condition was presented in separate sessions and ordered 

randomly with a break given between the speed blocks in the same session 

to avoid carry over effects of speed/temporal frequency adaptation. 

Participants indicated which bar appeared faster with a button press in a 

2AFC. 

 DURATION EXPERIMENT PROCEDURE 

A third experiment is run to test if the adaptor causes a compression of 

perceived duration with our moving bar stimulus. While 20Hz TF 

adaptation causes duration compression with gratings (Burr et al., 2007; 

Johnston et al., 2006) and a high speed adaptor causes duration 

compression with dot texture stimuli (Curran & Benton, 2012) and a moving 

object (Marinovic & Arnold, 2011), no experiment has shown duration 

compression of a moving object with a 20Hz TF flickering grating. 

Therefore, we run this experiment to check if the same effect responsible for 

compression of event duration has an effect on the Flash-Lag time 

component. The equipment is the same as the previous two experiments; 

the display is linearized with mid grey and white as in the previous two 

experiments. Participants fixate on a red fixation point as previously, with 

the same adapting stimulus appearing 3° above fixation covering the length 

of the screen. A white bar, same size as before of 600ms duration appears 3° 

above fixation moving horizontally at one of two speeds (18.2° s-1, 27.3°s-1) 

as in the previous experiments. The duration the bar appears for is defined 

by the distance the bar moves before disappearing (10.92° or 16.38° for 

speeds respectively). Once the first bar has disappeared, there is a short, 

jittered delay (0.2-0.7s) before the comparison bar appears 3° below 

fixation and the adaptor, far enough apart to avoid adapting the comparison 
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bar, as duration effects are spatially specific (Ayhan et al., 2009). The 

comparison bar starts at the opposite side of the screen, moving in the 

opposite direction to the standard. The duration of the comparison is varied 

between 300-900ms in 50ms steps, so the distance travelled varies between 

5.46° and 16.48° with 0.91° steps for the low and 8.19° and 24.57° with 1.37° 

steps for the high speed. The horizontal centre point of each bar path is 

jittered by + or - one third of the total bar path about fixation so the start 

and end points are unpredictable. Once the comparison bar disappears, the 

participant indicates by button press which bar appeared for the longer 

duration. In each block, defined by the adaptation condition (0.1, 5 and 

20Hz TF), each of the two directional combinations (standard moving left to 

right, comparison right to left and vice versa) is shown once for each of the 

four speed combinations (low-low, low-high, high-low, high-high). This 

gives eight measures for each different duration per block and these are 

interleaved within each of the three blocks. One session contained three 

blocks – one for each adaptation condition and participants performed two 

sessions in total on separate days. The control (0.1Hz) condition was always 

shown first so it was possible to check if they were performing the task 

correctly before proceeding onto the 5 and 20Hz blocks. The presentation 

order of the two adapting blocks (5 and 20Hz) was counterbalanced across 

participants. In total four participants took part, including the authors with 

two naïve to the purpose of the study. One possibility in this task is that 

participants use bar path length as a cue to judge duration, as the bar 

duration is defined by distance travelled. However, as the experiment 

requires comparisons between bars with different speeds and directions as 

well as the bars having jittered start and end points, this means that bar 

path length is not always a reliable cue. Therefore, we can take participants 

responses as a measure of perceived duration. In addition, there is enough 

data (eight repetitions per duration) to estimate psychometric functions for 

trials where bars have different and same speeds independently. This allows 

to compare participant performance when the distance cue is more 

informative (when bars are the same speed) or less informative (when the 

bars have different speeds), to show if this cue has a significant effect on 

performance.  
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 PSYCHOPHYSICAL ANALYSIS 

In all experiments, we fit a logistic psychometric function to the 

participant’s response ratios, taking the 50% point on the curve as the point 

of subjective equality (PSE). This is interpreted as where the bar and flash 

are perceived as aligned in the Flash-Lag experiment, at what speed both 

bars are perceived to have the same speed in the speed measurement and 

the duration at which the bars are perceived to persist the same amount of 

time on screen in the duration experiment. In both Flash-Lag and Speed 

experiments ER and SD both repeat each measurement four times with a 

curve fitted to each and the PSE and standard error of the measurement 

calculated. Naïve participants performed each measurement once, a curve is 

fitted and bootstrapping can be used to estimate the standard error for each 

participant. As such, the measurements for the authors are more accurate, 

but can be analysed together with the naïve participants as they measure the 

same thing, but with more trials. For the duration experiment, both the 

naïve participants and authors participate with both viewing two blocks, 

making up a single measurement, to which a curve is fitted. As such, there is 

no difference between them in their analysis. In addition to fitting a curve to 

all trials from each adaptation condition, curves were fitted for trials where 

the bars where of different speeds, discarding trials where the speeds were 

the same and visa-versa where the two bar speeds matched. For each 

participant there were three different measures for each adaptation 

condition: one for different bar speeds, one for the same bar speeds and one 

for all bar speeds combined. 
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 RESULTS 

 THE EFFECT OF TEMPORAL FREQUENCY ADAPTATION 

ON FLASH-LAG 

All participants have a measured Flash-Lag effect in the expected 

direction for the 27.3 °s-1 bar speed, and only one does not for the lower bar 

speed, with a larger Flash-Lag at the higher speed as expected. We compare 

the mean across participants separately for each condition to examine the 

effect of adaptation Figure 3-2a). A repeated measures ANOVA for the 27.3° 

s-1 speed condition shows the change in Flash-Lag caused by adaptation is 

significant (F2,10=4.31, p<0.05) with planned contrasts showing this is 

driven by the difference between control and 20Hz adaptation conditions 

(F5=18.14, p<0.01), not change between 5Hz and control ( F5=0.11, p=0.76). 

There is no significant effect for the 18.2° s-1 speed condition (F2, 10=0.41, p 

=0.68). 

 THE EFFECT OF TEMPORAL FREQUENCY ADAPTATION 

ON PERCEIVED SPEED 

The baseline measure for both speeds is greater than the comparison bar 

speed (Figure 3-2b) and one sample t-tests show this to be significant for 

both speeds (18.2° s-1: t5 = 2.68, p < 0.05. 27.3° s-1: t5 = 4.14, p < 0.01). 

Objects in peripheral vision appear slower (Johnston & Wright, 1986) and 

the adapter may draw attention to the standard bar (Cavanagh, 1992), 

which makes it appear faster so these effects would account for our results, 

however it is the effect that adaptation has on the baseline measure that is 

of interest. As with the Flash-Lag experiment, we average across 

participants’ PSEs to compare the effect of adaptation on perceived speed 

(Figure 3-2b) separately for the two bar speed conditions. Repeated 

measures ANOVA shows that the change in perceived speed is significant at 

the slower speed (F2, 10 = 5.49, p<0.05) but not quite at the faster speed 

(F2,10=2.81, p =0.15, Greenhouse-Geisser corrected). At the lower speed, 

planned contrasts show a significant difference between control condition 

and 5Hz adaptation (F2= 16.68, p<0.05) but not 20Hz (F2=0.45, p=0.53). In 

summary 5Hz adaptation has the effect of increasing perceived speed at the 
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slower speed and no effect on Flash-Lag, whereas 20Hz has the effect of 

decreasing Flash-Lag at the higher speed and no effect on perceived speed. 

 

Figure 3-2: Results showing mean and standard error (N=6) for Flash-Lag. (a) where there 
is significant difference between control and 20 Hz adaptation in the faster speed condition, 
and Speed experiments (b) where there is a significant difference between control and 5Hz 
adaptation in the slower speed condition, * indicates significance at the 5% level with solid 
lines showing overall significant ANOVA and dashed lines indicating significant planned 
comparisons. (c) shows the mean of the differences between predicted and measured change 
in Flash-Lag after adaptation, error bars show standard error (N=6). Measured change 
shows a significantly greater reduction than predicted for 20Hz adaptation at the faster speed 
but not for any other, * shows significant effect at the 5% level. (d) Shows differences in 
perceived duration of a moving bar of 600ms where the standard and the comparison are 
moving at the same speed (18.2° s-1 or 27.3° s-1), different speeds (one bar 18.2° s-1, the 
other 27.3° s-1) or both different and same speeds. There is a significant effect of adaptation 
on both and Different conditions (* with solid lines) using ANOVA and a significant 
difference between 20Hz and control for different speeds (* with dashed line) in planned 
comparisons. Error bars show standard error (N=4). 
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 EFFECT OF TEMPORAL FREQUENCY ADAPTATION ON 

PERCEIVED DURATION 

As before, we fit curves for participants individually to estimate PSEs and 

then average the PSEs together to measure the effect. Repeated measures 

ANOVA shows a significant effect of temporal frequency when all trials are 

considered, (F3,6=5.63, p < 0.05) and where only trials with different speeds 

are considered (F3,6=11.61, p < 0.01) but not where only trials with the same 

speed are (F3,6=0.24, p =0.80). Planned contrasts between both 5 and 20Hz 

with the control condition show that where trials with all speed 

combinations and only different bar speed trials are considered the effect at 

5Hz is not significant (All: t3 = 0.489, p = 0.54. Diff: t3 = 2.474, p = 0.21) 

while 20Hz is significant for trials comparing the duration of bars moving at 

different speeds (t3 =13.17, p < 0.05) but not quite when all trials are 

considered (t3 = 7.919, p = 0.067). Overall, this experiment shows that 20Hz 

TF adaptation appears to compress the perceived duration of a moving bar, 

when comparing two bars moving at different speeds, i.e. when the distance 

travelled by the bar cannot be used as a cue. 
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Figure 3-3: A linear relationship between speed and Flash-Lag passing through the origin 
and the baseline measure always predicts a larger change in the Flash-Lag Illusion given an 
observed change in perceived speed than a logarithmic relationship passing through the 
origin and the baseline measure. This means assuming a linear as opposed to logarithmic 
relationship between speeds and Flash-Lag gives the strongest test when compared to the 
duration compression hypothesis.  

 DOES CHANGE IN FLASH-LAG MATCH CHANGE IN 

PERCEIVED SPEED? 

The pattern of the above results demonstrates an apparent dissociation 

between adaptation’s effect on perceived Flash-Lag and perceived speed, 

which would not be the case if change in Flash-Lag was entirely dependent 

on the change in perceived speed caused by TF adaptation. We see in some 

conditions a drop in the size of Flash-Lag, whereas in some conditions 

perceived speed is increased, which should also increase the size of the 

Flash-Lag, if indeed Flash-Lag is dependent on perceived speed. The pattern 

of perceived speed adaptation is as would be expected, where adapting to 

low TF flicker causes a repulsion effect on TF, and hence speed (as spatial 

frequency is constant) causing a perceived increase in object speed and vice 

versa for high TF (Hammett et al., 2000; Smith & Edgar, 1994; Thompson, 

1983). This means we are able to measure an effect on perceived speed and 

an effect of Flash-Lag, but they do not correspond. As Flash-Lag magnitude 

scales with physical speed, we needed to check whether a significant change 
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in perceived speed would result in an equivalent change in Flash-Lag for 

that condition. Since this is not observed, this suggests another factor is 

involved in the observed Flash-Lag change other than a change in perceived 

speed alone. To confirm further that this is not due to lack of power and 

move away from comparing averages, we compared individual Flash-Lag 

measurements against the corresponding Flash-Lag predictions based on 

the change in perceived speed of the bar for each participant, assuming a 

linear relationship between Flash-Lag and perceived speed. We mentioned 

above that whilst the relationship between Flash-Lag and perceived speed is 

mostly linear at lower speeds, in fact it appears to be better described as 

logarithmic over a wider range of speeds (Wojtach et al., 2008). Figure 3-3 

shows a logarithmic relationship would predict for the higher speed (where 

we observe a significant change in Flash-Lag, but not speed), a change in 

perceived speed to have a smaller effect on Flash-Lag than a linear 

relationship. This would make a reduction in perceived speed an even 

weaker explanation for the measured reduction in Flash-Lag. Therefore, by 

assuming a linear as opposed to logarithmic relationship we are pitting the 

hypothesis that 20Hz adaptation changes the time component of Flash-Lag 

against the strongest possible alternative hypothesis where change in speed 

is responsible for observed changes in Flash-Lag. In Figure 3-2c we see the 

change in Flash-Lag magnitude is underestimated if based on change in 

perceived speed after 20Hz adaptation at the high speed. This is not the case 

in any of the other conditions, as is confirmed by a comparison of predicted 

and measured Flash-Lags (2-tailed, paired sample t-tests, 18.2°s-1: 5Hz t5=-

0.211, p=.841, 20Hz t5=0.343, p = 0.746; 27.3° s-1: 5Hz t5=1.061, p =0.337, 

20Hz t5=3.590, p <0.05). However, we only measure a significant difference 

in perceived duration after 20Hz adaptation, not perceived speed, indicating 

duration compression 
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Figure 3-4: Scatter plot of predicted Flash-Lag from change in perceived speed versus 
measured change in Flash-Lag effects after TF adaptation. Different symbols correspond to 
different participants. Red shows slow while blue shows fast speeds with 20Hz results for 
both speeds are in bold and different symbols indicated different participants. Comparing 
results with the line of equality show all but a single participant have a larger than predicted 
drop in Flash-Lag for the 20Hz faster speed indicating change in perceived speed alone 
cannot explain the change in Flash-Lag for five out of six individuals. 

 

effects of 20Hz adaptation have a stronger effect on Flash-Lag. Plotting each 

individual’s data predicted by speed only versus measured Flash-Lag 

(Figure 3-4) shows a weak positive but non-significant correlation between 

these measures across all conditions (2-tailed Pearson’s: r24 = 0.333, p = 

0.11) reinforcing the finding that while perceived speed might have an effect 

on Flash-Lag it cannot fully explain the results collected. Given we show a 

compression of perceived duration an alternative explanation is that the 

time component of Flash-Lag is changing after 20Hz TF adaptation. To 

measure the magnitude of this effect we calculate the time component for 

each individual in each condition by time = Flash-Lag/perceived speed. For 

control and 5Hz adaptation, we found average time component of 54.2ms 

and 56.2ms for the lower and 64.0ms and 59.3ms for the higher speed 

respectively, fitting with previous estimates of Flash-Lag magnitude. At 20 



91 

91 
 

Hz we found 50.8ms and 47.1ms time component, consistent with the time 

component shrinking by 8.3% (-3.4ms) in the slower speed condition, and 

32.5% (-16.9ms) in the faster speed condition. This reduction in Flash-Lag 

time component is greater than the reduction in perceived bar duration 

which was 34ms (5.6%) for all trials and 47ms (7.8%) for trials with bars of 

different speeds, but the effect is in the same direction and would predict a 

reduction in Flash-Lag after 20Hz TF adaptation similar to what is 

observed.  

 DISCUSSION 

We show two key findings in this study. The first is that TF adaptation 

changes the magnitude of the Flash-Lag effect and second, the change in 

Flash-Lag is not attributable to a change in perceived speed alone. In 

particular, Flash-Lag is reduced for the 20Hz adaptation condition only, by 

more than would be expected by speed adaptation alone. As 20Hz TF 

adaptation has been previously associated with duration compression 

(Johnston et al., 2006) and this is where we observe a reduction in Flash-

Lag we conclude that 20Hz TF adaptation changes Flash-Lag in a manner 

that is consistent with the compression of the fixed time window associated 

with the Flash-Lag effect. Our estimation puts this compression of time at 

32.5%, close to previous reports of around 22% (Burr et al., 2007; Johnston 

et al., 2006). We further confirm that duration compression does occur in 

our stimulus set-up. This implies that reducing perceived duration has an 

effect on these computations, which implicitly rely on duration based 

calculations. The lack of significant reduction in Flash-Lag at the slower 

speed after 20Hz adaptation may be due to the smaller baseline Flash-Lag 

displacement in this condition, making it harder to measure a reduction in 

perceived offset.  

This effect on Flash-Lag ties in with results showing that both perceived 

time and space are compressed across saccadic eye movements, thought to 

arise from shifts in receptive fields anticipating eye movement, indicating an 

interlinked perception of time and space (Morrone et al., 2005). This is 

similar to what our experiments suggest, in that a compression of time is 

associated with a compression of space – in this case a reduced Flash-Lag 
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offset, i.e. we show the compression with a moving object rather than eye 

movements. The mechanisms behind the effect shown by Morrone et al., 

(2005) are not clear, but saccades suppress magnocellular activity (Ross et 

al., 1996) and the attenuation of the Flash-Lag effect may be linked to the 

adaptation of the magnocellular (M) pathway, which is particularly sensitive 

to high TF flicker, as has been suggested by Johnston et al., (2006). It is 

possible then for computations carried out in the Magnocellular pathway to 

affect both perception of time and space simultaneously. This would also 

link our work in with results showing a reduction in the Flash-Lag effect 

when equiluminant stimuli (to which the M pathway is less sensitive) have 

luminance noise added (Chappell & Mullen, 2010).  

The reduction in Flash-Lag time component can be explained by each of 

the proposed mechanisms underlying the effect. In motion extrapolation 

(Nijhawan, 1994), the position of the bar is extrapolated a shorter duration 

into the immediate future. For latency delay (Whitney & Murakami, 1998); 

either or perhaps both the processing of the flash is sped up or processing of 

the bar is slowed so the difference in their respective arrival at a perceptual 

end-point is reduced. For both integration (Krekelberg & Lappe, 2000a) 

and postdiction (Eagleman & Sejnowski, 2000) explanations there is a 

reduction in the size or possibly a shift in the position in time of the 

temporal window where the motion of the bar after the flash affects its 

perceived position.  

One recent study (Bruno, Ayhan & Johnston, 2015) found that a Gaussian 

stimulus flashed in an area of the screen that had been adapted using a 

20Hz temporal frequency stimulus resulted in that flash being perceived to 

appear sooner than a flash displayed in an unadapted area. This suggests a 

potential explanation of the results observed here is that the adaptor is 

causing the flash to appear sooner, therefore reducing the delay between 

perceiving the bar and flash (if such a delay causes the illusion). This results 

in the mitigated Flash-Lag illusion that is unexplained by changes in 

perceived speed observed here, i.e. less directly caused by duration 

compression per se, although the advancement of the flash is tied in with 

the effect of adaptation on time (Bruno et al., 2015). This might indicate 

20Hz adaptation is reducing the relative delay between the static flash and 
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moving bar but does not exclude other explanations. The high-speed flicker 

may prime the internal model of the environment to expect rapid changes in 

the environment, such as a flash, therefore reducing the need to discount 

the motion prior to the Flash. Modifications to this paradigm, most 

obviously adapting only the area covering the moving bar or the flash 

separately could provide further insight into the mechanism responsible for 

Flash-Lag and duration perception. Results of such an experiment would 

show if high TF adaptation affects the bar, flash or is an interaction between 

the two.  

Since Flash-Lag magnitude is affected by prior knowledge regarding the 

distributions of object speed in the environment (Wojtach et al., 2008) and 

the predictability of flash locations (Namba & Baldo, 2004) it may be that 

time perception effects processes based upon expectations in the visual 

system. This provides a link with work on expectation and time perception 

(Pariyadath & Eagleman, 2007; Pariyadath & Eagleman, 2012; Schindel et 

al., 2011). One implication of the finding reported here is that for duration 

to affect other processes the visual system must encode perceived duration 

and this information must be spatially localized as duration compression 

effects of high temporal frequency adaptation are only observed within a 

couple of degrees of the adapting stimulus position (Ayhan et al., 2009).  

There have been some proposed mechanisms for encoding duration such 

as state dependent networks (Karmarkar & Buonomano, 2007) which are 

computationally effective though difficult to conclusively verify, though 

there is evidence that neural systems encode time intrinsically (Goel & 

Buonomano, 2014). The neural energy hypothesis (Eagleman & Pariyadath, 

2009) proposes that time is encoded by the amount of neural activity 

associated with an event. This framework aims to explain a number of 

duration effects including those caused by expectations and adaptation. 

Expected events show a suppression in BOLD, a strong correlate of neural 

activity (Larsson & Smith, 2012; Summerfield, Trittschuh, Monti, Mesulam, 

& Egner, 2008), thus expected events are perceived to be shorter in 

comparison to unexpected events. In this interpretation duration, 

compression occurs after adaptation as adaptation reduces neural activity 

and thus reduces perceived duration. However, this does not explain why it 
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appears only after adaptation to high temporal frequencies, so clearly this 

needs refining. Nevertheless, neural energy does offer a general framework 

to explain how duration is encoded within the brain. This topic is explored 

further in the following chapter.  

Other work (Hogendoorn et al., 2010) has demonstrated that high speed 

TF adaptation causes a moving clock hand to be perceived further around a 

clock face than an un-adapted hand after accounting for change in perceived 

speed - the opposite direction to our finding. Furthermore, in the above 

study Experiment 3 shows that a hand on a clock face, in an area adapted to 

a 20Hz temporal frequency stimulus is perceived ahead of a hand in an 

unadapted area or adapted to 5Hz, when the outer circumference of the 

clock briefly (20ms) changes colour 1-2s after onset of the clock stimulus, 

something that our data apparently contradicts. Hogendoorn et al., (2010) 

explain this as a shift in the representation of the time course of events. Our 

explanation for our results is the Flash-Lag temporal component is 

compressed by high temporal frequency adaptation that reduces the 

(illusory) distance between moving bar and flash. We randomly varied the 

duration of the moving bar (the clocks were always presented for the same 

amount of time), and the relative position of the bar to the flash was not in 

any way connected by the task to the perceived duration of the bar. This 

requires the participants to focus on judging the perceptual offset, not when 

in the time course of the moving bar did the flash appear, so the explanation 

for Hogendoorn et al., (2010) does not quite apply to our results on the 

surface. Rather, by measuring the Flash-Lag explicitly as a relative spatial 

judgment participants are reliant on the fixed temporal component used in 

this calculation and it is this that is compressed. One point that Hogendoorn 

et al., (2010) make is that any mechanism that shifts the time of events 

backwards might also be able to shift it forwards as well. This suggests that 

a measure of duration or the effect of 20Hz temporal frequency adaptation 

on this measure of duration is task dependant so the way the visual system 

uses time is likely to be complex given the results across these experiments, 

this is perhaps an explanation that accounts for the results here and those of 

Hogendoorn et al., (2010).  
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We also find evidence of 20Hz TF flicker adaptation reducing the 

duration of a moving object that has not previously been demonstrated 

before, although this effect is smaller (47ms or a 7.8% perceived reduction 

from the actual duration of 600ms) than other reports that put duration 

compression magnitude at ~20% (Burr et al., 2007; Johnston et al., 2006) 

as well as our estimates of Flash-Lag time component compression. This 

may be due to (as we have seen) the bar trajectory providing an additional 

cue to duration. In addition, our estimate of compression does not allow for 

the fact that the change in perceived speed may have also had some effect. 

Importantly however, we are not claiming that it is the reduction in 

perceived bar duration over its entire presentation per se that reduces the 

size of the Flash-Lag magnitude, as there is still a great deal of debate as to 

what underlies the temporal component of the Flash-Lag illusion. However, 

we can say that the same effect of 20Hz temporal frequency adaptation that 

reduces perceived event duration here and repeatedly in literature (Ayhan et 

al., 2009; Burr et al., 2007; Johnston et al., 2006) also compresses the time 

component in the Flash-Lag illusion.  

 CONCLUSION 

Although we cannot differentiate between the different Flash-Lag 

theories with our data, the main conclusion is that as all these theories rely 

on a fixed averaging/predictive/delay time component, and that component 

is compressed by high TF adaptation, suggesting that duration perception is 

intimately linked with motion and position computations, rather than being 

a separate process. Previously it has been suggested that the Flash-Lag 

illusion may be due to compensatory mechanisms, but interestingly in this 

example as the Flash-Lag magnitude is reduced, this provides a more 

veridical perception of the stimulus, which may be advantageous in an 

environment containing rapid change (signalled by high TF flicker), where 

such compensatory mechanisms may not update speedily enough. 

Specifically, locally malleable time perception may play a key role in 

position calculations. 
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4. CHAPTER FOUR - A MODEL TO 

ESTIMATE DURATION 

 INTRODUCTION 

There has been a general shift from central clock mechanisms, such as 

those discussed in Chapter 1 (Gibbon, 1977; Gibbon, et al., 1984; Treisman 

et al., 1990; Wearden, 1991), leaving a gap in the literature regarding what 

mechanisms might be used to measure event duration in the brain. Recent 

evidence suggests that duration is computed within sensory systems (Ayhan 

et al., 2011; Bruno & Johnston, 2010; Burr et al., 2007; Johnston et al,. 

2006; Marinovic & Arnold, 2011; Pariyadath & Eagleman, 2007; Pariyadath 

& Eagleman, 2012; Schindel et al., 2011), which follow a distributed, 

hierarchical information processing structure. 

The purpose of this chapter is to demonstrate how event time can be 

estimated using basic, biologically plausible properties of neural systems, 

then test the limitations of the model with the aim of providing a useful 

'back-pocket' model of a duration encoding mechanism for evaluating 

experimental evidence. The input signal encodes a presence of a sensory 

event, so a value of zero indicates that there is no stimulus and values above 

zero encode the magnitude of a particular stimulus property. For example, 

for encoding luminance, a brighter object provides a higher input 

magnitude. The stimulus lasts for a particular duration, which is 

represented by how long the input magnitude is greater than zero in a step 

on-off function. From this on-off signal, the model estimates how long the 

stimulus persists in the visual field or receptive field of a neuron, encoding 

this duration without employing an oscillator as a timing signal.  

Initially, it may be tempting to encode and compare the onset and offset 

times to provide a measure. However, this does not solve the problem, as it 

requires encoding the time of when onset and offset occur, passing the task 

of measuring duration to another level rather than solving the problem in 

the local process itself. Evidence suggests that onset and offset times can be 

manipulated after TF adaptation (Bruno et al., 2015). However, reported 

changes in duration can be manipulated in a manner that cannot be 
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accounted for by changes in perceived onset and offset time (Johnston et al., 

2006) implying that, to some extent, perceived duration is processed 

separately from perceived onset and offset times. Instead, the model 

presented here will use time variant properties of neural systems to encode 

duration similar to the approaches taken by Goel and Buonomano (2014) 

and Johnston (2010).  

 MODEL OUTLINE 

One fundamental property of neurons is acting as a low pass filter. Low-

pass filters can describe dynamics of many systems within the brain. From 

the scale of ion channels in the Hodgkin-Huxley model (Hodgkin & Huxley, 

1952) neurons and Integrate-and-Fire models (Abbott, 1999), to forming a 

basic requirement of motion-detector circuits, such as Elementary Motion 

Detectors (Borst & Egelhaaf, 1989) and the response of populations of 

neurons to form channels such as those used for coding the temporal 

frequency of a visual stimulus (Hess & Snowden, 1992).  

A low-pass filter can be described by its temporal response function 

(Equation 4-1), and the model makes use of these temporal dynamics to 

estimate duration. The low-pass output monotonically increases over time 

approaching a final value, proportional to the intensity of the input (here 

arbitrarily scaled to unity). This means the stimulus has to persist for a 

minimum duration for the filter output to match the input magnitude at a 

given level. It is crucial to notice that for relatively short durations, as 

compared to the filter time constant, the filter output growth is 

approximately linear. This temporal property of low pass filters, offers a 

method to estimate the input duration.  

A second component of the proposed model is a threshold (T ). The low-

pass output is passed to a threshold switch, so if the low-pass output is 

greater than T,  it activates the switch, causing it to generate an output of 1, 

if it is less than T,  the switch output is 0. Effectively, the non-zero switch 

output indicates if the input stimulus has persisted for a particular duration.  
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This duration estimate is determined by two variables: the low-pass filter 

time constant, τ  and the threshold, T. τ defines the slope of the low-pass 

filter’s response. With a larger τ, the response gradient becomes shallower 

and so the stimulus has to last a longer time for the filter output to reach T. 

For larger values of T, the output has to reach a greater magnitude to 

activate the switch. Thus, the input stimulus has to persist for a longer 

duration. In the proposed model we set the threshold at a constant meaning 

the time that threshold is reached is entirely defined by the filter τ. 

Together, these two components; the low-pass filter outputting to a 

Figure 4-1 Showing the components of a Simple Duration Detector (bottom) with an 
on/off input passed through the low-pass filter, which feeds, into a threshold switch 
where the output state is dependent on whether the input from the low-pass filter 
exceeds a set value (T ) and provides the final output of the detector of 1 or 0. The graph 
(top) shows the output for different components of the Simple Duration Detector with a 
low-pass time constant (τ ) of 100ms and a T of 0.6 in response to a square wave on-off 
stimulus of 500ms duration coloured according the bottom illustration of the 
components. 
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threshold switch gives what is termed a ‘simple duration detector’ or SDD 

and forms the key component of the model. 

 REPRESENTING EVENT DURATION 

 

Figure 4-2: A population of SDDs is shown, receiving an input of duration 1000ms with 5 
different low-pass filter responses to that input (blue, green, red, purple, cyan lines). The 
graph on the left shows a step on/off input (grey) and the low-pass filter response with five 
different values of τ (200,400,600,800 and 1000ms) representing filters in a SDD 
population (right – coloured respectively). Each filter output crosses the threshold (0.632 – 
black dotted line) at a time equal to the filter constant τ (coloured respectively - dotted) 
where the SDD output switches from zero to one. 

 

A single SDD can indicate if the input stimulus has passed a particular 

duration defined by the filter time constant τ and threshold T. Clearly, any 

duration encoding mechanism will need to encode duration across a range, 

so the proposed model uses a population of SDDs with a range of time 

constants to encode the duration of an input signal by a labelled lines 

method (Figure 4-2).  

Labelled lines are the simplest way of thinking of encoding information 

within neural systems across modalities. It is used in models, for example 

detecting motion direction in MT (Maunsell & Van Essen, 1983). Labelled 

lines are also used in representing space in retinotopic maps - where a 

neuron responds to a stimulus at a particular area in the visual field, which 

can be thought of its spatial ‘label’ (Wandell, Brewer, & Dougherty, 2005), 

to representing sensory homunculi in the somatosensory cortex (Kaas, 

Nelson, Sur, Lin, & Merzenich, 1979). Similarly, labels have been used as a 
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basis of reading output from models for the olfactory system (Kauer & 

White, 2001).  

In the present model, the last SDD to reach threshold indicates the most 

recent stimulus duration estimate and is updated every time a detector 

switches on, by the SDD label of the latest detector to switch on. This allows 

a measure of duration whilst still receiving an input signal, as the value 

updates in real time. The low pass filter output does not increase when there 

is no input and decays when input drops to zero, so cannot trigger the 

threshold switch. The last detector to switch on indicates how long the event 

has lasted during the event itself. When an event has ended, the value 

indicated by the last detector to have switched on needs to be stored in 

memory after the event has past, raising the question of how the label is 

stored, but this is less a problem of sensory perception and more of 

memory, so is beyond the scope of the model.  

A key property of this model is that while a final duration estimate 

requires a stimulus to be present for a given time, it is not dependent on the 

absolute time of stimulus onset or offset, and it is explicitly represented in 

the system. To create a labelling scheme, the threshold is fixed at a value of 

0.632. This value is chosen as τ represents the time it takes for the low pass 

filter output to reach 1 – e-1 (~ 0.632) of the input stimulus intensity. This 

value is arbitrary and not crucial to model function but it is chosen for two 

reasons. Firstly, low pass filter response is approximately linear up to this 

point, which means the durations encoded by a population are also linear. 

Secondly, the filter time constant τ corresponds to the time after onset 

where a detector switches on, making the duration encoded by each SDD 

intuitive to interpret and representative of the SDD properties. 

 One possible alternative to this would be instead of a population, to use a 

single low pass filter with a larger τ and multiple thresholds to indicate 

duration. The problem here is the low-pass filter response is non-linear over 

time so such a coding scheme would have to consider this. This would also 

effectively involve directly measuring the duration of a stimulus in terms of 

the duration of response of a single ‘timer’ neuron, which is something we 

are trying to avoid as this becomes too similar to the idea of a more 

centralised timing area. There is one key assumption at this stage in this 
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chosen, single threshold-labelling scheme, that the input level I is always 

equal to 1 when a stimulus is present. Changing this value changes the 

duration estimate from the model. For example, if the input value is 2, the 

filter output gradient will be twice the assumed gradient, causing the 

detector to switch on in half the time (with this fixed rather than 

proportional threshold value).  

This creates a problem, as the model cannot encode duration 

unambiguously without knowing input magnitude itself, thus also encoding 

some property of the stimulus. This will be discussed in Section 4.2.4 and 

resolved in Section 4.3, leading to interesting implications for the model. At 

this stage, however, the model will assume a normalised input intensity of 1, 

so the basic properties of the SDD population can be examined. 

 MATHEMATICAL FORMALISATION OF THE MODEL 

The first stage in the proposed model computes the temporal response of 

a first-order low-pass filter ( 𝑂𝐿𝑃) at duration (d) with time constant (𝜏) in 

an individual SDD to the input stimulus (𝐼), Equation 4-1. In the computer 

program implementing the model, the filter output at a particular duration 

d, 𝑂𝐿𝑃(𝑑), is computed iteratively as a difference function as defined in 

Equation 4-2 where 𝛥𝑑 is defined as the size of the timestep.  

Equation 4-1 

OLP(d) = I (1 − e
−d
τ ) 

 

Equation 4-2 

𝑂𝐿𝑃(𝑑) = 𝐼 (
𝛥𝑑

𝜏 + 𝛥𝑑
)  +  𝑂𝐿𝑃(𝑑 − 1) (

𝜏

𝜏 + 𝛥𝑑
) 

Where 𝑂𝐿𝑃(0) = 0 

The second step calculates the threshold switch output at a particular 

point in time OTS(d) as 



102 
 

102 
 

Equation 4-3 

𝑂𝑇𝑆(𝑑) = {
1, 𝑂𝐿𝑃(𝑑) > 𝑇
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The duration (D) indicated by the SDD is shown in Equation 4-4 for a 

constant input magnitude(𝐼µ), which with the normalised input amplitude 

of Iµ = 1 reduces to Equation 4-5  

Equation 4-4 

𝐷 =  𝑂𝑇𝑆

𝜏

𝐼µ
 

Equation 4-5 

𝐷 =  𝑂𝑇𝑆𝜏

Computing duration estimates for a population of n SDDs using 

Equation 4-5 generates a set of indicated times (𝑃) as 

Equation 4-6 

𝑃 = [𝐷, … , 𝐷𝑛]

The largest value DI of set 𝑃 finally provides the duration of the input 𝐼 as 

Equation 4-7 

𝐷𝐼 = max (𝑃)
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 MEASURING EVENT DURATION FOR A SIMPLE ON-OFF 

STIMULUS (STEP FUNCTION) 

The model is run to show that the SDD population works across a range of 

durations. The input consists of a step function varying from 0 to 1, then back 

to 0 again, with the duration the step function set at 100, 250, 500 and 

1000ms, with ‘off’ periods of the same duration as the step function before 

the start and after the end of the stimulus. 

 The population consists of 100 SDDs with τ values of 10ms to twice the 

input duration using 10ms steps; this dictates the temporal resolution of 

duration detection. The threshold of 0.632 as in Figure 4-2 is kept constant 

across the population. We show raster plots for the filter and final outputs for 

each duration in Figure 4-3 and Figure 4-4, the overall value calculated from 

the population measure of duration is plotted against actual duration in 

Equation 4-5. Figure 4-3 shows that the low-pass output is homogenous if 

the population τ scales with duration output, with aliasing visible at the 

shorter durations as the population τ resolution does not scale with duration, 

if it did the four low pass output graphs would look identical apart from the 

axis numbers. This temporal aliasing is also visible in the duration detector 

output in Figure 4-4 again due to the population τ resolution.  
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Figure 4-3 : The output of the Low-pass filter component in response to the input (top). The 
input graph shows the magnitude of the input (y-axis) and the time (x-axis). The bottom four 
graphs show the low-pass filter output for different stimulus durations. X-axis shows time, y-
axis is the τ of the particular low pass filter and the colour shows the output magnitude given 
by the colour bar. 
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Figure 4-4: Shows the output of the threshold detector with the threshold set at 0.632 in 
response to the input from the low pass filters’ (shown in Figure 4-3) response to the model 
input (top). ). The input graph shows the magnitude of the input (y-axis) and the time (x-axis). 
The output of each detector is shown in the four graphs below x-axis shows time, y-axis is the 
τ of the particular low pass filter, black shows an output of zero, white shows and output of 1. 
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Figure 4-5 Shows duration estimates versus actual durations for 100, 250, 500 and 1000ms. 
The estimates match stimulus duration. 

 EFFECT OF SIGNAL MAGNITUDE ON DURATION 

ESTIMATES  

As stated before and shown in Equation 4-4 and Equation 4-5, the model 

can only be expected to give consistent duration estimates if the input 

magnitude of the model is constant. Estimates for stimuli of differing input 

magnitude are gathered for range from 0.75, to 2 magnitudes with 0.25 steps 

of 200,400,600 800 and 1000ms. Figure 4-6 clearly shows that the duration 

of the stimuli vary according to their input magnitude. This is not a realistic 

model for duration estimation in its current form as the duration estimation 

is as much based on the stimulus properties represented by the input signal 

magnitude as it is on the stimulus duration.  

There is some evidence in literature showing perceived duration increases 

with the magnitude of various stimulus properties such as brightness 

(Brigner, 1986; Terao, Watanabe, Yagi, and Nishida, 2008), speed (Brown, 

1995; Kanai, Paffen, Hogendoorn, & Verstraten, 2006) or temporal frequency 

(Kanai et al., 2006) and size (Xuan et al., 2007). However, these effects show 

fractional relative variations not on the scale of the relationship observed in 

the model. This means the basic SDD model is not feasible without additions 
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to control the input signal magnitude through a form of signal normalisation 

discussed in Section 4.3. 

 

Figure 4-6: Above shows model duration estimates versus actual durations for stimuli of 
varying input intensities (coloured). This shows that duration estimates are as much 
influenced by the input signal magnitude as they are the duration of the stimulus as indicated 
by Equation 4-4.   



108 
 

108 
 

 ESTIMATING DURATION OF AN IMPULSE (δ DIRAC) 

FUNCTION 

An impulse is an input of infinite magnitude over an infinitely small 

period-of-time. It is used to demonstrate the temporal dynamics of a system 

and provides an interesting test for the model to investigate its output. 

It is impossible to use an impulse as input into the model because the low-

pass output is computed iteratively meaning an infinite input over an 

infinitely small period would result in an undefined output. Instead, an input 

of 1ms (a single timestep) with a magnitude of 2000, 1000 times greater than 

the largest magnitude that is used elsewhere, forms a suitable approximation 

of an impulse response. The SDD population has τ of 200-1000ms with 

200ms steps in this example. The output is shown in Figure 4-7. The shape of 

these impulse response functions convolved with the input gives us the 

response to all possible signals at this stage in the model.  

After the threshold stage the SDD population estimates the duration of the 

input to be 1000ms as this is the longest duration the population can encode. 

What this demonstrates is the impulse drives the output of all low pass filters 

Figure 4-7: Impulse response of low pass filters in an SDD population (coloured) to an 
approximated impulse at time = 0 (Black arrow). All filter outputs exceed threshold (black 
dashed), so the model duration judgment is the label of the SDD with the largest τ, in this 
case 1000ms. 
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to exceed threshold. Therefore, the duration indicated by the SDD with the 

largest τ gives the duration of the impulse. 

Another interesting question to ask is what is the smallest possible 

impulse magnitude to drive a detector of time component τ to output a value 

of greater than 0.632, i.e. switch it on? It is possible to show this from 

Equation 4-2. Output 𝑂𝐿𝑃(𝑑) = T or 0.632, and ∆𝑑 is 1, the smallest possible 

duration we can input into the model, which gives Equation 4-8 . This can be 

rearranged in terms of the input I, shown in Equation 4-9 that can be used to 

determine the smallest impulse magnitude to switch a detector on.  

Equation 4-8 

𝑇 = 𝐼 (
1

𝜏 + 1
) 

Equation 4-9 

𝐼 = 𝑇𝜏 + 𝑇 

With our labelling scheme set up so detector τ is the duration indicated by 

the detector it is possible to rearrange Equation 4-9  in terms of τ, taken to be 

the estimated duration of the input D(I) shown in Equation 4-10. 

Equation 4-10 

𝐷(𝐼) =  
𝐼 − 𝑇

𝑇
 

Hence, this shows the relationship between input magnitude I and 

duration estimate D(I) so that with increasing input intensity the duration 

estimate also increases, as shown in Section 4.2.4. In fact, given no limit on 

the maximum duration measurable by the population the model would 

estimate the duration of the impulse with a magnitude of 2000 as ~3163ms, 

depending on the spacing of the time constants of the detectors. However, at 

the other end of the spectrum, given our population of detectors, the size of 

an impulse needs to be of magnitude 6.95 to trigger a shortest duration 

detector with τ=10ms. Compared to the size of our standard input of 

magnitude 1, this is ~7 times larger, so it would need to be a very large 

impulse to trigger any duration detectors. Inputs of less than T would result 
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in negative duration judgements. This is not sensible, instead negative 

durations can be interpreted as have a duration of zero, this makes practical 

sense as the input will not be strong enough to cause any detectors to switch 

on. What does this mean for the model? If the input magnitude represents a 

stimulus property, e.g. luminance, then the input represents an extremely 

short and bright flash. The model predicts the duration of a very bright, very 

short flash to be perceived as lasting a much longer than reality. There is 

some evidence of this with brighter flashes being perceived to last longer, 

although this may be due to photoreceptor properties also (Bowen et al, 

1974). 

 ESTIMATING THE DURATION OF TIME VARIANT 

STIMULI 

So far, the stimulus used here does not change over time between onset 

and offset, whilst many sensory stimuli will do, such as flickering or moving 

stimuli. The next test is to use the model to estimate durations of sine and 

square wave inputs. The mean input intensity is set as 1, as before, so the 

square and sine waves have a peak magnitude of 2 and minimum of 0. The 

SDD population is set up as before with the input stimulus lasting 200,400, 

600, 800 and 1000ms for a 10Hz input varying between 0 and 2 magnitude. 

These durations are chosen so the 10Hz input completes 2, 4, 6, 8, and 10 

cycles for each duration respectively, as if the input ends in the middle of a 

cycle the input magnitude would not average 1. Figure 4-8 shows the 

duration estimates.  

There is little difference in duration estimates between the different input 

types, showing the model is robust towards stimulus type, thus can estimate 

durations of time variant stimuli. This appears promising but temporal 

frequency of a stimulus has in fact been empirically found to have an effect 

on perceived duration. Kanai et al., (2006) show that increasing temporal 

frequency increases the perceived stimulus duration which is not observed 

here.  

Square and sine waves exhibit a consistent but minor underestimation. 

This is caused by the nature of the time variant signal. Each oscillation can be 

broken up into two halves, the first 180° of the oscillation where it peaks in 
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magnitude and the second 180° with the trough of the oscillation. 

Immediately preceding offset, the signal passes through the trough phase 

meaning the input to the detector population is reduced through this period 

when compared to an on-off step input despite fixing mean intensity at 1 over 

the duration of the stimulus. As established in Section 4.2.4, a reduced signal 

magnitude means an underestimation of duration that is observed here that 

explains why time variant signals are perceived to be shorter in duration. 

 

Figure 4-8: Shows the stimulus vs estimated duration of sine, square (both 10Hz) and 
continuous inputs (coloured respectively) each with a mean magnitude of 1 across the duration 
of the stimulus. There is little difference between the estimations of time-variant and 
continuous stimuli. 
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 EFFECT OF CONTRAST ON DURATION ESTIMATES OF 

TIME VARIANT STIMULI 

Another stimulus property that varies in the real world is stimulus 

contrast, i.e. the difference between the smallest and largest input magnitude 

of a stimulus varying over time or space. The simplest example of this is 

luminance contrast, though the stimulus could also represent other 

properties such as position or velocity of an object moving in a repetitive, 

back and forth motion. 10Hz sine waves with differing Michelson contrasts 

(Equation 4-11) with the same mean magnitude (Table 4-1 for full values) and 

durations of 200, 400, 600, 800 and 1000ms are input into the model. 

 As shown in Figure 4-9 the input contrast does not affect duration 

estimates, which again shows the model is robust toward differences in 

stimulus properties. This is because low-pass filters integrate the input over 

time effectively blurring the signal, so transient changes in the input do not 

change the model estimations, only the mean input magnitude over time. 

There is slight mismatch in duration estimates of different contrasts, but this 

is due to the differences in peak magnitude of the inputs of differing contrast. 

The direct effect of the contrast on the stimulus’ perceived duration has not 

been reported so far, rather it is the intensity of the stimulus that seems to 

have an effect (e.g. Alards-Tomalin et al., 2014) so this matches with current 

knowledge. Albeit rapid adaptation to high contrast does affect duration 

(Bruno & Johnston, 2010) and this will be investigated later in this chapter. 

Equation 4-11 

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
=   𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 

Table 4-1: values for the stimulus input in Figure 4-9. 

Max Magnitude Min Magnitude Mean Magnitude Michelson Contrast 

1.1 0.9 1 0.1 

1.5 0.5 1 0.5 

2 0 1 1 
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Figure 4-9: a) Shows the input of three sine waves with values from Table 4-1 varying in 
contrast and shown in b) with respective colours. The stimulus and estimated durations match 
closely as indicated by the line of equality (Black, dashed) and contrast does not appear to 
affect the estimates. 
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 EFFECT OF TEMPORAL FREQUENCY ON DURATION 

ESTIMATES  

 

Figure 4-10 Right shows input of differing frequencies and left shows the estimated verses 
actual durations for the different frequency inputs, coloured respectively. There is a variation 
in the duration estimates depending on the input phase at that point in time, an artefact of 
variations in mean magnitude at that point in time. 

 

One property of time variant stimuli is their temporal frequency, which 

corresponds to speed of a moving periodic stimulus or rate of change in the 

environment. The model is tested for sine-wave inputs of varying temporal 

frequency (2, 10 and 20Hz) for durations of 50ms to 1000ms with 50ms 

steps and magnitude oscillating between 1.5 and 0.5 keeping a mean 

magnitude of 1. Figure 4-10 shows the estimated durations for each stimulus. 

Here, there are variations in the duration estimate depending on the 

stimulus duration and the temporal frequency of the input stimulus. 20Hz 

shows a clear linear relationship between the stimulus and estimated 

duration as observed previously, while both 10 and 2Hz stimuli are under or 

overestimated compared with 20Hz depending on the duration. This is a 

feature of the effect described in 2.2.  

Time variant inputs are underestimated compared to a continuous input 

due to a reduction in input magnitude preceding offset. As a wider variety of 

durations than the previous two sections (50ms, rather than 200ms steps) 

are shown and the input durations have not been selected as to match a 

whole number of oscillations, sometimes the duration is overestimated, and 
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sometimes underestimated depending on the oscillation phase at offset. This 

means the difference between duration estimations of signals with differing 

temporal frequencies is not due to the temporal frequency per se, but the 

variations in mean input magnitude at offset. This could provide a limitation 

for the model as at lower temporal frequencies duration estimations vary, but 

it also shows a potential strength of the model regarding flickering or moving 

stimuli. Time variant stimuli for example: a light switching on and off, 

analogous to the square wave input here, have two durations associated with 

them, the duration the light has been switching on and off for and the 

duration of the on phase.  

A question arising from this is how can the visual system estimate both the 

duration each time the light comes on and how long the light has been 

flickering for at the same time? As we see the duration estimates oscillate as a 

function of the input frequency, this shows oscillation duration affects the 

duration estimate in the model.  

There might be possible ways to extract the information about the 

duration of the input phase, which could reduce the problem of the input 

frequency distorting duration estimates. One is to have separate populations 

of SDDs, encoding different duration ranges, i.e. one for longer and one for 

shorter durations, allowing simultaneous readouts of both the duration of 

each oscillation and the overall stimulus duration. Although this relies on 

prior knowledge about the stimulus frequency to set effective cut-offs. 

Another way would be to separate out the stimulus component frequencies 

and estimate the duration for each using a separate SDD population. What 

also affects the duration estimates is the resolution of the duration detectors. 

The estimates for the 20Hz in Figure 4-10 appear linear as the SDD 

population resolution is such that it coincides with the wavelength of the 

stimulus input so it is not affected by variations in the stimulus magnitude. 
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 NORMALISATION OF THE INPUT SIGNAL 

Section 4.2.4 demonstrates that when the input signal violates the 

constant mean input intensity assumption it creates large errors in duration 

estimates. To correct this issue the input signal can be fed through a 

normalisation stage before passing to the SDD population (Figure 4-11). This 

mechanism controls the mean input to the SDD population so that it 

approximates a set value over time, meaning the constant mean input 

assumption is reasonable. 

The mechanism uses normalisation, a process where the signal intensity 

encodes relative magnitude of a particular property rather than absolute 

magnitude to achieve this. There are many examples of normalisation in the 

visual system, for example; a neuron encoding luminance contrast with a 

particular receptive field will receive inhibitory input summated from other 

neurons encoding luminance contrast in the areas surrounding its receptive 

field (Carandini & Heeger, 2011). The model uses a form of the normalisation 

equation from Carandini and Heeger (2011) to normalise input to the SDD 

population, shown in Equation 4-12.  

Equation 4-12 

𝐼𝐷 =  
𝐼

𝜎 +  𝐼µ
 

Where 𝐼 is stimulus input to the model, 𝐼µ is the normalisation factor, it is 

a running average defined by the temporal window across which the input I 

is averaged. 𝜎 is a normalisation constant acting as free variable to fit 

experimental data as well as avoiding dividing by zero at the instance of 

stimulus onset where 𝐼µ would be 0. Finally, 𝐼𝐷 is the input to the detector 

population.  

The normalisation mechanism in the model normalises the signal over 

time by dividing the input at a particular point in time by a running average 

of the signal intensity by using a low-pass filter (another one, separate to 

those that form part of the SDDs described in Equation 4-1 and Equation 

4-2). Normalisation is often implemented spatially but dynamic 

normalisation, similar to that shown here, has also been used previously to 
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model neural systems (Louie, LoFaro, & Webb, 2014; Wilson & Humanski, 

1993). 

 

Figure 4-11: A circuit diagram of the normalisation process used in this model so that the 
duration detector input (𝐼𝐷) can be assumed to approximate a set value. The input stimulus 
(𝐼) passes through a low-pass filter to compute a running average of the input signal 

magnitude (𝐼µ), given by Equation 4.1 before summing with a constant (𝜎). The instantaneous 

input is divided by the running average plus the constant, to give the input to the SDD 
population (𝐼𝐷). 

 

A low pass filter is used, as previously discussed, it is a good 

approximation of neural function, so is a plausible way of implementing a 

running average in neural systems with the running average being 

exponentially weighted in the case of using the low-pass filter. Thus, the full 

temporal normalisation equation used is shown in Equation 4-13 and the 

input signal is normalised over a temporal window defined by the time 

constant for the normalisation stage (𝜏µ). 

Equation 4-13 

𝐼𝐷 =  
𝐼

𝜎 + 𝐼 (1 − 𝑒
−𝑑
𝜏µ )
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 SETTING NORMALISATION PARAMETERS: THE 

RUNNING AVERAGE TIME CONSTANT (𝜏µ) 

Within the normalisation equation, there are two free parameters, σ and 

the low-pass filter time constant 𝜏µ, which need appropriate values. Here 𝜏µ 

gives the size of the window for the stimulus running average. The time taken 

for the low-pass output to approximate the input magnitude of a continuous, 

time invariant stimulus is 3τµ (the output after 3τµ is 95% of an input step 

change), which gives the temporal window across which the input magnitude 

is integrated. 

 As such, τµ cannot be too large as this would mean the temporal window 

for computing the normalisation factor will exceed the duration of the input 

stimulus, thus the stimulus will not drive the low-pass filter for long enough 

to allow the filter output to approximate the input I . This means the input to 

the SDD population will never be fully normalised. The appropriate value of 

τµ should be set so that 3τµ is sufficiently less than the stimulus duration.  

As the aim of this model is to encode sub second durations, τ should be 

small. However, it cannot be too small as for time variant stimuli it will not 

provide a good estimate of the mean intensity. Ideally, τµ should be set so 

that a single oscillation of the input signal is less than 3τµ. For the moment a 

τ of 100ms will suffice as the filter response will be sufficiently rapid enough 

to normalise sub second durations except those of less than 300ms (< 3τµ). 

The model will not fully normalise inputs of less than this but will not distort 

the waveform of temporal frequency inputs greater than 3.3Hz with 

oscillations of length 300ms or greater.  
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 SETTING NORMALISATION PARAMETERS: 

NORMALISATION CONSTANT (σ)  

The constant σ has two functions, which become apparent when 

considering the effect of normalisation on the input signal. If the 

normalisation stage low pass filter output was zero, without σ  divide-by-zero 

errors would occur. In addition without σ, when the normalised 𝐼µ is very 

small relative to the input 𝐼 (just after signal onset, as there has not been a 

signal to average in the recent past), the input to the detectors, 𝐼𝐷 , becomes 

very large. This means the system gain will be very large. A large gain is 

unwanted for two reasons, the initial amplification of 𝐼𝐷 will unduly distort 

duration estimates (as input magnitude affects duration estimates – Section 

4.2.4) and high gain is unrealistic in neural systems. This suggests a larger σ 

value would be best in this model to reduce the initial amplification of  𝐼𝐷. A 

larger σ also has problems as it means as 𝐼µ approaches 𝐼, the bigger sigma is, 

the less well I D approximates 1 as assumed for the input, causing distortions 

in duration estimates. 

Equation 4-14 

𝐼𝐷 =  
1

𝜎 +  1
 

In Equation 4-14 a large σ will result in ID  << 1  which would violate this 

assumption and result in duration underestimations.  

Therefore, it is important that σ be set to a value giving a balance between 

reducing initial amplification and keeping the input as close to the assumed 

input value as possible. An σ of 0.05-0.25 is reasonable given these 

limitations. For the rest of this chapter a value of σ = 0.15 is used unless 

stated otherwise.  
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 CENTRAL TENDENCY IN TIMING (VIERORDT’S LAW) 

AND THE NORMALISATION CONSTANT (σ) 

One property of time perception the addition of σ appears to capture, is 

referred to as the central tendency effect, which states that relatively short 

durations are perceived to be longer and relatively long durations are 

perceived to be shorter than they are. This is also referred to Vierordt’s law, 

which is named after Karl von Vierordt, the first person to report this effect 

in the 19th century (For an English translation of Vierordt’s early work on this 

see Lejeune & Wearden, 2009).  

This aspect of time perception is robust across sensory modalities where 

no feedback is given (Lejeune & Wearden, 2009); when participants receive 

feedback during duration reproduction tasks on the accuracy of their 

judgements the effect does not occur (Lewis & Miall, 2009). Considering the 

model with a fixed 𝜏µ and σ, this means that events with relatively short 

durations, which have not been completely normalised during the event i.e. 

where the mean of ID > 1  will lead to over estimations in duration as 𝐼𝐷 will 

be greater than the assumed input to the detector population (Section 4.2.4). 

For longer durations where over the course of the event, mean ID < 1 the 

reverse is true, meaning longer durations are underestimated. This is an 

interesting property of adding a normalisation stage to mitigate the effect of 

assuming ID = 1 (section 4.2.2) in the model.  

This demonstrates that adding normalisation, a process that occurs at 

many different levels within the brain improves the model’s plausibility when 

compared to known properties of time perception. 
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 NORMALISING STIMULI OF DIFFERENT MAGNITUDES 

To test the normalisation stage, stimuli with durations of 50-1000ms and 

magnitudes of 0.25-2 are run through the model to output duration 

estimates. An SDD population described in section 4.2.3 was capable of 

estimating the duration to the nearest 10ms (the resolution of the SDDs) and 

for the normalisation stage σ was set to 0.15 and τ to 100ms based upon the 

considerations describe in sections 4.3.1 and 4.3.2. The durations of inputs 

with magnitude 0.25 to 2 are tested with 0.25 steps with results shown in 

Figure 4-12.  

Stimuli without any normalisation vary greatly in estimated duration and 

only where ID = 1 generate accurate estimates of duration. Stimuli where I < T 

are excluded from the non-normalised data, because the model cannot 

estimate durations of this input magnitude as the SDD low-pass filters never 

reach threshold. When normalising the input durations of lower magnitude 

input (0.5) can be estimated accurately except for the lowest intensity input 

(0.25).  

The normalisation stage gives estimates that are more consistent across 

different magnitudes but there is still a clear effect of increased input 

magnitude leading to larger duration estimates corresponding with larger 

input magnitudes. This finding is consistent across the literature with reports 

of increased perceived duration correlating with a number of properties that 
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could be considered as input magnitude. This includes, increased stimulus 

brightness (Brigner, 1986; Terao et al., 2008), speed (Brown, 1995; Kanai et 

al., 2006), temporal frequency (Kanai et al., 2006), size (Alards-Tomalin et 

al., 2014; Ono & Kitazawa, 2007; Xuan et al., 2007), colour saturation 

(Alards-Tomalin et al., 2014), and numerosity (Xuan et al., 2007). See 

Eagleman and Pariyadath, 2009 for a summary of some of this research. 

Figure 4-12: Top panel shows the model’s duration estimates versus stimulus durations 
for a non-normalised input with magnitudes of 0.75-2 with 0.25 unit steps and is the 
same as Figure 4-5. The bottom graph shows the model’s estimates for a normalised input 
using stimulus magnitudes from 0.25 to 2 with 0.25 steps. The normalised estimates are 
far more consistent and show the central tendency effect, where shorter durations are 
overestimated and longer durations underestimated. Note that the model can estimate 
durations for stimulus magnitudes smaller than the fixed SDD threshold when using the 
normalised input demonstrated as the model estimates durations for the 0.5 stimulus 
magnitude only when normalised. 
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 IMPULSE RESPONSE WITH THE NORMALISATION STAGE  

It is also worth considering the effect of an impulse on the model with the 

normalisation stage. We know the response of the low pass filter performing 

the running average to an impulse would show an exponential decay from an 

initial peak in response from Section 4.2.5. The output of the averaging filter 

(𝑂µ) at the instance of the impulse with no prior input is given by Equation 

4-15 from Equation 4-2 with τµ  as the normalisation stage time constant.  

Equation 4-15 

𝑂µ(𝑑=1) = 𝐼 (
1

𝜏µ + 1
) 

This can then be substituted into Equation 4-12 to give the input into the 

detector population from the normalisation stage to give Equation 4-16. σ is 

the normalisation constant and ID is the input into the detector population. 

Equation 4-16 

𝐼𝐷 =
𝐼

𝜎 + 𝐼 (
1

𝜏µ + 1)
 

When combined with Equation 4-10 for the duration estimate of the 

population to an impulse of magnitude I, this gives Equation 4-17.  

Equation 4-17 

𝐷𝐼 =

(
𝐼

𝜎 + 𝐼 (
1

𝜏µ + 1)
− 𝑇)

𝑇
 

As after normalization duration is linearly dependent on the normalized 

intensity, if the denominator in Equation 4-176 is greater than 1 this will act 

to reduce duration estimates from the population, if it is less than 1 then this 

will increase the duration estimates compared to the model without 
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normalisation. The value of I above which will result in reduced duration 

estimates is shown in Equation 4-18. 

Equation 4-18 

𝐼 = 𝜏µ − 𝜎𝜏µ + 1 − 𝜎 

Which when substituting the values chosen in sections 4.3.1 and 4.3.2 

gives I as 86, i.e. when input magnitude over one time step produces a large 

enough input averaged over time 𝜏𝜇. Since the impulse magnitude used in 

section 4.2.5 is greater than this, we can conclude that the normalisation 

stage would reduce duration estimates in this case. When calculating the 

estimated duration for this with an input of 2000, the output is a duration 

estimate of ~158ms, much less than 3163ms, the estimate with no 

normalisation stage. From this example, it is clear that with the addition of 

the normalisation stage, the model estimates vary less with the magnitude of 

the input and are therefore more dependent on the duration of the input. 

Interestingly, inputs of a lower intensity, where the denominator is less than 

1 will actually be intensified, meaning they will register a duration at a lower 

intensity. Therefore, with the normalisation stage the model’s ability to 

estimate durations for weaker inputs is increased.  

 COMPARISONS WITH EXPERIMENTAL FINDINGS ON 

SPEED AND TEMPORAL FREQUENCY 

It has been established that the model’s duration estimates vary with input 

magnitude and that this is supported by the literature. One particular 

interesting result is from Kanai et al., (2006) who provide a detailed example 

of this magnitude effect, showing that overestimation scales with object 

speed logarithmically (Figure 4-13) similar to previous findings by (Brown, 

1995) and further experiments show this effect is driven by change in 

temporal frequency. This is contrary to some of the results from the model. 

Section 4.2.5 shows the model’s estimates of time do not vary with temporal 

frequency of a time variant input, which would mean the model does not 

predict the results of Kanai et al., (2006) which is shown in Figure 4-14. This 

result is achieved by varying the temporal frequency of a sine wave input 
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(peak: 1.25, trough: 0.75 normalisation parameters: 𝜎 =0.15 and 𝜏µ = 

100ms). 

However, there is another way of representing temporal frequency within 

the model. Instead of modifying the frequency of a time varying input signal, 

temporal frequency can be represented in the magnitude of the input, so a 

greater input magnitude represents an input stimulus with a higher temporal 

frequency. There is evidence showing that cells in V1 and V2 demonstrate a 

reduced response to lower temporal frequencies (Hawken, Shapley, & Grosof, 

1996). Changing input magnitude is also how speed is represented  to get the 

results from the model in Figure 4-13. It has been suggested that speed could 

be encoded as a rate code  in MT as suggested by the high proportion of 

neurons tuned to high speeds (Cheng et al., 1994; Johnston et al., 1999) so 

there is support in the literature to justify encoding speed and/or temporal 

frequency in this way. 

 The SDDs in the model are considered to be receiving input from cells 

such as these that encode speed in terms of their firing rate, in this example. 

Here, we test if the model can account for the findings of Kanai et al., (2006) 

by modifying how temporal frequency is represented in the model. We test 

with a step on/off input of 200-1000ms and normalisation parameters of 𝜎 

=0.15 and 𝜏µ = 100ms with varying input magnitude to represent differing 

speed/temporal frequency. 

 On visual inspection, Figure 4-13 shows the model estimates of duration 

for inputs of differing intensity match the trends observed by Kanai et al., 

(2006) for perceived speed. The results from Kanai et al., (2006) and the 

model for temporal frequency are shown in Figure 4-14. Since the 

normalisation parameters have been set to values based upon general 

guidelines, these results are not a result of precise variable fitting but are an 

emergent property of the model.  

Another finding from Kanai et al., (2006) is a lack of effect for spatial 

frequency on duration. If the model input magnitude is said to encode spatial 

frequency then the model would predict a similar result to the effect of 

temporal frequency on duration running contrary to Kanai et al., (2006). 

This suggests that only neurons that scale their response with temporal 

frequency feed into estimates of duration perception and not spatial 
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frequency. Indeed neurons do not tend to scale their output with SF, but 

rather show tuning for a specific spatial frequency (DeValois & DeValois, 

1988). What can be taken from both the findings of Kanai et al., (2006) and 

the model is an indication of what stimulus properties might or might not 

affect perceived duration based upon how these properties are encoded in 

sensory systems, which could provide avenues in designing experiments to 

validate the model.  
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Figure 4-13: The left graph shows the results from (Kanai et al., 2006) experiment 1 showing 
the speed induced time dilation effect where the greater the velocity, the larger the 
overestimation of event duration according to a logarithmic trend. It also shows Vierordt’s 
law with shorter durations showing a larger overestimation than longer durations. The graph 
on the right shows data from the model using k =0.15 τ = 100ms in the normalisation stage, 
except instead of speed the x-axis shows input signal intensity which in this case is assumed 
to encode speed. The model output reflects the logarithmic trend observed by (Kanai et al., 
2006)  

 

Figure 4-14: The left graph shows results from (Kanai et al., 2006) experiment 4 showing a 
temporal frequency induced time dilation effect following a logarithmic trend with temporal 
frequency and Vierordt’s Law. The model estimating the duration of a sine wave input varying 
between 0.75 and 1.25 intensity does not show the same logarithmic relationship as the 
experimental data. 
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 WEBER’S LAW 

One aspect of duration perception is the scalar property, a manifestation of 

Weber’s Law where errors increase with size of estimates. This is claimed to 

be a robust feature of time perception where the Weber fraction, given by the 

judgement variance over the mean estimate, is approximately constant in 

animal experiments (Gibbon, 1977) and humans (Wearden, 1992). However, 

it should be pointed out that this does not always seem to hold as other 

experiments with humans have found a decrease in Weber fractions with 

duration (Bizo et al., 2006; Grondin, 2010b; Lewis & Miall, 2009). To test 

the model’s compliance with Weber’s law, Gaussian noise is introduced by 

adding noise to the stimulus (𝐼 in Equation 4-12 and Equation 4-13) to 

simulate a noisy stimulus or environment. Alternatively, noise is introduced 

internally by adding it to the output of the low-pass filters within each SDD 

(𝑂𝐿𝑃 in Equation 4-1 and Equation 4-2) to simulate noise in processing the 

input.  

Estimates are computed using a continuous input of durations 250, 500, 

750 and 1000ms with a magnitude of 1, which is normalised using τ = 

100ms, σ = 0.15 as before. The standard deviations of the internal noise were 

set at +/- 0.05, 0.1, 0.15 and 0.2. Initial testing on internal noise 

demonstrated the system to be sensitive to the noise and produces large 

overestimations in duration. Consequently, only the lowest two noise levels 

0.05 and 0.1 were used for internal noise. 100 duration estimates were 

generated for each noise level and duration combination, allowing Weber 

fractions to be computed by dividing the standard deviation by the mean of 

the 100 estimates.  

The results in Figure 4-15 shows that internal noise has a much greater 

effect on model variance, the Weber Fractions show an increase of around an 

order of magnitude compared to external noise. External noise shows Weber 

fractions decreasing with increased duration, to be expected by the law of 

large numbers that states with enough random samples over time the mean 

value of those samples will converge. Noise is added at each time step (1ms) 

in the input, changing the input magnitude at that step and the duration 

estimate is based upon the mean input magnitude (section 4.2.4). 
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Interpreted using the law of large numbers, the input magnitude at each 

time-step is a random event and with a longer duration input, there are a 

greater number of random events, so the average of these events, i.e. the 

input magnitude converges over time resulting in less variance over the 100 

trials for longer inputs and hence reduced Weber fractions. A different trend 

is apparent with internal noise, Weber fractions exhibit less relative change 

across durations, with the lower noise level showing increasing Weber 

fractions and higher noise level demonstrating the opposite. The scalar 

property of timing (Gibbon, 1977; Gibbon et al., 1984; Wearden, 1991) is a 

case of Weber’s law applied to duration perception that states errors in 

duration estimates should increase proportionally to the duration estimate 

itself, meaning the Weber fractions should stay constant across a range of 

durations. 

 Adding external noise does not exhibit this effect; instead, the model 

shows a reduction in Weber Fractions with time, closer to the results of Lewis 

& Miall (2009), who show a reduction relative to Weber’s law with timing. 

Internal noise shows a relatively small reduction or increase in Weber 

fractions depending on noise levels. Since results showing the scalar property 

of time perception do exhibit a large variation (Gibbon, 1977; Wearden, 

1991), the model could still be said to fit with behavioural data despite not 

exhibiting constant Weber fractions. These results also provide a way to 

reconcile the differences in experimental observations, where the scalar 

property of timing is not obeyed (Bizo et al., 2006; Grondin, 2010b; Lewis & 

Miall, 2009). External noise, either from the environment, stimulus or task 

difficulty is the main driver of non-scalar time estimations, where internal 

noise in the model produces variability more closely aligned with the scalar 

property. 
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Figure 4-15: Showing Weber fractions (standard deviation/ mean of duration estimates) for 

external (left) and internal (right) noise. With external noise, Weber fractions are generally 

higher with more noise and decrease with the stimulus duration. Internal noise shows Weber 

Fractions an order of magnitude greater than external noise (right) and do not exhibit the 

same overall trend. Lower noise (blue) shows a slight increase in Weber fractions whilst the 

higher noise (green) shows a slight decrease. 

 NORMALISATION ACCOUNTS FOR ADAPTATION 

INDUCED DURATION COMPRESSION EFFECTS 

There is a body of evidence showing adaptation to high temporal 

frequency and high contrast grating stimuli causes duration compression 

(Bruno & Johnston, 2010; Burr et al., 2007; Johnston et al., 2006). Both high 

contrast and high temporal frequency stimuli cause contrast gain adaptation 

in M, but not P Cells in macaque monkeys (Solomon et al., 2004). It has been 

theorised (Johnston, 2010; Johnston et al., 2006) that the duration 

compression effect is a result of adaptation in M-cells in LGN, implicating a 

low-level mechanism contributing to duration compression.  

The normalisation stage in the model is effectively a form of gain control 

defined by the normalisation factor 𝐼𝜇 and constant σ; as such, it is possible 

to posit that this normalisation stage in the model is analogous to the 

function of M-cells. Solomon et al., (2004) show that adaptation creates a 

shift in the contrast sensitivity function of M-cells so that they are more 

sensitive to higher contrast stimuli, which is a result of a reduction in gain. In 

the normalisation stage, an increase in σ is effectively a decrease in gain. It is 

possible that the long-term suppression in M-cells caused by high contrast or 

high temporal frequency adaptation and the resulting changes to contrast 

sensitivity and suggests the effects on duration compression can be explained 

by variations in σ within the normalisation stage. By increasing σ and 
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simulating the model’s response to a stimulus this can be said to represent 

the change in response of M-cells after adaptation.  

To test the effect of increased σ on duration estimates of step function on-

off inputs with three input intensities (0.5,1,1.5) with a range of durations 

(200-1000ms, 200ms steps) were computed. The model normalisation 

parameters are set to 𝝉µ= 100ms and σ set to 0.15, as before, acting as the 

‘unadapted’ condition as well as σ = 0.2 and 0.25 both acting as 

‘adapted’conditions. Figure 4-16 shows reductions in duration estimations 

when increasing σ to reduce normalisation gain. This reduction is consistent 

across stimulus durations and input magnitudes. Figure 4-17 shows the 

duration compression ratios (unadapted/adapted condition duration 

estimates for the same stimulus duration) for inputs of different intensities, 

showing a compression in perceived duration of around 10-40% (shown in 

Figure 4-17 as compression ratios of 0.9-0.6 respectively) depending on the 

value of σ used. This compares reasonably well to duration compression 

effects of approximately 20% in Johnston et al., (2006); showing that high 

contrast or high temporal frequency adaptation induced duration 

compression could be explained by changes in gain of the model’s 

normalisation stage implemented by increasing the normalisation constant σ.  
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Figure 4-16: Shows the effect of increasing σ (Solid: σ = 0.15, Dashed: σ = 0.20, Dotted σ = 
0.25) on duration estimates for stimuli of different intensities (coloured) this shows a duration 
compression effect for increased σ across different intensities. 

 

Figure 4-17: Shows the duration compression ratios for stimuli of varying magnitudes relative 
to σ = 0.15 (Solid) where the stimulus is considered ‘unadapted’ and the where the stimulus 
has been ‘adapted’ where σ = 0.2 (dashed line) and σ = 0.25 dotted line. Both adapted 
conditions show a reduction in duration across a range of durations for all inputs as observed 
by the compression ratios of less than 1. 
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 NORMALISATION STAGE AS A GAIN CONTROL 

MECHANISM 

We have shown that reduction in the model’s normalisation stage gain 

shows a reduction in duration estimates comparable with adaptation results 

in the literature. This section follows on by investigating whether the 

normalisation stage implemented in the model could be considered 

equivalent to the contrast gain control mechanism in the M pathway 

observed by Solomon et al., (2004) even though this model has not been 

designed to encode contrast.  

It has been mentioned before in Section 4.3.6 that signal magnitude could 

act as a variable to encode stimulus properties. So here the input (𝐼) and 

output (𝐼𝐷) magnitude of the normalisation stage is assumed to encode 

luminance contrast, where 𝐼 is the contrast of the stimulus and(𝐼𝐷) is 

analogous to the neural response to the stimulus i.e. the mean spike rate 

encoding contrast. Although, the normalisation is designed to set 𝐼𝐷 to the 

same level no matter what the magnitude of I. If the output contrast is taken 

as the average intensity across the first 100ms after stimulus onset, where the 

output of the normalisation stage has not fully normalised, we see variation 

in the output intensity, which can be interpreted as the contrast sensitivity 

function of the model. Figure 4-18 shows the change in contrast sensitivity in 

M-Cell spike rates observed by Solomon et al., (2004) and the results from 

the model.  

With increasing gain, the model output shifts rightward along the x-axis 

with increasing contrast, which is the same direction as the contrast 

sensitivity function observed by Solomon et al., (2004). However, there are 

clear differences in the shape of the sensitivity function between the model 

and experimental data. The recorded spike rate function is sinusoidal while 

the model shows an exponential sensitivity function. This might be explained 

as a saturation effect as there are limits in the spiking output frequency of 

neurons. In fact, this limitation makes the contrast gain change perceptually 

desirable as the decrease in gain means higher contrasts are more discernible 

from the cell spike rate, making the visual system more sensitive to subtle 

changes in a high contrast environment.  
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Overall, changing σ to reduce gain means the model approximates data 

from in-vivo cellular recordings and could be made to match them closely 

with the addition of a ceiling effect. This is despite the model not being 

conceived to explain contrast gain adaptation. σ in the normalisation stage is 

equivalent to c50 in contrast gain normalisation equations detailed by 

Solomon et al., (2004) who indicated that the change in contrast gain control 

is the result of inhibitory input to M-cells from retinal ganglion cells that 

persists for several seconds after adaptation to high contrast stimuli. 

 

Figure 4-18: Left shows effect of adaptation to a high contrast grating to the contrast 
sensitivity profile of M-cells from Solomon et al., (2004). Right shows the normalisation stage 
output given the input stimulus contrast represented by the input intensity for different values 
of k where increasing σ is analogous to contrast gain adaptation. Both model and data show a 
shift in the sensitivity profile in the same direction though the model output is not sinusoidal, 
exhibiting a saturation effect like the recorded data. 
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 DISCUSSION 

This chapter shows that a model using varying temporal responses of 

neural systems, represented by low-pass filters, can encode the duration of a 

stimulus whether the input stimulus is continuous or time variant. A feature 

of the model proposed here is that at no point before the final duration value 

from the last-off method is duration explicitly represented in the system. 

Instead, signal magnitude represents a particular property of the stimulus. 

Therefore, the low-pass filters can represent neurons, or populations of 

neurons encoding that particular stimulus property and can be placed 

anywhere in the visual system. This means duration can be encoded in 

addition to other stimulus properties given that the neurons or populations 

of neurons vary in their temporal response to the stimulus.  

When the input magnitude is not known or cannot be determined 

beforehand, a requirement of this model is that the input needs to be 

normalised (a process carried out across multiple systems in the brain 

(Carandini & Heeger, 2011). This fits in with the distributed nature of the 

model in that using normalisation does not limit where in the brain or on 

what level in the sensory processing hierarchy the model might exist. The 

literature shows that the magnitude of a stimulus property does affect 

estimates of duration as has been shown experimentally in many visual 

modalities (stimulus brightness-Brigner, 1986; Terao et al., 2008, speed – 

Brown, 1995; Kanai et al, 2006; temporal frequency - Kanai et al., 2006; size 

– Alards-Tomalin et al 2014; Ono & Kitazawa, 2011; Xuan et al., 2007), 

colour saturation (Alards-Tomalin et al., 2014), and numerosity (Xuan et al., 

2007). These results are matched well by the fact that the normalisation 

stage mitigates the effect of input magnitude on duration estimates.  

Changing the parameters in the model’s normalisation stage explains 

results from experiments showing that adaptation to particular visual stimuli 

changes perceived duration (Ayhan et al., 2011; Bruno & Johnston, 2010; 

Burr et al., 2007; Burr et al., 2011; Johnston, 2010; Johnston et al., 2006). 

This also corresponds to shifts in sensitivity functions of M-cells (Solomon et 

al., 2004) that indicate a possible mechanism for duration compression after 

adaptation. The requirement for a normalisation stage not only describes the 

result of these studies, it can also explain why adaptation and stimulus 
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property magnitude affect perceived duration, which is because the signals in 

the brain coding for these properties are also used in computing event time. 

This corresponds to proposals that duration uses a shared magnitude system 

with properties such as size and numerosity (Walsh, 2003). This may explain 

why properties like size (Alards-Tomalin et al., 2014) and numerosity (Xuan 

et al., 2007) also affect duration as there is a suggestion these are processed 

in the same, broad pathway (Bueti & Walsh, 2009; Walsh, 2003). 

A duration estimation mechanism cannot use the raw signal magnitude to 

estimate event time because this leads to large errors in estimates that are 

untenable. Adaptation is not limited to one system or stage in processing 

within sensory systems, so it is likely that a duration mechanism of this kind 

may use sensory signals that have been fed through several adaptation 

stages. There is some evidence of this with directionally selective adaptation 

also affecting duration (Curran & Benton, 2012; Latimer et al., 2014). High 

concentrations of directionally selective cells are most commonly found in 

extra striate visual areas (Maunsell & Van Essen, 1983), implying adaptation 

stages further up the visual hierarchy affect duration estimates in addition to 

the proposed M-Cell gain change.  

It may be suggested that the simplicity and flexibility of the model leaves it 

somewhat underdetermined and thus unfalsifiable, but there are some 

findings presented here and from literature that might serve to pin down  

mechanisms with the proposed model. The evidence from the adaptation 

studies (Bruno & Johnston, 2010; Johnston et al., 2006) as well as the results 

relating the normalisation stage to contrast gain control in M-cells implicated 

the Magnocellular and not Parvocellular pathway in time perception. A 

finding also supported by the results of Kanai et al., (2006) who find that 

spatial frequency, for which P-Cells are selective (Xu et al., 2001) does not 

affect perceived time. Results showing adaptation to motion has similar 

effects also implicating motion sensitive areas (Curran & Benton, 2012; 

Marinovic & Arnold, 2011).  

This can be tied into another problem with the model, which is that it 

requires the time constant of the duration encoding neurons to be equal to 

the duration being encoded requiring neurons with slow time constants that 

might not be realistic. There are models showing how ramping activity 
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evolving over seconds can be produced with a single cell (Durstewitz, 2003) 

and within a population (Simen, Balci, Cohen, & Holmes, 2011; Standage, 

You, Wang, & Dorris, 2013). There is also neurophysiological evidence 

showing cells in LIP encode time delays in actions using ramping firing rates 

(Janssen & Shadlen, 2005; Leon & Shadlen, 2003). It is not possible to say 

that these neurons act as the low-pass filters in this model, particularly as 

they are involved in action timing, not visual perception but the function of 

the low-pass filters in the model could be performed by neurons exhibiting 

similar temporal properties. The Magnocellular pathway, MT and LIP are all 

considered to make up the dorsal/action pathway in the visual system 

(Goodale & Milner, 1992; Nassi & Callaway, 2009), which has been proposed 

as the where/when pathway (Battelli, Pascual-Leone, & Cavanagh, 2007), 

implicating its involvement in duration perception. This means the most 

likely location of an analogue of the proposed model in the visual system is in 

the dorsal/action pathway as properties that affect perceived duration are 

processed within it and neurons that exhibit properties similar to the low-

pass filters used in the model exist. 

An unresolved problem with the model is if duration is encoded across 

sensory hierarchies, how do sensory systems arrive upon a final duration for 

an event? This is an example in the temporal domain of the generic sensory 

binding problem (Revonsuo & Newman, 1999): when a system processing 

sensory attributes is using different sub-systems, it needs to work out which 

properties need to be bound together to produce a coherent and unique 

object percept. This is an interesting broader issue that is not exclusive to 

duration perception or this model, but is relevant to the study of perception 

as a whole. 
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 SDDS SHARE COMMONALITIES WITH OTHER MODELS  

This model demonstrates that it is possible to estimate event duration by 

using fundamental properties of neural systems. A common theme of this 

model is that changing the input into the SDD population by manipulating 

magnitude either by changing the input stimulus representing the sensory 

event or by manipulating the input gain in the normalisation stage, results in 

changing the duration estimates.  

This approach shares at least some similarities with previously proposed 

explanations for duration. Perhaps the clearest link is the neural energy 

proposal (Eagleman & Pariyadath, 2009) that duration is encoded by the 

amount of neural activity associated with an event. This is similar to the SDD 

model where in a single detector time is represented by whether or not the 

output of a low-pass filter has reached a specified threshold so also depends 

on the amount of neural activity. Neural energy provides only a descriptive 

account of time perception as opposed to the more precise quantitative 

model proposed here. In the SDD model, neural energy may not just relate to 

the input to the model but also to the way duration is encoded using the SDD 

population. The low-pass filter output of an individual SDD increases over 

time and more SDDs switch on in accordance with the event duration. If 

either the low-pass output or the number of detectors switching on is 

analogous to neural activity, such as firing rate of a single or population of 

neurons then this is a direct demonstration of how neural energy can 

represent time.  

The SDD itself is similar to the memory strength model (Staddon & Higa, 

1999) which uses low-pass filters and thresholds to represent duration in the 

strength of an event’s representation in memory that can decay over time. 

The concept of what a memory is and how it is stored is ill defined. The SDD 

model can exist in sensory systems on top of mechanisms encoding sensory 

properties that, depending on the property in question, are reasonably well 

defined in literature so improves upon these shortcomings. 

It also has similarities with pacemaker-accumulator models (Gibbon et al., 

1984; Treisman et al., 1990; Wearden, 1992). The main difference is instead 

of having an accumulator counting inputs from a central pacemaker the 

input signal from the environment acts as a pacemaker, which is normalised 
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to give an approximately constant input. The input then drives low-pass 

filters, which act as accumulators producing a ramped output. The main 

fundamental deviation of the SDD model from internal clock models is that a 

central pacemaker is not responsible for the time sense but it is instead 

sensory systems compute duration according to local input. 

Sensory systems use distributed parallel processing on multiple 

hierarchies so it follows that sensory systems compute duration in a similar 

distributed fashion. The SDD model is completely compatible with this view. 

With the normalisation stage showing evidence that it could map onto 

functions performed by M-cells in LGN and the SDD population occurring as 

a second stage the model shows a hierarchical structure.  

 CONCLUSIONS 

The key conclusion of this chapter is that it is possible to estimate event 

time quantitatively, based upon established, basic, temporal properties of 

neural systems without the need for a central timer, instead being more 

compatible with the neural energy hypothesis. The implication of this is that 

event durations can be computed locally across sensory systems, making use 

of shared mechanisms when required. The perceived duration of a sensory 

event is therefore dependent on the signal properties encoding the event 

duration and on processes, such as adaptation, that affect the encoding of 

these properties.  
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5. CHAPTER FIVE -EVENT PREDICTABILITY 

AND PERCEIVED DURATION: A 

BEHAVIOURAL AND NEUROPHYSIOLOGICAL 

STUDY 

 INTRODUCTION 

One proposal is that perceived time and expectation are linked (Pariyadath 

& Eagleman, 2007; Pariyadath & Eagleman, 2012). The classic example often 

given to support this claim is the oddball paradigm originally demonstrated 

by Rose and Summers, (1995) where unexpected objects appear to last 

longer. This is not necessarily an effect of low-level adaptation due to 

stimulus repetition (Schindel et al., 2011), and is likely due to expectation 

(Pariyadath & Eagleman, 2007; Pariyadath & Eagleman, 2012). This is an 

important finding as changes due to expectation affect BOLD signal which 

shows a suppression effect when a stimulus is repeated, not entirely due to 

simple BOLD adaptation to repeated stimuli (Grill-Spector et al., 2006; 

Larsson & Smith, 2012), implying a link between BOLD repetition 

suppression and stimulus expectation in the oddball paradigm of Pariyadath 

and Eagleman (2012). A reduction in BOLD signal due to expectation can be 

considered a signal indicating a mismatch between perceptions and 

predictions i.e. an error signal, which could link duration to theories of 

perceptual learning such as those proposed by Friston (2010).  

The previous two chapters have focused on the effects of sensory 

adaptation based upon previous work (Ayhan et al., 2011; Bruno & Johnston, 

2010; Curran & Benton, 2012; Johnston et al., 2006; Marinovic & Arnold, 

2011; Solomon et al., 2004). To obtain a full understanding of how time is 

perceived, top-down effects such as expectation need to be considered as 

well, since the representation of duration in the visual system may be linked 

to expectation related modulation in the visual system (Pariyadath & 

Eagleman, 2012). It has been suggested that perceived duration is related to 

the amount of neural activity associated with processing an event (Eagleman 

& Pariyadath, 2009; Pariyadath & Eagleman, 2007; Pariyadath & Eagleman, 
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2012). Such a link is also proposed with the model in Chapter 4, where the 

model estimates of duration are correlated with the output magnitude of 

individual low-pass filters or the mean across a population of filters that are 

said to represent the output of individual or populations of neurons. 

Although, the model in its current form does not account for expectation 

effects, similar to how a reduced input to the SDD population because of low-

level adaptation predicts an effect on duration; reduced BOLD might indicate 

a reduction in input due to expectations that would have a similar effect on 

duration estimates. BOLD signal can be broadly interpreted as a correlate of 

input to and processing within a local population of neurons (Logothetis, 

2003; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001), so this 

proposed link provides a way to relate perceived duration to neural activity. 

As the oddball effect is a result of expectation (Schindel et al., 2011) the 

BOLD correlate must be repetition suppression produced by expectations 

(Summerfield et al., 2008) which Larsson and Smith (2012) show can be 

removed, leaving only the effect of repetition suppression from adaptation. 

The aim here is to do the opposite, removing repetition suppression due to 

adaptation, thus leaving only suppression due to expectation. This would link 

duration estimations to mechanisms involved in predicting future events and 

generating expectations (Friston, 2010; Grill-Spector et al., 2006).  

 DO EXPECTATIONS SUPPRESS BOLD IN EARLY 

VISUAL AREAS? 

Two studies show the effects of expectation on repetition suppression 

(Larsson and Smith, 2012; Summerfield et al., 2008) using face stimuli that 

activate higher visual areas such as the FFA, which respond to complex 

combinations of visual features (Kanwisher, McDermott, & Chun, 1997). 

Some of the work discussed in previous chapters suggests the involvement of 

precortical and/or early cortical areas in duration perception (Ayhan et al., 

2009; Bruno & Johnston, 2010; Johnston et al., 2006). As basic stimuli such 

as Gabor patches or gratings have properties such as orientation, which are 

encoded in early cortical visual areas (i.e. very different orientations are likely 

to cause markedly different patterns of activity in early areas), using these 
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will show if repetition suppression in these areas is also correlated to 

perceived event duration.  

Is there evidence for suppression using stimuli that drive differential 

responses mostly in early visual cortex? Kok, Jehee, and de Lange (2012a) 

used an auditory tone to cue the orientation of two sequentially presented 

grating stimuli. These two gratings had the same broad orientation (both 

were either roughly 45° left or right from vertical) but differed slightly in 

contrast and orientation (so one grating was slightly clockwise or anti-

clockwise of the other). By cueing for broad orientation (the tone signalled 

45° left or right from vertical) and asking participants to determine which of 

the two was either orientated clockwise or had the highest contrast, both an 

expectation is created and task relevance is manipulated. Results show a 

smaller V1 BOLD response in trials for the expected orientation direction for 

both the orientation and contrast discrimination tasks and a larger 

suppression when the cued expectation was relevant to the task. In a control 

experiment they show this relationship cannot be down to stimulus 

repetition (that would imply bottom-up adaptation), so must be due to the 

expectation invoked by the cue.  

This result demonstrates that effects of expectation are not exclusive to 

higher visual areas but propagate down to or are derived locally in lower level 

areas such as V1, according to the expectation of low-level stimulus 

properties encoded in V1. Therefore, expectation is a general mechanism 

across the visual cortex. They also find this expectation enhances differences 

between stimulus properties, as reflected in the information contained in the 

BOLD signal, but as there is no effect of expectation on visual areas V2 and 

V3, this means either expectation only enhances representations in early 

visual areas or that it enhances representation in areas which are most tuned 

to the cued stimulus property.  

What this means for this experiment is it provides a proof-of-concept, 

showing suppression as a result of expectation in early vision using low-level 

stimulus properties. This is of interest as adaptation studies suggest early or 

pre-cortical involvement in visual perception of duration (Ayhan et al., 2009; 

Bruno & Johnston, 2010; Johnston et al., 2006). Using Gabor stimuli of 

different durations will allow not only to investigate the effects of repetition 
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suppression, but also to examine a BOLD correlate of duration perception 

and examine the effects of expectation on the BOLD duration correlate.   

 REPETITION SUPPRESSION: PERCEPTUAL 

EXPECTATION OR ATTENTION?  

Attention has been shown to reduce suppression in BOLD (Larsson & 

Smith, 2012). In addition to investigating the effects of suppression due to 

expectation on early visual areas Kok et al., (2012a) also investigate the 

interaction between goal directed attention and perceptual expectation. They 

find that responses to gratings with the expected orientation are more easily 

discerned using multivariate pattern analysis (MVPA) showing an increase in 

stimulus representational clarity despite the corresponding measured drop in 

BOLD. This effect was not dependent on task (orientation or contrast 

discrimination), and was reflected in the behavioural data. As the effect was 

task independent, it was claimed there was no effect of attention to a 

particular feature and so is a result primarily of expectation priming, similar 

to that proposed by Lee and Mumford (2003), rather than feature based 

attention (Maunsell & Treue, 2006). However, Larsson and Smith (2012) 

show that when attention is removed by adding a distractor there is a 

reduction in expectation induced suppression, suggesting for some tasks, 

attention at least helps expectations to form, if not an explanation in itself. 

Summerfield and Egner (2009) hypothesised that attention and expectation 

are two complementary mechanisms that aim to enhance synergistically 

relevant sensory signals, improving the precision of sensory systems in a 

resources efficient manner. Attempts to untangle effects of attention and 

expectation were carried out in a separate study (Kok, Rahnev, Jehee, Lau, & 

de Lange, 2012b), where perceptual expectations and attention were 

manipulated independently so that they were either task relevant or not. 

Suppression of BOLD in response to predictable stimuli was observed for 

unattended stimuli (areas V1, V2 and V3), but there was a reversal in 

suppression when the attention was cued to the same side the stimulus 

appears on, so unexpected stimuli exhibited a reduction in BOLD compared 

to predictable stimuli (areas V1, V2 and V3). The findings are interpreted as 

supporting the hypothesis that attention mitigates the effect of expectation 
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on stimulus response (Feldman & Friston, 2010). This could be considered 

the opposite effect to Larsson and Smith (2012), who found that suppression 

is reduced when using a distractor task to divert attention. This is perhaps 

due to methodological differences, Larsson and Smith (2012) distract 

attention from the stimuli completely while (Kok et al., 2012b) distract 

attention by making the expectation irrelevant to the task but do not distract 

from the stimuli, signifying a difference between spatial and feature based 

attention. A further study (Jiang, Summerfield, & Egner, 2013) sought to 

disentangle between these seemingly contradictory error signal suppression 

and amplification effects of attention. The experiment finds that attention 

increases the ability to distinguish between unexpected and expected stimuli 

using MVPA, across two areas selective for the different stimulus categories, 

the FFA for faces and Parahippocampal place area (PPA) for scenes, thus 

enhances the perceptual error signal. The authors explain differences in this 

finding with Kok et al., (2012a) as a difference in question as in Jiang et al., 

(2013) the question was does attention affect the error signal induced by 

expectation?, whilst the previous study investigates the effect of attention on 

the ability to decode the stimulus response. Jiang et al., (2013) show a similar 

univariate effect of attention and expectation as Kok et al., (2012b), where 

the average BOLD response of FFA or PPA is increased (for the relevant 

area’s preferred category) when the stimulus is expected and attended 

relative to unattended and/or unexpected stimuli. The finding by Jiang et al., 

(2013) also matches Larsson and Smith (2012), who show that removing 

attention reduces repetition suppression. These studies show that attention 

facilitates the computation of prediction errors as evidenced by greater 

suppression, increasing the fidelity of the error signal as shown by improved 

MVPA decoding. This supports theoretical work (Feldman & Friston, 2010; 

Friston, 2005). These studies also show that suppression due to expectations 

in BOLD can be manipulated by both expectations themselves and task 

relevance. 
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 THE HAEMODYNAMIC RESPONSE AND STIMULUS 

DURATION 

fMRI studies often use a linear model (Boynton, Engel, Glover, & Heeger, 

1996; Heeger, Huk, Geisler, & Albrecht, 2000) to estimate the BOLD 

response of a stimulus by convolving the stimulus profile with an impulse 

response function representing the haemodynamic response of the vascular 

system within the brain. As change in BOLD is driven by neural activity, 

deviations from baseline in the estimated BOLD response to a stimulus are 

interpreted as being caused by neuronal activity. Significant deviations from 

baseline estimates of BOLD are considered a result of differences in neuronal 

response to stimulus properties, thought most likely to be spatially localised 

input and processing similar to that measured by LFPs (Logothetis, 2003; 

Logothetis et al., 2001). There are many examples of this with visual 

properties such as orientation (Tootell et al., 1998), luminance contrast 

(Goodyear & Menon, 1998), motion (Smith, Greenlee, Singh, Kraemer, & 

Hennig, 1998) and colour (Engel, Zhang, & Wandell, 1997), where a localised 

change in BOLD is interpreted as neurons responding to that property. This 

provides a cornerstone of neuroimaging in vision science as visual areas can 

be mapped using BOLD response to particular stimulus (DeYoe et al., 1996; 

Engel, Glover, & Wandell, 1997). fMRI studies on timing show evidence of 

multiple areas and brain structures involved in timing such as the 

cerebellum, basal ganglia, frontal cortex and supplementary motor areas 

(Coull, 2004; Coull et al., 2004; Hinton & Meck, 2004; Jueptner et al., 1995; 

Lebedev et al., 2008; Livesey et al., 2007; Mathiak et al., 2004; Rao et al., 

2001), which have been claimed to either be evidence of a central timing 

mechanism or a network of areas contributing to time perception. Trying to 

localise time functions might be misguided if timing is not performed by a 

central mechanism, such as a clock (Gibbon, 1977; Gibbon, et al,. 1984; 

Treisman et al.,1990) and is instead performed across distributed 

mechanisms (Grondin, 2010a; Ivry & Spencer, 2004). Given that the 

temporal resolution of the BOLD response is on the order of seconds due to 

the slow change in blood flow (TRs used in the following experiments are 

2500ms, typical for capturing this change), differences stimulus durations 

that are perceptually easy to distinguish but are both less than a second 
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would not necessarily show differences in BOLD. As such, any significant 

differences in the visual cortex between two distinguishable, sub-second 

durations could be down to their explicit durations encoded in neural firing 

rates and reflected in the BOLD signal. Furthermore, measuring differences 

in the perceived duration of stimuli provides a means for testing the 

relationship between perceptual expectations, BOLD suppression and 

perceived duration. Expectation induced repetition suppression in BOLD is 

localised to areas where neurons exist that respond to the particular stimulus 

(faces – FFA: Summerfield et al., 2008, places- PPA: Jiang et al., 2013 and 

gratings – V1: Kok et al., 2012a Kok et al., 2012b). 

 A demonstrable relationship between BOLD suppression and duration in 

the visual cortex would provide evidence for distributed processing of 

duration in the visual system. V1, MT, MST and MT+ (combined MT and 

MST) are the visual areas targeted by this study. V1 is chosen as neurons in 

this area encode orientation, the stimulus property that is predictable based 

upon the probe where BOLD response changes in accordance with 

expectation using orientation grating stimuli (Kok et al., 2012a Kok et al., 

2012b). MT, MST and MT+ are chosen as these areas have been linked to 

time perception (Curran & Benton, 2012; Sadeghi et al., 2011). 
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 GENERAL METHOD 

The motivation for this study is to test the hypothesis that temporal 

expansion of unexpected stimuli can be a result of repetition suppression 

induced by perceptual expectation. The experiment needs to remove 

confounding effects of bottom-up adaptation, effectively the opposite 

approach to Larsson and Smith (2012) who remove the effect of top-down 

mechanisms on repetition suppression. This is not possible with the standard 

oddball design, as the stimulus is repeated, which induces adaptation, 

therefore another method of creating expectations is required.  

To create an expectation, each trial consists of a pair of stimuli: a prime 

stimulus appearing first, followed by a probe stimulus. The prime is one of 

two different stimuli, labelled A or B. The probe can also be one of two 

stimuli, labelled X or Y. To create expectation, the probability of a particular 

probe stimulus following a particular prime stimulus is manipulated so that 

on presentation of prime A there is a greater chance of probe X appearing 

than probe Y, this probability is reversed for prime B, so probe Y is more 

probable after prime B than probe X (Figure 5-1). Having an equal number of 

Prime A and B trials, randomly interleaved within a block means the probe 

stimuli X and Y are also displayed an equal number of times, given that the 

probabilities of X and Y appearing after B are opposite and equal for 

appearing after A. This factors out any adaptation effects from seeing one 

stimulus more often within a trial block, whilst creating a perceptual 

expectation for more probable pairings.  

The prime stimuli will be Gaussian patches coloured red or green. The 

probe stimuli are Gabor patches orientated left or right. As orientation is 

encoded in V1 by orientation tuned neurons, it is hypothesised that 

expectations of orientation will have an effect in early visual areas as has 

been shown to occur with pre-learnt relationships (Kok et al., 2012a), so the 

experiment can test for duration and suppression effects in early visual areas. 

Another aim of this experiment is to investigate if it is possible to induce 

expectations by unconscious processing (i.e. not pre-learnt pairings) with no 

effect of adaptation taking place and using simple Gabor stimuli to test if 

expectation is an automatic process that occurs in early visual areas. 
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Participants were uninformed of the relationship between prime and 

probe stimuli beforehand in similar experiments (Larsson Smith, 2012; 

Summerfield et al., 2008) and when asked if they spotted a relationship after 

completion of the experiment, they indicated that they were not aware of it. 

Despite this, these studies exhibit significant repetition suppression in face 

processing areas. If BOLD suppression for expected stimuli, outside of 

awareness were found this would provide a link between it and research 

showing the MMN in EEG experiments as MMN is also shown outside of 

awareness (Garrido, Kilner, Stephan, & Friston, 2009).  

This result could pave the way for future studies on BOLD suppression 

with EEG - as it has much greater temporal resolution than fMRI it would 

provide a way to measure population activity in real time. Furthermore, by 

using a variation of the oddball stimulus that does not cause differential 

adaptation in the probes we directly attempt to connect expectation driven 

suppression with this paradigm.  

 

Figure 5-1 Shows the stimuli and their relationship in each experimental condition and the 
procedure for each trial. a) shows the probabilistic relationship between the prime and probe 
stimuli for the experimental condition. Each of the probe stimuli are more likely to appear 
following a particular prime. b) shows the control condition where both probes are equally 
likely to appear after each prime. c) shows the experimental procedure. There is a random 
delay between trials to allow the participant to fixate before the prime stimulus appears, either 
A or B chosen at random. There is another short, randomised delay before the probe stimulus 
appears for between 250 and 1000ms as defined by a staircase procedure. The participant 
indicates by button press, which lasts longer, the prime or probe.  
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 MEASURING DURATION PERCEPTION 

Six participants took part in this experiment (four naïve to the purpose of 

the experiment, three females). Participants sat with their head in a chinrest 

positioned 57cm in front of a linearized Sony Trinitron monitor in a darkened 

room using a resolution of 800x600 and refresh rate of 100Hz. Stimuli were 

displayed using PsychoPy v1.78 (Peirce, 2007). Data analysis performed in 

MATLAB 2011a and SPSS 21.0. Experimental stimuli and procedure are 

shown in Figure 5-1 .  

Participants fixated upon a small (0.1° radius) blue 9.82cdm-2 dot 

positioned in the centre of the screen that was present throughout all the 

trials. The prime stimuli A and B consisted of green and red Gaussian 

patches, coloured respectively (20cdm2), with a width of 2.35° at half 

maximum (1° standard deviation) appearing on a mid-grey (27cdm2) 

background and appeared in the centre of the screen. The probe always 

appeared for a duration of 500ms. After prime offset there was a uniformly 

distributed, random delay of 333-666ms before probe onset. Probe stimuli X 

and Y consisted of a greyscale Gabor patch with a peak luminance of 55cdm-2, 

spatial frequency of 1Hz and a standard deviation of 1°, positioned in the 

centre of the screen. The Gabor patch was orientated 45° clockwise or 

anticlockwise from vertical.  

For half the participants probe X was clockwise and Y anticlockwise and 

the other half this was reversed to compensate for any bias in responses due 

to orientation. The probe stimulus duration varied by a standard staircase 

procedure between 250 and 1000ms. The participant indicated if the probe 

or the prime stimulus appeared for the longer duration by key press on a 

computer keyboard.  

Two different experimental conditions were used for this experiment 

defined by the probabilities of each probe stimulus appearing after the prime. 

In the control, condition both probes X and Y appeared following each prime 

half the time. While in the experimental condition, Probe X had a 75% chance 

and Y a 25% chance of appearing after Probe A while this was reversed for 

Probe B. These ratios were chosen as the same ratios create a repetition 

suppression effect in Larsson and Smith (2012). This means for Probe A, Y 

acts as the oddball stimulus and for B, X is the oddball. Prime-Probe 
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combinations were randomly interleaved for both blocks. Naïve participants 

were not informed of the relationships between stimuli in either the control 

or experimental conditions. All they knew, in addition to the experimental 

task, was simply that the aim of the experiment was to investigate the effects 

of visual event predictability on perceived duration.  

The perceived duration for each probe was measured by concurrent 

standard staircases, one starting at the minimum 250ms duration and the 

other starting at the maximum duration 1000ms (+/- 1 octave of the prime 

duration). Each staircase consisted of a minimum of 30 trials. This means 

that in the control, each prime-probe combination was shown for a total of 

60 repetitions and in the experimental condition oddball combinations 

(Prime A, Probe Y and Prime B, Probe X) appeared 60 times and the 

expected combination (Prime A, Probe X and Prime B, Probe Y) appeared 

180 times. Staircase step size was 160, 80, 80, 40, 40, 20, 20ms for each 

reversal, in order for the first seven reversals and 10ms for any reversal 

thereon. Blocks were run on different days to minimise learning between 

each run and the order was reversed for each participant to counterbalance 
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any remaining learning effects carried over from one block to another. 

 

Figure 5-2: a) shows the mean perceived duration for each experimental condition across 
participants with error bars showing standard deviations (N=6). Shaded points are each 
individual participants’ perceived duration with error bars showing standard deviation (N=4 
for 25% and 75% conditions. N = 8 for 50% condition). There is no overall significant effect of 
stimulus predictability on perceived duration and there is no overall difference with the mean 
perceived duration across participants and actual stimulus duration (500ms) with any 
condition. b) shows each individual participant’s mean for each condition with error bars 
indicating standard deviation (N=4 for 25% and 75% conditions. N = 8 for 50% condition). 
Some individuals show significantly different perceived durations from the 500ms stimulus 
duration (*, p < 0.05. dunn-sidak corrected for multiple comparisons) showing variability in 
perceived event duration and suggesting significant individual differences with stimulus 
timing.  

 

As each stimulus pair had two staircases and each different probability 

condition had two different stimulus pairs (75%: A-X, B-Y, 25%: A-Y B-X), 

this gives four measures for each participant for the 75% and 25% probability 

conditions. These were averaged to give a PSE estimate and standard error. 

For the 50% control condition, there were eight measures as all four stimulus 

pairs have the same probability and each pair has two concurrent staircases. 

These where averaged to get a mean PSE and standard deviation. The 

behavioural results for duration perception are shown in Figure 5-2. The 
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staircases for each participants’ responses converged in all conditions,  four 

typical staircases are show for the participant 2’s unexpected (25%) 

condition, demonstrating that the issues discussed in Chapter 2 (specifically 

2.4) regarding the problems encountered with measuring the Flash-Lag 

illusion with adaptive methods are not present with this paradigm.  

The mean estimate of duration for each condition appears in Figure 5-2 a). 

For each condition there is no significant difference between the judgements 

and the probe duration (500ms) with one-sample t-test (Control: t5= 0.394, 

p = 0.710. Predictable: t5= -0.006, p = 0.995. Unpredictable t5 = -0.36, p = 

0.972), meaning on average participants’ estimates of duration was accurate. 

There is no overall effect of expectation using repeated measures ANOVA (F2, 

10 = 0.25, p = 0.655 – Greenhouse-Geisser corrected) which is visible from 

the graph in Figure 5-2 as there is no clear trend in the results. 

Figure 5-3 This shows staircases (solid) from a typical naïve participant for a single 
condition (25%/ unexpected condition). The four staircases converge on the mean 
stimulus duration estimate (dashed) of 487ms, which approximates the actual stimulus 
duration of 500ms. 
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 BEHAVIOURAL DISCUSSION 

With no result coming remotely close to any significant effect, the 

experiment shows no temporal expansion effect due to expectation in our 

experimental paradigm. The complete lack of trend shown here suggests that 

the issue is not a lack of power, so adding more participants would be 

unlikely to show any significant trends.  

Why is there no difference due to expectation? The most straightforward 

explanation is that temporal expansion effects are not due to differences in 

expectancy. This runs contrary to claims in literature citing expectation as 

creating the perceived increase in event duration (Pariyadath & Eagleman, 

2007; Pariyadath & Eagleman, 2012). The low-level stimuli used might not 

be typically behaviourally relevant so not induce expectations, but oddball 

orientations have demonstrated temporal expansion (Pariyadath & 

Eagleman, 2012). It may be that previous temporal expansion effects have 

been strengthened by adaptation to low-level visual features, a factor we 

deliberately eliminated here, but reliable oddball effects have been found for 

cases where low level feauture adaptation is not happening or happens in a 

manner disassociable with expectation (Schindel et al., 2011; Pariyadath & 

Eagleman 2007). Increased attention to the oddball has been proposed as 

another alternative mechanism (Tse et al., 2004). Manipulating attention by 

using emotionally arousing stimuli does not result in a change in the 

temporal expansion effect (Pariyadath & Eagleman, 2007) suggesting 

attention is not the only factor creating the perceived increase in duration. 

Similarly, perhaps what this experiment shows is that expectation alone is 

not the only factor in the temporal expansion effect. In the paradigm here, 

the ‘oddball’ is defined by a probabilistic conjunction between two stimuli 

and is expected to be learnt whilst performing the task without any explicit 

cue as to the relevance or even existence of the relationship. As this is more 

complex than the standard oddball, it is reasonable to suggest the patterns 

within the experiment were not salient so participants did not learn the 

relationship. The results cannot completely disprove the relationship 

between expectation and perceived duration but since it is probable an 

expectation did not develop that participants were conscious of it might 

mean that participants have to be aware of the expectation before it affects 
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duration estimates. This is confirmed by the fact that when debriefing the 

naïve participants, not one mentioned they were aware of the relationship 

even when prompted. What this suggests is that when expectation is reduced 

by making the relationships between stimuli less overt to the point where 

participants are not aware of it, there is no temporal expansion effect, 

showing differences in expectation alone do not always create differences in 

perceived duration. Adjustments to the paradigm to create more obvious 

conjunctions could allow for experiments to test this hypothesis. Methods 

such as changing the probabilities of stimulus pairs to say 90%/10% instead 

of 75%/25% and/or having an initial learning period where one probe 

stimulus appears after one particular prime stimulus only, giving participants 

time to learn the relationship, could provide straightforward ways to alter the 

approach here.  

The design of this experiment shares similarities with Summerfield et al., 

(2008) who show two faces in sequence which are either the of same or 

different people and creates an expectation as to what the second image will 

be depending on prior trials in the block. So it is interesting that in our 

similar paradigm (albeit with simpler stimuli), there is no difference in 

perceived durations suggesting expectation did not affect duration 

estimations. This would provide a test to see if this paradigm induces BOLD 

suppression using expectation and if apparent, would suggest expectation is 

not the only requirement for changes in duration as shown in the oddball 

paradigm. Since repetition suppression has been associated with various 

encoding mechanisms (Grill-Spector et al., 2006) it would inform thinking 

behind the mechanisms of duration perception.  
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 FMRI METHODS 

 DATA ACQUISITION 

Data were acquired using a 3T Siemens Trio MR scanner with a 32-

channel array head coil. Functional images were acquired with a T2*-

weighted gradient-recalled echo-planar imaging (EPI) sequence (35 axial 

slices, TR 2500 ms, TE 31 ms, flip angle 85°, resolution 3 mm isotropic, echo 

spacing: 1.42 ms). Structural data were acquired using a T1-weighted 3-D 

anatomical scan (MPRAGE, Siemens, TR 1830 ms, TE 3.3 ms, flip angle 11°, 

resolution 1 × 1 × 1). 

 MT+ COMPLEX LOCALISER 

The two regions of interest making up MT+ complex, MT and MST are 

defined in each of the participants using methods detailed in Huk, 

Dougherty, and Heeger (2002). The stimuli consisted of two circular dot 

clusters (radius 8°) with the centre positioned 10° from central fixation. The 

dots were ether static or moving divided into alternating 15s blocks. One run, 

consisting of 16 blocks, was presented with the stimuli on the left of fixation 

Figure 5-4: Shows MT (red) and MST (blue) making up MT+ as identified for a single 
participant. 
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and another run with the stimuli on the right. Dot movement consists of 

alternating contracting and expanding motion where dots move inward and 

outward along the radial axes.  

MT is localised as the contiguous voxels continuously active duration 

contralateral stimulation only. While MST is defined as voxels responding to 

both, ipsilateral and contralateral motion stimuli. MST is located anterior to 

MT (Huk et al., 2002), therefore voxels responding to only contralateral 

stimulation further anterior than the median values of MST on the axial plan 

are not included in the final MT ROI. A participant with MT and MST 

localised using this method is shown in Figure 5-4. 

 PRIMARY VISUAL CORTEX (V1) LOCALISER 

A standard retinotopic procedure is used (Sereno et al., 1995). V1 is 

localised using an 8Hz counter-phase flickering checkerboard wedge rotating 

clockwise at 64s/cycle for a total of 8 cycles. Check size is scaled by 

eccentricity according to approximate cortical magnification factor (Radius-

12° 24° Sector). Each voxel’s temporal phase response to the rotating wedge 

is fitted using a model derived from the stimulus time series. Phase of BOLD 

response was superimposed on a segmented and flattened grey matter 

representation and is taken as a visual field position indicator with V1 

boundary identified by eye. 
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 FMRI STIMULI AND TASK 

Seven adult human naive participants (four female) took part in the study. 

The stimuli are as described in the general methods section. Participants 

fixate on a small blue circle and the centre of the screen throughout the 

experiment. Each probe stimulus, X or Y, appears after a particular prime 

stimulus, A or B, 75% of the time respectively (Figure 5-5 a). Procedures for 

both tasks are shown in Figure 5-5 b) and c). 

The prime stimulus always appears for 500ms with a random gap of 0.333 

to 0.666s before the probe stimulus. The probe appears for either 250ms or 

800ms duration (short or long), chosen as behavioural data indicated that 

these durations are judged to be longer or shorter the majority (90%) of the 

time by all participants. Before each trial is a mandatory 4s gap where 

participant response is recorded and a further random Poisson delay between 

trials of  mean 2s and range 0-8s. There are 32 trials per block and eight 

blocks per run,  with two runs, one for each task performed on separate days. 

The probe stimuli differ across two different properties: duration (long or 

short) and expectation/orientation (left or right). Each prime/probe 

combination makes up a single trial that is defined for the analysis as being 

2.5s long, from the onset of the prime stimulus.  

There are two tasks, one where participants respond by button press, 

indicating if the probe lasts a longer or shorter duration than the prime 

stimulus and another where participants indicate if the probe was orientated 

toward the left or right. The duration task will show if there is a relationship 

between BOLD and stimulus duration and if there is a suppression effect for 

more probable prime-probe combinations, which would demonstrate a 

dissociation between suppression and the temporal expansion effect. The 

orientation task is introduced to test if the experiment induces a suppression 

effect when the task is more relevant to the implicit relationship between the 

colour of the prime and orientation of the probe.   
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Figure 5-5: a) shows the stimulus properties and the probabilistic relationships inducing 
expectation. b) shows the duration trial procedure and c) shows the orientation trial 
procedure. In both there is an initial fixation alone period for 2-12s, mean 4s defined by a 
Poisson distribution. Prime is displayed for 500ms with a random delay before the probe 
stimulus appears. There is a period of 4s where responses are recorded. 

 ANALYSIS 

Analysis was performed in Brain Voyager QX 1.4. Experimental effects are 

measured using Region of Interest analysis using a GLM with the two 

experimental tasks analysed separately. Before the data is pre-processed, the 

first four volumes of each block are discarded; three-dimensional motion and 

time slice correction was applied along with filtering the data through a 

0.01Hz High pass filter. Functional and anatomical data is aligned in AC-PC 

space and GLM analysis performed for each individual participant. Each 

stimulus condition (A-X-Short, A-X-Long, A-Y-Short, A-Y-Long B-X-Short, 

B-X-Long, B-Y-Short, B-Y-Long) was modelled separately by convolving a 

haemodynamic response function with the stimulus time course, including 

head motion regressors.  

For each stimulus condition the strength of response is given as mean 

percent signal change of all voxels in a particular ROI. Stimulus conditions 
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are collapsed depending on the effect being measured for a particular 

experimental task, e.g. expectation effects involve contrasts between 

predictable and unpredictable trials given as Predictable: A-X-Short, A-X-

Long, B-Y-Short and B-Y-Long. Unpredictable: A-Y-Short. A-Y-Long B-X-

Short and B-X-Long.  

 RESULTS 

 

Figure 5-6: BOLD Response for different stimuli (rows) for the two experimental tasks 
(columns), error bars show standard errors (n = 7). Left graphs show results from time 
judgement experiments. Right show orientation judgements. Top shows differences in 
duration, bottom shows differences in expectation. All results except V1 short and expected 
durations in the time judgement task and V1 for long stimuli in the orientation task are 
significantly different from baseline. There appear to be consistent differences in medial 
temporal areas between long and short, expected and unexpected stimuli in the time but not 
orientation task. 

Each measured variable for both expectation (expected, unexpected) and 

stimulus duration (long, short) is  measured for each participant by first 

collapsing the appropriate trials and then averaging across all trials in the 

condition. Participants were able to distinguish short and long durations in a 

manner comparable to the behavioural data (~90% correct). These are shown 
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in Figure 5-6. The majority of stimuli in both tasks show significant increases 

compared to the baseline (grey screen) across all areas.  

In the duration task, both longer and unexpected durations show an 

increase in BOLD relative to shorter and expected durations respectively, 

except V1, which shows the opposite trend between longer and shorter 

stimuli. This is not repeated in the orientation task. Figure 5-7 shows this 

trend more clearly by displaying the differences in signal change between the 

two relevant stimuli (Short - Long and Expected – Unexpected) where MT 

and MST areas show the aforementioned trends in the duration task but not 

in the orientation task.  

Two-tailed paired t-tests are used to look for differences in each condition 

across all participants. There are no significant effects in either experimental 

task in V1 for duration (Time: t6 = - 0.19, p = 0.859. Orientation t6 = 0.14, p = 

0.893) or expectation (Time: t6 = - 0.24, p = 0.819. Orientation: t6 = 1.27, p = 

0.251) or MT+ complex for duration (Time: t6 = - 1.58, p = 0.163. 

Orientation: t6 = 0.16, p = 0.877) or expectation (Time: t6 = - 2.08, p = 0.083. 

Orientation: t6 = -0.26, p = 0.805). While there is no significant difference in 

MT for either measure (Duration | Time: t6 = - 1.70, p = 0.141. Orientation: t6 

= 0.60, p = 0.574. Expectation | Time: t6 = - 1.72, p = 0.135. Orientation: t6 = 

-0.415, p = 0.693),  

MST shows a significant difference in activation between predictable and 

unpredictable stimuli in the duration task (t6 = - 3.08, p < 0.05), an effect 

which does not carry over to differences in duration (t6 = - 1.21, p = 0.273) or 

either contrast on the orientation task (Duration: t6 = - 0.28, p < 0.974. 

Prediction: t6 = 0.14, p < 0.987).  
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Figure 5-7 BOLD change in response to predictable and unpredictable stimuli and different 
durations, n = 7. Bars show short – long and expected – unexpected response, as these 
differences are expected to be in the same direction. Error bars show standard errors (N=7). 
a) shows results for the duration task. All visual areas show repetition suppression i.e. a 
reduction in BOLD for expected stimuli, however this effect is only significant in MST. There 
is a reduction across all but V1 with stimuli of different durations, i.e. stimuli that last longer 
show an increased BOLD signal, but again this is not significant. There are no significant 
effects in the orientation task and no non-significant trends either. 

 FMRI DISCUSSION 

The fMRI data shows there is evidence of repetition suppression in MST in 

the duration judgement task, and the direction of the suppression effect is 

consistent across areas, although not significant. That this is not repeated in 

the orientation condition might seem at odds with previous results. Previous 

reports suggest that suppression associated with expectation is increased 

when the expected stimulus pattern is task relevant compared to when it is 

not (Kok et al., 2012a). Therefore, it would be sensible to hypothesise the 

opposite pattern to what is observed here. BOLD change induced by 

expectation would likely be observed in V1, as neurons in V1 encode 

orientation (Kok et al., 2012a). BOLD suppression due to expectation is 

reduced when attention is diverted (Larsson & Smith, 2012) and attention is 

suggested to modulate BOLD response, similar to stimulus onset in the visual 

system (Smith, Cotillion & Williams, 2006). This may provide an explanation 

as to why there is no effect in the orientation condition, despite the task 

relevant prime stimulus. In the duration task participants have to compare 

the duration of the prime to that of the probe stimulus meaning they have to 

attend to the stimulus. However in the orientation task, the participant is 

asked to judge the orientation of the probe with no comparison to the prime 

stimulus, therefore does not have to direct attention toward the prime 
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stimulus (over the whole trial some attention is required, although less than 

for the duration judgment trial). As the duration task places greater 

attentional demands on the participant, there is an effect of expectation on 

BOLD because attention facilitates top-down repetition suppression so this 

result is compatible with previous findings.  

The fact that only one ROI shows a significant effect here could also be 

important. Kok et al., (2012a) show significant repetition suppression in V1 

only when guiding attention to orientation grating stimuli for which there is a 

selective response in V1 neurons. As this repetition suppression effect is 

observed in the duration task only, this suggests differences in duration drive 

MST neurons implicating MST in duration perception, reinforcing other 

findings (Sadeghi et al., 2011).  

What is also apparent is a non-significant effect of stimulus duration in the 

fMRI data here, although there is a trend that longer durations cause greater 

activity in the motion processing visual areas when the task is duration 

specific. Overall, there is little correspondence between perceived duration 

and BOLD observable in this experiment, suggesting differences in event 

time do no relate to differences in BOLD signal in these visual areas. This 

suggests that duration is not encoded in sustained increases of firing in large 

numbers of neurons sufficient to drive changes in BOLD in these areas. There 

did not appear to be any consistent significant differences across participants 

in whole brain analysis. This does not exclude other encoding mechanisms 

using sparse populations, transient changes that are too fast to have any 

effect on BOLD or sub voxel resolution of selective responses to different 

durations.  
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 CONCLUSION 

There are two main effects in this study. First, that there is no temporal 

expansion effect observed with the experimental paradigm used here. 

Secondly, when attention is focussed on judging duration, repetition 

suppression due to expectation in MST occurs, despite the lack of a 

behavioural effect. 

These two findings together suggest that not all forms of expectation 

contribute to the temporal expansion effects. This is problematic for 

proposals that perceived duration is related to expectations (Pariyadath & 

Eagleman, 2007) as with no behavioural effect on the perception of event 

duration it would be expected that their would be no corrisponding effect on 

BOLD signal, which is observed. This does not mean that expectation has no 

effect on perceived duration but does suggest that implicit relationships 

between stimuli are not enough on their own to drive differences in perceived 

duration. Since participants did not appear to notice the relationship 

between different stimuli it may be the case that participants need to be 

aware of the relationships for any effect of expectation on perceived duration 

to arise. 

The lack of correspondence between BOLD signal and duration perception 

is further shown by the fact that a perceived temporal difference does not 

result in a difference in BOLD signal. Therefore, the relationship between 

neural energy, or at least its BOLD correlate and duration is not a 

straightforward one linking visual areas to duration of visual events 

(Eagleman & Pariyadath, 2009). There is also some suggestion that MST in 

particular might play a role in encoding duration, although it might be an 

attentional artefact that is not observed in the orientation task as it does not 

require as much attention to perform. The data exhibits interesting, though 

non-significant trends in the data showing reduction in BOLD of short 

compared to long stimuli in the duration identification task that might be due 

to representations of different stimulus durations but it is difficult to draw 

conclusions from this without further study.  

Although participant numbers were small this is not atypical of tasks 

investigating repetition suppression using a similar analysis, e.g. Larsson and 

Smith (2012) use eight. Task difficulty could be the reason behind the 
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differences in results between the two judgements as in the time judgement 

more attention is directed to the prime stimulus than in the orientation task. 

It is difficult to match exactly task difficulty and therefore attentional 

resources across two different judgments. An alternative method would be to 

introduce an easier duration and harder orientation judgment and see what 

effects are consistent within each task as such task difficulty manipulations 

have been used to show brain areas involved in timing before (Livesey et al., 

2007).  

Differences in expectation and duration might cause changes to stimulus 

representations that are encoded in sparse populations. MVPA has been used 

to show changes of this nature (Jiang et al., 2013; Kok et al., 2012a) so an 

alternative is to use multivariate techniques to investigate how 

representations change with expectation and stimulus duration. The number 

of trials is similar to Kok et al., (2012a) but further post-hoc analysis could be 

considered data peeking and to be avoided and participant numbers in these 

experiments where larger (>16). If MVPA analysis were desired, it would be 

better to redesign the experiment to match more closely other experiments 

that find significant MVPA effects to allow for comparisons between results 

and avoid data peeking.  
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6. CHAPTER SIX: DISCUSSION OF RESULTS 

 CHAPTER OUTLINE 

This final chapter provides a summary of the findings reported in the 

previous chapters regarding how they relate to the literature and the three 

research questions identified in the introduction. These questions are: Do 

changes in perceived duration after adaptation have functional effects? How 

might duration be encoded in sensory systems? What is the relationship 

between repetition suppression, expectation and perceived duration?  

Arising from this it is proposed where and how duration might be encoded 

in the visual system based on the simple model presented in Chapter 4, and 

general themes are expanded upon to suggest a general mechanism for 

encoding time across neural systems. Other models are discussed in relation 

to these claims as well as what this might mean for the conscious perception 

of time. Finally, some avenues for expanding upon the work here are 

detailed. 

 OVERVIEW OF FINDINGS 

With the centralised clock not proving to be an ideal framework for 

interpreting results of duration perception (see Chapter 1) it is difficult to 

advance understanding of duration perception without developing a suitable 

alternative framework. Eagleman and Pariyadath (2009) suggest that the 

amount of neural energy associated with encoding a stimulus is proportional 

to its perceived duration. There are shortcomings with this; neural energy is 

loosely defined and does not provide a quantifiable mechanism meaning, as 

the authors state, this proposal is the starting point rather than a complete 

framework for understanding duration perception.  

Chapter 4 details a model using increases in response to a stimulus to 

encode the duration of that event. This model demonstrates how duration 

can be encoded within neural systems using established properties in a 

manner compatible with the neural energy proposal. The model progresses 

the neural energy hypothesis by providing quantifiable predictions that 

match observations in literature (for more detail on this see sections 4.3.3, 
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4.3.6, 4.3.8, 4.3.9 and 4.4). Others have proposed similar models, showing 

how ramping activity can encode timing of action or the delay between two 

events using a single cell (Durstewitz, 2003) or a network (Reutimann, 

Yakovlev, Fusi, & Senn, 2004; Simen et al., 2011), so this concept is not new 

but the model demonstrates how this could apply to sensory systems. These 

other models also show how neural systems might create the type of response 

required by the SDD model, represented by the low-pass filters, on either a 

single cell or population level. There is also evidence of neurons in LIP 

exhibiting this type of ramping behaviour (Janssen & Shadlen, 2005; Leon & 

Shadlen, 2003).  

Another issue that the model in Chapter 4 demonstrates is the necessity of 

controlling the input magnitude through a normalisation stage to avoid 

errors caused by variations in the input signal. Altering parameters in the 

normalisation stage can be considered analogous to mechanisms responsible 

for sensory adaptation and thus, give a possible explanation regarding why 

adaptation to sensory properties affect perceived duration (Ayhan et al., 

2011; Bruno & Johnston, 2010; Curran & Benton, 2012; Johnston et al., 

2006; Marinovic & Arnold, 2011). Adaptation to ‘tune’ sensory systems to 

encode optimally stimulus properties uses the same normalisation process 

that affects perceived duration, so any changes optimising sensory systems 

also affect duration estimates. While normalisation reduces effects of input 

magnitude on duration estimates, it does not eliminate it. This is in line with 

experimental evidence showing perceived duration of a visual stimulus 

correlates with arithmetic value (Alards-Tomalin et al., 2014), size (Alards-

Tomalin et al., 2014; Ono & Kitazawa, 2011; Xuan et al., 2007), colour 

saturation (Alards-Tomalin et al., 2014) brightness (Brigner, 1986; Terao, 

Watanabe, Yagi, & Nishida, 2008), numerosity (Xuan et al., 2007), speed 

(Brown, 1995) and temporal frequency (Kanai, Paffen, Hogendoorn, & 

Verstraten, 2006).  

We find suggestions of shared mechanisms of time and space in Chapter 3, 

which shows temporal frequency adaptation changes the Flash-Lag illusion 

in a way that is consistent with a reduction in the time component. This 

matches reports in other studies (Ayhan et al., 2009; Burr et al., 2007; 

Johnston et al., 2006) which use a similar adapting stimulus to show a 
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compression of perceived event duration. The work here suggests a 

relationship between the perception of duration and the perception of space 

as this reduction of the time component is measured as a reduction in the 

illusory spatial offset observed in the Flash-Lag illusion. This relationship 

between apparent duration and space provides some advantages in that it 

reduces the Flash-Lag illusion meaning a more veridical perception of the 

stimuli. Sensory systems could be tuning their measure of duration to 

recalibrate sensory percepts to provide more useful information in a rapidly 

changing environment.  

It has been shown that duration adaptation does not affect action timing, 

implying that there are separate timing mechanisms for perception and 

action (Marinovic & Arnold, 2011), so changes in perceived duration may be 

involved in recalibrating perceptual mechanisms only.  

The result in Chapter 3 showing changes in duration appear to affect space 

in Flash-Lag is similar to research showing that both space (Ross, Morrone, 

Goldberg, & Burr, 2001) and time (Morrone et al., 2005) are compressed 

about the time of a saccade. This is significant as stimuli presented at the 

time of saccades show a reduction in contrast sensitivity of low spatial 

frequencies (Volkmann, Riggs, White, & Moore, 1978) suggesting that 

selective suppression of the Magnocellular pathway occurs about the time of 

saccades (Burr, Morrone, & Ross, 1994). A further interesting finding is the 

perisaccadic remapping of receptive fields. Macaque monkeys show this in 

LIP (Duhamel, Colby, & Goldberg, 1992), superior colliculus (Walker, 

Fitzgibbon, & Goldberg, 1995) and frontal eye field (FEF) (Umeno & 

Goldberg, 1997), suggesting common remapping mechanisms in areas 

involved in directing eye movements and attention. Further research shows 

this predictive remapping in the direction of the saccade is a convergence of 

receptive field positions toward the fixation target resulting in a compression 

of space (Zirnsak, Steinmetz, Noudoost, Xu, & Moore, 2014). This is of 

significance as LIP neurons are tuned to durations (Janssen & Shadlen, 

2005; Leon & Shadlen, 2003), meaning LIP contains representations of time 

and space; as these are processed in the same spatial location this might 

mean manipulating one property also affects the other. The fact that neurons 
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in LIP also exhibit predictive changes in their receptive fields further 

suggests that LIP is an area encoding time and space.  

Walsh (2003) proposes a common magnitude system for encoding time, 

space and quantity, which there is some suggestion of in the results in 

Chapter 3, in regards to time and space. A feature of the SDD model is that 

the magnitude of the input, which could be used to encode other stimulus 

properties affect duration judgements. Such a link implies not only the use of 

common optimisation mechanisms, such as those shown by adaptation 

studies and the normalisation stage of the SDD model, but a common 

encoding mechanism as provided by the SDD population. Like neural energy, 

the model presented here could be considered to quantify the proposals 

outlined  by Walsh (2003). 

Results showing that expectancy is linked with perceived duration were 

one of the main findings motivating the neural energy proposal (Eagleman & 

Pariyadath, 2009). Chapter 5 aims to test the relationship between implicit 

expectation and perceived duration, finding no behavioural effect but a 

significant effect of expectation induced suppression in a duration task in 

MST. This suggests that whilst implicitly learnt temporal patterns can cause 

suppression induced by expectation whilst attending to duration, there is no 

corresponding behavioural effect on perceived duration.  

This lack of an effect shows that the relationship between expectation, 

repetition suppression and perceived durations are not straightforward so 

this may have to be reconsidered in future theory. Since participants did not 

appear to be aware of the expectations in either the behavioural or the fMRI 

experiment, it is possible that the participants need to be consciously aware 

of the expectations before they have any effect on the perception of duration 

or that these types of expectation patterns do not drive this effect. As Chapter 

5 shows expectation caused suppression of BOLD signal in MST when 

making a duration judgement, but not an orientation judgement  and 

expectation induced suppression in the visual system is generally found in 

areas that are shown to encode the stimulus being displayed (Larsson & 

Smith, 2012; Jiang et al., 2013; Kok et al., 2012a), this finding hints that MST 

is involved in representing durations as well as areas like LIP. 
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The evidence presented here shows sensory systems appear to be encoding 

duration, using mechanisms common with other sensory properties. This 

evidence also supports the view that duration is encoded across distributed, 

hierarchical mechanisms typical of sensory systems. In particular there is 

evidence suggesting areas MST and LIP are responsible for duration 

perception, which form part of the dorsal/where pathway (Goodale & Milner, 

1992; Goodale, Westwood, & Milner, 2004; Nassi & Callaway, 2009). The 

SDD model shows how measuring event duration could be performed by 

using the temporal response of neurons or populations of neurons and 

provides a candidate mechanism for the perception of duration across the 

brain. The next two sections expand upon these proposals and provide 

pathways for future investigation.  

 IS DURATION PERCEPTION COMPUTED IN THE 

DORSAL PATHWAY? 

The evidence suggests that time perception is computed using 

mechanisms shared with processing other sensory properties which exist at 

multiple levels in the visual hierarchy. It has been proposed that sensory 

information used to measure event duration is initially processed in the 

magnocellular pathway where change in the contrast gain of M-cells 

(Solomon et al., 2004) causes a change in perceived event duration (Ayhan et 

al., 2009; Ayhan et al., 2011; Bruno & Johnston, 2010; Johnston et al., 

2006). The magnocellular pathway makes up a large proportion of the input 

into areas in the dorsal or where pathway, thought of as being responsible for 

spatial vision (Mishkin, Ungerleider, & Macko, 1983) or more recently vision 

for action (Goodale & Milner, 1992; Goodale et al., 2004). The dichotomy 

between the dorsal/where/action and the ventral/what/perception pathway, 

including the degree of independence of the two pathways has been 

questioned (McIntosh & Schenk, 2009; Milner & Goodale, 2008). However, 

the idea that the visual system is organised into two different ways to process 

information for two different purposes provides a framework to understand 

the visual system. It must be recognised that with any individual task 

information is processed in networks within and across both pathways, 
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depending on the demands of the task, i.e. there are no tasks where 

information is processed exclusively in the ventral or dorsal stream. 

Adaptation to motion also can have a direction-specific compression effect 

on perceived duration (Curran & Benton, 2012) showing that adaptation in 

mid-level visual areas in the dorsal pathway that are sensitive to motion 

direction, such as MT (Kohn & Movshon, 2004), can also affect perceived 

time. This, along with Bruno, Ng, and Johnston (2013), provides evidence 

that adaptation at early and mid-level visual processing stages in the dorsal 

pathway changes perceived time. Areas in the dorsal pathway such as MT+ 

project to the parietal lobe (Nassi & Callaway, 2009) containing LIP, where 

neurons respond to event duration (Janssen & Shadlen, 2005; Leon & 

Shadlen, 2003).  

Parietal areas have been theorised to encode various properties including, 

time as well as space and number in a common magnitude encoding system 

(Bueti & Walsh, 2009; Walsh, 2003). The right parietal lobe is implicated 

specifically in time perception, even to the point of being termed a third 

‘when’ pathway (Battelli et al., 2007) in addition to the commonly identified 

what and where pathways.  

The SDD model presented in Chapter 4 provides a quantitative 

mechanism showing how time can be encoded using normalisation and the 

temporal response of neural systems. Normalisation can be considered 

analogous to the adaptation stage(s) while the low-pass filters exhibit similar 

response to neurons in LIP. This means the two crucial components of the 

SDD model exist in the dorsal pathway. The problem with this proposal is 

that M-Cells are band pass (Hess & Snowdon, 1992). Output from M-Cells in 

response to a step function, representing the appearance of an object in vison 

as used in Section 4.2, is rapid increase then  decay in spike rate toward the 

rest output at stimulus onset and a rapid reduction in spike output and decay 

toward rest at offset. At no point does the SDD model perform or require 

such a signal so initially it is difficult to see how the model is compatible with 

the proposal that duration perception is a function of the dorsal pathway. The 

band-pass characteristics of M-Cells mean they are sensitive to temporal 

change, e.g. flicker. In standard motion detection models (Borst & Egelhaff, 

1989) M-Cells are analogous to the function of neurons in the second 
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processing step, inputting to a third step with directionally sensitive neurons. 

In the visual system, cells in V1 are selective for spatial and temporal 

frequency (Priebe, Lisbeger & Mosvhon, 2006) and output to further along 

the dorsal stream, where in MT and MST cells are sensitive to speed and 

direction (Priebe et al, 2006). Output from MT or MST to a moving stimulus 

would more closely resemble the step input to the model. It is possible for 

mechanisms resembling the SDD model to exist along the dorsal stream but 

they need to exist in at the middle or higher visual system, a view that is 

proposed in Kaneko and Murakami (2009). This is compatible with 

aforementioned evidence suggesting MT, MST and LIP are involved in 

duration perception.  

As a result, the SDD model explains experimental data using known neural 

properties, provides a quantitative model in line with current theories, and 

could plausibly exist along the dorsal pathway. This does not mean duration 

computed in the dorsal/action pathway of the visual system is used by 

actions directly and always, as Marinovic and Arnold (2011) show duration 

for perception and action are separable, but that visual duration is computed 

within the dorsal/action pathway regardless of if it is used for actions or not.  
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 TEMPORAL RESPONSE OF NEURAL SYSTEMS 

PROVIDES A GENERAL MECHANISM FOR 

DISTRIBUTED ENCODING OF TIME IN THE BRAIN. 

Visual perception is not the only system where duration may be useful. For 

example in timing an action, a duration estimate can also be crucial or in 

memory for recalling when, or how long for an event may occur. 

Neuroimaging evidence suggests that duration representation is distributed 

across the brain. The cerebellum (Jueptner et al., 1995; Mathiak et al., 2004), 

pre-supplementary motor and prefrontal areas (Coull et al., 2004; Macar, et 

al., 2006), basal ganglia and inferior parietal and pre-motor areas (Livesey et 

al., 2007; Rao et al., 2001) have all shown to be activated at various stages for 

tasks involving duration perception.  

The SDD model uses the temporal response of neural systems to encode 

duration of a sensory event so there is no reason why similar mechanisms 

could not exist in other systems. In section 6.2 it is mentioned that neurons 

in LIP show ramping activity in response to durations. There is evidence of 

neurons in other areas varying firing rate according to durations such as 

decaying activity, opposite to ramping, shown in prefrontal neurons (Kojima 

& Goldman-Rakic, 1982). Other pre-frontal neurons also show ramping 

response to the duration of a stimulus (Brody, Hernández, Zainos, & Romo, 

2003). Neurons within regions of the thalamus (lateral posterior nucleus and 

suprageniculate nucleus for visual cues, medial geniculate nucleus and the 

posterior intralaminar nucleus for auditory cues) show ramping increases in 

firing rate according to the expected time of reward (Komura et al., 2001). 

This evidence shows that in multiple areas there are neurons that vary their 

firing rate in either a monotonically increasing (ramping or climbing) or 

decreasing (decaying) in tasks that require a measure of duration. 

Essentially, the temporal dynamics of firing rates are used to measure time in 

multiple different areas and during different tasks, providing evidence that 

this is a potential common mechanism neural systems use to represent 

duration across the brain. Other models use the temporal response of neural 

systems in similar mechanisms to the SDD model here (Simen, Balci, 

deSouza, Cohen, & Holmes, 2011b; Zandbelt, Purcell, Palmeri, Logan, & 

Schall, 2014).  
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One interesting property of such mechanisms is that the neuron or 

population of neurons’ output can perform another function as well as 

duration perception, such as encode a particular stimulus property or action 

so mechanisms that encode time in the brain can exist in parallel to other 

coding mechanisms within the same neural populations. Standage et al., 

(2013) provide an excellent example of how a population of neurons might do 

this using a population model of a type that is considered to represent 

cortical columns (Douglas & Martin, 2004; Wilson & Cowan, 1973). In this 

model, the firing rate of pyramidal cells in a population of pyramidal and 

inhibitory interneurons was used to encode time. This was achieved by 

varying the NMDA receptor conductance, which caused the excitatory 

population firing rate to increase with NMDA conductance, reaching 

threshold sooner. Thus, in this model NMDA concentration is inversely 

proportional to the duration encoded in the population. 

 This model holds many similarities (ramping outputs, thresholds) with 

the SDD model. What make it interesting is that the mean firing rate of the 

population is driven by the rapid spiking of a relatively small number of 

excitatory neurons. This mirrors how populations encode information, for 

example, a population encoding a motion direction for any particular motion 

direction, a small subset of the population will fire rapidly, but which 

neurons in the population that are firing rapidly will change depending on 

the direction of motion (Pouget, Dayan, & Zemel, 2000). By taking the mean 

firing rate across the population, the model presented by Standage et al., 

(2013) can encode time simultaneously with a particular stimulus property. 

As this is a standard population model, this means that such mechanisms can 

exist across the brain meaning that whenever ‘something’ is represented in 

the brain, be it a percept or action the duration associated with ‘it’ can be 

encoded within the same population providing a mechanism for a distributed 

sense of time.  

Further evidence for distributed mechanisms comes from Critchley (1953), 

as reported in Walsh (2003), who notes that temporal abnormalities in 

perception occur with a corresponding spatial abnormality. Two more recent 

studies show that a patient suffering from hemispatial neglect in the left 

visual field reports overestimations of duration for stimuli presented in the 
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afflicted part of the visual field compared to the other areas (Basso, Nichelli, 

Frassinetti, & di Pellegrino, 1996; Calabria et al., 2011). With a distributed 

mechanism, this can be explained  as with a lesion there are fewer neurons 

processing stimuli in the left areas, this results in either a reduced stimulus 

drive associated with that event which would result in a reduced input to the 

integrating neurons (low-pass filters in the SDD model) that ramp-on slower, 

resulting in this reduced duration estimate.  

A distributed mechanism has the benefit of being a highly efficient way to 

encode time as wherever a property is represented, its duration can be 

encoded without any additional metabolic cost. Having a distributed rather 

than a centralised timing mechanism also provides redundancies so that a 

complete loss of time perception across all modalities does not occur. But it 

does have inherent problems such as if the temporal response properties of 

the neurons are not known how is it possible to compare inputs from 

separate sources without errors?  

There is some evidence for such errors occurring. Auditory durations are 

commonly reported to last longer than visual durations (Goldstone & 

Lhamon, 1974; Wearden et al., 1998; Wearden, Todd, & Jones, 2006), 

showing evidence of systematic errors, which could be due to a mismatch 

between modality specific coding mechanisms.  

Another systematic bias is the central tendency effect (Vierordt’s Law), 

where short durations are overestimated and longer durations are 

underestimated. This is discussed in Chapter 4 where, in the model the effect 

materialised because of the initially high normalised input causing detectors 

with fast filter time constants to ramp-on quickly causing the overestimation. 

Central tendency in the model is a problem of inaccurate labelling of 

detectors with slower or faster time constants. Lewis and Miall (2009) show 

that central tendency reduces with environmental feedback. Cicchini, Arrighi, 

Cecchetti, Giusti, and Burr (2012) find musicians show a more veridical 

perception of auditory time, i.e. a reduced central tendency, with 

percussionists showing this trend in the visual as well as auditory modalities. 

This shows that biases in duration estimates are reduced with feedback and 

learning, so it is possible that adjustments between independent timing 



175 
 

175 
 

mechanisms are made, and can be updated based upon environmental 

feedback and experience. 

 THE CONSCIOUS PERCEPTION OF TIME  

In the previous section it has been argued that researchers in different 

areas are converging on a common mechanism using the temporal response 

of neurons that can be approximated as a linear slope function or low-pass 

filter to encode duration in a distributed fashion across the brain. A 

distributed mechanism reflects the multiple drafts (Dennett & Kinsbourne, 

1992) or fame in the brain (Dennett, 2001). Time in the brain is perceived 

using different mechanisms in parallel that do not reflect a single frame of 

reference but one that is interpreted from multiple mechanisms and 

continuously revised. Under this framework, multiple representations of 

event time are computed in parallel as described in section 6.4, which 

produce multiple drafts that may be incompatible with one another and 

fluctuate over time in response to processes like attention and input from 

sensory organs. Each draft is competing with the others to become the 

‘strongest’ or final draft that can change over time. This is in distinct 

opposition to the centralised timer measuring durations of all events and 

actions across modalities.  

The centralised timer can be interpreted as a Cartesian approach to the 

problem of time perception (Section 1.2.5). So not only does the approach 

detailed in sections 6.3 and 6.4 argue that duration is measured using 

particular mechanisms it argues for a particular philosophical school of 

thought. This view has implications for some of the work presented. In 

Chapter 4, the SDD model uses a labelled line coding system to represent 

duration. To decode, or read out the information processed by the 

population, knowledge about each SDD’s (the labelled line in the model) 

label needs is required. This is dangerously close to invoking a homunculus 

and a Cartesian explanation of duration. In the model, the labelled line 

coding system fulfils the purpose of demonstrating that information about 

event duration can exist in the system. Therefore, the purpose of the 

decoding scheme is to provide a proof of concept and is not deemed and 
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essential property of the model. Alternatives to this coding scheme are 

discussed in Section 6.7.2 with the aim of reducing this problem.  

 OTHER MODELS OF DURATION PERCEPTION 

 CENTRAL CLOCK MODELS 

There are two key differences where the proposals here differ from central 

clock modes. Firstly, there is a shift from a centralised, top down timing to a 

distributed, bottom up system, which it is argued more accurately represents 

the organisation of the brain, sensory systems in particular. Secondly the 

removal of a centralised timer, which is replaced by an input signal to the 

accumulator(s). The signal can be an external input such as in the SDD 

model or it could be an internal signal, such as preparatory activity encoding 

a motor plan for an action to be performed with a delay. This signal is passed 

through a neural system acting as an integrator that takes a specific time to 

reach threshold to delay the action and when threshold is reached the action 

performed.  

Attention and arousal effects on timing have been a common topic of 

research providing evidence used to justify central clocks (Treisman et al., 

1990), commonly showing an increase in perceived time with attention and 

arousal. Although little has been said on this topic in this work, these 

behavioural effects observed are compatible with the proposals here if 

attention and arousal are said to act as gain changes in a signal. An example 

of changing gain is described in Chapter 4, where it is demonstrated that a 

reduction in gain of the normalisation stage is shown to reduce duration 

estimates, therefore the reverse should increase duration estimates. Although 

the normalisation stage is not claimed to represent attention it shows that 

duration estimates should act in a way expected of them from literature. A 

possible extension to incorporate attention in the SDD model is described in 

section 6.7.2 
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 CHANNEL CODING 

Adaptation to duration, where a visual or audio stimulus of a particular 

duration is presented repeatedly, has been shown to have a repellent effect 

on duration estimates when the stimulus is shown for a different durations 

(Heron et al., 2012). This results in an effect where, after duration 

adaptation, longer or shorter stimulus durations than the adapting duration 

are perceived to be even shorter or longer. This effect is explained using a 

population model with neuronal output being described by  Gaussian curves 

tuned to a peak duration (Heron et al., 2012). Adaptation is represented as a 

reduction in gain of a sub population resulting in a reduction of the peak in 

these neurons’ tuning curves, resulting in the repellent effect on estimates.  

In a further study (Heron, Hotchkiss, Aaen-Stockdale, Roach, & Whitaker, 

2013) the duration of a visual test stimulus was distorted by an auditory 

distracting stimulus of a different duration presented at a time overlapping 

the test stimulus, causing distortions in duration estimation compared to 

estimates without the distractor. The duration adaptation effect was found to 

repel about a duration consistent with channel model estimates even when a 

distractor was presented showing that this cross-modal adaptation effect 

occurs before multisensory integration thus it is claimed it is an effect of 

sensory processing.  

As has been mentioned previously, firing rate of LIP neurons increases as 

a function of elapsed time. However, this implies a summation, rather than 

channel based coding system proposed by Heron et al., (2012). There is 

neurophysiological evidence of duration-tuned neurons existing in a number 

of vertebrate species (Sayegh, Aubie, and Faure, 2011). Initially thought to be 

used for echolocation in the auditory system in species like bats and 

dolphins, neurons that perform similar functions have been found in the cat 

primary and secondary visual cortex (Duysens, Schaafsma, & Orban, 1996) so 

they exist in different modalities in species that do not echolocate. So there is 

evidence for such a duration channel coding scheme but the location and how 

these channels would select which event(s) to encode the duration of and 

what range(s) they might exist over is an open question.  
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 STATE DEPENDENT NETWORKS 

Recurrent neural networks can encode event duration (Buonomano & 

Maass, 2009; Karmarkar & Buonomano, 2007). Within such a mechanism, 

time is encoded intrinsically because of neural dynamics that encode 

duration in the network state that evolves over time. As these networks can 

exist across the brain it means time can be encoded using this type of 

network in a distributed fashion. State dependent networks share 

commonalities with the proposals outlined in section 6.4. The main different 

between state dependent networks and using temporal dynamics (ramping or 

decaying neural activity) described earlier to encode time is that it is easier to 

conceptualise how duration can be encoded using temporal dynamics and a 

threshold and the simple model is more firmly rooted in a specific type of 

neural response to stimulus.  

Ramping or decaying neural response provides an explicit encoding of 

duration and it provides clear predictions regarding what activity should be 

observed in neurons or networks when encoding duration. Whereas state 

dependent networks would produce complex, dynamic patterns of activity 

that would be harder to detect, though there is some evidence of this (Goel & 

Buonomano, 2014). Due to state dependent networks’ ability to create and 

reproduce complex patterns, they are suited to encode complex temporal 

relationships. It is plausible that state dependent networks might exist as a 

separate encoding mechanism to that proposed in section 6.4 for encoding 

complex action that require precise timing, such as speech, playing a musical 

instrument or storing complex sequences of events. While the comparatively 

simpler temporal responses are used for encoding event durations, time to 

action could be encoded by ramping or decaying activity which is a view 

shared by Goel and Buonomano (2014). 
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 FUTURE RESEARCH DIRECTIONS 

 FLASH-LAG 

ADAPT BAR AND FLASH INDEPENDENTLY 

The most obvious modification to the Flash-Lag experiments in Chapters 2 

and 3 is modifying the stimulus so that only the area over bar or flash is 

adapted and measure the effect on the Flash-Lag illusion. Since high 

temporal frequency adaptation does appear to reduce the time component of 

Flash-Lag the results of such an experiment will provide insight as to what 

mechanisms are behind both duration processing and the Flash-Lag illusion.  

Such a study could inform current thinking on the mechanisms behind 

Flash-Lag. Temporal integration (Krekelberg & Lappe, 2000a) relies on 

averaging the position of the moving object over a temporal window. This 

would predict that adapting the bar, not the flash would shrink the time 

component of the Flash-Lag. Latency delay (Whitney & Murakami, 1998) 

explains Flash-Lag in terms of a relative delay between processing the 

moving bar and flash as such makes no clear predictions regarding whether 

adapting the flash, bar or just both would change the Flash-Lag illusion, as all 

of these would fit in with latency delay.  

Similar to latency delay, postdiction (Eagleman & Sejnowski, 2000) does 

not make any clear predictions regarding if the adapting the bar, flash or only 

adapting both would have an effect. If adapting the bar has an effect, 

postdiction would explain this in the same way as temporal integration. An 

effect of adapting the flash can be explained by the Flash occurring in an area 

of the visual field where rapid changes are to be expected, thus could be 

assumed to not cause the resetting of internal model that postdiction uses to 

explain Flash-Lag. Temporal integration makes a different prediction to the 

two other commonly used explanations for Flash-Lag so this experiment 

provides a test of the temporal integration hypothesis of Flash-Lag and would 

also reveal if the Flash is being advanced as the results of Bruno et al.,(2015) 

might suggest. 
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OCCLUDER TO HIDE BAR 

In an experiment where a moving object is occluded for a portion of its 

trajectory and participants have to indicate if the object appears earlier or 

later than expected shows that when the moving object is delayed behind the 

occluder over time, healthy participants can adjust their expectations and no 

longer report the delayed objects as late (Roth, Synofzik, & Lindner, 2013). It 

is possible to apply this paradigm in a similar set-up to the Flash-Lag 

illusion. Instead of having the bar visible throughout the trial, the bar is 

occluded about the position of the flash. Participants are judging where they 

think the bar would be at the time of the flash. If Flash-Lag were observed, 

this would indicate the Flash-Lag effect is due, at least in part to non-

perceptual mechanisms, i.e. not directly a result of visual input, but that 

perceived duration can be adapted in the absence of visual input and this can 

affect prediction judgments. Regardless of whether or not there is an 

observed Flash-Lag effect with this paradigm, further experiments could be 

run with an adapting stimulus of 5 or 20Hz temporal frequency where the 

bar is occluded. This would have little effect on perceptual mechanisms of 

motion and position over these areas, as there is no stimulus to adapt. Any 

changes from participants’ judgements observed in the 20Hz adaptation 

condition would be indicative of an effect on time and provide evidence 

suggesting a measure of duration is used in predictive perceptual models in 

the brain and that perceived duration can be adapted in a visual area where 

no visual stimulus is presented. This would require extending our model, 

which now only describes ways of detecting the duration of visual objects.  
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 MODEL 

ALTERNATIVE ENCODING METHODS TO LABELLED LINES 

In section 6.5 some of the problems involved with using a labelled line 

coding are discussed. In the current scheme, the duration of the event is 

encoded by taking the label of the most recent detector to switch on. One 

alternative way to decode the event duration without changing the model, 

just the way it is decoded would be to take the number of on detectors as a 

measure of duration. This is effectively a switch between using a labelled line 

to a summation-coding scheme. This would preserve the properties of the 

model, as the components are the same, while reducing the prerequisite 

information required to estimate event duration and reduce the dependence 

on a homunculus. The parameters of the SDD population, such as the filter 

time constant (τ ) and the threshold (T ) do not have to be fixed as precisely 

as they are and these variables could vary within the population. This would 

still produce accurate duration estimates with a suitably large SDD 

population, as it does not matter which SDDs are on, just as long as there is 

variability as to when they switch on. Such a coding scheme would be more 

robust regarding internal noise in the detector population as a roughly equal 

number of faster (short labelled) SDDs would switch off as slower (longer 

labelled) would switch on. However, to know the exact effects this would 

have to be modelled and may depend on properties like the event duration 

and the distribution of τ and T values in the population.  

MODELLING EFFECTS OF ATTENTION  

The effect of attention on time perception has often been a subject of study 

(Coull, 2004; Mangels et al., 1998; Treisman et al., 1990; Tse et al., 2004). 

Currently the model does not incorporate attentional effects, so cannot make 

predictions regarding such experiments. Since the model already uses 

normalisation, one method to incorporate attention into this model would be 

to add an additional stage with multiplicative gain change before the 

normalisation stage in line with Reynolds and Heeger, (2009) so the model 

could then make predictions regarding attention. As attention would be 

modelled as a multiplicative gain on the input signal prior to normalisation, 

this means that its effects will likely be similar to changes in input 

magnitude. As the normalisation stage takes some time to normalise the 
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signal fully this would mean the effects of attention would be more 

pronounced for shorter durations, which could provide some interesting 

experimental predictions. 

 INVESTIGATING THE EFFECTS OF EXPECTATION ON 

PERCEIVED DURATION 

BEHAVIOURAL PARADIGM MODIFICATIONS  

The paradigm used in Chapter 5 did not produce a behavioural effect of 

expectation on perceived duration whereas other paradigms do (Pariyadath 

& Eagleman, 2012; Schindel et al., 2011). One reason for this may be that the 

paradigm did not create salient relationships between the stimulus pairs. 

Modifications could make this stronger; the first would be simply to increase 

the ratios from 75%/25% to 90%/10%, making the unexpected conjunctions 

more surprising. Another method could be to split the experiment into two 

blocks: a training block where only the expected conjunction pairs are shown 

to build up expectations, then have a second test block where stimulus pairs 

are shown as before to include the unexpected conjunctions. Other changes 

could involve modifications of the stimuli themselves. While the Gabor 

patterns used here vary in orientation, which is a low-level stimulus property, 

they could be perceived as abstract. Stimuli like faces or places which have 

been used in previous studies to show the effect of repetition suppression on 

BOLD (Jiang et al., 2013; Summerfield et al., 2008) are more 

environmentally relevant and attract attention more. Thus, these could be 

more susceptible to learning effects. This would mean a shift away from 

investigating the effects of expectations in early cortical areas to higher areas 

in the hierarchy of the visual system, but the principle of learning another 

pattern than that of probability of repetition remains. It would be interesting 

to see if a behavioural effect emerges and if MST remains implicated.  
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A FURTHER STUDY USING MULTI-VOXEL PATTERN ANALYSIS OF FMRI 

DATA 

The analysis carried out in Chapter 5 used a GLM applied to the mean 

BOLD response of voxels identified to be within a defined region of interest. 

While this is useful for identifying significant differences in average BOLD 

signal changes across regions this comes at the expense of spatial resolution 

that might contain fine activation patterns that are otherwise removed along 

with noise in the data. These patterns can contain relevant information 

produced by sparse population encoding that is a common mechanism for 

encoding information across the brain (Pouget et al., 2000). If duration 

information were represented in sparse population codes rather than in 

mean activations across a functionally derived ROI, then this would have 

been missed in the GLM. Using multivoxel pattern analysis (MVPA) can 

detect such patterns (Haynes & Rees, 2006). Support Vector Machines 

(SVM) are a commonly used classifier (Mitchell et al., 2004) and could be 

used in a within-subjects analysis, similar to the ROI GLM analysis 

performed. SVMs would perform a binary classification between two 

stimulus properties (long and short, unexpected and expected) in each ROI 

independently. If the classifier can reliably distinguish between the two 

different stimulus properties across participants it provides evidence 

suggesting that particular stimulus is encoded in a ROI.  

MVPA classifications within a particular ROI are dependent on BOLD 

amplitude within the ROI (Smith, Kosillo & Williams, 2011), leading to 

potential issues with quantitatively comparing MVPA results from one ROI 

to another ROI and with the same ROI with different experimental designs. 

While Smith et al., (2011) do demonstrate how the MVPA results might be 

corrected using a BOLD amplitude measure any experiment where this is 

performed needs to be designed to do so from conception, so it lends itself to 

both univariate and multivariate analysis. One of the aims of the experiment 

in Chapter 5 was to investigate the link between duration perception and 

stimulus predictability by comparing results here to those found previously. 

This would also give the opportunity to change the paradigm to more closely 

follow similar studies (e.g. Kok et al., 2012a; Jiang et al., 2013) to allow for 
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more direct comparisons or perhaps informed by further behavioural 

experiments discussed previously in this section.  

 SUMMARY 

It is argued that duration perception is encoded in sensory systems as any 

other stimulus property and this measure of duration has functional roles in 

sensory systems. Duration is estimated using common systems shared by 

other perceptual mechanisms such as normalisation, explaining why 

adaptation to visual properties changes perceived duration. It is proposed 

duration is encoded using the temporal properties of neural systems 

responding to an input proposed to exist in the visual system along the dorsal 

pathway. This also provides a starting point for a framework of perceived 

duration across the brain that shows how duration might be encoded without 

using a centralised mechanism.  
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