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ABSTRACT

Small-angle neutron scattering has been used to study the flux line lattice (FLL)

in the d-wave superconductors YBa2Cu3O7 and CeCoIn5. Our studies on the High-

Tc superconductor YBa2Cu3O7 were carried out using a twin-free sample, and we

present the first observations of the intrinsic FLL structure in this material, with

a magnetic field applied parallel to the crystal c-axis (H ‖ c). We observe a se-

quence of field-driven FLL structure transitions, the detailed physics of which can

be broadly described in terms of field-induced non-locality, the potency of which

is perhaps increased by the anisotropy of the order-parameter. The heavy-fermion

superconductor CeCoIn5 exhibits an exotic ground state that combines unconven-

tional superconductivity with strong paramagnetism. With H ‖ c, these properties

contribute towards both a rich FLL structure phase diagram, and new behaviour of

the FLL form factor. Most notably, we observe the form factor to increase with field,

in strong contrast to the monotonic decrease expected from predictions made using

more conventional theories. These results can be qualitatively described by calcu-

lations made within the framework of the quasiclassical Eilenberger theory, which

indicate the increase in the form factor as due to field-induced Pauli paramagnetic

effects which manifest most strongly within the flux line cores.
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Introduction and theory

Introduction and theory

The clearest distinction between the two classes of superconductor, type-I and

type-II, is seen on observing their behaviour under an applied magnetic field. Fig-

ure 1.1 shows the ideal bulk magnetisation curves for both types, and the intrinsi-

cally different behaviour. In type-I superconductors the magnetisation curve is char-

acterised by the Meissner effect. This describes the almost complete expulsion of

internal fields from the bulk of the superconductor, barring a surface depth of char-

acteristic dimension λL, which is the London penetration depth. As B = µ0(M + H),

and B = 0 inside the bulk, the magnetisation follows M = −H for all fields less

than the thermodynamic critical field, Hc. On increasing the field beyond Hc, the

ideal system undergoes a first-order transition into the normal state, as there is a

finite latent heat. In the absence of an external field, there is no latent heat, and

so on increasing the temperature, the transition to the normal state is second-order.

M- M-

H H

HM =-

C
H 1C

H
2C

H

Meissner

State

Mixed

State

Normal

State

Type-I Type-II

(a) (b)

Figure 1.1: The ideal bulk magnetisation versus applied field curves for (a) a type-I
superconductor and (b) a type-II superconductor.
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Introduction and theory

Type-II superconductors possess two characteristic critical fields, the lower critical

field, Hc1 and the upper critical field, Hc2. Below Hc1, the sample exhibits the full

Meissner state and behaves as if it were a type-I material. On increasing the field

beyond Hc1 the system becomes unstable to the admission of magnetic flux into

the bulk, and the magnetisation increases as more flux enters with increasing field.

The magnetisation becomes zero on passing through Hc2, where there is typically a

second-order transition into the normal state.

The region between Hc1 and Hc2 is a distinct thermodynamic phase called the

mixed state. In this phase, there is a more delicate balance between a lowering

of the system free energy on admission of magnetic flux, and an increase due to a

reduction in the condensation energy. This energy balance results in magnetic flux

being partially admitted into the bulk of the superconductor in the form of mag-

netic flux lines; a phenomenon first predicted to occur by Abrikosov (1957). Each

flux line carries a total flux of one magnetic flux quantum, Φ0 = h/2e, that mostly

exists within a core region where the superconductivity is suppressed. In the ideal

and isotropic situation, the flux lines arrange under the propensity of their own

interaction into a regular hexagonal flux line lattice (FLL). However, in anisotropic

materials, it is well known that a lower free energy is often associated with a FLL

coordination that deviates from this ideal. This is one example where observations

of the FLL allow an examination of the physics of the host material; a key theme of

the studies presented here.

1.1 London theory

The London equations (London and London, 1935) provided the first phenomeno-

logical electrodynamic description of the superconducting state, consistent with the

observations of perfect conductivity (Onnes, 1911) and the Meissner effect (Meiss-

ner and Ochsenfeld, 1933). From the quantum mechanical perspective, the canon-

ical momentum of a superconducting particle of velocity vs, mass m̂ and electric

2
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charge ê 1 can be written as

p = m̂vs + êA (1.1)

where A is the vector potential. In the absence of an applied field, it is expected that

in the ground state the particle will have zero momentum, and the current density

can be written as

js = nsê〈vs〉 = −nsê
2

m̂
A (1.2)

where 〈vs〉 is the average velocity, and ns is the superconducting particle density.

This is the London equation, and is only true if we assume that the ground state is

somewhat rigid to the perturbation of a finite external field, such that 〈p〉 = 0. This

condition is achieved by specifying the gauge to be ∇ · A = 0 (the London gauge),

so that on substitution into equation 1.2, ∇ · js = 0 due to continuity. On taking

the time-derivative of equation 1.2 we find the first London equation which implies

persistent current flow,

E =
m̂

nsê2

djs
dt

(1.3)

where E is the electric field. On taking the curl of equation 1.2, we obtain the

second London equation

∇2B =
1

λ2
L

B (1.4)

where B denotes the internal field, and we have introduced the London penetration

depth length-scale λL =
√

m̂/µ0nsê2. The solutions to this equation show that for

time-varying and time-independent magnetic fields applied parallel to a supercon-

ducting surface, the field normal to the surface will decay exponentially over the

length λL.

The London equations embody empirical limiting approximations to a classical

electrodynamic theory. As a consequence, it is not possible to use them to predict

the existence of the FLL, which represents an emergent quantum phenomenon on

the macroscopic scale. Despite this, the London theory is relevant for materials

where λL À ξ, where ξ is the characteristic size of the flux line core. These are
1The ‘hat’ symbols for both the mass and charge of the superconducting particle indicate that the

values of these variables are not simply those expected for a single electron.
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strongly type-II superconductors, and as the subject materials of this thesis fall into

this category, it is useful to consider the description of the FLL within this London

limit. For a single flux line at the origin, we insert the flux line by hand using a

δ-function source term

λ2
L∇2B− B = Φ0ẑδ(2)(r). (1.5)

Here, δ(2) is a two-dimensional delta function describing the position of the flux

line in the plane perpendicular to the unit vector ẑ, which is parallel to the axis of

the flux line. The exact solution of equation 1.5 gives the spatial variation of the

magnetic field for a single flux line as

Bz(r) =
Φ0

2πλ2
L

K0

(
r

λL

)
(1.6)

where r is the radial distance from the singularity and K0 is the zeroth order mod-

ified Bessel function. For small x, K0(x) ∼ −lnx, whilst for large x, K0(x) ∼
(π/2x)(1/2)e−x yielding

Bz(r) =

{ Φ0

2πλ2
L

ln
(

λL

r

)
r ¿ λL

Φ0

2πλ2
L

√
πλL

2r
exp (−r/λL) r À λL

. (1.7)

We see that far from the flux line core, the field distribution takes on a form consis-

tent with the solutions of equation 1.4. The solution at small distances assumes the

flux line core to be infinitesimally narrow, in accordance with the δ function source

term. This means that on the approach to the flux line axis, an integral evaluation

of the flux line free energy F (Ketterson and Song, 1999),

F =
1

2µ0

∫ [
B2 + λ2

L (∇× B (r))2] d3r (1.8)

is logarithmically divergent, which reflects the divergence of the field as r →0 2.

This indicates that the rough approximations of the London model do not allow

an accurate evaluation of the free energy. In reality, sustaining divergent fields re-

quires increasingly large supercurrents, which when large enough will increase the

free energy by exciting quasiparticles out of the condensate. In order to reduce the

2The term in square brackets is equivalent to the left hand side of equation 1.5.
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free energy penalty of a divergent field, the flux contained within the core is spread

over a finite area. However, the divergence of the integral reflects the inherent as-

sumption of the London theory; that the supercurrent density js at a point r yields

the vector potential A at the same point. This relationship is embodied in equa-

tion 1.2, and represents the local limit. In general, this relationship is only achieved

for the extreme type-II material, where the core-size is negligible compared to the

penetration depth λL, i.e. the original London assumption. For more realistic type-II

materials, the core exhibits a finite size, and the supercurrent density and magnetic

vector potential enjoy a non-local relationship (see section 1.1.2).

In the London limit however, the London model can still provide a useful de-

scription of the FLL, and a reference for beginning to understand experimental ob-

servations. Extending equation 1.5 to describe an ideal FLL we obtain

λ2
L∇2B + B = Φ0ẑ

∑
i

δ(2)(r - ri) (1.9)

with the positional sum being taken over i flux lines. By definition, the lattice

implies periodicity such that the internal field distribution is position dependent

and B(r) can be expanded as a Fourier series,

B(r) =
∑

G

BGeiG·r (1.10)

where G represents the reciprocal lattice vector derived from the real space ar-

rangement of the flux lines, and BG are the Fourier coefficients. Substituting equa-

tion 1.10 into equation 1.9 and integrating over the unit cell, yields the expression

for the Fourier coefficients,

BG =
Φ0nL

1 + λ2
LG2 =

〈B〉
1 + λ2

LG2 (1.11)

where nL is the areal density of vortices, which multiplied by Φ0 gives the mean

induction, 〈B〉. The Fourier coefficients can be measured experimentally, allowing

direct access to a measure of λL.
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1.1.1 Anisotropic London theory

The London theory outlined in the previous subsection can be extended to allow

for an effective mass anisotropy whilst leaving the integral evaluation of the free

energy invariant. This is achieved by generalising the effective mass term m̂(∝ m∗)

in the expression for λL, and substituting it with the normalised effective mass

tensor mij (Kogan, 1981)

F =
1

2µ0

∫ [
B2 + λ2

Lmij (∇i × B) (∇j × B)
]

d3r (1.12)

where the effective mass term in λL is replaced by a geometric mean mass, m. If the

principal directions of the mass tensor are chosen to coincide with the crystal axes,

the normalised effective mass tensor is diagonal with components mxx = ma/m,

myy = mb/m and mzz = mc/m. Hence, for normalising the effective mass tensor,

m3 = mambmc.

For fields parallel to ẑ, an inequality in ma and mb indicates a penetration depth

anisotropy, and the FLL structure distorts along the direction of longest penetration

depth. In this thesis, we define the penetration depth as λi ∝
√

m∗
i , where currents

along i screen against fields that vary along the j or k directions. For example λa

screens field variations along the b-direction. Figure 1.2 provides a visualisation of

this structural distortion, the measure of which is encapsulated by the measurable

parameter γab = λa/λb. For γab = 1 (figure 1.2 (a)), the hexagonal FLL structure is

isotropic and the flux line distribution can be overlaid by a circle. For γab 6= 1, the

FLL coordination is subject to a scale transformation of
(√

γab

)−1 along a and
√

γab

along b (Thiemann et al., 1989). In figure 1.2 (b) we show the scale transformation

for γab = 1.5, where the flux line distribution can be overlaid by an ellipse.

In the diagonal situation, where the effective mass components of the flux line

frame are co-incident with the crystal frame, the diagrams shown in figure 1.2 are

somewhat misleading as they imply there is a preferred FLL orientation. As the

distorted FLL can always be mapped back to the isotropic FLL by a scale transfor-

mation, any flux line distribution around the circle or ellipse that represents a valid

hexagonal FLL coordination is energetically equivalent (Campbell et al., 1988). It

6
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b

a

(a) γab = 1

b

a

(b) γab = 1.5

Figure 1.2: Schematic real-space depictions of a hexagonal FLL structure for (a)
γab = 1 and (b) γab = 1.5 in the London regime. The blue spots represent flux lines,
and we show enough nearest neighbours to capture the hexagonal symmetry. In
(b), the FLL structure is distorted along the direction of longest penetration depth,
which is λb.

is worth noting that within the local London theory presented here, there is no pre-

ferred orientation for the FLL. However, when the field is applied at an arbitrary

angle to the crystal frame of a uniaxial material, by taking higher order terms into

account Campbell et al. (1988) were able to show that the London theory does

make a prediction as to the preferred alignment of the FLL. In this case, the FLL is

predicted to align such that the flux line nearest neighbour direction is perpendicu-

lar to the axis of rotation.

1.1.2 Non-local London theory

The London theory outlined above is a local theory; the supercurrent density js(r)

is proportional to A(r) at any point r. However, Pippard (1953) proposed that

from a more general perspective, the supercurrent density and the magnetic vec-

tor potential enjoy a non-local relationship. Pippard proposed an integral relation,

whereby the value of js at r is determined by contributions due to A within a vol-

ume of dimension ξ0 centred on r. This characteristic dimension ξ0, referred to

as the Pippard coherence length, was later shown to be of the same order as the

7
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spatial dimension of the supercarriers in the complete microscopic theory of super-

conductivity (Bardeen et al., 1957). If the value of A(r) varies from its full value

over this volume, for example as would happen in the vicinity of a flux line core,

the supercurrent response is weaker. This results in an enhanced penetration of the

field over a distance larger than λL expected from the local London theory. For the

case where λL < ξ0, A(r) can vary rapidly over a distance less than ξ0. This is the

situation for type-I superconductors, and superconductors that are only just type-II

(λL ∼ ξ0), for which it is always necessary to consider non-local corrections. For

strongly type-II superconductors, where λL À ξ0, the non-local corrections become

less important, and vanish for the case λL/ξ0 →∞, where the local London limit is

recovered.

However, even for strongly type-II superconductors, where λL/ξ0 is large, the

theoretical work carried out by Kogan and collaborators (Kogan et al., 1996, 1997a,b)

predict non-local corrections to the London equations to have consequences for the

FLL coordination. By considering an isotropic superconductor, they derive the Lon-

don equation from the microscopic viewpoint of the Eilenberger equations (Eilen-

berger, 1968), which provide a quasiclassical description (see section 1.5.1) of the

microscopic theory outlined in section 1.3. On making a leading order expansion

of the integral kernel, in reciprocal space the general form of the London equation

becomes

µ0ji = −λ−2
(
m−1

ij − λ2nijlmGlGm

)
aj (1.13)

where the vector potential is encapsulated by a = A + Φ0∇θ/2π, with Φ0 the flux

quantum, and θ the phase of the microscopic order parameter. mij is the nor-

malised inverse mass tensor and λ the geometrically averaged penetration depth

= (λaλbλc)
1/3. The power of the non-local theory lies in the term dependent on the

fourth rank tensor nijlm, which couples the supercurrents of the FLL to microscopic

properties of the Fermi surface according to

nijlm =
h̄2〈vivjvlvm〉γ (T, τ)

4∆2
0λ

2det〈vivj〉1/3
(1.14)

where i is the ith component of the Fermi velocity, γ is a temperature-dependent

8
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factor dependent on impurity scattering and the size of the energy gap ∆0 (see

section 1.3) and brackets〈. . .〉 indicate an angular average over the Fermi surface.

We see that the size of the tensor depends on the fourth moment of the Fermi

velocity which couples any crystal anisotropy into the properties of the FLL. This

tensor coupling results in a preferred orientation of the FLL for any field orientation.

To determine the preferred orientation of the FLL, equation 1.13 is used to eval-

uate the Fourier components of the field distribution for a particular FLL coordina-

tion. Using these Fourier components, the free energy density is then numerically

computed, with the preferred FLL coordination that which gives the free energy

minimum, Fm. For the case where the field is applied perpendicular to a fourfold

crystal plane (Kogan et al., 1997a), the free energy density is calculated according

to

F =
B2

2µ0

∑
G

1

1 + λ2G + λ4
(
n2G4 + (2n1 − 6n2) G2

1G
2
2

) (1.15)

where the degree of Fermi surface anisotropy that can affect Fm is included in the

term involving G2
1G

2
2. Here, n1 ∝ 〈v4

1〉 ≡ 〈v4
2〉, and n2 ∝ 〈v2

1v
2
2〉. Figure 1.3 show

the predictions of calculations made by Kogan et al. (1997a) relevant for both the

cases of field perpendicular to a fourfold symmetry plane, and field perpendicular

to a twofold symmetry plane of the borocarbide superconductor LuNi2B2C (Kogan

et al., 1997a). At each field, the possible shape of the FLL primitive cell is describ-

able in terms of two basis vectors, separated by an angle β. Kogan et al. (1997a)

vary β and find the coordination that gives the Fm at each field. From the figure,

we see that for the case of field perpendicular to a fourfold plane, on increasing

the field there is a first-order 45◦ reorientation transition of the FLL primitive cell

at H1, before the FLL structure stabilises into a square FLL structure at field H2.

Note the nearest neighbour directions of this square phase are aligned along the

directions corresponding to the Fermi velocity minima. For the twofold situation,

no reorientation transitions are predicted to occur, though at high enough fields the

FLL structure is predicted to stabilise at a certain β. This theory has been successful

in describing the observed behaviour in YNi2B2C (Paul et al., 1998) and to some

9
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Figure 1.3: Calculations of the field-dependence of the preferred FLL structure for
the cases of fields perpendicular to both fourfold (H ‖ c) and twofold (H ‖ a)
symmetry planes. The angle β is that which lies between the two basis vectors of
the FLL primitive cell. After Kogan et al. (1997a).

extent that seen in cubic V3Si (Yethiraj et al., 1999).

1.2 Ginzburg-Landau theory

The Ginzburg-Landau (GL) theory is also a phenomenological description of su-

perconductivity. However, unlike the London description, GL theory is based on a

thermodynamic description of the superconducting state, with a judiciously chosen

complex order parameter that describes the collective behaviour of the supercar-

riers. Here, we follow the treatments of Ketterson and Song (1999) and Annett

(2004).

The GL theory builds on Landau’s theory of the second-order phase transition.

This theory introduces the concept of an order parameter which, above a certain

critical temperature, Tc is zero, but is finite below this temperature. As the or-

der parameter varies continuously from zero as one goes below Tc, this allows the

expansion of the free energy in terms of a power series of the order parameter.

Ginzburg and Landau developed their idea that within this theoretical framework,

an order parameter might describe the superconducting state, thus incorporating

their assumption that superconductivity can be defined by an all-encompassing and

10
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coherent macroscopic quantum state. They chose the order parameter to be a spa-

tially variant and complex quantum wavefunction, ψ(r). As the wavefunction is

a complex entity, only even power terms enter the expansion for the free energy

density

F = F (T ) + α(T )|ψ(r)|2 +
β

2
|ψ(r)|4 + . . . (1.16)

The free energy density for both the cases of above Tc, where ψ = 0 and below Tc

where |ψ| > 0, can be minimised by giving the constant α a temperature depen-

dence such that it changes sign on passing through Tc. In the simplest case, we

leave β as a constant. Thus if

α(T ) = a(T − Tc) (1.17)

then on minimising equation 1.16 we find

|ψ(r)| =
{

0 T > Tc√
a(Tc−T )

β
T < Tc

(1.18)

Equation 1.16 does not provide a complete picture of a truly spatially dependent

order parameter, as spatial deformations will cause an increase in the free energy

density. The ability to account for this spatial variance of ψ (r), and its associated

energy cost, is an inherent strength of the GL theory, and its ultimate ability to pre-

dict the emergence of the FLL. To account for an inhomogeneous order parameter, a

gradient energy term is incorporated, the form of which is directly analogous to the

kinetic energy term of the Hamiltonian describing the interaction between charged

particles and an electromagnetic field. With A being the magnetic vector potential,

this term takes the form

h̄2

2m̂
|∇ψ(r)|2 =

h̄2

2m̂

∣∣∣∣
(
∇− iêA

h̄

)
ψ(r)

∣∣∣∣
2

(1.19)

such that the total free energy density, including the magnetic field energy, to fourth

order is now written as

F = F (T ) +
B2

2µ0

+ α(T )|ψ(r)|2 +
β

2
|ψ(r)|4 +

h̄2

2m̂

∣∣∣∣
(
∇− iêA

h̄

)
ψ(r)

∣∣∣∣
2

. (1.20)

11



Introduction and theory

)(ry
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Figure 1.4: A depiction of the shortest distance r over which the order parameter
can deform from nearly its bulk value ψ0 to zero. The distance over which this
occurs is of the order ξ.

The minimisation of equation 1.20 is achieved by performing a functional differen-

tiation and minimising with respect to ψ(r) and ψ∗(r). This yields the first Ginzburg-

Landau equation

− h̄2

2m̂

(
∇− iêA

h̄

)2

ψ(r) + α(T )ψ(r) + β|ψ(r)|2ψ(r) = 0. (1.21)

On considering the supercurrents due to the magnetic field, and again taking the

functional derivative of the free energy but this time with respect to the magnetic

vector potential, we obtain the second Ginzburg-Landau equation

js = − iêh̄

2m̂
(ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r))− ê2

m̂
|ψ(r)|2A. (1.22)

Equations 1.21 and 1.22 can be used to provide definitions of the Ginzburg-

Landau length scales. On solving the one-dimensional form of equation 1.21, and

in the absence of an electromagnetic field, the Ginzburg-Landau coherence length

is obtained and defined as

ξ(T ) =

√
h̄2

2m̂|α(T )| (1.23)

which can be physically interpreted as the shortest distance over which the order

parameter can deform from nearly the bulk value to zero. This is shown schemat-

ically in figure 1.4. We note that the GL coherence length is a related, but still

distinct, quantity to the Pippard coherence length, ξ0 which is essentially tempera-

ture independent (Pippard, 1953). Well away from Tc for clean materials, it turns

out that ξ(T ) ∼ ξ0, but near to Tc they will be different as ξ(T ) diverges due to the

temperature-dependence of α(T ).

12
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The second GL length-scale is obtained from equation 1.22. In the limit close to

Tc, the first two terms of the left hand side of the equation do not contribute, and

the remainder is equivalent to the local London relation

js = − ê2

m̂
|ψ(r)|2A. (1.24)

where we identify |ψ(r)|2 as equivalent to ns, the density of superconducting carri-

ers. This observation is further suggestive that the complex order parameter pro-

vides a description of the superconducting state. Thus if

ns = |ψ(r)|2 =
α(T )

β
, (1.25)

the GL penetration depth, λ(T ) is given by

λ(T ) =

√
m̂β

µ0ê2α(T )
(1.26)

which exhibits the same form as the London penetration depth derived earlier, and

the same temperature-dependence as ξ(T ). We further see that within the GL the-

ory, the dimensionless ratio

κ =
λ(T )

ξ(T )
(1.27)

is temperature independent.

1.2.1 The first Ginzburg-Landau equation and the Abrikosov solution

For most type-II superconductors, the transition between the normal and super-

conducting states is second-order. Therefore, we can assume that the GL order-

parameter ψ is small just below Hc2, and zero at Hc2. If we are infinitesimally below

Hc2, then as ψ is small we can drop the cubic |ψ(r)|2ψ(r) term, and linearise the first

GL equation. For fields B = (0, 0, B) and choosing the Landau gauge A = (0, Bx, 0),

the first GL equation becomes
(
− h̄2

2m̂
∇2 − h̄ωcix

∂

∂y
+

m̂ω2
c

2
x2

)
ψ (r) = |a|ψ (r) (1.28)

where ωc is the cyclotron frequency ωc = êB/m̂. Equation 1.28 is equivalent to the

Schrödinger equation for a charged particle in a magnetic field, and has Landau

13
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level solutions for the allowed energy eigenvalues. The trial function of the form

ψ (r) = exp (i (kyy + kzz)) f (x), which describes the plane wave combinations along

y and z and some unknown f (x), can be substituted into equation 1.28 to obtain

− h̄2

2m̂

d2f

dx2
+

m̂ω2
c

2

(
x +

h̄ky

m̂ωc

)2

f =

(
|a| − h̄2k2

z

2m̂

)
f. (1.29)

Equation 1.29 has the form of the Schrödinger equation for a simple harmonic

oscillator (SHO), with energy eigenvalues
(

n +
1

2

)
h̄ωc +

h̄2k2
z

2m̂
= |a|, (1.30)

thus showing f(x) to have the form of the wavefunction for the SHO. The lowest

Landau level solution will have n = 0 and kz = 0, which on substituting back in the

cyclotron frequency ωc can be used to find the upper critical field

µ0Hc2 = Bc2 =
Φ0

2πξ2(T )
; (1.31)

a result that implies the existence of one flux quantum Φ0 per unit area 2πξ2(T ).

This result also can be used to identify the difference between the type-I and type-

II superconductors within the GL theory. Equation 1.16 can be solved in order to

express the condensation energy of the superconductor as µ0Hc/2 = α2/2β, (where

Hc is the thermodynamic critical field) and by direct substitution with equation 1.31

show that

Hc2 =
√

2κHc. (1.32)

Therefore, for κ > 1/
√

2, Hc2 > Hc and the order parameter grows continuously

from zero at fields just below Hc2. This is characteristic for the type-II superconduc-

tor. Conversely for type-I materials, κ > 1/
√

2, Hc2 < Hc and there is a discontinuity

in the order parameter at the thermodynamic critical field.

The examination of equation 1.21 a little further below Hc2 was first carried

out by Abrikosov (1957) for a type-II material. Now the cubic term |ψ(r)|2ψ(r) can

now no longer be neglected and the non-linear equation becomes more difficult to

solve. However, based on the SHO form of the solution to the linearised version

14
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of equation 1.21, Abrikosov expected the form of the solution to the non-linear

equation to resemble this, and that only the lowest Landau level (n = 0 and kz = 0)

solutions would be significant. In this lowest Landau level approximation, the trial

function now becomes

ψ (r) = Ce(i(kyy))e−(x−x0)/ξ(T )2 (1.33)

where C is a normalisation constant that vanishes at Hc2, x0 is the shift in the lowest

Landau level and is equal to −h̄ky/mωc, and we use the fact that the ground state

SHO wavefunction has a gaussian form, with a width which happens to be of order

the GL coherence length ξ (T ). However, this form of ψ (r) is highly degenerate as

there are an infinite number of possible ky values. Abrikosov circumvented this by

looking for a solution that was periodic in y with period ly, such that the possible

ky values were limited to ky = 2πn/ly, with n any integer. By correcting the Landau

level shift for this periodicity condition, x0 = −2πh̄n/mωcly = −Φ0n/Bly, the trial

function becomes

ψ (r) =
∑

n=−∞,∞
Cnei(2πny/ly)e−(x+nΦ0/Bly)/ξ(T )2 (1.34)

where Cn are a series of parameters that can be chosen to minimise the free energy

of the system. The form of the solution shown in equation 1.34 is periodic in y but

not definitively periodic in x. Periodicity in x can be generated by enforcing the

periodicity condition Cn+ν = Cn, for integer ν, where the period lx = νΦ0/Bly. For

the simple square arrangement ν = 1, whilst ν = 2 for the simple hexagonal lattice.

These periodicity conditions in the wavefunction correspond to the nucleation of

the FLL close to Hc2, with a single flux quantum per unit cell.

Abrikosov (1957) used the trial function to perturbatively solve the first GL equa-

tion for the square lattice. The resulting free energy density for the Abrikosov FLL

can be written as (Ketterson and Song, 1999)

F = F0 +
1

2µ0

(
B2 − (B − µ0Hc2)

2

1 + βA (2κ2 − 1)

)
(1.35)
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(a) (b)

Figure 1.5: Schematics of the (a) square and (b) hexagonal Abrikosov FLL coordi-
nations with the lattice parameters indicated. The dashed lines represent the FLL
primitive cells. Adapted after (Ketterson and Song, 1999).

where the value of the Abrikosov parameter βA, which is evaluated using values

of Cn and k that minimise it, is calculated to be 1.16 (Kleiner et al., 1964) for the

hexagonal coordination, and 1.18 (Abrikosov, 1957) for the square coordination.

Therefore, the square lattice is of slightly higher free energy than the hexagonal

lattice coordination (Kleiner et al., 1964). However, as the free energy difference

between the two types of lattice is only ∼2%, even a weak anisotropy in the system

will lead to the establishment of lattice shapes other than the isotropic hexagon.

Schematic diagrams of the hexagonal and square coordinations are shown in fig-

ure 1.5.

Finally, Brandt (1995) examined the solutions to the GL equations close to Tc,

providing a prediction of the field-dependence of the FLL form factor on the ap-

proach to Tc. Valid for any value of κ > 1/
√

2, the FLL form factor for a {h, k}
Bragg reflection of the reciprocal FLL is given by

Fhk =
(−1)νe−πν/

√
3 (B −Bc2)

1 + 1.16 (2κ2 − 1)
where ν =

(
h2 + hk + k2

)
. (1.36)

Thus within the Abrikosov model, the FLL form factor falls linearly to zero on the

approach to Tc, a prediction strongly supported by small-angle neutron scattering

measurements of the form factor close to Tc in elemental Nb (Forgan et al., 2002).
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1.2.2 The Clem model

The inherent limitation of the London theory is that the field is predicted to diverge

on the approach to the flux line axis. In an effort to the correct the London model

for this unphysical effect, Clem (1975) solved the second GL equation for a single

flux line using a variational approach. Within a cylindrical coordinate system where

ρ = (x2 + y2)
1/2, φ = tan−1 (y/x) and z, and with field parallel to z, Clem starts from

the second GL equation, which is written as

jφ = −µ0λ
−2

(
aφ − Φ0

2πρ

)
f 2. (1.37)

Here, jφ and aφ are respectively the supercurrent density and magnetic vector po-

tential along unit vector φ̂, with the vector potential satisfying both the require-

ments of the London gauge, and that it vanishes at the flux line axis. ρ is the radial

coordinate, and f represents a radial variation of the order parameter ψ,

ψ(ρ) = f (ρ) exp (−iφ) =
( ρ

R

)
exp (−iφ) . (1.38)

where R = (ρ2 + ξ2
ν)

1/2. ξν is a variational parameter which is related to ξGL, and

which Clem shows gives the form of ψ closest to the form of the GL solution that

minimises the GL free energy. The later numerical solutions of the GL equations

proposed by Brandt (1997) show that Clem’s approximation is indeed close, thus

indicating the validity of this approach. Using B = ∇×A and Maxwell’s 4th equation

in combination with equation 1.37, an equation for aφ is obtained

d
dρ

[
1

ρ

d
dρ

(ρaφ)

]
− f 2

λ2
aφ = − Φ0f

2

2πλ2ρ
(1.39)

with solution

aφ =
Φ0

2πρ

[
1− RK1 (R/λ)

ξνK1 (ξν/λ)

]
(1.40)

where Kn (x) is the modified Bessel function. The corresponding magnetic flux

density is

Bz =

(
Φ0

2πλξν

)
K0 (R/λ)

K1 (ξν/λ)
(1.41)
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and by taking the Fourier transform of the flux density, the expression for the Fourier

components becomes

Fz (G) =
Φ0K1

(
ξν

(
G2 + λ−2

)1/2
)

(
G2 + λ−2

)1/2
λK1 (ξν/λ)

. (1.42)

Equation 1.42 can be written more conveniently in the limit of large κ as

Fz (G) = 〈B〉 gK1 (g)(
1 + G2λ2

) , g =
ξν

λ

(
1 + G2λ2

)1/2 (1.43)

where 〈B〉 is the mean induction. Equation 1.43 essentially amounts to the London

model with a gK1 (g) factor in the numerator to account for the existence of the

cores. Despite being obtained from GL theory, and therefore valid only close to Tc,

there is a close resemblance between the form of the Clem model and the London

model of equation 1.11. This coincidence derives from the common assumption of

the adequacy of local electrodynamics. The effect of the gK1 (g) term is to cause

the free energy to converge by suppressing contributions at short distances from the

flux line axis.

1.3 Microscopic theory

Bardeen, Cooper and Schrieffer (BCS) (Bardeen et al., 1957) provided the first

successful description of the microscopic mechanism behind superconductivity in

the conventional superconductors. Whilst, the subject compounds of this thesis

are unconventional in comparison, we outline a description of conventional super-

conductivity in order to provide a basis on which to describe an unconventional

superconductor. Here, we follow the treatments of Ketterson and Song (1999)

and Tinkham (1996).

The BCS theory was built upon the important insight of Fröhlich (1950), that

due to electron-phonon coupling, the effective forces between electrons could some-

times be attractive. Using this idea, Cooper (1956) subsequently showed that two

such electrons interacting just above a filled Fermi surface could form a bound-state

for an arbitrarily weak interaction potential. The two particle wavefunction of such
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a ‘Cooper pair’ is

ψ(r1, r2) = φq(ρ)eiq·Rχ(σ1, σ2). (1.44)

where R is the centre of mass coordinate, R = (|r1 − r2|)/2, ρ = (|r1 − r2|) and

σ1, σ2 are the electron spins. The term φq(ρ) represents the spatial component of

the wavefunction. If the lowest energy state has zero total momentum, the two

electrons will have equal and opposite momenta such that the Bloch expansion

of the spatial component of the wavefunction will be symmetric with respect to

particle interchange. This is achieved if the two electrons have equal and opposite

momenta. χ(σ1, σ2) represents the spin part of the wavefunction which, to conserve

fermionic antisymmetry of the overall wavefunction, must be antisymmetric with

respect to particle interchange. This implies a spin singlet wavefunction

χ(σ1, σ2) =
1√
2

(| ↑↓〉 − | ↓↑〉) . (1.45)

Therefore the simplest pairing state consists of electrons with equal and opposite

momenta, and opposing spin. This is an s-wave state implying that there is no

intrinsic angular momentum of the pair, i.e. ` = 0. We also see that the mass of a

Cooper pair is 2me and its charge is 2e. These are equivalent to the terms m̂ and ê

used until now in this thesis.

BCS realised that if there is such an effective interaction close to the Fermi sur-

face, this means all the electrons at the Fermi surface are unstable with respect to

the formation of Cooper pairs. The description of many Cooper pairs according to a

single coherent wavefunction is a defining feature of superconductivity. The coher-

ent many particle wavefunction that describes every electron being one of a pair at

the Fermi level is written as

|ΨBCS〉 =
∏

k

(
u∗k + v∗kP̂

†
k

)
|0〉 (1.46)

where P̂ †
k is a pair creation operator equal to c†k↑c

†
-k↓, which are operators that create

a pair of electrons of zero total crystal momentum and opposite spin. |0〉 is a vac-

uum state, and the complex functions |uk|2 and |vk|2 represent the probability that
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a pair state is occupied or unoccupied respectively. The normalisation condition

〈ΨBCS|ΨBCS〉 = 1 forces |uk|2 + |vk|2 = 1. If vk = 1 for |k| < kF , or if uk = 1 for

|k| > kF the wavefunction describes the Fermi sphere. However, for finite values of

vk and uk, the occupation becomes smeared in energy at Fermi surface over a width,

which in terms of reciprocal space, is of order ξ−1
0 in k. This distance ξ0 is equiva-

lent to the Pippard coherence length introduced in section 1.1.2, and is effectively

equivalent to the size of a Cooper pair.

The proposed wavefunction can be used to minimise the energy of the BCS

Hamiltonian

Ĥ =
∑

k,σ

(
h̄2k
2m

− µ

)
c†kσc

†
-kσ +

1

2

∑

kk’

c†k↑c
†
-k↓Vk’kck’↑c-k’↓ (1.47)

which is the BCS Hamiltonian for paired electrons, Vk’k is the matrix element that

describes the two-particle interaction, and µ is the chemical potential. To solve the

BCS Hamiltonian, the functions uk and vk are treated as variational parameters, and

values are sought that minimise the total energy. Minimisation yields the expression

for the excitation energy spectrum for single quasiparticles added to the BCS ground

state

Ek =

√(
h̄2k
2m

− µ

)2

+ |∆k|2, (1.48)

where ∆k arises as the superconducting gap function. Whilst ∆k is strictly momentum-

dependent, in BCS theory the gap is uniform in k-space. BCS further showed that

two times this energy gap is of order the binding energy of a Cooper pair, and that

the zero temperature magnitude of |∆| is related to the superconducting transition

temperature Tc:

2∆ (0) = 3.52kBTc. (1.49)

The temperature-dependence of the BCS energy gap shows that |∆| falls to zero

at Tc, analogous to the behaviour of the GL order parameter ψ. For this reason

the terms ‘order-parameter’ and ‘gap function’ are often used interchangeably. It

was Gor’kov (1958) who showed that the gap function was directly related to the
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GL order parameter, and that a physical interpretation of ψ is that it represents the

wavefunction for the centre of mass motion of the Cooper pairs.

Equation 1.48 is important, as it introduces the concept of an energy gap of

magnitude ∆ over the entire Fermi surface, below which single particle states are

inaccessible. Single particle states are accessible for energies greater than ∆, but

their nature is dependent on the value of uk and vk at the position in momentum

space. It turns out that a state is predominantly electron-like well below the Fermi

surface |vk|2 ' 1 and predominantly hole-like above |uk|2 ' 1. However, nearer to

the Fermi surface such quasiparticles exhibit mixed electron- and hole-like charac-

ter. Due to this mixed character, quasiparticle excitation energies can only be found

after using the following Bogoliubov-Valatin fermion annihilation and creation op-

erators (Ketterson and Song, 1999)

γ̂†-k↓ = ukc
†
-k↓ + vkck↑ (1.50)

γ̂k↑ = u∗kck↑ − v∗kc
†
-k↓ (1.51)

to diagonalise the relevant Hamiltonian, where precisely the same gapped energy

excitation spectrum (equation 1.48) is found, as on using the BCS wavefunction to

diagonalise the BCS Hamiltonian. Therefore, we have a microscopic theory that can

explain not only the emergence of the superconducting gap, but also the behaviour

of the single particle excitations at energies above ∆.

So far we have outlined the theory of uniform superconductivity in an ideal

system. In order to be useful for describing real systems, a microscopic theory

of superconductivity must allow for inhomogeneities such as crystal imperfections,

scattering centres, and flux lines. Allowing for spatial inhomogeneities within the

Hamiltonian that describe the quasiparticles, such as scatterers with potential U (r),

and variations in the superconducting gap ∆ (r) due to flux line cores, means that

plane-wave operators represented by quantum number k are no longer appropriate,

and need to be replaced by position-dependent functions (de Gennes, 1989). It is

possible to define more generalised fermionic operators after another Bogoliubov
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transformation

Ψ̂↑(r) =
∑

n

[
un(r)γ̂n↑ − v∗n(r)γ̂†n↓

]
(1.52)

Ψ̂↓(r) =
∑

n

[
un(r)γ̂n↓ + v∗n(r)γ̂†n↑

]
(1.53)

where Ψ̂ are annihilation operators for the position dependent functions un and

vn rather than the momentum dependent functions uk and vk defined earlier. The

values of un and vn are again determined as those that diagonalise the Hamiltonian,

which means that u and v satisfy the coupled Bogoliubov-de Gennes equations

Ĥun(r) + ∆(r)vn(r) = Enun(r) (1.54)

−Ĥ∗vn(r) + ∆∗(r)un(r) = Envn(r) (1.55)

where Ĥ is the mean-field complex Hamiltonian. To seek solutions to such a pair of

coupled equations, it is necessary to compute ∆(r) from the allowed sets of u and

v functions. These equations were used successfully to examine the quasiparticle

excitations for the case where ∆ varies rapidly over a distance of size the Ginzburg-

Landau coherence length ξ (0), i.e. over a flux line core. It was shown that in the

limit of high-κ, there are a group of low-lying excitations with wavefunctions u(r)

and v(r) localised near the flux line core, i.e. bound states (Caroli et al., 1964;

Bardeen et al., 1969), thus providing a microscopic basis for the existence of single

particle states within flux line cores.

1.4 d-wave superconductivity

The BCS theory describes the conventional superconductivity of a singlet pairing

state with ` = 0. On moving from the normal state into the superconducting state,

the establishment of an energy gap function ∆k defines a coherent phase relation-

ship between all Cooper pairs described by the pair wavefunction. The energy cost

of any phase gradients is minimised by making the phase as constant as possible

throughout the system. The ‘long-range order’ of quantum mechanical phase is said

to break gauge symmetry. This broken symmetry is the minimal requirement for the
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(a) s (b) dx2−y2 (c) dxy

Figure 1.6: Schematic k-space diagrams of three possible superconducting phases
for a tetragonal superconductor exhibiting (a) BCS s-wave pairing, (b) dx2−y2 pair-
ing and (c) dxy pairing. The diagrams attempt to show the form of the supercon-
ducting energy gap over the Fermi surface, and the relevant superconducting phase
indicated by + and − signs. The dashed lines represent mirror planes where sym-
metry is broken

realisation of the superconducting wavefunction, and is the only symmetry broken

within the BCS theory of conventional materials. In contrast, unconventional su-

perconductors are those where the superconducting state breaks extra symmetries,

such as parity, or on rotation or reflection transformations.

In figure 1.6 we consider the nature of the superconducting gap function over a

two-dimensional Fermi surface of a tetragonal superconductor, with 〈100〉 directions

vertical and horizontal. Figure 1.6 (a) shows a schematic form of the energy gap

over the Fermi surface analogous to that predicted by BCS theory. The form of

the gap function ∆k is a constant and it exhibits uniform phase. Clearly the gap

function will remain unchanged for all possible symmetry operations. In contrast,

the anisotropic gap functions of figures 1.6 (b) and (c) break extra symmetries; both

are odd under 90◦ rotational symmetry and mirror reflections about the indicated

dotted lines. These d-wave gap functions have the same symmetry properties as

the atomic spherical harmonic functions dx2−y2 and dxy, and correspond to a singlet

pairing state with ` = 2. We see from figures 1.6 (b) and (c) that for the d-wave

pairing states the magnitude of ∆k falls to zero at nodal points on the Fermi surface.

This suggests that in these superconductors, the gap function is strongly anisotropic,
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and quasiparticle states are accessible at arbitrarily low temperatures.

An experimental distinction between s- and d-wave superconductors is pro-

vided by examining the quasiparticle response at low temperatures. This can be

achieved via measurements of the London penetration depth. According to equa-

tion 1.26, λ(T ) varies with the superfluid density ns(T ) according to ns(T )=ns(0)−
nn(T ) where ns(0) is the zero-temperature superfluid density, and nn is the nor-

mal, or quasiparticle, density. For the s-wave state, BCS theory predicts, nn ∼
exp (2|∆|/kBT ), so the quasiparticle density is very low at low temperatures. For

the nodal gap, it is always possible to excite quasiparticles at all temperatures, and

the dependence is nn ∼ T . Therefore, the markedly different T -dependence of the

measured penetration depth allows a distinction between the s- and d-wave pairing

states. Distinguishing between different d-wave pairing states involves probing the

anisotropy of the phase degree of freedom of the gap function. The most convincing

evidence for a particular orientation of d-wave gap function is provided by electron

tunnelling (Renner and Fischer, 1995) and phase sensitive (Tsuei and Kirtley, 2000)

experiments that are able to measure the change in phase of the superconducting

wavefunction between different crystal directions.

1.5 d-wave superconductivity and the flux line lattice

The effect on the FLL of an anisotropic d-wave gap function has been extensively

studied. The early study of Soininen et al. (1994) investigated the detailed struc-

ture of a single flux line in a dx2−y2 superconductor on solving the Bogoliubov-de

Gennes equations for the quasiparticles. The calculations predict the structure of

the flux line in the core vicinity to be remarkably detailed, and consist of three

different regions that can support fermionic states. The inner core region supports

localised states resembling those of an s-wave flux line Caroli et al. (1964). The

outer core region is composed of a gapped excitation spectrum due to co-existence

of d- and s-wave order-parameter components. The relative phase between these

two components is non-zero except along orthogonal directions where the gap falls
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to zero due to destructive interference between them. The third region outside the

core is an asymptotic d-wave state. The outer core region is of most interest, as

the rotational symmetry of the field distribution is reduced to fourfold, which is the

same as that of spatial variation of the d-wave gap function. This will necessarily

induce an anisotropy in the interactions between flux lines.

The prediction for the nucleation of both s- and d-wave gap components within

a rich core region led Berlinsky et al. (1995) to propose the following GL free energy

expansion that can be solved to reproduce this phenomenon.

F = αs|s|2 + αd|d|2 + β1|s|4 + β2|d|4 + β3|s|2|d|2 + β4

(
s∗2d2 + d∗2s2

)

+γs|Πs|2 + γd|Πd|2 + γν [(Πys)
∗ (Πyd)− (Πxs)

∗ (Πxd) + c.c.] . (1.56)

The expansion is essentially the sum of two expansions for s and dx2−y2 order

parameters, described by terms with coefficients αs, αd, β1, β2,γs and γd. The other

terms provide the coupling between the two order-parameters, with that of coef-

ficient γν including mixed higher-order gradient terms, which are responsible for

the nucleation of the s-wave components at the core region. The morphology of

these s-wave components is shown by Franz et al. (1996) to be in the form of five

core-like regions, one located at the flux line centre, and four oppositely wound

cores located symmetrically about this centre core at a distance a few coherence

lengths away. Although the amplitudes of such components are calculated to be

just a few percent the size of the d-wave component, they reduce the symmetry of

the field distribution to four-fold, for distances far beyond the positions of these

s-wave cores. Both Berlinsky et al. (1995) and Franz et al. (1996) show that the

precise FLL coordination is strongly dependent on both the coupling strength of

the mixed gradient terms and on the magnetic field. In the limit of vanishing cou-

pling terms, and at low fields, the induced s-wave components vanish and the FLL

coordination tends towards being isotropic and hexagonal. Increasing either the

coupling strength or the field promotes the continuous distortion of the isotropic

hexagonal FLL coordination towards a square FLL structure. It was shown by Franz

et al. (1996) that the square FLL structure has a free energy minimum, Fm when
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the flux line nearest neighbours lie parallel to the nodal directions of the dx2−y2 gap

function. This same prediction for a similarly oriented square FLL structure at high

fields is also reproduced by the GL theories of Xu et al. (1996) and Shiraishi et al.

(1999).

The GL models can be used to predict the intricate structure of a flux line, and

ultimately the preferred Fm of the FLL. However, they are limited in being techni-

cally valid only near to Tc2, and difficult to use as there are many free parameters.

This motivated Affleck et al. (1997) to develop a simpler, more generalised Lon-

don model. Starting from the GL free energy expansion proposed by Berlinsky

et al. (1995) (equation 1.56), the authors simplify the expression by integrating

out the s-wave components in favour of higher-order derivatives expressed in terms

of d-wave components. Whilst these higher order terms capture the inherent gap

anisotropy, the simplification results in the intricate details associated with the flux

line core structure being lost. However, these details are experimentally difficult

to access, and the expected fourfold anisotropy of the magnetic field distribution

around the core is retained. Affleck et al. (1997) subsequently calculate the free

energy density assuming the London limit of λ À ξ, and the expression for the FLL

Fourier components is shown to be

B (G) = 〈B〉 exp (−G2ξ2/2)

1 + λ2
0G

2 + 4ελ2
0ξ

2 (GxGy)
2 . (1.57)

The term ε = 3 (αdγ
2
ν/αsγ

2
d) is a dimensionless parameter that determines the strength

of the s-d coupling which generates the fourfold anisotropy, and is assumed to be

< 1. Evaluating the free energy as a function of field shows that for both increasing

field and ε, there is an increased propensity for the FLL to adopt a square struc-

ture with the nearest neighbour direction parallel to the nodal directions. These

predictions agree with those of the more detailed GL theories. Also searching for a

more tractable theory were Franz et al. (1997). Similar to Kogan et al. (1996), the

authors start from a microscopic viewpoint and derive a non-local London expres-

sion for the free energy density. Unlike Kogan et al. (1996) however, the model is

generalised to allow for a gap anisotropy. Franz et al. (1997) subsequently derive
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the expression for the Fourier components to be

B (G) = 〈B〉 exp (−G2ξ2/2)

1 + λ2G2 + λ2ξ2 (c1G4 + c2GxGy)
2 . (1.58)

Parameters c1 and c2 are dimensionless coefficients dependent on the magnitude

and momentum-dependence of the gap function, the temperature, and the Fermi

velocity averages. As a function of increasing field, and as a consequence of the

gap anisotropy, Franz et al. (1997) predict that the isotropic hexagonal structure

smoothly distorts towards a square structure. At higher temperatures, they further

show that the non-local corrections become weaker, and the FLL structure tends

toward being isotropic and hexagonal.

We note that the general forms of the expressions for the Fourier components

according to s-wave non-local theory (Kogan et al., 1996, 1997a), d-wave non-local

theory (Franz et al., 1997; Affleck et al., 1997), and the GL models (Berlinsky et al.,

1995; Franz et al., 1996) are all comparable, and make broadly similar predictions.

From this point of view, if a high field square FLL structure is observed experi-

mentally, for certain cases, it can be difficult to determine whether the underlying

anisotropy that causes this can be interpreted in terms of non-local corrections to

the London equation, or to higher order terms of the GL free energy expansion.

1.5.1 Quasiclassical Eilenberger theory

In section 1.3 we outlined the Bogoliubov-de Gennes (BdG) equations, which can

be used to describe the quasiparticle states of a spatially inhomogeneous supercon-

ductor. More powerful methods of dealing with inhomogeneous superconductivity

borrow from quantum field theory in the form of Green’s functions, which are used

to describe the correlations of creation and annihilation operators. These tech-

niques were shown to be useful by Gor’kov (1958), who applied them to the BCS

theory and re-derived the BdG equations. The use of such expressions in describing

a real system is a rather complex process. However, the calculations can be sim-

plified somewhat by assuming the quasiclassical limit. This involves ignoring the

short-wavelength variations of the quasiparticle functions, as this length-scale 1/kF
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is typically less than the coherence length ξ (or ∆ ¿ EF ). Using this assumption,

Eilenberger realised that the Gor’kov theory could be approximated to treat single

quasiparticle states self-consistently, and developed a set of transport-like equations

that describe the quasiparticle motion (Eilenberger, 1968). The use of the Eilen-

berger equations has been shown in recent years to be extremely effective in under-

standing the behaviour of the FLL (see for example, Ichioka et al. (1996),Ichioka

et al. (1999),Nakai et al. (2002),Ichioka and Machida (2007)). The main principle

of the calculations is to obtain the quasi-classical Greens functions that describe the

quasiparticle states at each point of a grid across a unit cell of the FLL. At each

point, an iteration technique is adopted such that the pairing potential and vector

potential are determined self-consistently. The self-consistent parameters are then

used to calculate the current density and internal field distributions, and the spatial

distribution of the low energy density of quasiparticle states.

An early application of the theory looked at the case of a single flux line in a

dx2−y2 superconductor. In contrast to the GL theories, Ichioka et al. (1996) show

the field distribution around the flux line core is fourfold symmetric, without the

necessity for the nucleation of any s-wave components in the core vicinity. There-

fore, the fourfold symmetry of the field distribution around the core was shown to

be an intrinsic feature of a flux line in a dx2−y2 superconductor. The calculations also

reveal that the spatial distribution of the low energy quasiparticle states also has a

fourfold symmetry, with extended ‘tails’ that propagate along the nodal directions

over long distances far from the cores. These tails are a unique consequence of the

the dx2−y2 flux line, and arise due to the fourfold core structure, which reflects the

spatial symmetry of the order parameter.

The effect of the low energy quasiparticle tails on the overall FLL structure was

investigated in Ichioka et al. (1999). Here, the authors consider the role of quasi-

particle states from three viewpoints: (i) quasiparticles that form the tails that prop-

agate along the nodal directions, (ii) core quasiparticles which are bound inside the

flux line core and (iii) quasiparticle tunnelling between flux line cores. The role

of the quasiparticle tunnelling becomes more important at high fields, when the
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Figure 1.7: The results of the free energy calculations within the quasiclassical
Eilenberger theory of Ichioka et al. (1999). The free energy is measured relative
to a square FLL orientation with nearest neighbours parallel to the nodal directions
(Square45◦). The other square coordination, Square0◦ has nearest neighbours par-
allel to the antinodal directions. Triangular0◦ and triangular45◦ coordinations indi-
cate isotropic hexagonal FLL structures with nearest neighbours respectively along
the antinodal and and nodal directions. The calculations were carried out at 0.5Tc.

core regions begin to overlap. When this occurs, Ichioka et al. (1999) calculate

that the lower energy FLL configurations correspond to a square FLL structure, with

the nearest neighbour directions parallel to the nodal 〈110〉 directions. At lower

inductions, when the flux lines are not in close proximity, the influence of the core

anisotropy is weaker such that the FLL configuration is typically triangular. Fig-

ure 1.7, shows the predicted field-dependence of the structural free energy for four

different FLL coordinations in the dx2−y2 superconductor. At low fields, the preferred

FLL structure is predicted to be lie with the isotropic hexagonal coordination, with

very little difference between the free energies of the two considered orientations.

However, at ∼ 0.15Hc2 the free energy minimum crosses over to the square FLL

structure with nearest neighbours parallel to the nodal directions. The nature of

the transition is predicted to be first-order. We also note that these calculations

were carried out at 0.5Tc, with calculations at lower temperature unpublished.

The power of the quasiclassical Eilenberger theory lies with its generality; it is

sensitive to microscopic variables such as the symmetry of both the Fermi surface

and the superconducting gap function, and most promisingly, the theory is valid
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for any field and temperature. Unfortunately, with the greater generality comes

the associated cost of the increased complexity for the non-specialist. For this rea-

son, unless dedicated calculations can be carried out, only qualitative comparisons

between experimental results and existing published calculations are made.

1.6 The upper critical field in type-II superconductors

The destruction of superconductivity in the mixed state can be achieved via two

distinct mechanisms on the application of magnetic field. The first, and most com-

mon, is through the application of a field larger than the orbital-limiting critical

field. The second, and less common, occurs for fields larger than the Pauli para-

magnetically limited critical field. Whichever field is lower is determined by the

material properties.

Orbital limiting actually leads to the emergence of the FLL, whereby supercur-

rents circulate 3 the flux lines cores somewhat screening the bulk from the flux in-

side the core. As the field is increased, the orbital limiting field is reached when the

flux line density is such that the flux line cores begin to overlap. Thus, the material

can be thought of as simply composed of core regions, and hence not supercon-

ducting. The orbitally limited critical field was found previously after linearising

the first Ginzburg-Landau equation 1.21, and is

µ0H
Orb
c2 = BOrb

c2 =
Φ0

2πξ2(T )
. (1.59)

The Pauli paramagnetic upper critical field arises due to the Zeeman splitting of

single electron energy levels. If a magnetic field is applied in the normal state, elec-

trons are polarised because the Fermi surface splits into a part composed of spins

aligned with the field, and a part with spins anti-aligned with the field. For certain

superconductors, such as TmNi2B2C (DeBeer-Schmitt et al., 2007) and CeCoIn5 (see

Chapter 4), the Fermi surface splitting is enhanced due to an exchange interaction

between the field-induced localised moments of the rare earth sub-lattice and the
3These supercurrents exhibit a finite vorticity about the flux line axis, and in the literature ‘flux

line lattice’ and ‘vortex lattice’ are used interchangeably. In this thesis, we choose to use the former.
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conduction electron moments. This interaction results in increased Pauli param-

agnetic effects, and can contribute toward the realisation of a Pauli-limited upper

critical field. For the singlet superconducting state, in order to maintain the su-

perconductivity, the Cooper pairs exhibit negligible spin susceptibility. To polarise

the paired electrons, a magnetic field energy larger than the condensation energy

must be applied in order to break the Cooper pair, and destroy the superconduc-

tivity. This field is the Pauli-limited upper critical field, the estimation of which

is (Chandrasekhar, 1962; Clogston, 1962)

µ0H
P
c2 =

√
2∆

gµB

. (1.60)

Here, ∆ is the magnitude of the superconducting energy gap, g is the electron g-

factor, which is 2, and µB is the Bohr magneton.

In general, the nature of the upper critical field is dependent on a combination

of both the orbital and paramagnetic effects. The Maki parameter describes the

relative importance of each effect to the destruction of superconductivity, being

defined as

αM =
√

2
BOrb

c2

BP
c2

. (1.61)

For most superconductors, αM is much less than unity, and this indicates a small

influence of the paramagnetic effect in the destruction of superconductivity. How-

ever, for materials where the carriers exhibit an enhanced effective mass, such as

heavy-fermion materials, αM can be larger than unity, which indicates a dominant

paramagnetic effect. The most distinctive feature between the two methods of de-

stroying the superconductivity is the order of the associated phase transition at

Hc2. The orbitally-limited superconductor exhibits a second-order phase transition,

whilst the Pauli limited superconductor shows a first-order phase transition.
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Small-angle neutron scattering by
the flux line lattice

The periodic nature of the flux line lattice (FLL) makes it an ideal candidate

for neutron diffraction experiments. Neutrons are an excellent probe of the FLL;

the intrinsic magnetic moment of the neutron interacts with the spatially varying

magnetic potential of the FLL field distribution via the dipolar interaction. More-

over, neutrons are insensitive to sample surface quality, and provide an imaging of

the FLL in the sample bulk over a large sample volume. The resulting diffraction

patterns unambiguously provide an image of the FLL structure and orientation, and

the absolute intensities of Bragg diffraction spots provide information about the

field distribution. Both of these directly reflect the underlying microscopic state,

the characterisation of which plays a crucial role in the studies on the materials

reported in this thesis.

2.1 Introduction to small-angle neutron scattering (SANS)

The observation that each FLL unit cell contains a single magnetic flux quantum Φ0,

dictates the d-spacing of the FLL. The expression for the generalised d-spacing is

d =

√
Φ0

B
sin (β) (2.1)

where B is the internal induction, and β is the characteristic opening angle of the

FLL primitive cell. Therefore, for the limiting cases of isotropic hexagonal and

square FLL coordinations, β = 60◦ and β = 90◦ respectively. For the isotropic

hexagonal coordination at 1 T, the d-spacing is ∼40 nm. This is much larger than
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the atomic lattice spacings of the host crystal, and indicates that cold neutrons are

required to probe this periodicity. We will see in what follows that the scattering

from the FLL is elastic and described by Bragg’s Law

(n)λn = 2dsin (θ) (2.2)

where n refers to the order of diffraction, λn is the neutron wavelength, d is the

d-spacing of the FLL and θ is the Bragg angle. Taking the example of the isotropic

hexagonal FLL coordination at 1 T, using a neutron wavelength of 10 Å the Bragg 2θ

is just 1.35◦. The small angle of scatter leads to the ‘small-angle neutron scattering’

(SANS) nomenclature used in this thesis. The small θ also necessitates large sample-

to-detector distances (of order 10 m), so that diffracted neutrons can separate out

from the undiffracted beam and be distinguished.

2.1.1 Scattering from an arbitrary periodic potential

We start from the viewpoint of quantum mechanics and consider the neutron Hamil-

tonian and its interaction with an arbitrary scattering system. A description of a

neutron can be made in terms of the time-independent Schrödinger equation,
[
− h̄2

2mn

∇2 + V (r)
]

Ψ (r) = EΨ (r) . (2.3)

Here, mn is the neutron mass, E is its energy, and Ψ (r) is the position-dependent

wavefunction. V (r) is the interaction potential and, for the case of weak scatter-

ing, the first Born approximation holds, which treats V (r) as a perturbation (Schiff,

1968). This essentially means that the scattering amplitude is proportional to the

spatial Fourier transform of the scattering potential, with respect to q. The proba-

bility for the scattering potential to cause a change in the neutron momentum, can

be expressed in terms of Fermi’s Golden Rule

Wk→k′ =
2π

h̄
ρk′

∣∣〈k′ |V (r)| k〉
∣∣2 (2.4)

where |k〉 is the neutron wavefunction, k and k′ are respectively the initial and final

neutron wavevectors, and ρk′ is the density of final neutron states 4. Here, we have
4For completeness, we should also consider energy conservation of the overall system of the

neutron and scatterer, in addition to the initial and final quantum states of the scatterer. We will see
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neglected the dependence on neutron spin, so that the neutron wavefunction is

defined entirely by its momentum. The time-independent partial differential cross-

section is defined as the probability for neutron to be scattered into solid angle

dΩ,
dσ

dΩ
=

1

φn

1

dΩ

∑

k′∈dΩ

Wk→k′ (2.5)

where φn is the incident neutron flux. By inserting the plane wave representation

of the neutron wavefunction, equation 2.5 can be written as

dσ

dΩ
=

(
mn

2πh̄2

)2 ∣∣∣∣
∫

exp
(−ik′ · r) V (r) exp (ik · r) dr

∣∣∣∣
2

. (2.6)

where the prefactor arises due to normalisation in the calculation of ρk′ (Squires,

1996). To evaluate the matrix element, we describe V (r) according to the periodic

array of N weak scatterers centred at Rj with the same non-overlapping potential,

V =
N∑
j

V̂ (r− Rj) . (2.7)

If we define r′ = r− Rj, then we can evaluate equation 2.6 to obtain

dσ

dΩ
=

(
mn

2πh̄2

)2
∣∣∣∣∣
∫

V̂ (r′) exp (iq · r′) dr′
N∑
j

exp (iq · Rj)

∣∣∣∣∣

2

. (2.8)

where we have introduced

q = k− k′ (2.9)

with q being the scattering vector. Equation 2.8 is valid for any weak scattering

system, and can be written more concisely as

dσ

dΩ
= |F (q)|2 S (q) . (2.10)

F (q) describes the scattering amplitude of a single scatterer and is termed the form

factor. It is defined as the normalised Fourier transform of the scattering potential,

F (q) =
mn

2πh̄2

∫
V̂ (r) exp (iq · r) dr. (2.11)

that it is not important to consider these elements for neutron scattering from the FLL.
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S (q) is the structure factor which provides a description of how the neutrons are

scattered by the periodic potential of the lattice

S (q) =

∣∣∣∣∣
N∑
j

exp (iq · Rj)

∣∣∣∣∣

2

. (2.12)

2.1.2 Scattering from the flux line lattice

Neutrons can interact with matter via the nuclear potential, or the dipole potential

of the neutron magnetic moment within a magnetic field B (r). As the FLL is a

magnetic entity, we develop equation 2.10 in this context. As the scattering process

of the neutron by the FLL does not depend on the neutron spin, the scattering

potential can be given by

V̂ (r) = −γµNB (r) (2.13)

where µN is the nuclear magneton which is equal to eh̄/2mp, e is the electron

charge, and mp is the proton rest mass. γ is a dimensionless constant equal to

1.91, and B (r) is the field distribution of the FLL.

For parallel fields everywhere B = (0, 0, B), as is expected for the ideal FLL, the

elastic differential cross-section for magnetic scattering becomes

dσ

dΩ
=

(
mn

2πh̄2

)2

γ2µ2
N

∣∣∣∣
∫

B (r) exp (iq · r) dr
∣∣∣∣
2

S (q) . (2.14)

The structure factor term of the partial differential cross-section is calculated by

summing over the scattering potentials of the FLL at their positions Rj. As we treat

the flux lines as macroscopic rods that are parallel to the field direction, we describe

the two-dimensional positional array of flux line scattering potentials by the vector

Rj = µax̂ + νbŷ. The structure factor S (q) therefore becomes

S (q) =

∣∣∣∣∣
∑

j

exp (iq · Rj)

∣∣∣∣∣

2

=

∣∣∣∣∣
M−1∑
µ=0

exp (iµaqx) +
M−1∑
ν=0

exp (iνbqy)

∣∣∣∣∣

2

(2.15)

where M2 = N , and N represents a finite number of scatterers in the system.

Each of these exponential sums represents a geometric series, allowing the structure
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factor to be written as

S (q) =
sin2 (aqxM/2)

sin2 (aqx/2)

sin2 (bqyM/2)

sin2 (bqy/2)
. (2.16)

For large N , equation 2.16 is sharply peaked at locations given by

Gh,k = 2π

(
h

a
,
k

b

)
(2.17)

where Gh,k corresponds to a reciprocal lattice vector of the scattering system at the

Miller indices h and k. Away from this condition, S (q) is essentially zero. Thus we

can write for N flux lines in the sample,

S (q) = N

∣∣∣∣∣
∑

j

exp (iq · Rj)

∣∣∣∣∣

2

= N
(2π)3

V

∑
G

δ(2) (q− G) . (2.18)

The prefactor on the right hand side of equation 2.18 is obtained by integrating over

a unit cell of the reciprocal lattice unit cell of volume V (Squires, 1996). Substitut-

ing equation 2.18 into equation 2.14 the partial differential cross-section becomes

dσ

dΩ
= N

(γ

4

)2 (2π)3

V

1

Φ2
0

∑
G

|F (G)|2 δ(2) (q− G) (2.19)

with some re-arrangement of the pre-factor, which allows us to introduce the mag-

netic flux quantum Φ0 = h/2e. F (G) is the FLL form factor, defined as the two-

dimensional Fourier transform of the field-distribution for the FLL unit cell. The

delta function in equation 2.19 embodies the condition for elastic scattering; the

partial differential cross section will only be finite for a momentum transfer where

q = G. When this relation holds, it is often said the ‘Bragg condition’ is satisfied,

alluding to the fact that for the elastic scattering, |k| =
∣∣k′

∣∣ and that in this case

equation 2.9 corresponds to Bragg’s Law.

Equation 2.19 indicates that the partial differential cross-section is only finite

when the argument of the delta-function is zero. In reality however, a Bragg re-

flection exhibits a finite size in reciprocal space due to both the resolution of the

instrument, and imperfections in the FLL (see section 2.3). This means the partial

differential cross-section is finite over a volume in reciprocal lattice, and on satis-

fying the Bragg condition over this volume, diffracted intensity can be observed at
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the detector. In a real experiment however, the partial differential cross-section is

not measured, rather instead we measure the integrated intensity as the reciprocal

lattice vector is rotated through the Ewald sphere. The calculation of the integrated

intensity involves integrating the partial differential cross-section over all directions

in space to obtain the total cross-section σtot, and then integrating σtot as a function

of the reciprocal lattice rotation angle. Example calculations can be found in many

places (see for example, Squires (1996),Eskildsen (1998) or Laver (2007)). Here,

we re-state the final result for the integrated intensity of a Bragg spot of order {h, k}

I(Gh,k) = 2πV φn

(γ

4

)2 λ2
n

Φ2
0Gh,kcos(ζ)

|F (Gh,k) |2, (2.20)

where, essentially we have multiplied the magnitude of the partial differential

|dσ/dΩ| by a factor

I(Gh,k) =

∣∣∣∣
dσ

dΩ

∣∣∣∣
λ2

nφn

(2π)2 Gh,kcos(ζ)
(2.21)

where λn is the neutron wavelength and cos(ζ) is the Lorentz-factor. The angle ζ is

that which lies between the reciprocal lattice vector and the direction normal to the

rotation axis. In Appendix A, we outline the common experimental practice adopted

in order to carry out SANS measurements and obtain the integrated intensity for a

Bragg spot, and also how the integrated intensity data is analysed in order to obtain

the FLL form factor. The appendix also includes an example of some raw rocking-

curve data.

It is also customary to define the absolute reflectivity, which is normalised to the

incident neutron flux,

R(Gh,k) =
I(Gh,k)

φA
= 2πt

(γ

4

)2 λ2
n

Φ2
0Gh,kcos(ζ)

|F (Gh,k) |2 (2.22)

where we have assumed the volume V = At, where A is the illuminated sample

area, and t the mean sample thickness. φ is subsequently the neutron flux per

unit area. We see from equations 2.20 and 2.22 that for a given Bragg spot, with

all other variables constant, both the integrated intensity and absolute reflectivity

are proportional to the square of the form factor modulus, |F (G) |2 and inversely

proportional to the length of the scattering vector G.
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(a) (b)

Figure 2.1: In (a), the Ewald sphere is shown in grey, and the incoming wavevector
k is parallel to the field direction. This wavevector is defined as that spanning
the origin of diffraction OD (which is also the origin of the Ewald sphere), to the
origin of reciprocal space, OR. The reciprocal lattice of the FLL is shown as the
array of blue spots, with the frame around it representing the sample of the plane
of reciprocal space. In this scenario, none of the Bragg spots satisfy the Bragg
condition. In (b) we have rotated the reciprocal lattice by an angle ω about the
vertical axis, such that a reciprocal lattice vector G (or q) forms a chord of the Ewald
sphere. This is shown by the blue arrow. The vector k’ is the distance from OD to
end of G. The angle between k and k’ is given by the Bragg 2θ. These diagrams are
exaggerated for clarity. In reality ω is of order 1◦.

2.1.3 The Ewald sphere

The Ewald sphere construction provides a geometrically appealing picture from

which it is possible to visualise the application of the elastic scattering theory out-

lined in the previous two subsections. The sphere is defined in reciprocal space

according to incoming and outgoing wavevectors k and k′. If these vectors point

from a common origin, the ends of all possible k and k′ will lie on the surface of

a sphere. Figure 2.1 shows an interpretation of the Ewald sphere construction for

the specialised case of the flux line lattice. The incoming wavevector is defined as

that which spans the distance from the origin of the sphere, which is termed the

origin of diffraction, to the origin of reciprocal space. Initially, the plane of the re-

ciprocal FLL lies perpendicular to k, and is tangent to the sphere at this point. This
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G
(1,0)

G
(0,1)

Figure 2.2: A schematic diagram showing the circular sampling region that ex-
ists for a finite rotation of the reciprocal FLL. The dashed circles correspond to
the points where the plane of the reciprocal FLL touches the surface of the Ewald
sphere. Larger dashed circles indicate larger rotation angles of the reciprocal FLL.
In the figure, green (blue) dashed circles correspond to the cuts of the Ewald sphere
surface for the case where the reciprocal lattice is rotated about a vertical (horizon-
tal) axis. Around the circumference of each circle, the Bragg condition is satisfied,
and diffracted intensity is observed on the detector. The diagram serves to illustrate
that more than one Bragg reflection can satisfy the Bragg condition simultaneously.
The black circle corresponds to the origin of reciprocal space, filled red circles the
{1, 0} spots of a hexagonal FLL, empty circles the {1, 1} diffraction spots, and empty
diamonds the {2, 0} diffraction spots.

situation (shown in figure 2.1 (a)) realises no diffracted intensity for any of the

reciprocal lattice points, as the delta function of equation 2.19 is not satisfied. To

satisfy the requirement of the delta function, it is necessary to rotate the reciprocal

lattice by an angle ω, which brings a reciprocal lattice point to the surface of the

Ewald sphere. This is depicted in figure 2.1 (b). When this situation occurs, the

delta function, and consequently the Bragg condition, is satisfied. The q-vector is

equal to a reciprocal lattice vector G and diffracted intensity will be observed at

the detector. The angular difference between the incoming and resulting outgoing

wavevectors, k and k’ is the Bragg 2θ which for SANS is usually of order a degree.

In figure 2.2 we highlight an interesting consequence that can arise for the pla-
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nar two dimensional reciprocal FLL. When the reciprocal FLL plane is rotated about

an axis, be it horizontal or vertical, it slices through the surface of the Ewald sphere.

The points where the reciprocal FLL plane cut the surface of the Ewald sphere are

those where it is possible to simultaneously satisfy the Bragg condition. These

points trace out a circle. As the rotation angle of the reciprocal lattice increases,

this sampling circle becomes larger. Clearly, for a certain direction of rotation of the

reciprocal lattice, the points at lower q will be satisfied at smaller rotation angles.

However, as the angle of rotation increases, and as can be seen in figure 2.2, there

is an increased possibility to simultaneously satisfy the diffraction condition of mul-

tiple reciprocal lattice vectors. The satisfying of multiple reciprocal lattice vectors

at once is often deliberately carried out in SANS measurements.

2.2 Instrumentation

The large-scale instrumentation, coupled with the need for a source of neutrons,

means that the SANS measurements reported in this thesis were carried out at

dedicated international facilities. The results reported in this thesis made use of

three SANS instruments, the D11 diffractometer at the Institut Laue-Langevin (ILL),

Grenoble, France, and the SANS-I and SANS-II instruments at the Paul Scherrer

Institut (PSI), Villigen, Switzerland. All of these instruments were used in the

same way, and have qualitatively the same layout, summarised schematically in

figure 2.3.

The neutrons required for SANS experiments from the FLL are provided either

by a reactor source, as at ILL, or a spallation source, as at PSI. For the former, hot fis-

sion neutrons are moderated by liquid deuterium in order to obtain cold neutrons.

At PSI, the neutrons are supplied by the process of bombarding a heavy metal tar-

get with high-energy protons. Liquid deuterium is again used as the moderator.

Deuterium is the chosen moderator due to its low neutron absorption cross-section,

light mass, and high scattering cross-section. This provides an efficient moderation

of the high energy neutrons produced in fission or spallation processes (of energy
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Figure 2.3: A schematic diagram of a typical SANS instrument. Typically the length
of the collimator section is approximately equal to the distance between the sample
and the area multidetector, in the traditional pinhole geometry. This distance can
be up to ∼40 m on the D11 instrument at ILL. Typically shorter distances are used,
especially for larger momentum transfers.

∼ 1 MeV) down to cold (∼ 1 meV) energies. For both types of source, cold neutrons

are directed towards the instrument via guides which are internally coated with

a highly polished ‘supermirror’ layer (Ni-coated multi-layer). This inner surface is

reflective to grazing incidence neutrons, as the critical angle is a few degrees for

cold neutrons. Therefore, neutrons are guided towards the instrument via multiple

critical angle reflections.

The neutrons that emerge from the ends of the guides possess a range of en-

ergies. In order to select a single energy, and hence wavelength, a helical tilt slot

mechanical velocity selector is used. The velocity selector is composed of a turbine

that rotates about its long axis. Neutron absorbing blades that are approximately

parallel to the long axis exist on the outside, but are helically rotated about the

axis of the turbine. This means that the centre point between two adjacent blades

is not parallel to the turbine axis between the entrance and exit of two blades. By

rotating the turbine at a certain frequency, only neutrons of a certain energy will be

able to pass through between the blades, whilst higher and lower energy neutrons

will become absorbed. In reality, the selector allows a distribution of wavelengths

to pass with a typical FWHM spread ∆λn/λn of ∼ 10 %.

Selected neutrons then pass through a low-efficiency detector which acts as the
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monitor. The monitor is used for the normalisation of the diffracted neutrons in

order to provide a measure of the incident neutron beam. As PSI is a spallation

source, it is known that the neutron flux is often prone to fluctuations with time.

Therefore, in deciding how long to carry out a measurement, the best measurement

unit is not absolute time, but rather standard monitor, where a standard monitor

represents a fixed number of counts recorded by the low-efficiency detector. If the

number of neutrons corresponding to one monitor is known, then it is logical to

choose to carry out a measurement for a set number of monitors. The real benefit

for normalisation according to standard monitor comes in analysis, where individ-

ual measurements recorded over a different number of monitors can be directly

compared (though attention must be paid towards obtaining the correct statistical

accuracy). In contrast, at the reactor source of the ILL, the neutron beam flux is

very stable with time, meaning that normalisation according to a standard time is a

reasonable alternative to standard monitor.

Neutrons that pass through the monitor then pass into the collimation section.

This section is composed of a length of guide divided into discrete sections, where

each section can be adjusted by the user to be either a section of supermirror neu-

tron guide or a section of collimation. In contrast to the neutron guide sections,

the inner walls of the collimation sections are strongly neutron absorbent. Typically

section sizes are of order between 1 m and 3 m in length. The purpose of collima-

tion to control the angular divergence of the beam that emerges from the velocity

selector. This divergence can be reduced by progressively replacing neutron guide

sections with collimation sections on moving upstream from the sample. Inserting

a collimation section essentially moves the source aperture further upstream from

the sample. Subsequently, the angular divergence of the neutron beam reduces,

as neutrons are absorbed by the walls of the collimation sections. Reduced angu-

lar divergence contributes to improvements in all aspects of the resolution of the

resultant diffraction patterns (see section 2.3), however the improvements come

at the expense of neutron flux at the sample position. Therefore, the decision on

the collimation length should be carefully considered in order to achieve the best
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compromise between resolution and flux.

Between the end of the collimation section and the detector section lies the

sample and sample environment. The details associated with this are described in

section 2.2.1. Both diffracted and undiffracted neutrons that pass through the sam-

ple environment section will pass into the detector section. This section is composed

of an evacuated detector tank that houses a position adjustable, two-dimensional

multidetector. The position of the multidetector within the tank can be adjusted

continuously over a maximum distance of order the maximum collimation length.

A neutron is detected through its interaction with 3He, which has a high neutron ab-

sorption cross-section. The capture of a neutron by 3He produces a triton, a proton

and 764 keV of energy. The charged decay products ionise the gas in the cham-

ber, ultimately producing a charge pulse that is detected by a grid of high potential

wires. Each wire has a horizontal and vertical index, allowing the determination of

the location of the charge pulse associated with the neutron detection event. Each

wire also has a finite size, which contributes to the binning of the data into pixels.

There is a finite dead-time associated with each neutron detection event, typically

of order ∼ 10 µs. This implies a maximum count-rate of order ∼ 100 kHz, though

precise values depend on the instrument. However, at the short wavelengths acces-

sible to SANS, these count-rates are too low to process all of the events associated

with an un-diffracted and un-attenuated beam. Therefore, in order not to over-

load the detector and be able to count the diffracted neutrons, a strongly neutron

absorbent Cd beam-stop is placed over the detector to intercept the un-diffracted

beam.

2.2.1 Sample and sample environment

To examine the FLL of a type-II superconductor, the material needs to be mounted

appropriately into a sample environment that provides cryogenic temperatures and

uniform magnetic fields. Fortunately, these sample environment requirements can

be achieved by making use of cryomagnet facilities that are local to the institutes.

A cryomagnet assembly houses both a variable temperature insert (VTI) and a split
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pair of superconducting solenoid coils. The VTI provides a space within which

the sample can be loaded and cooled using He exchange gas. The solenoid coils

provide the magnetic field which is used to create the FLL inside a sample. This

field is at its most uniform at the midpoint between the coils, and it is at this point

the sample should be placed. In order to achieve this, the bottom of the VTI lies

at this midpoint between the coils, providing a space where the sample can be

positioned on the end of a sample stick. The coil arrangement indicated in figure 2.3

is typical of most experimental arrangements, with the field at the midpoint of the

split pair parallel to the neutron beam. At ILL, the available horizontal fields can

reach a maximum of 7 T, whilst at PSI magnetic fields up to 11 T are available.

Both cryomagnet environments can provide sample temperatures down to 1.5 K.

However, similarly at both institutes there is the option to load the sample onto

the cold tail of a dilution refrigerator insert, and place this inside the VTI. Whilst

this is possible at PSI with the 11 T SANS cryomagnet, at ILL a dilution insert

can only be loaded into the VTI of a 2 T cryomagnet suitable for SANS. At all

facilities, the cryomagnet assembly can be mounted onto goniometer tables so that

the sample can be positioned so that it will intercept the neutron beam. The table

and cryomagnet can then be rotated and titled through small angles using computer

control, which is a necessity in order to carry out rocking curve measurements.

As we make extensive use of the dilution refrigerator (DR) system for the mea-

surements described in chapter 4, we take a moment to describe the physics behind

its operation in a little more detail. The cooling provided by a DR system relies

on the phase separation of a mixture of 3He and 4He on cooling below a certain

temperature. Figure 2.4 (a) shows a phase diagram describing the mixture of the

stable isotopes of He, 3He and 4He, as functions of 3He fraction and temperature.

For temperatures below the tri-critical point at 0.86 K, the mixture spontaneously

separates into a 3He rich phase which is mostly 3He, and a dilute phase which is

mostly 4He. We see from figure 2.4 (a) that below 0.86 K, and T → 0, there will

always be a finite fraction (∼ 6 %) of 3He within the dilute phase. As the 3He rich

phase has a lower density than the 3He dilute phase, the rich phase floats above
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(a) 3He/4He phase diagram (b) Schematic layout of a dilution refrigerator

Figure 2.4: In (a) we show a phase diagram indicating the properties of the 3He/4He
mixture, as functions of both temperature and molar fraction of 3He (taken from
http://www.cresst.de). In (b) we show a schematic diagram of a dilution refrigera-
tor insert analogous to that used in the VTI of the 11 T SANS cryomagnet at PSI.
The green box indicates the inner vacuum can which is placed inside the VTI of
the cryomagnet. The pumps at the top indicate the gas handling system at room
temperature.

the dilute phase, and the two phases are separated by a phase boundary. If we

consider the 4He in the dilute phase as inert and essentially non-interacting, the

phase boundary represents a separation between an almost pure and ordered 3He

phase, and a dilute and more disordered 3He phase. By pumping on the vapour

above the dilute phase, 3He atoms preferentially evaporate over 4He atoms. This

breaks the equilibrium of the dilute phase such that 3He atoms from the rich phase

are able to cross the phase boundary. However, in order to cross the boundary and

reach the disordered phase, energy in the form of heat is required, which can be

obtained from the walls of the chamber where the phase separated mixture is held

(the mixing chamber). This chamber makes the thermal contact with the sample.

In order to replenish the 3He that moves across the phase boundary, 3He is added to
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the rich phase via a continuous cycle process. This continuous cooling process can

occur for all temperatures, as figure 2.4 (a) shows the fraction of 3He in the dilute

phase always remains finite. A continuous cycle mode was adopted when we used

the DR for the SANS experiments.

In figure 2.4 (b) we show a schematic diagram of the dilution refrigeration sys-

tem and the major components involved in the continuous cycle mode of operation.

The 1 K pot is used to condense the 3He/4He mixture, though sitting at the VTI tem-

perature of 1.2 K, it does not provide sufficient cooling power to cause the phase

separation of the mixture at 0.86 K. The extra cooling is provided by the still via a

series of heat exchangers as the 3He heads towards the mixing chamber. It is crucial

for cooling to base temperature that the 3He/4He balance of the mixture is chosen

such that the phase separation boundary lies inside the mixing chamber, and the

liquid surface of the dilute phase lies in the still. This allows the pumping above

the liquid surface of the dilute phase where the 3He preferentially evaporates over

the from the 4He. Carefully heating the still can also accelerate the evaporation

of 3He gas, and accelerate the cooling rate. The 3He gas evaporated is pumped to

a gas-handling system at room temperature, where it is recycled and cleansed on

passing through a cold trap held at 77 K. It is then cycled back to the 1 K pot to

re-condense. The flow impedance below the 1 K pot ensures there is a sufficiently

high pressure for the gas to condense.

When loading any sample onto a sample stick, or onto the cold tail of the DR, in

order to keep background scattering as low as possible it is important to minimise

the amount of material that the neutron beam encounters. The main sources of

background scattering include the cryomagnet itself, the sample and sample mount-

ing. To minimise the scattering from the cryomagnet, purpose built sapphire win-

dows are placed at the neutron entry and exit points which allow access through the

walls of the otherwise Al construction. The plate upon which the sample mounted,

and the sample holders which hold the plates, are typically made of pure and thin

Al. Pure Al is chosen as it is free of precipitates which contribute to the small-angle
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background scattering, and it has a low absorption cross-section. The adhesive used

to attach the sample to the sample plate is typically diluted down, and the applied

layer as thin as possible in order to keep the background scattering low and main-

tain good thermal contact between the plate and the sample. The sample itself can

contribute to the background in the form of ‘metallurgical’ scattering. This arises

due to imperfections in the sample such as planar defects, and is sometimes seen

clearly in the background. Reflections from sample edges can also be observed on

the detector and sometimes look like convincing Bragg spots. However, these can

be suppressed by identifying the likely reflecting edges on the sample, and painting

over them with strongly neutron absorbing Gd2O3 paint. It is also common to place

a neat fitting Cd window around the sample in order to define the illumination

area. This helps limit the illumination area of the beam and help reduce unnec-

essary background signal. Typically, this Cd window placed on the sample holder

defines the sample aperture. Therefore, the aperture at the sample end of the col-

limation section is then slightly larger than this so that the illumination area of the

sample is defined by this sample aperture.

2.3 Resolution effects

As mentioned in section 2.1.2 the δ-function description of the FLL described by

equation 2.19 is not realised. Due to contributions from both the instrument and

FLL in the sample itself, Bragg spots exhibit a finite size in reciprocal space. This is

represented in figure 2.5 where we show a schematic diagram of the usual SANS

experimental setup, with field parallel to the neutron beam. In this geometry we

see that a Bragg spot exhibits characteristic dimensions Wl, Wr and Wa which can

all be measured.

Quantitative treatments of the resolution and resolution function are described

by Cubitt et al. (1992) and Brown (2005). In particular, Cubitt et al. (1992) devel-

oped a convenient model where contributions to the finite widths of the observed

diffraction spots can be represented as gaussian functions, each with a standard de-
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Figure 2.5: A schematic diagram of the parallel field SANS geometry. For this ar-
rangement the field is approximately parallel to the incoming wavevector, kin. The
arrangement of spheres represents a square FLL coordination in reciprocal space.
The use of spheres is to indicate the finite size of a three-dimensional Bragg spot in
recpirocal space. The small paired arrows indicate the angular width of the Bragg
spot along three directions; Wl is the longitudinal width, Wr is the radial width and
Wa is the azimuthal width. The detector image represents a projection of the recip-
rocal FLL as would be observed on the detector. Wl is measured out of the plane,
whilst Wr and Wa are measured in the detector plane.

viation representative of the actual distribution. The overall distribution represents

a convolution of the instrument contributions and those from the FLL within the

sample.

The length of the collimation section, and the dimensions of the source and

sample apertures, determines the angular spread, or beam divergence, a of the

incoming beam. If so and sa respectively denote the widths of the source and sample

apertures, and lc and ld respectively denote the collimation length between the

apertures and the distance between the sample aperture and detector, Pedersen

et al. (1990) show that the FWHM spread a can be represented as

a '
{

so/lc if so/(lc + ld) ≥ sa/ld

sa

(
l−1
c + l−1

d

)
, otherwise.

(2.23)

48



Small-angle neutron scattering by the flux line lattice

For circular apertures, Pedersen et al. (1990) calculate small corrections to equa-

tion 2.23.

The second FWHM spread, denoted b, arises due to the imperfection of the FLL

in the sample, and indicates the effective spread b of the Bragg plane angle away

from the mean. In reciprocal space this translates into an angular spread of G both

within, and normal to the scattering plane. For the parallel field geometry shown

in figure 2.5, b indicates a measure of the longitudinal correlations of the flux lines

along the field direction. Similarly, any mosaic spread in FLL crystallites within a

sample will also contribute to the spread in the b.

The FWHM spread in c reflects the spread in Bragg angle θB, which appears in

reciprocal space as a spread in the magnitude of the scattering vector. The major

contribution to c arises due to the wavelength spread of the beam that emerges

from the velocity selector. Strictly, c also includes a measure of the spread Bragg

plane spacing ∆G/G,

(
c

θB

)2

=

(
∆λn

λn

)2

+

(
∆G

G

)2

. (2.24)

However, as the spread in θB is small for small-angle scattering, it is rather difficult

to measure the contribution due to the spread in the Bragg plane spacing.

At the Bragg peak, Cubitt et al. (1992) derive the following expression for the

radial width of the Bragg spot Wr as shown in figure 2.5,

W 2
r =

a2c2 + a2b2 + 4b2c2

a2 + b2 + c2
. (2.25)

which represents the spread of the measured exit angle. The expression for the

width of the Bragg spot that lies out of the plane of the reciprocal lattice (rocking

curve width) Wl is derived to be

W 2
l = a2 + b2 + c2, (2.26)

whilst finally the azimuthal spread Wa is shown to be

W 2
a = a2 + (2θhrt)

2 , (2.27)
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where 2θh describes the rotation angle of the Bragg planes about the beam axis,

whilst rt is the FWHM of the angular spread of the reciprocal lattice vector about

this axis. We see that within equations 2.25 to 2.27, the instrumental contribution

to the size of a Bragg spot can be found by evaluating the widths a and c, and setting

all other terms, which are associated with the FLL, to zero.
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Flux line lattice structure transitions
in twin-free YBa2Cu3O7

We report new results from SANS studies of the flux line lattice (FLL) in the max-

imally doped High-Tc superconductor YBa2Cu3O7. Using a near perfectly twin-free

sample, our measurements reveal the intrinsic FLL structure with the field applied

parallel to the crystal c-axis (H ‖ c). Our results at 2 K show that at low fields,

the FLL structure is composed of a single distorted hexagonal domain aligned with

the crystal axes. On increasing the field, at 2.3 T we observe a first-order 90◦ re-

orientation transition into a different single domain hexagonal structure. We sug-

gest this transition is driven by the increasing prominence with field of non-local

effects combined with a Fermi surface anisotropy. At 6.7 T we observe another

first-order transition into a rhombic structure phase which could be driven by the

increasing prominence of the order-parameter anisotropy. The observed distortion

of the rhombic structure is orthogonal to that of the hexagonal structures, possibly

providing evidence for a high-field s-wave component to the predominantly dx2−y2

order parameter. However, an equally possible interpretation for the emergence

of the high field structure phase is that it is due to the increasing prominence of

further Fermi surface effects.

Measurements of the FLL form factor in the low field structure phase show our

results are describable using a phenomenological model. However, at higher fields

the model breaks down, and it is necessary to introduce several assumptions in or-

der to understand the data. We discuss the field- and temperature-dependence of

the form factor data within the framework of the predictions of the available theo-

ries and other experimental data.
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3.1 Introduction to YBa2Cu3O7−δ

The initial discovery of High-Tc superconductivity in cuprate materials was made

by Bednorz and Müller (1986), at ∼35 K in the La1.85Ba0.15CuO4 (LBCO) system.

The discovery caused great excitement, as the record of the highest Tc in any mate-

rial had leapt from 23.2 K (held by the alloy Nb3Ge) to ∼35 K in LBCO. However,

more quickly followed with the synthesis of, and observation of superconductivity

in, a Y-Ba-Cu-O system in 1987 (Wu et al., 1987). Their samples exhibited criti-

cal temperatures within the range of 80 K to 93 K, being above that of the boiling

point of liquid nitrogen at 77 K, a coolant that is cheaper, more plentiful, and eas-

ier to handle than liquid helium. Therefore, it is perhaps the discovery of super-

conductivity in the Y-Ba-Cu-O system, and other cuprates shortly afterwards that

possess even higher critical temperatures, (e.g. Bi2Sr2CanCun+1O2n+6−δ (BSCCO)

(Tc > 105 K) (Maeda et al., 1988) and TlmBa2Can−1CunO2n+m+2+δ (Tc > 120 K)

(Sheng and Hermann, 1988)), that were responsible for stimulating the ongoing

worldwide research effort into understanding, and manipulating these materials.

To aid the ensuing discussion on the more important chemical and physical prop-

erties of YBa2Cu3O7−δ, we briefly review the crystal structure. We note that δ in the

chemical formula is variable between 1, which is oxygen deficient YBa2Cu3O6, and

0, which is stoichiometric YBa2Cu3O7. The crystal structures for both of these phases

are shown in figure 3.1. Within the structures there are clear layers; a CuO2 bilayer

sandwiching an Y atom, and BaO planes sandwiching a Cu plane (or CuO plane

(figure 3.1 (b)). The Y and Ba atoms serve as fixed charges and stabilise the crys-

tal structure. The electronic nature of the CuO2 planes is important as, within the

superconducting phase, the majority of the low lying energy states that govern the

overall macroscopic behaviour originate from the Cu-O bonds here. Furthermore,

as the common constituent unit of all cuprates is the CuO2 plane, we concentrate

our initial discussion here.
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(a) YBa2Cu3O6 (b) YBa2Cu3O7

Figure 3.1: The crystal structures of (a) YBa2Cu3O6 and (b) YBa2Cu3O7. The crystal
axes and key between the two figures apply to both, and indicate that there are just
two inequivalent oxygen sites in YBa2Cu3O6, as opposed to four in YBa2Cu3O7.

3.1.1 CuO2 planes and the metal-insulator transition

Consider the CuO2 plane as shown on the left hand side of figure 3.2. When

electrically neutral, all the Cu2+ ions in the CuO2 planes have nine electrons in

their 3d shell. However, under the influence of crystal field effects within the host

cuprate, the energy degeneracy of the 3d states is broken. Eight of the electrons

in the 3d orbital are paired off at lower energy, leaving an unpaired electron in the

higher energy dx2−y2 orbital. It is generally accepted that this orbital and its interac-

tions are responsible for the majority of the low energy physical phenomena in the

cuprates. This orbital strongly hybridises with the relevant 2px,y orbitals of the in-

plane O2− ligands to form three bands. These respectively correspond to bonding,

non-bonding and anti-bonding orbital configurations as depicted in Fig 3.2.

Band structure calculations based solely on the CuO2 plane predict the bonding
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Figure 3.2: Schematic diagram showing the various possible combinations of wave-
function symmetry induced by the hybridisation of oxygen and copper orbitals in
the CuO2 plane. After Damascelli et al. (2003).

and non-bonding bands to be full, and the anti-bonding band to be half filled at the

Fermi energy (Damascelli et al., 2003). As the carrier density for each CuO2 planar

unit cell is a single hole, in the absence of interactions, these should delocalise

and the planes should show metallic behaviour. However, this phase is well-known

to be a Mott-type insulator, exhibiting commensurate S = 1
2

antiferromagnetism

(TN > 400 K in YBa2Cu3O6, as verified by neutron scattering (Tranquada et al.,

1988)) with the large on site repulsion U , originating from the Cu ions. However,

the energy difference ∆, between the Cu d levels and the O p levels is less than

the on-site repulsion energy U . Hence, the lowest energy excitation is of order the

charge transfer energy, thus characterising the plane more correctly as a charge

transfer insulator. Most models predict the detailed band structure between an

empty upper band and nearest filled energy band as having an energy gap of order

∆ (see for example, Zhang and Rice (1988)).

It lies beyond the scope of this thesis to go into the details of the theories that

attempt to model the insulating and antiferromagnetic situation. Here, we attempt

to highlight the strongly-correlated nature of the charge carrier interactions within

the planes. In YBa2Cu3O7−δ, the addition of oxygen atoms dopes holes into the api-

cal O(1) atoms and subsequently into the CuO2 planes. Initially for low dopings,

figure 3.3 (b) shows that YBa2Cu3O7−δ remains insulating. This is because the holes

doped into the planes localise with the oxygen ions rather than the copper ions,

even though most of the latter have a half-filled d-orbital. As the doping increases,

interactions between the doped holes and the Cu spins eventually allow spins to

delocalise, thus causing the antiferromagnetic correlations to become increasingly
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(a) (b)

Figure 3.3: Results of a systematic investigation of the oxygen doping dependence
in YBa2Cu3O7−δ in terms of (a) the number of holes doped per Cu planar atom into
a CuO2 plane p, and (b) the zero-field Tc, as reported by Liang et al. (2006). In both
cases, the horizontal axis is shown as 6 + x, which is equivalent to 7 − δ notation
used in the text, where x = 1− δ.

unstable. By 7 − δ ∼ 6.3, or p ∼ 0.04, the commensurate Néel state collapses, and

the system becomes more metal-like, and ultimately superconducting. The collapse

of the commensurate Néel state with hole doping does not represent the disappear-

ance of underlying antiferromagnetic charge or spin correlations within the super-

conducting phase. Some believe (Zaanen and Gunnarsson, 1989) the added holes

contribute to the formation of low-dimensional and incommensurate charge/spin

‘stripes’ (strongly supported by experiment (Tranquada et al., 1995; Mook et al.,

2000; Hoffman et al., 2002; Hinkov et al., 2004)) that co-exist and compete with

superconductivity in the under-doped regime 5. As the hole-doping increases the su-

perconductivity becomes more potent, exhibiting a maximum zero-field Tc of∼ 92 K

for 7− δ ∼ 6.93, or p ∼ 0.165. This is referred to as optimal doping, and here (and

for larger p - over-doping) antiferromagnetic correlations finally become negligi-

ble (Orenstein and Millis, 2000), and Fermi liquid-like behaviour is recovered.

The under-doped regime of YBa2Cu3O7−δ, where p < 0.165, is where most re-

search is performed. This is due to the fundamental nature of the questions being

asked such as those concerning the descriptions of spin dynamics, the structure and

5In this context, we mention that, in addition to solving the outstanding problem of the micro-
scopic mechanism of High-Tc superconductivity, a major contribution towards this is thought to lie
with a description of how the low energy quasiparticle states emerge from the insulating state as a
function of planar hole-doping.
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evolution of the Fermi surface as a function of doping, and the character of the

‘pseudogap’ phase in the ‘normal’ state above Tc. The work presented in this thesis

has been obtained from measurements on a over-doped sample of YBa2Cu3O7, and

we mention in passing that under-doped materials command a lot of attention in

the literature. For optimally- and over-doped cuprates, the physics appears to be

reasonably consistent with a Fermi liquid-like picture, where the materials possess

large and coherent Fermi surfaces.

3.1.2 Doping dependence of the single crystal structure

The insulating parent compound is YBa2Cu3O6 (Fig 3.1 (a)) and, as there is no

chemical distinction between the a and b directions, the crystal structure is tetrag-

onal and of type P4/mmm. Initially for low hole dopings, the oxygen atoms ran-

domly occupy interstitial sites between the Cu(1) ions that lie between the BaO

planes. Again due to a lack of distinction between the crystal directions, the oc-

cupied sites lie along both the a and b directions (contrary to exclusively along

b as indicated in Fig 3.1 (b)). Therefore, initially for large δ, the structure re-

mains tetragonal. However, coincident with the emergence of superconductivity

at p ∼ 0.04, the a-b symmetry is broken, and oxygen atoms preferentially occupy

O(4) sites. The resulting direction where the average length of the Cu(1)-O(4)

chains is longest is assigned the crystal b-direction, and the crystal structure un-

dergoes a transition to a lower symmetry orthorhombic structure of space group

Pmmm. This transition in structure is a crucial detail with respect to crystallo-

graphic twinning, the effects of which on the flux line lattice are discussed later.

At room temperature for YBa2Cu3O6.93, the lattice parameters of the orthorhombic

structure are a = 3.822 Å, b = 3.887 Å, and c = 11.680 Å (Jorgensen et al., 1990).

For a certain doping, the percolation of the CuO chains within the orthorhombic

structure allows the formation of various oxygen ordered superstructures. Examples

of these are shown in figure 3.4, with figure 3.4 (c) representative of the long-range

ortho-I (OI) oxygen order of the sample studied in this thesis. Other dopings exhibit

different orderings which essentially correspond to a different periodicity along the
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(a)

(b)

(c)

(d)

Figure 3.4: Various ordering configurations of the CuO chains are shown in (a) - (c).
In all figures, small filled circles correspond to Cu atoms, whilst large filled and large
empty circles correspond to occupied and unoccupied oxygen sites respectively. In
(a) is shown the proliferation of short CuO chains in the insulating and tetragonal
phase. In (b) and (c) the CuO chain ordering is shown for the YBa2Cu3O6.5 and
YBa2Cu3O7 structures respectively. In (d) is a phase diagram showing the dopings
at which different superstructures appear. The phase boundaries mark the transi-
tion points between the high temperature tetragonal crystal structure and the low
temperature orthorhombic structures. After Andersen et al. (1999) and references
therein.

a-axis between alternating full CuO chains and empty Cu chains. For example,

the oxygen ordered CuO chains of YBa2Cu3O6.5 have a periodicity of 2a for the

ortho-II (OII) phase - see figure 3.4 (b). Figure 3.4 (d) shows a ‘phase diagram’

of the doping dependence of the various types of oxygen ordering superstructures.

The figure shows that for any doping, there is a transition from a high symmetry

tetragonal phase to a lower symmetry orthorhombic phase that occurs on cooling

during the sample preparation. At high temperatures (T > 400 K), regardless of

the doping, the structure is in an OI phase as finite length chain fragments align at

high temperature (Andersen et al., 1999).

The superconductivity that emerges is particularly sensitive to the quality of

the oxygen ordering for a given superstructure. This is unsurprising, as the CuO

chains can be considered as one-dimensional systems, which are highly sensitive
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to the effects of disorder. Disordered and fragmented chains are known to de-

grade the superconductivity within the CuO2 planes (due to a reduction in the

hole-doping) (McCormack et al., 1992) meaning that often from the oxygen-doping

alone it is not possible to predict the value that Tc will take. For example, in

YBa2Cu3O6.4 a high degree of chain disorder can drive a sample insulating (Veal

and Paulikas, 1991), whilst in YBa2Cu3O6.5, disrupting the OII order can depress

Tc by as much as 6 K (Bobowski et al., 2007). However, the problem is somewhat

alleviated through the observation of an empirical relationship between value of

the c-axis lattice parameter and the hole doping per Cu planar atom, p (and hence

Tc) (Liang et al., 2006).

3.1.3 Twin planes in orthorhombic YBa2Cu3O7−δ

For oxygen dopings where 7 − δ > 6.3, the system is superconducting and the

crystal structure is orthorhombic. The degree of orthorhombicity is determined by

the doping (Jorgensen et al., 1990), though for all dopings the inequality of the a

and b lattice parameters is relatively small, being of order 2 % for optimally-doped

YBa2Cu3O6.93. However, this difference does have important experimental conse-

quences regarding the effects of crystallographic twinning. Due to the inequality

of the a and b directions, as-grown samples of YBa2Cu3O7−δ naturally decompose

from a single crystal domain at high temperature into ‘twin’ domains on cooling.

The twin domains occupy different regions of the crystal and possess mutually

orthogonal orientations of the a and b crystal axes. Domains of each orientation

nucleate at various places and, dependent on the thermal history of a sample, can

vary between nanometres and fractions of millimetres in size. Due to this vast vari-

ation in length scale, and the sensitivity of a domain size to specific preparation

conditions, the physical effects associated with twins suffer from a lack of repro-

ducibility between samples. Dependent on the orientation of a certain twin, the

boundary between the two orientations of single crystal form along the [110] or

[1-10] crystallographic directions. Hence there are two orthogonal twin-domain

regions within a sample. Figure 3.5 (a) shows a photograph of a sample containing
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(a) (b)

Figure 3.5: In (a) we show a photograph of the (001) surface of a twinned sample of
YBa2Cu3O7−δ illuminated using polarised light. The two regions labelled as ‘Region
I’ and ‘Region II’ indicate regions where the twin boundaries are aligned along [110]
or [1-10] respectively. In (b) we show a schematic diagram of an ideal border
region in real-space between two crystal domains labelled α and β. The angle 2θ is
the shear angle between the [-110]α and [1-10]β directions. Note the sketch in (b)
corresponds to a section of Region I from (a). Photograph in (a) courtesy of C.T.
Lin, MPI Stuttgart.

(a) (b)

Figure 3.6: Schematic diagrams demonstrating (a) the reciprocal space atomic lat-
tice from the twin-domain Region I of figure 3.5 (b). The reciprocal space lattice
of domain of the α domain is in red, whilst it is in blue for the β domain. In (b)
we show the overall reciprocal atomic lattice for both twin domain regions. The
reciprocal space lattice of Region I is shown in red, whilst that of Region II is shown
in green.
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these two region types where the twin boundaries of Region I are aligned along

[110] and those of Region II aligned along [1-10].

Figure 3.5 (b) shows an ideal real-space representation of a twin-boundary in

the twin-domain of Region I depicted in figure Figure 3.5 (a). This figure also shows

the shear angle between the [110] directions of the two domains labelled as α and

β 6. On rotating the crystal structure in Region I to obtain the resulting real- or

reciprocal-space crystal lattice of Region II, the lattice of Region I should be rotated

by 90◦ ± ε, where ε ∼ θ. In heavily twinned samples, even the value of ε can vary

in the same sample, which results in many slightly differently oriented domains;

the discussion here concentrates on lightly twinned samples. Figure 3.6 (a) shows

the atomic lattice in reciprocal space for the twin domain of Region I shown in

figure 3.5 (b). Here it is clear to see that within a twin domain region, there are

two orientational states of the reciprocal atomic lattice. Accounting for the other

twin-region, Region II, figure 3.6 (b) shows that in total there are four orientational

states of the crystal lattice, with the α and β domains of Region I at an angle of ∼ 2θ

to the equivalent domains in Region II.

In experiments on twinned samples, the four orientational states contribute to

the observations equally. Therefore, the conclusions drawn from studies on twinned

samples of YBa2Cu3O7−δ, particularly those studies examining various anisotropies

within the plane, are often limited by being unable to distinguish between the in-

trinsic physical effects and those influenced by the twinned nature of the crystal lat-

tice. FLL studies are no exception, as the orientations of equivalent FLL structures

will be different according to which orientational state they occupy. Furthermore,

flux lines are susceptible to pinning effects arising from twin boundaries. In reality,

the boundaries both within a twin domain and between different twinned regions

can be regarded as regions of both long-range point-like disorder, and also where

the superconducting order parameter is depressed from the bulk value. Hence, flux

6The angle 2θ is found from
2θ = 2

(
90− 2.tan−1

(a
b

))
(3.1)

and for optimally-doped YBa2Cu3O6.93, 2θ ∼ 1.8◦.
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lines can preferentially pin to these defects to minimise their free energy. Scanning

tunnelling microscopy (STM) shows clear evidence in real-space for flux lines pin-

ning to a twin-boundary (Maggio-Aprile et al., 1997; Shibata et al., 2003). Bulk

evidence is provided through the reciprocal space studies of numerous SANS mea-

surements (Yethiraj et al., 1993b,a; Keimer et al., 1994; Johnson et al., 1999; Simon

et al., 2004; Brown et al., 2004; White et al., 2008). From the SANS studies, the re-

sults indicate that pinning to twin boundaries is strongly influential in determining

the long-range positional coordination of the FLL structure, as the FLL specifically

orients in regions away from twin boundaries to accommodate the alignment of flux

line planes parallel to the direction of the twin-plane. This is supported by the STM

study of Shibata et al. (2003), which shows the FLL coordination to be influenced

by flux line planes pinned to a twin boundary for distances up to 1 µm away.

3.1.4 Band structure of YBa2Cu3O7

For maximally doped YBCO, the theoretical picture of the low energy states pro-

vided by band structure calculations appears to be well established, and reasonably

consistent across different calculational techniques (Pickett et al., 1990; Andersen

et al., 1995; Elfimov et al., 2008). The results of the linear augmented plane wave

(LAPW) calculations of Pickett et al. (1990) are shown in figure 3.7.

Note that for YBa2Cu3O7, the first Brillouin zone is centred on S, and not Γ,

as the principal carriers are holes. Figure 3.7 (c) shows that the Fermi surface

is predicted to be comprised of four bands. Two large, concentric and distorted

cylinders centred on S/R, that cross the Y S/TR and XS/UR boundaries, originate

from within the CuO2 planes. The band labelled ‘b’ corresponds to the symmetric

(about the mirror plane of the CuO2 bilayer) linear combinations of the planar pdσ

antibonding orbitals (O(2)y - Cu(2)x2−y2 - O(3)x). This band is called the bonding

band and has a lower energy than the band labelled ‘a’ which corresponds to the

antisymmetric linear combination of bonding wavefunctions. Hence, the ‘a’ band

is called the antibonding band. The bands labelled ‘c’ and ‘s’ are the ‘chain’ and

‘stick’ bands, which are predominantly associated with the CuO chains that form
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(a)

(b)

(c)

Figure 3.7: The results of band structure calculations performed by Pickett et al.
(1990). In (a) and (b) the calculated band structure is shown at (a) kz = 0 and (b)
kz = π/c. In (c) we show the irreducible quadrant of the first Brillouin zone derived
from the results shown in (a) and (b). In (c), kx is horizontal and ky vertical, with
the shaded regions indicating the degree of kz dispersion between kz and kz = π/c,
but projected onto the kx − ky plane. The labels, ‘a’,‘b’,‘c’ and ‘s’ refer to bands
discussed in the text.

along the crystal b-direction. The essential orbitals for the ‘c’ band are the chain

pdσ antibonding orbital made from O(4)y and the pdσ antibonding dumbbell or-

bital O(1)z - Cu(1)z2−y2 - O(1)z. The stick band is composed of a rather more

complicated bonding combination of two chain pdπ antibonding dumbbell orbitals

(O(1)x - Cu(1)xz - O(1)x and O(1)y - Cu(1)yz - O(1)y) and an antibonding linear

combination of O(4)z with the pdπ bonding dumbbell orbital O(1)y - Cu(1)yz -

O(1)y. Experimental evidence in favour of the theoretical model of the Fermi sur-

face is available from angle-resolved photoemission spectroscopy (ARPES) studies,

which clearly observe the bonding, antibonding, and chain bands (Schabel et al.,

1998; Zabolotnyy et al., 2007; Hossain et al., 2008). Evidence for the stick band is

more controversial, with Schabel et al. (1998) claiming to observe it, but the more

recent study of Zabolotnyy et al. (2007) arguing otherwise. It is possible the band is

at lower binding energy than that shown in the predictions of figure 3.7 (a), though
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this would have to be appreciably lower than predicted to escape detection by the

ARPES measurements. In spite of this uncertainty, the contribution of the stick sheet

to the supercurrent density is expected to be small and is thus not considered from

this point on.

An important consequence of the low energy band structure is that there is a

noticeable anisotropy between various moments of the Fermi velocity distribution

within the plane. This is directly relevant to the interpretation of observations of

the FLL structure within both the local and non-local London regimes. To a leading

order approximation, the strongest contribution to the in-plane anisotropy of the

Fermi velocity originates from the near one-dimensional dispersion associated with

CuO chains that runs effectively parallel to ΓX - see figure 3.7 (c). As the dispersion

is strongest along kx, corresponding to the real-space crystal b-axis (the CuO chain

direction), this results in an anisotropy in the second moment of the Fermi velocity

such that 〈v2
F,y〉 > 〈v2

F,x〉. A similar contribution from bands ‘a’ and ‘b’ is expected to

be much less, as for these bands, allowing for small deviations in the detailed band

structure, 〈v2
F,y〉 ∼ 〈v2

F,x〉. Therefore, the overall anisotropy of the second moment

of the Fermi velocity is dominated by the contribution of the chain band. Within

the framework of local anisotropic London theory, this results in a non-identity

effective mass tensor (as m−1
ij = 〈vivj〉/ (det〈vivj〉)1/3 (Kogan et al., 1997a)) and

an anisotropy of the in-plane London penetration depth γab (Campbell et al., 1988;

Thiemann et al., 1989; Daemen et al., 1992), of which a quantitative estimate can

be obtained from the measure of the distortion of hexagonal FLL structures at low

fields.

To next order approximation, the square-like distortion of the bonding and anti-

bonding bands is important, as the higher moment components of the Fermi velocity

play in a role in models that extend the anisotropic London theory through the in-

corporation of non-local corrections (Kogan et al., 1997a; Franz et al., 1997). The

symmetry of the distortion of these bands (again to a simple approximation) leads

to 〈v4
F,x〉 ∼ 〈v4

F,y〉 > 〈v2
F,xv

2
F,y〉, i.e. a smaller Fermi velocity along [110] than along

either x or y. For the non-local theories of Kogan et al. (1997a) and Franz et al.
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(1997), and the numerical work of Nakai et al. (2002), such an anisotropy in the

fourth moment of the Fermi velocity is vitally important for both the stabilisation

and orientation of a square FLL structure at high-field.

We note that the band structure calculations predict none of the main bands

to be closed in the c-axis direction, implying that the component of the carrier

group velocity vg (∇kE, where E is the carrier energy) in this direction is small.

Figures 3.7 (b) and (c) further show that whilst the bonding, antibonding and

stick bands are predicted to be weakly dispersive in the kz direction, the kz dis-

persion of the chain band is predicted to be larger, particularly around the X/U

point. Therefore, whilst the band-structure calculations predict the major part

of the electronic character to be well described as two-dimensional, the chain kz

dispersion is thought to account for the smaller out-of-plane in-plane resistivity

anisotropy, ρc/ρab observed in YBa2Cu3O7−δ than, for example, in chain free BSCCO.

Early normal-state resistivity measurements taken just above Tc as functions of both

temperature and crystal direction reveal ρc/ρab to be ∼ 70 for optimally-doped

YBa2Cu3O6.93. For underdoped YBa2Cu3O6.82, ρc/ρab was observed to be∼ 1,700 (Ito

et al., 1991). As a comparison, a similar estimate of ρc/ρab in optimally doped

Bi2Sr2CaCu2O8+δ (where δ = 0.24) is ∼ 100,000 (Watanabe et al., 1997). Whilst

this shows optimally- and over-doped YBa2Cu3O7−δ to be relatively more three-

dimensional than CuO chain free BSCCO, we conclude that at least part of this

originates from the contribution of the chain band dispersion, the prevalence of

which is consistent with the doping dependence. However, as mentioned in the

previous section, the components of the dispersion originating from the chain band

will be strongly dependent on the quality of the O(4) atom ordering of the CuO

chains.

3.1.5 Multi-band superconductivity in YBa2Cu3O7−δ

Overdoped samples of YBa2Cu3O7−δ exhibit classic characteristics of strongly type-

II materials. For example, at low fields and temperatures, the in-plane penetration

depth is >100 nm, and the in-plane coherence length is just ∼2 nm, implying κ ∼

64



Flux line lattice structure transitions in twin-free YBa2Cu3O7−δ

50. Taking 2 nm as a measure of the Ginzburg-Landau coherence length ξGL, Hc2

is ∼ 100 T. Due to the difficulty in reaching Hc2 experimentally, estimates of the

actual value of Hc2 vary (Ichioka et al., 1999; Sekitani et al., 2004). Therefore, in

this thesis, we will use a typical value of Hc2 = 100 T for field perpendicular to the

plane.

YBa2Cu3O7−δ exhibits a clear anisotropy of the in-plane superconductivity which

is experimentally well established. For samples of YBa2Cu3O7, the penetration depth

measurements of Basov et al. (1995) find λa/λb ∼ 1.5 and attribute this anisotropy

as evidence that a significant fraction of the superconducting condensate resides

on the b-axis oriented, and one-dimensional, CuO chains states. ARPES studies

show the chain bands to be far from half-filling (Schabel et al., 1998; Zabolotnyy

et al., 2007), and hence they are expected to exhibit metallic behaviour (Basov and

Timusk, 2005). This is in contrast to the strongly correlated superconductivity of

the CuO2 plane states (see section 3.1.1). For this reason amongst others,7 other

studies question whether superconductivity is a true ground state of the chains. For

example, nuclear quadrupole resonance measurements observe the onset of charge-

density wave (CDW) order on the chains in the superconducting state (Grévin et al.,

2000) which the authors claim to rule out the existence of a chain superfluid.

However, strong evidence in favour of a superconducting chain ground state is

derived from further penetration depth measurements, which suggest that super-

conductivity within both plane and chain states occurs at a single critical tempera-

ture Tc (Zhang et al., 1994), and that these states exhibit a similar temperature-

dependence (Hardy et al., 1993). Such observations provide support for mod-

els that predict the superconductivity of the chains as induced by proximity ef-

fect from the CuO2 planes (Atkinson and Carbotte, 1995; Xiang and Wheatley,

1996; O’Donovan and Carbotte, 1997; Atkinson, 1999; Atkinson and Sonier, 2008).

The models of Atkinson and co-workers (Atkinson and Carbotte, 1995; Atkinson,
7Such as a consideration of the large difference in the dimensionality of the low energy bands

associated with the chain and plane states, and the fact that the chains are not expected to be
intrinsically superconducting.
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Figure 3.8: The low-energy spectrum of the projected density of chain states at
different fields. At zero field, there exist two distinct energy scales associated with
the proximity effect induced chain superconductivity, with gap features at E1 ∼ 0.1
and E2 ∼ 0.3. The magnitude of the field is presented in dimensionless units defined
in the model. After Atkinson and Sonier (2008).

1999; Atkinson and Sonier, 2008), contain an intrinsic d-wave pairing interaction

V within a CuO2 plane band, no pairing interaction on the CuO chain band, and

a band hybridisation that allows carriers to move between plane and chain states

via single-particle hopping. The details of the band hybridisation are non-trivial

due to the strong anisotropy between them in momentum space. As a conse-

quence, it is not possible to attach a single superconducting gap function, with

an associated symmetry, to the one-dimensional chain states (Atkinson and Sonier,

2008). By calculating the field-dependence of the chain density of states, figure 3.8

shows that Atkinson and Sonier (2008) predict there to be multiple pairing en-

ergy scales associated with the chain states. Here, the superconducting pairing en-

ergy scales show up as two coherence peaks, or gap-like features, in the zero-field

spectrum of the chain-projected density of states. Multiple pairing energy-scales

turn out to be a generic feature of the proximity effect models. The small energy

scale is associated with a more one-dimensional hybridisation of the plane and

chain states, and is closer to being fully gapped. The larger energy scale reflects

a more three-dimensional hybridisation, and as such the superconductivity can be

described as being more anisotropic. However, as mentioned just previously, at-

taching a symmetry to the superconductivity is subtle, and possible suggestions are

not proposed in the theoretical work. Experimentally, the existence of the smaller
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Figure 3.9: Results of proximity-effect model calculations of the vortex core size.
The x and y directions respectively correspond to the a and b-axes. The results
shown are obtained by combining the results over both the plane and chain layers
of the bilayer model. For comparison, the single layer (SL) model calculation is also
presented. For reference, 0.001B0 = 1.5 T. After Atkinson and Sonier (2008).

energy scale is expected to be manifested as a low temperature inflection point on

the temperature-dependent superfluid density. Such inflection points have been

observed in µSR studies of the temperature-dependence of the superfluid density

in YBa2Cu3O7−δ (Khasanov et al., 2007) and YBa2Cu4O8 (Khasanov et al., 2008).

Other evidence is provided by a scanning tunnelling spectroscopy study that claim

to observe subgap features in the density of states (Ngai et al., 2007).

Atkinson and Sonier (2008) also use their theory to investigate how the flux

line core size varies with field. On calculating the current distribution, J(r) within

the system, they define the size of the flux line core according to the vorticity,

ω(r)=∇×J(r). Some results of their calculations are shown in figure 3.9. They

predict there to be a strong, field-dependent, anisotropy in core size between the

x (real-space a) and y (real-space b) directions, in essence meaning that ξb >

ξa. In the x-direction, the major contribution to the core size originates from the

plane layer, and the core size is only weakly field-dependent. The dominant field-

dependence to the core-size along the y direction originates from the CuO chain

layer. The reduced rate of core contraction shown in figure 3.9 is apparently cor-

related with a suppression of the E1 chain energy scale. However, we point out

experimental evidence for such a core contraction is controversial. The theoretical

study of Atkinson and Sonier (2008) was motivated by µSR studies of YBa2Cu3O7−δ
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(see for example, Sonier et al. (1999)), which are apparently able to show the

core-size to fall as a function of increasing field. However, the ability of the µSR

technique to extract a reliable measure of the core-size remains questioned in the

literature (Landau and Keller, 2007; Maisuradze et al., 2009).

Finally, we discuss the precise details of the overall in-plane order-parameter

symmetry in zero field. Due to the orthorhombic distortion of the basal plane,

group theory dictates that the symmetry of the superconducting ground state must

necessarily contain a symmetry conserving admixture (Tsuei and Kirtley, 2000).

The precise details surrounding such a component have been a topic of recent in-

terest. Both the electron-tunnelling study of Smilde et al. (2005) and the phase

sensitive measurements of Kirtley et al. (2006) deduce that the in-plane order-

parameter symmetry for optimally- and overdoped YBa2Cu3O7−δ is composed of a

significant s-wave admixture to a predominantly dx2−y2 order parameter symmetry.

Tsuei and Kirtley (2000) show that the functional form of such a gap function is

∆(k) = d
(
k2

x − k2
y

)
+ s

(
k2

x + k2
y

)
where s and d respectively represent the magni-

tudes of the s− and d−wave subcomponents. If d/s ≥ 1, then the gap exhibits

line nodes at ky = ± ((d + s) / (d− s))1/2 kx, indicating that for finite s, the nodes

deviate from the expected ±45◦ angles about a principal crystal axis. Smilde et al.

(2005) estimate the ratio d/s ∼ 5 whilst Kirtley et al. (2006) find d/s ∼ 10 indicat-

ing that they observe the nodes to be skewed away from the 〈110〉 directions of a

pure dx2−y2 symmetry. They also find that as a consequence the magnitude of the

in-plane gap is anisotropic, with ∆b/∆a ∼ 1.2 − 1.5 Figure 3.10 shows the node

skewing pictorially from the work of Kirtley et al. (2006). The magnitude of the

order parameter lobe is significantly larger along the b-axis, which corresponds to

the direction of strong chain dispersion, and the gap nodes lie at angles of ± 50◦

about the b-axis. A similar measure of node skewing is obtained by Smilde et al.

(2005).
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Figure 3.10: A schematic diagram of the angular variation of the sign of the in-
plane order parameter in an untwinned sample of optimally doped YBa2Cu3O6.93.
The figure is precisely the same as found in Kirtley et al. (2006), but we have
superposed some crystal axis labels to indicate the magnitude of the gap is larger
along b than a.

3.2 Previous studies of the flux line lattice in YBa2Cu3O7−δ

Since the discovery of YBa2Cu3O7−δ, the FLL structure has been extensively interro-

gated. The earliest reports were those of Bitter decoration studies, which provide a

real-space imaging of the FLL over a small localised surface region of the sample at

low fields (Gammel et al., 1987; Dolan et al., 1989a,b). In these studies, for fields

up to 170 G, the FLL coordination was observed to be hexagonal, but with clear

indications of flux line pinning to both twin boundaries. In particular, Dolan et al.

(1989a) also identified an extremely high density of ‘unseen’ point-like defects of

spacing less than 100 nm, which they speculate is associated with the oxygen chain

order in their overdoped sample of YBa2Cu3O7. This is also suggested by their

slightly later study (Dolan et al., 1989b) on the same sample, where the authors

were able to deduce an in-plane anisotropy, γab (= λa/λb) of typically 1.13(2). The

value is smaller than other reported low (or zero) field values of γab which typically

range between 1.2 and 1.5 as obtained across various techniques (Basov et al.,

1995; Sun et al., 1995; Ager et al., 2000; Khasanov et al., 2007). Hence, the low

69



Flux line lattice structure transitions in twin-free YBa2Cu3O7−δ

value of Dolan et al. (1989b) likely reflects a certain degree of chain disorder in

their samples, in agreement with the conclusion of muon spin relaxation studies

that observe such an effect to reduce the in-plane anisotropy (Tallon et al., 1995).

The information yielded from decoration experiments allows a direct view of the

FLL structure on a local scale, and can help identify the origin of flux line pinning.

Despite this, such studies are limited to small fields, only able to image a relatively

small region of the sample surface, and they suffer from a lack of reproducibility

between one region of the sample surface to the next. Experimental techniques

such as SANS and µSR overcome all of these issues at once. Both can probe the

bulk of large volume samples, with measurements possible at much higher applied

field. As SANS is the technique adopted for the new measurements reported in this

thesis, we concentrate on the discoveries of previous SANS investigations.

The first successful observation by SANS of the FLL in any High-Tc material was

carried out on a twinned sample of YBa2Cu3O7−δ (Forgan et al., 1990). In a mag-

netic field of 0.2 T applied approximately to the c-axis, and at 20 K, the diffraction

pattern showed a reasonable fraction of the diffracted signal to lie along one of the

{110} directions. This already indicated, and would turn out to be, an orientational

effect on the FLL due to flux line pinning to twin planes. The subsequent SANS

studies of Yethiraj and co-workers (Yethiraj et al., 1993b,a) confirmed this pinning

effect more clearly for H ‖ c, observing ‘square-like’ diffraction patterns at 0.8 T,

and 11 K. Although the square-like pattern showed large peaks in the diffracted

intensity with a q-vector parallel to the {110} directions, the FLL structure was not

interpreted as intrinsically square. Instead, the major part of the diffracted signal

was ascribed to FLL planes aligned with the twin boundaries of the strongly twinned

sample. Due to the strong pinning, the authors were unable to deduce a value of γab,

and were non-committal regarding the details of the intrinsic FLL structure. They

did correctly stress that the diffraction pattern is likely a superposition of pinned

FLL structures, whose orientations are controlled by the flux line pinning to twin

boundaries.

The same group observed that by rotating the twin boundaries out of the direc-
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tion of the applied field the pinning effects on the FLL due to twin planes could

be somewhat suppressed (Yethiraj et al., 1993a). On rotating the field away from

H ‖ c, the two domain FLL structure was observed to become increasingly distorted,

indicating the out-of-plane components of the effective mass anisotropy were cou-

pled more strongly into the properties of the FLL. Whilst the measure of the struc-

tural distortion was interpreted using anisotropic London theory, the observed ori-

entations of both domains disagreed with the prediction of Campbell et al. (1988)

which indicated a preferred orientation to the FLL on rotating the field about c. The

authors suggest that the orientations of their observed structures remain controlled

by pinning to twin boundaries, even for an angle of applied field as high as 70◦ to

the c-axis. Similar SANS observations for fields of 0.5 T applied at large angles to

the c-axis were reported at approximately the same time by Keimer et al. (1993) in

their study on a strongly twinned sample.

The disagreement between the observed and predicted structural orientation of

the FLL within London theory appears to be consistent with the results of the SANS

study of Simon et al. (2004). Using heavily twinned samples of YBa2Cu3O7, a sys-

tematic approach was taken to investigate the effects of twin plane pinning on the

FLL. On increasing the angle of applied field field to c, the flux lines deviate from

being aligned with the field to being ‘locked’ via pinning to a twin boundary pro-

liferation path along the crystal c-axis. However, above a critical angle θB, the flux

lines are observed to meander along the direction of the applied field, by allowing

parts of their lengths to be pinned to adjacent twin boundaries. In this meandering

regime, although the orientation of the FLL remains determined by the twin-planes,

the overall FLL structure and the measure of its distortion is deemed interpretable

in terms of anisotropic London theory. The study of Simon et al. (2004) provides an

indication that the orientations of the FLL structures seen in Yethiraj et al. (1993b);

Keimer et al. (1993); Yethiraj et al. (1993a) belong to this meandering regime. Us-

ing anisotropic London theory, Simon et al. (2004) are also able to extract a value

of γab of ∼ 1.3 from their measurements.

The early studies clearly showed the FLL structural orientation to be strongly in-
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fluenced by the crystallographic environment. However, the measure of any struc-

tural distortion appears to lie within the anisotropic London theory. In YBa2Cu3O7,

the agreement with London theory is unsurprising, as for fields Hc1 ¿ H ¿ Hc2,

the flux line spacing is much larger than the range over which anisotropic effects

that originate from the core region might be expected to extend. At higher field

however, where the flux line supercurrents overlap more strongly, other sources of

anisotropy are predicted to become increasingly important. Therefore, the local

London model might be expected to become inadequate.

Indeed, the first high-field study of Keimer et al. (1994) on a heavily twinned

sample of YBa2Cu3O7 claimed to observe such a departure. In fields up to 5 T

the authors observed an essentially unchanged FLL diffraction pattern that exhib-

ited strong Bragg spots along the {110} directions for H‖ c. There was nothing to

distinguish the observations from those previously reported at low fields (Yethiraj

et al., 1993b). The authors interpreted the overall FLL structure as being composed

of a superposition of four orientations of oblique lattice, with equal length primitive

vectors and an opening angle of 73(1)◦. Keimer et al. (1994) suggested these struc-

tures were stabilised due to an increasing prominence of the gap anisotropy at high

field, and therefore a departure from the London regime. The idea that the over-

all FLL structure remained composed of a superposition of hexagonal London-like

domains, whose alignment remained determined by pinning to twin boundaries,

was rejected based on an evaluation of the Gibbs free energy. This evaluation was

later shown to be inaccurate by Forgan and Lee (1995), who pointed out that the

observations of Keimer et al. (1994) remained consistent with a FLL structure com-

posed of multiple hexagonal structures, with the domain orientations determined

by pinning to twin boundaries.

Similarly stimulated into action by the misinterpretations of Keimer et al. (1994)

were Walker and Timusk (1995), who were unable to reconcile the observations

of Keimer et al. (1994) with their Ginzburg-Landau model. Using arguments of

scaling and symmetry, they showed that for FLL primitive vectors to lie along 〈110〉
directions, the primitive cell opening angle of the real-space lattice would need
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Figure 3.11: In (a) and (b) are the symmetry favoured orientations that the FLL
might adopt in real-space for H‖ c, as predicted by Walker and Timusk (1995).
In (c) is one of the FLL domains observed by Keimer et al. (1994), aligned with a
Bragg plane along [110]. The axes shown in (d) indicate the relative orientations of
the FLL structures to those of a single crystal domain.

to be of order 90◦, in clear disagreement with the SANS measurements. Walker

and Timusk (1995) do use their theory to make a prediction as to the symmetry

favoured orientations that the FLL might adopt. The two predicted structures are

shown in figure 3.11 (a) and (b).

The desire to deconvolve the effects of twin boundaries on the FLL provided

the motivation for a SANS study on a detwinned sample by Johnson et al. (1999).

The optimally-doped single crystal sample of YBa2Cu3O7−δ was well detwinned,

being characterised as having a majority domain fraction of ∼95 %. Figure 3.12 (a)

shows the diffraction pattern obtained at 0.51 T and 1.5 K with H‖ c. The use of

the largely detwinned sample is evident from the resulting twofold symmetry of the

diffraction pattern, which reflects the expected intrinsic crystal symmetry of a single

crystal domain of YBa2Cu3O7−δ. Figure 3.12 (b) shows the decomposition of the FLL

diffraction pattern shown in figure 3.12 (a) into four distorted hexagonal domains.

The lower two FLL structures are consistent with pinned domains aligned with the

residual twin planes in the sample. However, the top two structures observed were

new, aligned with the atomic lattice, and suggested to be intrinsic. We note the

consistency of these structures with the predictions of Walker and Timusk (1995)

(figure 3.11). Using anisotropic London theory, a value of γab=1.18(2) is extracted

from the entire FLL structure. The physical mechanisms that might stabilise the
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(a) (b)

Figure 3.12: In (a) is shown the FLL diffraction pattern obtained by Johnson et al.
(1999) at 0.51 T and 2 K. In this image, the field is parallel to the c-axis, and the
a-axis is vertical. Their decomposition of the overall FLL structure shown in (a) into
four hexagonal FLL domains is shown in (b).

new and intrinsic FLL structures are not discussed. However, further measurements

with field applied at an angle to the c-axis show the first clear departure from

London theory at higher field. With the field at 33◦ to c, a 90◦ re-orientation of the

FLL structure is observed to occur between the fields of 0.2 T and 3.0 T. The 0.2 T

structure has an orientation that agrees with London theory (Campbell et al., 1988),

whilst the orientation of the 3.0 T structure is in disagreement. The mechanism

behind this 90◦ re-orientation of the FLL structure remains unexplained, though the

authors speculate core anisotropy effects may scale with field to possibly become

influential even by fields of 3.0 T.

The clear indication for the FLL structure to depart from a London regime for

fields as low as 3.0 T provided one source of motivation for the design and con-

struction of the 11 T SANS cryomagnet facility introduced in section 2.2.1. The

subsequent studies of Brown et al. (2004) and White et al. (2008) were the first to

report the use of the high field capability in SANS experiments on a 40 mg lightly

twinned single crystal sample of YBa2Cu3O7. Figures 3.13 (a)-(c) show some of

the diffraction patterns obtained within the field range up to 11 T, at 4-5 K and
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for H ‖ c. Note that for these images, a {110} direction is vertical. The FLL struc-

ture shown in figure 3.13 (a) at 1 T is the same as that observed previously for

more strongly twinned samples (Yethiraj et al., 1993b; Keimer et al., 1993, 1994),

with the fourfold symmetry of the overall diffraction pattern reflecting the averaged

fourfold symmetry of the crystal. The high resolution data allow the unambiguous

decomposition of the FLL structure into four distinct distorted hexagonal domains,

each of which will occupy one of the four orientational crystal states that exist in

twinned samples. This decomposition is shown in figure 3.13 (d). Across all of

these domain structures, the average value of γab extracted from the 1 T data was

1.28(1), in general agreement other bulk measurements. Figure 3.13 (e) shows the

FLL structure was observed to change smoothly as a function of field, with the FLL

structure being almost perfectly square at the highest field of 11 T. The tendency

for a hexagonal FLL to become square-like at high fields cannot be predicted us-

ing London theory, and lies in agreement with the theoretical predictions for such

a structure to be stabilised by an increasing influence of a dx2−y2 order parameter

symmetry (Ichioka et al., 1999; Berlinsky et al., 1995; Shiraishi et al., 1999; Xu

et al., 1996; Affleck et al., 1997).

The report of the high field triangular to square transition by Brown et al. (2004)

has become a benchmark study for flux line lattice physicists looking for an ex-

ample of the manifestation of the d-wave order parameter on the FLL structure.

However, as acknowledged in Brown et al. (2004) and discussed in White et al.

(2008), the data cannot preclude the possibility that the smooth transition is inter-

pretable in terms an increasing influence of non-local effects coupled with a Fermi

surface anisotropy (Kogan et al., 1997a). In particular, the square-like anisotropy

of the dominant Fermi surface sheets shown in figure 3.7 (c) is consistent with

that required for the stabilisation due to non-local effects of a high-field square FLL

structure of the same orientation as observed in figure 3.13 (c). Measurements at

higher temperatures on the same sample allowed the mapping out of the high field

FLL structure phase diagram for H ‖ c, and this is shown in figure 3.14. The upward

curvature of the phase boundary line shows the triangular to square transition to
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Figure 3.13: Figures (a), (b) and (c) show the observed diffraction patterns ob-
tained in applied fields of 1 T, 5.5 T and 11 T obtained on a lightly twinned sample
of YBa2Cu3O7. Pattern (a) is shown on a linear intensity scale, whilst those of (b)
and (c) are logarithmic, in order to emphasise the weaker spots in the corners.
All patterns are obtained at 4 K, with H ‖ c, and in all cases the sample has been
mounted with a {110} direction vertical. The decomposition of the overall FLL
structure in (a) is shown in detail in figure (d), revealing it to be composed of four
distinct distorted hexagonal domains. In (e) the field-dependence of the character-
istic FLL structure angles α and β is shown, with the definitions of α and β shown
in (d). Figures (a), (d) and (e) are after Brown et al. (2004), whilst (b) and (c) are
after White et al. (2008).
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Figure 3.14: The high field FLL structure phase diagram for the lightly twinned
YBa2Cu3O7 sample discussed in Brown et al. (2004) and White et al. (2008) for
H ‖ c. The dashed phase boundary line represents the mid-point of the transition
between the limiting cases of the low-field triangular and a perfect square structure.
This occurs when the characteristic angle (α as defined in figures 3.13 (d) and (e))
is 83◦. The solid melting line is deduced from the data presented in Roulin et al.
(1998). After White et al. (2008).

move to higher field with increasing temperature. Such a curvature is consistent

with the increasing role of thermal fluctuations in ‘smearing’ out the stabilising

anisotropy of the square FLL structure at high temperature, whether this anisotropy

originates due to d-wave or non-local effects.

The final aspect we mention from the SANS studies on the lightly twinned sam-

ple (Brown et al., 2004; White et al., 2008) were the observations of intriguing

FLL structures when the field was applied at an angle of 10◦ to both twin bound-

ary directions. At 5 T, figure 3.15 (a) shows the major part of the FLL structure to

be composed of two distorted hexagonal domains, one of each occupying a region

of the crystal containing approximately orthogonal axes. Although weak scatter-

ing is still observed along the {110} directions, the orientations of the hexagonal

structures were deemed unaffected by twin boundary pinning, and are consistent,

within each major crystal domain, with one of the intrinsic FLL structure orien-

tations predicted by Walker and Timusk (1995) and observed by Johnson et al.
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Figure 3.15: FLL diffraction patterns obtained in applied fields of (a) 5 T, (b) 7 T
and (c) 8.5 T for the case where the field was applied at 10◦ to the c-axis of the
lightly twinned sample used in White et al. (2008). The field rotation axis was
chosen such that both twin boundary directions have been rotated out of the field
direction. The axis in the centre of (a) indicates that, for all figures, the FLL struc-
tures overlaid with blue dashed line patterns occupy a part of the crystal where an
a-axis is essentially vertical, and the FLL structures overlaid with solid black line
patterns correspond to FLL structures occupying the part of the crystal where a
b-axis is vertical. The arrows in (a) indicate the {110} directions.

(1999). Assuming anisotropic London theory is applicable at this field, the measure

of the distortion of these two structures in their respective crystal domains shows

them to be more isotropic than that measured at 1 T (where γab = 1.28(1)). The

equivalent value of γab for the domain occupying the part of the crystal with the

a-axis vertical (blue dashed line structure in figure 3.15 (a)) was 1.14(2), whilst

for the other domain it was 1.23(1), suggesting the ab anisotropy is intrinsically

suppressed with field when the effects of twin-boundary are suppressed. The origin

of the weak scattering along {110} is suggested by White et al. (2008) to remain

ascribable to the persistence of a remnant and pinned four-hexagonal domain-like

FLL structure similar to that seen in figure 3.13 (a). However, such weak scattering

is also consistent with the onset at this field of a square-like FLL structure that co-

exists with the hexagonal structure at 7 T, within the part of the crystal where the

b-axis is vertical (figure 3.15 (b)). By 8.5 T, figure 3.15 (c) shows the FLL structure

in this crystal domain to be entirely square-like, whilst in the other major crystal

domain, the FLL structure remains a single distorted hexagon. From such observa-

tions of coexistence, it is tempting to deduce that the transition between hexagonal
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and square VL structures becomes first-order when the effects of twin boundaries

are negated.

3.3 Motivation for new SANS studies in detwinned YBa2Cu3O7

Each of the major SANS studies of the FLL structure reviewed in the previous sec-

tion have contributed a series of tantalising clues towards determining the intrinsic

FLL structure in the absence of the pinning effects of twin-boundaries, for H ‖ c. We

note that many important observations have been made when the field has been ap-

plied away from the c-axis, and where the effects of pinning to twin boundaries are

suppressed. This provides a compelling motivation for new SANS studies on well-

detwinned single crystal samples of YBa2Cu3O7 with such suppressed pinning to

twin boundaries that it is possible to observe the field- and temperature-dependence

of the intrinsic FLL structure for H ‖ c. This will allow a new characterisation of

the role that the established in-plane anisotropy plays on the FLL structure, without

the complication of accounting for the out-of-plane electronic properties that are

coupled into the FLL when the field is rotated away from the c-axis.

We also note that no study has provided a comprehensive analysis of the field-

and temperature-dependence of the FLL form factor in this material. Such mea-

surements are extremely useful for characterising the theoretical regime describing

the FLL. For example, of the SANS studies reviewed in this section, it is generally

accepted that at the lowest fields, anisotropic London theory is adequate for ex-

plaining the measure of the FLL structural distortion (if not the orientation). This

assumption can be tested by measuring the form factors of the Bragg spots and com-

paring them to those expected according to various form factor models. However,

the parameter space over which the FLL behaviour departs from the local London

regime is not established at all, and measurements of the Bragg spot intensity in

fields up to 11 T, and temperatures up to Tc2, will provide evidence towards an

understanding of this.
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3.4 Sample preparation, detwinning, characterisation and mount-
ing

The sample used for the new SANS measurements reported in this thesis was com-

posed of a mosaic of six single crystals of detwinned YBa2Cu3O7. Each single crystal

of the mosaic was grown by A. Erb at the Walther Meissner Institut, Garching, Ger-

many. Single crystals of YBa2Cu3O7−δ are grown from a molten flux of BaCO3, CuO

and Y2O3 within BaZrO3 crucibles (Erb et al., 1996). The flux is formed by initially

grinding the component oxides in a mortar, and forming the molten flux at 1030◦C.

The flux is homogenised by holding it at this temperature, within an atmosphere of

air, for 10-20 hours. The crystal growth is initiated by cooling the melt slowly to

1005◦C. At this temperature, an air-cooled Al rod is bought into contact with one of

the crucible walls to provide a temperature gradient over the crucible of 5-10 K. This

gradient facilitates by convection the transport of new solute melt to the interface

of growing crystals. The temperature is then reduced slowly during crystal growth

to 950◦, below which the excess flux is decanted away. The furnace is then cooled

to room temperature and the single crystals recovered. These as-grown crystals

exhibit an ill-defined oxygen concentration and on cooling, as outlined in section

3.1.3, decompose from a high temperature tetragonal structure into a twinned or-

thorhombic structure. Therefore the crystals need to be detwinned to remove twin

boundaries, and annealed to provide samples with the desired oxygen content.

The as-grown single crystals of YBa2Cu3O7−δ were detwinned within the crystal

growth group of C.T. Lin at MPI Stuttgart, Germany. Figure 3.16 (a) shows a dia-

gram of the thermo-mechanical equipment used to detwin the crystals. To detwin

a single crystal of YBa2Cu3O7−δ, the crystal is rectangularly cut so that a uniaxial

stress of order ∼2 x 107Nm−2 can be applied by stress plates along a 〈100〉 direc-

tion. The stress is initially applied at room temperature and, within a controlled O2

atmosphere, the temperature is quickly raised (a few mins) to the detwinning tem-

perature of ∼500◦C (Lin et al., 1991). After 24 hours at this temperature, the sam-

ple is cooled to room temperature within ∼20 minutes. During the treatment, the
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(a) (b)

Figure 3.16: In (a) is a schematic diagram of the detwinning equipment used to
detwin the samples used for the SANS measurements reported in this thesis. In (b)
is a photograph of a detwinned sample of YBa2Cu3O7−δ taken using polarised light.
Figure (a) is courtesy of H. Bender, MPI Stuttgart, whilst (b) is courtesy of C.T. Lin,
MPI Stuttgart.

twinning structure at the surface of the sample is observed using polarised light and

a microscope capable of operating near to the sample at high temperatures (Lin and

Kulakov, 2004). Figure 3.16 (b) shows a region of the surface of a nominal sample

of YBa2Cu3O7−δ after the detwinning procedure. In distinction to the photograph of

the twinned sample shown in figure 3.5 (a), the polarised light of the microscope

is unable to pick out a contrast between regions separated by twin boundaries,

suggesting at least the imaged part of the crystal to be single domain.

Finally, the single crystals were returned to A. Erb for oxygen annealing so that

they could reach the overdoped O7 phase. To achieve a homogenous sample oxy-

genation, the crystals were annealed in a high pressure (100 bar) oxygen atmo-

sphere, at an elevated temperature of 300◦C, for 200 hours. The crystals were then

quenched rapidly, in approximately just one minute, to room temperature. This was

so as to maintain the high temperature oxygen content (Erb et al., 1999).

The zero-field Tc of one of the six crystals that was used for the SANS measure-

ments was measured using a SQUID magnetometer. The mid-point of the transition

of the sample bulk was found to be ∼89 K, consistent with the sample being max-

imally doped (c.f. figure 3.3). The six single crystals were mounted, with their
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Figure 3.17: An anno-
tated photograph of the
YBa2Cu3O7 mosaic mounted
on a sample holder suitable
for use in the 11 T SANS cry-
omagnet at PSI. The sample
region is surrounded by a
cadmium window of known
dimension which defines
the sample aperture. The
inset axes indicate those of
the sample mosaic, with the
c-axis lying orthogonal to the
a-b plane (out-of-the-page),
and parallel to both the field
direction and the neutron
beam in the traditional SANS
experimental setup.

c-faces flat, onto a ∼1 mm thick Al plate using a diluted adhesive. X-ray Laue pho-

tographs showed the mosaicity of the a-axes about the c-axis to be within 1.5◦. A

calibrated optical microscope was used to determine the mean thickness of the sin-

gle crystals to be ∼0.35 mm. This is much less than the 1/e length of ∼ 2.0 cm at

λn = 5 Å, as indicated in Appendix B, and so neutron absorption is not an issue for

these samples. The total mass of the mosaic was estimated to be ∼20 mg. Finally,

using the MORPHEUS instrument at PSI, elastic single crystal neutron diffraction

was performed on the (100) and (010) reflections to measure the detwinning ra-

tio of the entire sample mosaic. Due to the slight inequality of the a and b lattice

parameters, in a twinned sample it is possible to measure the (100) reflection from

one of the twin domains and the (010) reflection from the other twin domain within

just one θ − 2θ scan. From our measurements, no sign of a signal attributable to

a minority twin domain was observed, consistent with the sample possessing a re-

markably low minority domain fraction of < 1 %.

A photograph of the sample mounted on a sample holder suitable for use in the

VTI of the 11 T SANS cryomagnet at PSI is shown in figure 3.17. The small Al plate

containing the mounted YBa2Cu3O7 mosaic is itself mounted onto a piece of 0.5 mm
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thick pure Al sheet. This second Al sheet is larger, and much easier to attach to the

Al sample holder with nylon screws. A cadmium window of known size is placed

over the sample region so as to define the sample aperture, and is held in position

with diluted Bostik R©. As an extra precaution, Al tape is used to support all the

glued pieces in their positions. Finally, a thin Al foil (not shown in figure 3.17) is

wrapped around the entire sample region, to protect the crystals from condensation

that can form if the sample is removed from the cryomagnet whilst still colder than

room temperature.

3.5 Flux line lattice structure up to 10.8 T, at 2 K and with H ‖ c

Here, we present our new SANS measurements of the FLL structure in twin-free

YBa2Cu3O7. In this section we report measurements obtained in applied fields of up

to 10.8 T with H ‖ c, and at temperatures of 2 K.

3.5.1 Oscillating the field whilst preparing the flux line lattice

Most commonly in SANS experiments, the FLL is prepared by applying the desired

measurement field above Tc, and then simply field-cooling to the intended operat-

ing temperature. This is the straightforward field-cool (FC), and was the approach

adopted for some of the measurements reported here. Another approach found to

be important in preparing the FLL was that of oscillating the field whilst cooling,

which we term as oscillation field-cool (OFC). Figure 3.18 simplistically shows the

differences between these two approaches. In figure 3.18 (a), a graph of sample

temperature as a function of time represents the YBa2Cu3O7 sample typically cool-

ing from Tc to a low operating temperature, such as 2 K. For an applied field of

1.5 T, figure 3.18 (b) shows the time-dependence of the applied field for the two

different approaches of the FC and OFC during the time the temperature is falling.

For the FC procedure, the field is held constant for the entire time of the cooling and

the measurement at 1.5 T; this is shown by the dark blue line. The OFC preparation

is shown by the light blue line, indicating the field to oscillate about the average

field, with an amplitude of typically just 0.1 or 0.2 % of this field. When at the
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(a)

(b)

Figure 3.18: In (a) we show the sample cooling from Tc to a low operating temper-
ature, such as 2 K. In (b) we show the difference between the field action for the FC
and OFC procedures at a field of 1.5 T. For the FC procedure (dark blue line), the
field is held constant whilst cooling. For the OFC procedure (light blue line), the
field is made to oscillate in a periodic manner about the intended operating field,
with an amplitude typically of 0.1 % of this field. When the operating temperature
is reached, the field is raised to the target field, and held stationary for diffraction
measurements.

operating temperature, the final action for the field is to be raised to the target field

before being held constant for the diffraction measurements 8.

Although in principle a standard FC procedure is sufficient for the formation

of the equilibrium FLL structure, competition between the Meissner expulsion of

flux and flux line pinning can induce disorder into the FLL and increase its mo-

saicity. Furthermore, on cooling using the standard FC procedure, such pinning can

cause the FLL structure to be ‘frozen in’ at an irreversibility temperature, which may

be higher than the intended operating temperature. Therefore the measured FLL

structure might not completely represent that of the intended temperature. In the

presence of weak static disorder, it has been observed that the OFC procedure 9 can

be successful in allowing the FLL to explore its true orientational free energy mini-

mum, Fm. In essence, the OFC procedure ‘anneals’ the FLL via periodic compressive

and rarefactive forces acting on the FLL, that arise due to the periodic variation of

8Note the time-scales between figures 3.18 (a) and (b) are inequivalent and exaggerated for
clarity. Typically at PSI, using locally enforced needle valve settings, the time taken to get from a
little above Tc (∼95 K) to 2 K is ∼45 mins, whilst the field oscillations normally had a frequency of
∼2 min−1.

9Some refer to the action of field oscillation as ‘shaking’ or ‘wiggling.’
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the field.

Evidence for the positive effect of adopting the OFC preparation procedure is

deduced from the use of similar methods in other SANS experiments. Typically

an improvement in FLL quality is observed, as nicely demonstrated in studies on

borocarbide superconductors (Levett et al., 2002; Dewhurst et al., 2006) and in

the High-Tc materials YBa2Cu4O8 (Bowell, 2008) and La1.83Sr0.17CuO4+δ (Gilardi

et al., 2002). Occasionally after the OFC procedure, the resultant equilibrated FLL

structure is revealed to be different to that structure ‘frozen-in’ after a simple FC

procedure. Such an observation in the heavy-fermion superconductor UPt3 allowed

a parameter-space distinction between superconducting states that were described

by different order parameter symmetries (Huxley et al., 2000). Sometimes however,

the use of an OFC procedure can cause the FLL quality to worsen, if strong pinning

is present. On these occasions, even if the variation in the field depins a flux line, it

allows the flux line to explore new pinning centres. For this reason, in spite of the

logic of utilising an OFC method, its application is something of an experimental

dark art. The details of the best OFC procedure to use for preparing the FLL will be

sample specific, and a systematic approach should be adopted to deduce how best

to take advantage of this.

3.5.2 Low field structure phase

Comparing FC and OFC measurements

Figure 3.19 shows two FLL diffraction patterns obtained within an applied field of

1.5 T. The diffraction pattern shown in figure 3.19 (a) was obtained from a FLL

prepared using the FC procedure, whilst the FLL of figure 3.19 (b) was prepared

using an OFC procedure. All other experimental conditions were constant.

The diffraction pattern obtained from the OFC measurement shows the intrinsic

FLL structure type of the low field range; a distorted and single domain hexagonal

structure aligned with the atomic lattice. A deduction of the FLL structure for the

FC measurement is less straightforward. However, carefully inspecting the intensity

distribution of figure 3.19 (a) allows certain structure to be revealed within the

85



Flux line lattice structure transitions in twin-free YBa2Cu3O7−δ

q
x
 (Å−1)

q
y (

Å
−1

)

 

 

−0.02 −0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

C
ou

nt
s 

/ S
td

. M
on

ito
r

0

2

4

6

8

10

12

14

ω

b*

a*

1.5 TFC

(a) 1.5 T after an FC procedure.

q
x
 (Å−1)

q
y (

Å
−1

)

 

 

−0.02 −0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

C
ou

nt
s 

/ S
td

. M
on

ito
r

0

5

10

15

20

25

φ

OFC 1.5 T

(b) 1.5 T after a 0.1% OFC procedure

Figure 3.19: FLL diffraction patterns recorded in an applied field of 1.5 T, at 2 K and
with H ‖ c. Figure (a) shows the FLL structure recorded after a FC procedure, and
(b) after a 0.1% OFC procedure. The crystal axes in (a) are valid for both images,
and the white arrows indicate the {110} directions. Overlaid patterns indicate the
suggested FLL structures that make up the overall diffraction pattern. In (a) this is
shown by solid and dashed white hexagons, each with two of their corners aligned
with {110}. The characteristic angle ω is valid for both of these structures. In (b),
the overlaid green pattern indicates the FLL structure, and the characteristic angle
φ is that which defines the opening angle of the primitive cell. Both images have
background measurements subtracted.

Bragg ‘patches’ of diffracted intensity. From within these, at least two FLL structures

are discernible, and these are indicated in the figure by solid and dashed white

hexagons.

The apparent change in precise FLL structure on preparing the FLL using the

OFC procedure is also accompanied by improvements in the lattice quality. If we

treat one of the ‘patches’ seen in figure 3.19 (a) as a Bragg spot, then on using the

OFC procedure, the mean FWHM azimuthal spread of a ‘patch’ in figure 3.19 (a)

compared to a Bragg spot in figure 3.19 (b) falls by ∼ 40 %. However, as the change

in overall FLL structure obtained on using the two preparation techniques is only

slight, we cannot conclude that the intrinsic azimuthal spread of the FLL structure

reduces by such an amount. However, this observation is consistent with the pro-

posal that the OFC procedure causes the slight change in FLL structure from the FC
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case. A similar analysis of the FWHM of the rocking curves shows the OFC proce-

dure to cause an improvement in the longitudinal order of the FLL in this low field

range. Again, on comparing the Bragg patches and the Bragg spots the respective

FC and OFC FLL structure, the intrinsic FWHM of the rocking curve is ∼ 50 % lower

for the Bragg spots prepared using the OFC procedure. Within the statistical ac-

curacy, the integrated intensities for an OFC Bragg spot and the corresponding FC

Bragg patch are identical, indicating the sole effect of the OFC procedure is to im-

prove the longitudinal order of the flux lines as compared to the FLL created using

the FC procedure.

The orientations of the two FLL structures outlined in 3.19 (a) are consistent

with structures observed to exist within twinned samples (Brown et al., 2004; White

et al., 2008). However, it is difficult to reconcile the observation of these structures

as existing within a sample which is characterised as almost perfectly detwinned.

Origin of the {110} alignment potential for the FC FLL structures

Previous SANS studies on twinned samples show that the low field hexagonal struc-

tures are distorted along the a∗-axis of their relevant orientational state (see fig-

ure 3.13 (d)). From our data, and a knowledge of these four possible orientational

states, figure 3.20 identifies the two major orientational states within which FLL

structures such as those depicted in figure 3.19 (a) could exist. It might be sug-

gested that the major part of the sample is composed of two such orientational

states. These states will originate from different twin regions of the sample and

so the twin boundaries along the {110} directions of these orientational states will

be orthogonal. Hence, FLL structures that occupy one of the two states and whose

orientation is controlled by pinning along {110}, will orient along orthogonal {110}
directions. Furthermore, the a∗ and b∗ axes of these two states lie close together,

and the indicated angle θ in figure 3.20 will only be ∼1◦. Hence, even if the OFC

procedure does de-pin the two FLL structures shown in figure 3.19 (a), unpinned

FLL structures occupying the two states would effectively superpose within the sen-

sitivity of the SANS measurements, giving rise to the observation of the suggested
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Figure 3.20: A depiction of the two orientational states of the reciprocal atomic
lattice from a twinned sample, within which FLL structures such as those shown
by the white solid and dashed lines in figure 3.19 (a) (see text for details) could
exist. The subscripts I and II indicate that the two orientational states originate
from different twin regions of the sample.

intrinsic FLL structure shown in figure 3.19 (b).

However, if the alignment of the structures shown in figure 3.19 (a) is due to

remnant twin boundaries, FLL structures populating the two minority orientational

states not depicted in figure 3.20 might be expected to give a SANS signal, and con-

tribute to the observation of an overall diffraction pattern similar to that reported

at low fields in Brown et al. (2004) and White et al. (2008). Within the sensitiv-

ity of the measurements, at no field was a signal from such structures detectable

above the background (1 %) level, consistent with that expected from measure-

ments of the twinning ratio of the sample. Due to this consistency however, we can

not rule out the possibility that the orientations of the FLL structures indicated in

figure 3.19 (a) are influenced by a very small fraction of twin boundaries associated

with the presence of minority orientational states of the crystal.

Perhaps more feasible than the effects of twin boundaries in the usual sense,

is that these FLL structural orientations are determined by residual defects aligned

along {110}which remain due to a slight imperfection of the detwinning process. In

this scenario, the major part of a crystal is composed of a single orientational state,
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but remnant correlated disorder along {110} is able to influence the orientations of

the low field FLL structures.

Role of the OFC procedure with regard to pinning

Within this low field phase, the improvements in FLL quality induced by the OFC

procedure over the FC procedure are accompanied by changes in the observed FLL

structure. From this observation, it is tempting to suggest that the OFC preparation

procedure acts to reveal the intrinsic FLL structure which cannot be confidently

deduced from the FC measurements alone. Clearly the act of oscillating the field

will not change the intrinsic orientational Fm in the ideal material. Therefore,

the observed changes must be describable in terms of the OFC procedure allowing

pinned flux lines to overcome their pinning barriers, and equilibrate at the preferred

coordination of the intrinsic Fm.

In this low field regime, the penetration depth λL (∼140 nm) is significantly

larger than the FLL lattice parameter a0 (∼70 nm at 0.5 T). From this consideration,

the magnetic interaction of the flux lines, which is the origin of the elastic energy of

the FLL, is relatively strong even at low fields. In the short wavelength limit of lattice

deformations (k > 1/λL), non-local elasticity theory can account for displacements

of the flux line cores towards pinning centres in this strongly interacting regime,

by decoupling core displacements from the flux line field profile (Brandt, 1995).

Hence, flux lines in High-Tc materials are ‘soft’, and are able to deviate from the field

direction to take advantage of the condensation energy gain provided by a pinning

site. The OFC procedure provides a periodic and weakly perturbative variation

of the magnetic pressure that is sufficient to depin a flux line from a relatively

weak pinning centre and allow the exploration of other local Fm. We see a marked

improvement in the order of the FLL despite the field oscillation amplitude being

just 0.1 % of the target field. This small amplitude was found to be most effective

at depinning flux lines. Larger oscillation amplitudes, for example of order ∼ 1 %,

generally resulted in a reduction of the FLL order. This suggests that flux lines

with a strong pinning centre somewhere along their length are ‘bent’ and pin to the
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next nearest strong pin that the OFC procedure with large amplitude allows it to

explore. Unfortunately, a systematic investigation of the optimum OFC amplitude

as a function of field was not carried out.

To obtain the intrinsic FLL structure from the pinned FLL structures, essentially

a small rotation transformation of ∼ ±6◦ is required of the FLL structure about

the c-axis. Therefore depinned flux lines that relax to positions corresponding to

the orientational Fm are also subject to a shear displacement. This observation,

coupled with the improvement in the longitudinal correlation, suggest the shear and

tilt moduli are relatively soft, and the pinning barrier of the pinning sites relatively

low. It is likely that the FLL in this sample exists within a background of high density

but weak point-like pinning sites in the bulk, regardless of the correlated pinning

along {110}. Point-like pinning of flux lines will broaden the rocking curves, which

is indeed what is observed from the FC measurements.

From the point of view of the local London theory (Campbell et al., 1988; Thie-

mann et al., 1989), all possible orientations of the hexagonal FLL are predicted to

have equivalent free energy. Therefore, assuming that in this field range we are

close to the London limit, the intrinsic structural Fm can reasonably be expected to

be shallow with respect to both the orientationally degenerate local London limit,

and that provided by the pinning sites. From this respect, it is unsurprising that the

apparently weak perturbative action of the OFC procedure is able to equilibrate the

FLL structure at low temperatures.

3.5.3 Intermediate field structure phase

Between 2.5 T and 6 T, the intrinsic FLL coordination is composed of a different

single domain and distorted hexagonal structure that is aligned with the crystal

axes. Figure 3.21 shows diffraction patterns obtained in this structure phase, with

measurements at 4 T (figure 3.21 (a)) obtained after a FC procedure, and 6 T

(figure 3.21 (b)) obtained after a 0.1% OFC procedure. We see the new structure

remains distorted along a∗, but the primitive cell, with its associated opening angle

ρ, has rotated 90◦ about the field axis with respect to the low field structure.
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Figure 3.21: FLL diffraction patterns obtained in applied fields of (a) 4.0 T after a
FC procedure and (b) 6.0 T after a 0.1% OFC procedure. Both patterns are obtained
at 2 K, and with H ‖ c. The axes indicated in (a) are valid for both images, and
white arrows indicate {110} directions. The FLL structure is indicated by the over-
laid yellow dashed line hexagon, and ρ is the characteristic angle of the primitive
cell. The two patterns were obtained during different experiments, using different
instruments.

Over this field range, there is no discernible difference between the FLL struc-

tures created using either the FC or OFC preparation procedures. We understand

this as being due to flux line supercurrents overlapping increasingly strongly at

higher field, and flux line interactions being dominant in determining the struc-

ture and lattice quality. In figure 3.22 we show the increasing propensity with field

for improvements in the lattice quality via a series of systematic measurements of

FC FLL structures. In figure 3.22 (a) we show the mean Lorentzian FWHM of the

rocking-curve to fall monotonically with field. We see a similar field-dependent

behaviour of the mean azimuthal FWHM spread of the Bragg spots as shown in

figure 3.22 (b)10. Here, we have presented the mean azimuthal FWHM angular

spread, the quantity defined as the width Wa in section 2.3. For scattering through

10Across the field range, two instrument settings were used. λn was set to 8 Å for measurements
at fields between 2.5 T and 3.5 T, and to 6 Å for measurements at 4 T and higher. The collimation
was kept constant at 8 m. Although in figure 3.22 (a) the longitudinal resolution changes as we
change λn, the dominant contribution to the rocking curve width is due to the mosaic spread of the
FLL. Hence, we compare the our measurements across both instrument settings.
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Figure 3.22: Graphs to investigate the improvement of the FLL order as a func-
tion of increasing field. In (a) we show the field-dependence of the FWHM of a
Lorentzian lineshape fitted to the rocking-curves. For reference, the black dashed
line provides an estimate of the resolution for a Gaussian FWHM. The bump in this
line corresponds to a change in λn. The red dashed line is a guide to the eye. In (b)
we show the field-dependence of the mean FWHM azimuthal width of the Bragg
spots, again with a black dashed line indicating the instrumental resolution. The
blue dashed line is a guide to the eye. Error bars where not visible are of order
the size of the data symbol. For simplicity, we only consider Bragg spots with q not
parallel to a crystal axis.

small angles, this angular spread is obtained from the experimental data using

Wa = tan−1

(
n`pix

sd

)
(3.2)

Here, `pix is the pixel size, and n is the measured FWHM spread in terms of the

number of pixels. The distance sd is strictly that between the middle of the Bragg

peak and the sample. However, for a typical instrument configuration, sd is well

approximated by the sample-to-detector distance.

The monotonic decrease with field of both the rocking curve width and the az-

imuthal spread indicate that, even in the absence of the OFC procedure, the order

increases with flux line density. The exception to this is at 6.5 T where both mea-

sures of spread are seen to rise again slightly. We associate this with the onset of a

structure transition, which we discuss in section 3.5.5. Unfortunately, a systematic

comparison between the effects of the FC and OFC procedures has not yet been car-
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ried out as a function of field, except for one pair of measurements at 6 T. Between

the respective FC and 0.1% OFC measurements at this field, small improvements

in lattice quality were observed, suggesting that the OFC procedure has a much

smaller, but still noticeably positive effect at higher fields.

3.5.4 High field structure phase

By 7.5 T, the intrinsic FLL structure has completed another transition into a high

field structure phase, which persists until the highest accessible fields of 10.8 T.

Figure 3.23 shows examples of high field FLL diffraction patterns obtained in fields

of 7.5 T and 10.8 T. In this structure phase, the FLL structure appears to be com-

posed of a single domain rhombic structure aligned with the atomic lattice. The

term ‘rhombic’ refers to the fact that the FLL structures observed in the diffraction

patterns of figure 3.23, are composed of four Bragg spots of comparable intensity.

This is in contrast to the six Bragg spots of the low and intermediate field struc-

tures. A noticeable feature of the rhombic lattice is that, relative to a square FLL

structure, the structure is distorted along the b∗ direction. This direction is orthog-

onal to that of the hexagonal structures at lower fields which are distorted along

the a∗ direction.

In this structural phase, the effects of the OFC procedure over the FC proce-

dure are found to be unimportant in terms of the measured FLL quality. Similar

results are obtained from both preparation techniques, as shown by the systematic

investigation of the field-dependences of the mean Lorentzian rocking-curve width

(figure 3.24 (a)) and the mean FWHM azimuthal width of the Bragg spots (fig-

ure 3.24 (b)). As for the intermediate field phase, both of these FWHM spreads

are presented in units of scattering angle. These measurements were all obtained

during the same experiment, using identical instrumental conditions (λn = 6 Å and

a collimation of 8 m). Figure 3.24 (a) shows that regardless of whether the FLL is

prepared by the FC or OFC procedure, the longitudinal correlation becomes notice-

ably poorer on moving to high fields. Figure 3.24 (b) shows the azimuthal spread
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Figure 3.23: Flux line lattice diffraction patterns obtained in applied fields of (a)
7.5 T and (b) 10.8 T. Both patterns were obtained at 2 K with H ‖ c, and after
an FC procedure. The axes indicates in (a) apply to both figures, and the white
arrows show the {110} directions. The overlaid red dashed line pattern shows the
suggested FLL structure, where the angle ν indicates the opening angle of the FLL
primitive cell.
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Figure 3.24: A comparison between FC and OFC measurements of the high field-
dependences of (a) the mean Lorentzian rocking curve width and (b) the mean
FWHM azimuthal spread of the Bragg spots. In both cases, the FC data is shown
by empty blue squares, the OFC data is shown by filled red circles. The red/blue
dashed lines provide guides to the eye. The black dashed lines provide estimates of
the resolution. The vertical axes of both (a) and (b) are in units of scattering angle.
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of the Bragg spots to be essentially field independent 11. At these low temperatures

and fields, dynamic effects such as FLL melting will not have an effect on the order

of the lattice, allowing us to suggest that the reduction in longitudinal correlation

is due to the increasing influence of weak static FLL disorder. This was a possi-

ble explanation for the similar observation of the field-induced broadening of the

rocking curves observed in the high-κ borocarbide superconductors YNi2B2C and

LuNi2B2C (Eskildsen et al., 1997a).

3.5.5 Flux line lattice structure transitions and structural distortion

Transition between the low and intermediate field structures

The field range between 1.5 T and 2.5 T hosts a structure transition between the

low field and intermediate field structure phases. To deduce the nature of the tran-

sition over this field range, we carried out a systematic investigation of the field-

dependence of the FLL structure through the transition, using the OFC procedure

at each field. Figures 3.25 (a) to (e) show the results of such an investigation at

fields between 1.5 T to 2.5 T. In each figure, just the top right quadrant of recipro-

cal space was recorded on the detector, as in principle this is all that is needed to

construct the overall diffraction pattern. Diagonal rocking scans were carried out

to look for diffracted intensity close to the {110} direction. A brief inspection of

both the low and intermediate field structure types shows that diffracted intensity

observed clockwise to the {110} direction will be due to the presence of the low

field structure, while intensity observed counterclockwise from the {110} direction

will be due to the presence of the intermediate field structure.

In figures 3.25 (a) and (b) the Bragg spot just below the {110} axis indicates

the only FLL structure present is the intrinsic hexagonal structure of the low field

phase. For figures 3.25 (c) and (d), the azimuthal spread of this spot has notice-

ably increased, and structure is visible within the diffracted intensity patch. Sim-

ple inspection shows this structure to be consistent with that expected from the

11This is barring the 6.5 T FC datapoint whose large value can be associated with the effect of the
structure transition.
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Figure 3.25: In figures (a) to (e) we show the top right portion of the detector for a
series of OFC measurements between the fields of 1.5 T and 2.5 T. These measure-
ments were obtained during the same experiment, and under identical instrument
conditions, bar the change in field. Green and yellow arrows indicate regions of
diffracted intensity associated with the low and intermediate field structure phases
respectively. Figure (f) shows the entire diffraction pattern of an FC measurement
at an applied field of 2 T. This was obtained in a different experiment to those pat-
terns shown in (a) to (e). The axes shown in (a) are valid for all figures, and in all
cases the white arrows indicate {110} directions. All patterns were obtained at 2 K
and with H ‖ c.
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{110} pinned FLL structures observed in the low field FC measurements (c.f. fig-

ure 3.19 (a)). For the fields of 2.0 T and 2.25 T, figures 3.25 (c) and (d) show that

the re-emergence of the pinned structures is accompanied by the appearance of the

intermediate field structure with a Bragg spot counterclockwise to the {110} line.

This shows that the intermediate field structure phase co-exists with low field FLL

structures. At 2.5 T, figure 3.25 (e) shows the intermediate field structure phase

to be the only structure within the entire sample. Despite the fact that the OFC

procedure is unable to prevent the re-emergence of the {110} pinned FLL structures

during the transition, the distribution of diffracted intensity associated with the low

field structures does not smoothly distort to accommodate the emergence of the in-

termediate field structure phase, leading us to conclude that the transition is likely

to be intrinsically first-order.

The re-emergence of the {110} pinned structures within the vicinity of the struc-

ture transition is testament to the shallowness of the intrinsic Fm of the low field

structure phase. On increasing the field, it can be reasonably expected that the Fm

of the low field phase will become yet shallower on approaching the crossover to the

orientational Fm of the intermediate field structure phase. From this perspective,

it is unsurprising that the orientational Fm provided by the {110} pinning potential

becomes comparable to, and even preferred to, the intrinsic Fm of the low field

phase.

The detrimental role played by weak disorder on a first-order transition is well

studied (see for example, Imry and Wortis (1979)). Typically weak disorder smears

the sharpness of the transition, whilst strong disorder may be sufficient to com-

pletely round the transition so that it appears second-order. In the present case,

the role of disorder on the transition may be exaggerated by the fact the transi-

tion is between two FLL structures each with Bragg spots relatively close to, but on

opposite sides of, the {110} pinning potential. Taking this into consideration, it is

easy to envisage how the transition between the intrinsic FLL structures might be

driven second-order in the presence of {110} disorder. Indeed, this is borne out by

a diffraction pattern obtained at 2.0 T (figure 3.25 (f)) obtained from a FLL pre-
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pared using the standard FC procedure. Although some structure can be loosely

discerned from the almost continuous elliptical intensity distribution, the lack of

orientational order of the FLL indicates the coexistence of numerous shallow and

competing Fm at the point at which the structure was frozen-in on cooling. This

diffraction pattern at 2.0 T ultimately lies at the mid-point between what is ob-

served to be a continuous field-variation of the FLL structure for FC measurements.

From this respect, the OFC procedure turns out to be invaluable in promoting the

flux lines to order within their local Fm, be it associated with either of the intrinsic

structures or that due to the {110} pinning. The resulting distinction between either

of the low field structures and intermediate field structure, allows us to identify that

the field-dependence of the FLL structure through the transition is not intrinsically

smooth.

Transition between intermediate and high field structures

Between the field range of 6.0 T to 7.5 T a first-order transition between the inter-

mediate and high field structure types takes place. Determining the nature of this

structure transition is simpler than for the case at low fields, as a clear co-existence

of the intermediate and high field structures is observed on moving through the

transition. As an example of this, figure 3.26 shows a diffraction pattern obtained

in an applied field of 6.5 T, after the FLL was prepared by a FC procedure. The

co-existence is unaffected by whether or not the FLL is prepared by the OFC or FC

procedure; in neither case do the structures smoothly distort into one another as a

function of field. Compared to the low field transition, the clarity of the high field

transition suggests the Fm of the intermediate and high field structures are deeper

at the point they cross.

Field-dependence of the characteristic primitive cell angle

Although a co-existence of different FLL structures provides a clear indicator for a

first-order transition, a more quantifiable viewpoint is shown in figure 3.27 where

we present the field-dependence of the FLL primitive cell opening angle. These
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Figure 3.26: A FLL diffraction pattern obtained in an applied field of 6.5 T, at 2 K
and with H ‖ c. The FLL has been prepared using a FC procedure. White arrows
indicate the {110} directions. The overlaid yellow and red dashed line patterns indi-
cate the co-existence of the intermediate and high field structure types respectively.

angles have been defined in previous subsections, and are indicated within the small

schematic diagrams of the real space primitive cell orientation contained within the

figure.

The first-order nature of the FLL structural transitions is again clear on inspect-

ing figure 3.27; the structure does not change smoothly with field on passing

through either transition. The graph also allows a quantifiable estimation of the

field region of structural co-existence, being ≤ 0.5 T for both transitions. The co-

existence likely indicates a small amount of inhomogeneity between the different

crystals of the mosaic. From the size of these regions however, we estimate the

transition fields as 2.0(2) T for the low field transition, and 6.7(2) T for the high

field transition.

We also see from figure 3.27 that within the high field structure phase, there is a

clear difference between the FC and OFC FLL structures, with the OFC preparation

method promoting a structure that is closer to the perfect square. Within the inter-

mediate field phase however, there is no clear difference between the shapes of the

FLL prepared by the FC and OFC procedures. We initially proposed that the results

obtained using the OFC method reveal the FLL coordination below the temperature
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Figure 3.27: The field-dependence of the FLL primitive cell opening angle for the
various FLL structures at 2 K, for fields up to 10.8 T applied parallel to the c-axis. For
clarity, we only consider the intrinsic FLL structures. The inset schematic diagrams
show the real-space orientation of each primitive cell with respect to the crystal axes,
with the b-axis indicated. The angles indicated in these schematics are consistent
with those defined previously. Grey shading indicates the field regions over which
co-existing FLL structures are observed. The dashed line represents the opening
angle of 90◦ as expected for a perfect square FLL structure, whilst the dash-dot line
represents an opening angle of 60◦ as expected for an isotropic hexagonal structure.
Error bars (not visible) are of order the size of the data points.

at which the FC structure is frozen in. We will see later in section 3.8, that the dif-

fering behaviour between the structure phases is consistent with slightly different

temperature-dependences between the two structure types.

Distortion of FLL structures

The hexagonal FLL structures that we observe are distorted from the isotropic

hexagon, with a long axis of distortion parallel to a∗. A quantitative measure of this

distortion can be described geometrically in terms of the axial ratio η of the ellipse

that overlays the distribution of Bragg spots. In Appendix C we derive the geo-

metric rules that relate η directly to the characteristic angles of the FLL structure.

In figure 3.28, we show the field-dependence of η obtained across all hexagonal

structures observed up to 7.0 T. In the low field phase, where the FLL is close to
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Figure 3.28: A graph showing the field-dependence at 2 K of the distortion param-
eter η for the low field (diamonds) and intermediate field (circles) structure phase
types. The distinction between FC and OFC measurements is made by empty and
filled symbols respectively. The solid blue line is a simple linear fit to the OFC data
of the intermediate field structure phase.

being describable by anisotropic London theory, the value of η equals the in-plane

penetration depth anisotropy γab (= λa/λb) (Thiemann et al., 1989). Our analysis

shows this value to be essentially constant in the low field phase with a mean value

1.28(1); a value that compares favourably with those obtained from other bulk

studies on overdoped samples (Ager et al., 2000; Brown et al., 2004; Khasanov

et al., 2007). Figure 3.28 also shows that the first-order transition between the

low and intermediate field structures manifests as a clear discontinuity in the value

of η obtained from OFC measurements. Care must be taken in interpreting this

discontinuity as an abrupt change in either of λa or λb within the London picture,

as it may be necessary to invoke non-local corrections to both lengths, thus ren-

dering the local London theory invalid. However, in the intermediate field phase

we clearly see that the measure of the structural distortion is monotonically sup-

pressed with field. The easiest interpretation of this is a field-induced suppression

of the proximity-effect induced superconductivity on the chains.

Figure 3.28 also shows that, within the low field phase there is a noticeable dif-

ference between the FC and OFC value of η. It is difficult to see why there should be
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a discrepancy at low fields as the measure of the structural distortion is an intrinsic

effect of the Fermi surface anisotropy, which will be the same for both techniques of

FLL preparation. Taking this into account, it seems that extrinsic effects originating

from the residual {110} disorder play a role in causing the apparent reduction of

the FC values of η. As the FLL is close to a first-order transition, the reduced values

can likely be attributed to the disorder rounding the sharpness of the transition so

as to make the field-variation of η appear more continuous. This again highlights

the benefit of the OFC procedure over the FC procedure in the low field range.

In the high field rhombic phase, we characterise the structural distortion in terms

of the field-dependence of the aspect ratio of the rectangle that overlays the four

Bragg spots of the structure. The aspect ratio is directly related to the primitive cell

opening angle ν by

Aspect Ratio =
1

tan
(

180−ν
2

) (3.3)

where the angle ν is as defined in figure 3.23 (a). Referring to a diffraction pattern

of the high field structure, the aspect ratio is equivalent to the ratio of the height

of the rectangle divided by the length. In figure 3.29 we plot the field-dependence

of the aspect ratio of the rhombic structure for both FC and OFC measurements.

The aspect ratio of such a FLL structure is seen to approach smoothly the value of

unity expected for a perfect square. Clearly, the structural distortion is still chang-

ing up to the currently highest available fields, and it remains unclear from our

measurements whether the FLL is close to a stable ‘lock-in’ structure phase or not.

3.5.6 Discussion of the field-dependence of the FLL structure at 2 K

Our results show that the intrinsic FLL structure at low field is single domain and

distorted hexagonal structure, aligned with the crystal lattice. The physical mech-

anism that gives rise to this specific orientation is currently unexplained in the lit-

erature. Strictly within the local London theory, no preferred orientation of the

FLL exists (Campbell et al., 1988; Thiemann et al., 1989). However, since all FLL
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Figure 3.29: A graph showing the field-dependence of the aspect ratio of the rhom-
bus that overlays Bragg spot distribution of the rhombic FLL structure of the high
field phase. The aspect ratio is computed from the characteristic angle ν of the
primitive cell. The black dashed line corresponds to an aspect ratio of 1, which is
the perfect square. Error bars in the aspect ratio can be considered of order the size
of the data points.

orientations are predicted to be degenerate, any additional effect, such as a weak

non-local interaction between the FLL and the Fermi surface, will be sufficient to

provide a preferred orientation, if pinning is not too strong. It also seems reasonable

that our observed structure is consistent with one of the two expected according to

the symmetry of the crystal (Walker and Timusk, 1995).

The first-order transition between the low and intermediate field structures re-

flects a crossover from one dominant Fm to another. In order to explain the occur-

rence of such a transition, it is necessary to invoke the onset of non-local effects at

higher fields. The incorporation of non-local effects into the London theory takes

the form of higher-order terms in q that couple the FLL to the anisotropies of the

Fermi surface (Kogan et al., 1997a), and also the gap function (Franz et al., 1997).

However, these theories typically only incoporate terms up to fourth order in q,

as these are all that is necessary to deduce the role of non-local effects for the

commonly considered fourfold symmetric system. As a consequence, field-driven

first-order structure transitions are predicted, but only for a 45◦ re-orientation of

the primitive cell. Within such theories, to obtain a 90◦ re-orientation transition,

it is necessary to consider higher-order terms that further break the fourfold sym-
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metry. However, including these terms is cumbersome and calculations have not

been reported. This results in it being difficult for us to determine the precise Fermi

surface origin of the non-local component of the flux line-flux line interaction that

directly causes the structure transition.

However, our results clearly indicate there are at least two non-local compo-

nents to the flux line-flux line interaction that favour orthogonal orientations of the

primitive cell. The effect on the FLL due to each component will depend on how

each component couples to the anisotropies of the various Fermi surface sheets, and

also how this changes with field. We suggest that the different orientations of the

primitive cell reflect the influence of Fermi surface sheets that exhibit a markedly

different anisotropy. Essentially this comes down to one primitive cell orientation

being determined by the anisotropy of the plane bands, and the orthogonal orienta-

tion being ascribed to the chain bands. Similar qualitative arguments such as these

were offered by Cubitt et al. (2003) in order to explain the re-orientation transition

observed in the two band superconductor MgB2. However, they mention that the

assignation of different FLL structures according to different bands requires care-

ful calculations within an appropriate theoretical framework. Unfortunately, such

calculations have not yet been carried out for YBa2Cu3O7. We also mention that

according to Franz et al. (1997) another possible origin for a non-local component

can be ascribed to the gap anisotropy.

The first-order transition at high field between a hexagonal structure at inter-

mediate fields, and a rhombic structure at high field can be understood as due to

an increasing prominence of the order parameter anisotropy. Only within the nu-

merical calculations of Ichioka et al. (1999) are the free energies of hexagonal and

square FLL structures predicted to cross, indicating a first-order transition between

them. They predict the transition field to be 0.15 Hc2, which is higher than our

observed transition field. However, these calculations were carried out at T =0.5Tc

which is higher than that at which we performed our experiments. It is possible that

this field will fall at lower T , and quasiparticles are forced to selectively occupy the

nodal regions. For such a high field phase that is stabilised by the gap anisotropy,
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the nearest neighbour directions of the FLL structure are predicted to be correlated

to the nodal directions of the order parameter (Xu et al., 1996; Berlinsky et al.,

1995; Ichioka et al., 1999). Therefore, if the rhombic shape of our FLL structure is

stabilised by the gap anisotropy, our results indicate that the order-parameter is not

purely dx2−y2. This is in agreement with the results obtained at low fields (Smilde

et al., 2005; Kirtley et al., 2006), which show there to be a noticeable s-wave ad-

mixture to the overall symmetry. Both of these studies predict the nodal directions

to lie at angles of ±50◦ about the b-axis, in qualitative agreement with the nearest

neighbour directions of our rhombic structure. We showed in figure 3.29 that the

aspect ratio of the rectangle that overlays the rhombus smoothly approaches unity

on increasing the field. Within the framework of the d-wave theories, this would

suggest the s-wave admixture becomes suppressed with field, and the pure dx2−y2-

symmetry is recovered. However, evidence for a field-driven change in the nodal

positions is lacking in the literature.

Although this explanation may seem possible, our results cannot rule out that

the stabilisation of the rhombic structure is due to the onset of further non-local

effects. The dominant square-like bands of the Fermi surface associated with the

plane states have the expected symmetry for the stabilisation of a rhombic structure

with nearest neighbours close to the {110} directions (Franz et al., 1997; Kogan

et al., 1997a). Unfortunately, YBa2Cu3O7 is an example of a material where the

predicted orientations of high field square FLL structures are qualitatively similar,

whether stabilised by non-local effects or the order parameter anisotropy (Franz

et al., 1997; Kogan et al., 1997a; Ichioka et al., 1999; Nakai et al., 2002). From this

perspective, it seems that disentangling the two effects is somewhat inappropriate,

as both are intimately related to the symmetry of the Fermi surface. However,

dedicated calculations investigating the physical origins behind our FLL structure

transitions are yet to be investigated theoretically.
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3.6 Flux line lattice form factor up to 10.8 T, at 2 K and with
H ‖ c

To gain further insight into the behaviour of the FLL, it is reasonable to suggest that

the physics behind the FLL structure and structure transitions will be manifested in

measurements of the FLL form factor. In this section we provide the first analysis of

the form factor in this material.

3.6.1 Flux line lattice form factor analysis

The modulus form factor, |F (q)| for a specific Bragg spot is analysed in accordance

with the details contained in Appendix A. For reasons that will become apparent,

in our analysis we distinguish between the form factors of different types of Bragg

spot, whilst the form factor values for equivalent Bragg spots are averaged. For

simplicity, we only consider the form factor values of the intrinsic FLL structures

created by the OFC preparation procedure.

In figure 3.30 we show our measurements of the modulus form factor collected

over the entire field range up to 10.8 T and at 2 K. Figure 3.30 (a) shows the field-

dependence of the form factors obtained within the low field phase. In this phase,

two Bragg spots have q ‖ a∗, whilst those of the other four spots are off-axis. We

see that the average form factors for the different types of Bragg spot are equivalent

within the experimental error. Within the intermediate field phase, figure 3.30 (b)

shows a clear anisotropy between the form factors of the spots with q ‖ b∗, and those

of the off-axis spots. The field-dependence of the form factor ratio across the low

and intermediate field phases is presented in figure 3.31. For the low field phase,

we plot the field-dependence of the ratio |F (q ‖ a∗) |/|F (q 6‖ a∗) |, whilst for the

intermediate field phase we plot the ratio |F (q ‖ b∗) |/|F (q 6‖ b∗) |. We clearly see

that the first-order transition between the two structure phases further corresponds

to an observed change in form factor behaviour. We also mention that unusually,

the weaker form factor corresponds to the Bragg spot of the shorter q-vector. In the

high field rhombic phase, the four spots are equivalent, and in figure 3.30 (c) we
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Figure 3.30: Measurements of the FLL form factor at 2 K and with H ‖ c. All mea-
surements are obtained from FLLs prepared with the OFC technique. The results
for the low field phase are shown in (a), the intermediate field phase in (b) and
the high field phase in (c). In (a) and (b) we distinguish between the different
types of Bragg spot, and further provide an average value of |F (q)| taken over all
six Bragg spots. In (d) we combine the results across all three structure phases
in plotting the field-dependence of |F (q)|. At each field, the average form factor
values of figures (a) and (b) are presented, along with the form factor values from
figure (c). We exclude data at 1.75 T and 2.5 T, as the measures of the form fac-
tor data are unduly affected by the low field structure transition. For the fields of
6.5 T and 7.0 T, due to a clear co-existence of the FLL structures, we can account
for all of the diffracted intensity. At these fields, the overall form factor is obtained
by |F (q)| =

√
|F (q)int|2 + |F (q)rho|2, where |F (q)int|2 and |F (q)rho|2 are respectively

the average values of |F (q)| for the intermediate field and rhombic structures. The
blue solid line in (d) is a guide to the eye.
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Figure 3.31: A graph showing the field-dependence of the form factor ratio between
the inequivalent Bragg spots across the low and intermediate field structure phases.
For the details of the ratios obtained in each phase, see the text.

present the mean form factor at each field. In figure 3.30 (d), we show the entire

field-dependence of the form factor across all structure phases.

3.6.2 Emergence of non-local effects with increasing field?

The interpretation of our form factor data is not straightforward, as it is not im-

mediately obvious which model we might use. In Appendix D we briefly compare

the commonly used phenomenological models; the simple London model, the Clem

model, and the Hao-Clem (HC) model. We decide the Clem model (equation 1.43)

is the most appropriate with which to proceed. For a biaxial material such as

YBa2Cu3O7, the Clem model can be extended to allow for an anisotropy in both

the length scales of λ and ξGL. For a Bragg spot with a q-vector lying in any direc-

tion, the field profile depends on λ and ξGL along both the a and b-axes. Therefore,

the general expression for the form factor of any Bragg spot can be written as

F (q) = 〈B〉 gK1 (g)

q2
xλ

2
a + q2

yλ
2
b

, g =
√

2
(
q2

xξ
2
GL,b + q2

yξ
2
GL,a

)1/2 (3.4)

where the 1 that appears in the denominator is dropped, as 1 ¿ q2
yλ

2
b and 1 ¿

q2
xλ

2
a. This also allows us to write the expression for g in the more general form

above. In reference to our measurements, x and y respectively indicate the b∗ and

a∗ directions on the detector.

108



Flux line lattice structure transitions in twin-free YBa2Cu3O7−δ

The application of the model remains complicated however, as there are four

unknown parameters that are each possibly field-dependent. However, we note

that within the low and intermediate field phases, there are Bragg spots with q

parallel to a crystal axis. This simplifies matters, as if qx or qy is equal to zero,

two parameters are eliminated. The method of analysis adopted for the low field

structure phase is as follows:

1. We analyse the Bragg spots with q ‖ a∗. These spots are sensitive to λb and

ξGL,a. We assume a reasonable starting value for ξGL,a of 1.81 nm (taken from

Hc2 = 100 T), and use the Clem model to fit the data for λb. The values for qy

are those determined experimentally.

2. On the reasonable assumption that we are close to the London regime, we find

λa by assuming that λa = γabλb. The values for γab are taken to be equivalent

to the values of η as shown in figure 3.28.

3. To test if the Clem model can describe our data, we use the model in order to

predict the form factor values for the other Bragg spots with q 6‖ a∗. At this

stage, we have values for ξGL,a, λa and λb, but not ξGL,b. We make the assump-

tion that the anisotropy in ξGL is drawn from the effective mass, in the same

way as for λ, such that ξGL,b = γabξGL,a. This is the common case for single

band materials. Whilst this will not be the case for multi-band YBa2Cu3O7,

our assumption does mean that ξGL,b > ξGL,a, which is qualitatively consistent

with the predictions of Atkinson and Sonier (2008) shown in figure 3.9. At

each field, using the values for the length-scales and the experimentally mea-

sured values of qx and qy, we use the Clem model to predict the form factors

for the Bragg spots with q 6‖ a∗, and compare the results with the experimental

data.

Figure 3.32 shows the fit of the experimental form factor data for q ‖ a∗ (filled

blue squares) on using the Clem model (open light blue squares). The fitted value

for λb is 105(2) nm. This value is used with γab to obtain λa and ξGL,b. As γab varies
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Figure 3.32: A graph showing the application of the Clem model described in the
text, to the form factor data of symmetry inequivalent Bragg spots of the low field
structure phase.

little over the field range, the values for λa = 135(2) nm and ξGL,b = 2.33(3) nm

remain constant within the uncertainty. This is as expected if we are close to the

London regime. We note that our values for λa and λb are comparable to other

reported values (Basov et al., 1995; Johnson et al., 1999), though perhaps a little

shorter. This may indicate our overdoped sample to be of higher quality. On apply-

ing the Clem model to predict the form factors for the Bragg spots with q 6‖ a∗ 12,

the empty orange circles in figure 3.32 indicate a reasonable agreement with the

experimental data (red filled circles) over the narrow field range.

The form factor data of the intermediate field phase provides a stiffer test of the

Clem model and our assumptions. Initially, we maintain our original assumptions

that the anisotropies of λ and ξGL are related by the London parameter γab. We con-

tinue to take the values of γab as equivalent to η shown in figure 3.28. However, this

figure shows that η falls monotonically with field in this phase, which we suggested

was most naturally associated with a suppression of the chain superconductivity.

Hence, in order to continue using the Clem model, we allow the length-scales af-

fected by the chain states, which are those associated with the b-axis, to vary with

field. We subsequently assume that λa and ξGL,a retain their respective values of

12We only consider fields up to 1.5 T, as by 1.75 T the measured form factors are likely affected
by the onset of the structure transition into the intermediate field phase.
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Figure 3.33: A simple application of the Clem model to the form factor data of
the Bragg spots of the intermediate field structure phase. The model values are
calculated using the method described in the text.

135 nm and 1.81 nm as found/used in the low field phase, and that these values

remain field-independent. As we can calculate the values of all four length-scales,

we simply use the Clem model, and the experimentally measured q-values, to pre-

dict the form factors for two types of Bragg spot. Unfortunately, figure 3.33 shows

the Clem model provides a poor description for our data.

To proceed in using the Clem model, it seems further assumptions associated

with the length-scales are required. Let us consider the Bragg spots with q ‖ b∗.

The predictions made using the Clem model overestimate the value of the form

factor. The estimation can be reduced if we let λa and/or ξGL,b, be field-dependent

such that they increase with field. However, on studying the available theoretical

work it seems that an increasing core-size is rather unlikely. Numerical calculations

based on the Eilenberger theory predict the core-size within a d-wave supercon-

ductor to quickly become suppressed with increasing field (Ichioka et al., 1999);

a prediction also consistent with the calculations of Atkinson and Sonier (2008)

shown in figure 3.9. Furthermore, the Hao-Clem expression (equation D.3) for the

field-dependence of the core-size indicates that over our field range, the core-size is

expected to fall slightly with increasing field. Based on this evidence, we decide to

rule out a field-induced core expansion, and instead consider the possibility that λa

increases.
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If λa increases with field, then if the London relationship λa = γabλb remains

valid, λb will also increase. However, for realistic values of ξGL,a and ξGL,b, an in-

crease in λb causes the predictions made using the Clem model to fall further into

disagreement with the experimental data for Bragg spots with q 6‖ b∗. Therefore,

we conclude that any change in λa cannot be directly mapped onto a change in

λb using the London parameter γab. Similarly, γab is unlikely to be able to describe

the relationship between ξGL,a and ξGL,b. We note that according to the predictions

of Atkinson and Sonier (2008) shown in figure 3.9, the field-dependence of the

core size is anisotropic, and for fields of ∼ 3 T and higher, to a good approximation,

the core is closer to being isotropic. On assuming that ξGL,a = ξGL,b = 1.81 nm

within the entire intermediate field phase, this allows an easier investigation of the

behaviour of the penetration depths. While this might seem like a gross simplifica-

tion, it is at least consistent with theoretical work that is directly applicable to this

material. It can also be shown that any sensible anisotropy in ξGL has a weaker

effect on the predictions made using the Clem model, than the anisotropy in λ.

We now repeat the analysis of the intermediate field structure phase using the

constant core size parameters, and the experimentally measured q-vectors. We can

fit the form factor data for the Bragg spots with q ‖ b∗ to obtain λa = 151(4) nm.

Using this knowledge, we subsequently fit the form factors for the off-axis spots to

find that λb = 104(4) nm. Figure 3.34 shows a comparison between the Clem model

fits to the experimental data.

There appear to be two contradictory outcomes of this analysis. Firstly, we find

the anisotropy between λa and λb to be larger than at low field, and that naively

expected from the measure of hexagonal distortion in the London regime. Sec-

ondly, we find λa is now significantly longer than at low field, but λb remains

unchanged. The latter must be the case in order to understand the form factor

anisotropy in terms of the Clem model. However, if we are correct in our assump-

tion that field-dependences of λ and ξGL are independent, then in the absence of

the precise knowledge of these dependences are, we have resulted in finding some

seemingly counterintuitive results.
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Figure 3.34: An application of the Clem model to the form factor data of the in-
termediate field structure phase, after making further assumptions described in the
text. Here we have assumed that ξGL,a = ξGL,b = 1.81 nm, for all fields. Using the
experimentally measured q-vectors and the Clem model to fit the data, we find that
λa = 151(4) nm, and λb = 104(4) nm.

We also re-analysed the low and intermediate field data using the HC model

outlined in Appendix D, which inherently ascribes a field-dependence to ξGL. Very

similar results to those above were obtained. An alternative approach taken by Bow-

ell (2008), was to quantitatively compare the form factor predictions of the vari-

ous phenomenological models with the predictions made using the quasiclassical

Eilenberger theory (Ichioka et al., 1999; Ichioka and Machida, 2007). Over the

low field region, and for the most relevant microscopic calculations carried out at

T = 0.1Tc (Ichioka and Machida, 2007), the phenomenological (and biaxial) form

factor model that gave the best approximation to the numerical calculations was

F (q) = 〈B〉exp
(−0.44

(
q2

xξ
2
GL,b + q2

yξ
2
GL,a

))

q2
xλ

2
a + q2

yλ
2
b

. (3.5)

This model is essentially the London model with a core-correction term of the form,

exp (−Cξ2q2), where C = 0.44 is specifically identified as that which gives agree-

ment to the microscopic theory. On re-analysing our data using this model, we find

it provides a poorer description that that given by the Clem model. This is because

the core-correction term underestimates the rate at which the form factor falls at

low field (i.e. the factor 0.44 is too small). We could adjust the value of 0.44 to

improve the fit, but this amounts to a fifth free parameter, and as we have seen,
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four is already rather too many.

However, based on our analysis using the Clem model, discounting any unex-

pected behaviour of ξGL,a and ξGL,b, it seems likely that λa and λb do not enjoy

a simple London-like relationship at intermediate fields. We find λa to lengthen

noticeably, whilst λb remains robust across the FLL structure transition.

The apparent lengthening of an experimentally obtained λ has been reported

before in µSR measurements on YBa2Cu3O7−δ (Sonier et al., 1994, 1999). In these

studies, the muon precession signal is fitted according to a model based on the

Fourier transform of the calculated field distribution for the expected FLL structure.

The ‘effective’ penetration depth, λeff , is that which fits the data. Note that whilst

λeff is of order the actual λ in length, the term ‘effective’ implies it is ultimately de-

termined by the measured field-distribution and the analysis routines. At high field,

these experiments claim to observe an increase in the in-plane λeff
13. Dedicated

theoretical work was subsequently carried out within a London/GL framework in

order to explain the lengthening of λeff , and the suggested explanation was that

it is due to the onset of non-linear and non-local effects at high field (Franz et al.,

1997; Amin et al., 1998, 2000). Non-linear effects are associated with a field-

induced adjustment of the quasiparticle spectrum at the nodes. Under an applied

field, quasiparticle states move below the Fermi energy, and induce a component

in the quasiparticle current flow in the opposite direction to the main supercurrent.

This leads to a non-linear relationship between the supercurrent density and its

velocity, which weakens the supercurrent response, and increases λ (Amin et al.,

1998). However, the onset of non-local effects is considered to be more important

that non-linear effects (Franz et al., 1997; Amin et al., 1998, 2000). This is due to

the achievement of the extreme non-local limit at the gap nodes, where the non-

local length scale ξ0(k) = vF /π∆(k), formally diverges. Within the nodal vicinity,

and for a non-uniform field as exists in the mixed state, a larger ξ0 results in a larger

13Note that the authors do not discriminate between the a and b-axes in experiment nor theory,
and so consider an average over the plane. They also assume the FLL exhibits a field-independent
isotropic hexagonal structure.
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volume over which to average the field, in order to find the supercurrent density.

This weakens the supercurrent response, and thus increases λ. In essence, in the

context of the µSR experiments, Amin et al. (1998, 2000) show that non-local

effects modify the field-distribution, which result in an increased λeff .

The possible role that non-local effects may play on SANS measurements of the

FLL has not yet been considered theoretically. However, SANS, like µSR, is also

sensitive to the field distribution within the material, and if non-local effects do

modify this distribution at low temperature, we speculate a modification of the

measured λ could be induced in an analogous way as for the µSR studies. If our

observations can be understood in terms of theories of Amin et al. (1998, 2000), we

are sensitive to ‘d-wave non-locality,’ the effects of which will be most prominent

for the plane states. However, we note any non-local modification of the field-

distribution that affects the measured value of λa, would also be expected to affect

the component of λb drawn from the plane supercurrents. As λb draws components

from both plane and chain states, and we do not observe a change in λb across the

structure transition, we speculate that due to a complex hybridisation between the

plane and chain states (Atkinson and Sonier, 2008), λb is more robust to the effects

of non-locality compared to λa.

In summarising, we acknowledge our analysis relies on a series of assumptions,

our discussion is speculative, and that we have no dedicated theoretical support.

In spite of these criticisms, and drawing on the available literature, it does seem

plausible that ‘d-wave non-local effects’ will become increasingly important at inter-

mediate fields. New theoretical calculations of the form factor are required, which

would allow use to understand the SANS measurements. The most promising the-

oretical path involves dedicated calculations carried out using the quasiclassical

Eilenberger theory. At the time of writing, the first calculations have recently been

carried out by M. Ichioka of Okayama University, Japan, and reproduce the form

factor anisotropy that we observe in the intermediate field phase.
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3.7 Higher order Bragg spots at 2 K

Due to the large value of λ in YBa2Cu3O7, higher-order Bragg spots are difficult to

observe experimentally. Some effort was spent in trying to observe the next order

{1, 1} Bragg spots. Within the hexagonal phases a systematic investigation of the

{1, 1} spots has not yet been carried out, as such spots are only just observable for

fields up to 3 T. Here, we focus on our observations in the high field phase.

Figure 3.35 shows a FLL diffraction pattern obtained in a field of 7.5 T. We

observe clear {1, 1} spots with q ‖ a∗, that are of visibly weaker intensity than the

four {1, 0} spots of the rhombic structure. However, at the time of writing, we

have not yet made clear observations of the expected {1, 1} Bragg spots with q ‖ b∗.

This disparity needs to be understood. This is especially the case considering that

our intermediate field phase exhibits an anisotropy between the {1, 0} spots, with

the weaker spots lying at shorter q. This is most unusual, as weaker spots are

commonly considered as higher-order. However, for our intermediate field phase,

it seems difficult to ascribe the low q spots as higher-order than {1, 0}. However,

without observing the {1, 1} Bragg spots with q ‖ b∗, it might be suggested the high

field structure is actually distorted hexagonal, exhibiting ‘weak’ first-order spots

with q ‖ a∗.

In order to understand the nature of the {1, 1} spots with q ‖ a∗, full rocking-

curve measurements were carried out in order to obtain the field-dependence of

the form factor. In figure 3.36 (a) we show the form factor for the {1, 1} and

{1, 0} types of spot. In figure 3.36 (b), we show the field-dependence of the ra-

tio |F (q ‖ a∗)|/|F (q 6‖ a∗)|, i.e. |F (q {1, 1})|/|F (q {1, 0})|. We see that the {1, 1}
spots with q ‖ a∗ genuinely do correspond to a weaker field modulation, and this

modulation becomes progressively weaker with increasing field. This corresponds

to the expected situation for higher-order spots. However, it is important to under-

stand the disparity between the ability to measure {1, 1} spots with q ‖ a∗, and the

apparent difficulty in measuring {1, 1} Bragg spots with q ‖ b∗.

To understand this, we re-examine our form factor measurements in terms of the
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Figure 3.35: A FLL diffraction pattern obtained in an applied field of 7.5 T, a tem-
perature of 2 K, and with H ‖ c. The red dashed line indicates the rhombic structure
accompanied by {1, 1} Bragg spots with q ‖ a∗. Due to the apparent weakness of
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figure 3.23 (a).
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Figure 3.36: In (a) we show the field-dependence of the form factor for the two
different spot types of Bragg spot observed in the high field phase. The form fac-
tors for the off-axis Bragg spots correspond to those values shown earlier in fig-
ure 3.30 (c). In (b) we show the field-dependence of the ratio between the differ-
ent Bragg spots observed in the high field structure phase. The form factor ratio
plotted is |F (q ‖ a∗)|/|F (q 6‖ a∗)|. All data were obtained at 2 K, and with H ‖ c.
The dashed lines are guides to the eye.
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Figure 3.37: The best fits of the Clem model to the experimental data in the
high field structure phase. The fitted values for the penetration depths are λa =
159(2) nm and λb = 131(2) nm.

description afforded by the Clem model (equation 3.4). In doing so, we adopt a sim-

ilar approach as done previously for the hexagonal phases. We maintain our high-

field assumption that the core-sizes ξGL,a = ξGL,b = 1.81 nm are field-independent.

This is in reasonable agreement to the predictions shown in figure 3.9. We then use

the Clem model, and the experimentally measured q-values, to fit the form factor

data for the {1, 1} spots with q ‖ a∗ for fields of 7.5 T and above 14. The fitted value

of λb = 131(2) nm. We now use this value in order to fit the form factor data for the

{1, 0} spots and find λa. The fitted value is λa = 159(2) nm. In figure 3.37, these fits

are compared to the experimental data. We note that both λa and λb have increased

over their intermediate field values, consistent with the suggestion that non-locality

becomes increasingly important at higher fields.

We now take advantage of the properties of Bravais lattices. At each field, we

know where we expect to find a {1, 1} spot with q ‖ b∗. Using this information, we

initially see that part of the disparity in the {1, 1} form factors over our field range

will be due to the fact that the q for the spots with q ‖ b∗ is always larger than those

with q ‖ a∗. On taking the extracted value of λa, we use the Clem model to predict

the expected field-dependence of the form factor for these spots. These values are

14At fields below 7.5 T, we are sensitive to the effects of the FLL structure transition, and thus do
not include this data in with the fit.
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Figure 3.38: A comparison between the experimentally observed {1, 0} and {1, 1}
form factor data with associated Clem model fits, and the predicted {1, 1} form
factor values for Bragg spots with q ‖ b∗. These values, predicted on using the
Clem model, lie close to the measurement sensitivity across the entire field range.
The measurement sensitivity indicated is estimated based on the typical counting
statistics used to obtain the {1, 1} form factor data for the Bragg spots with q ‖ a∗.

shown in figure 3.38 (filled black diamonds). These predicted values lie very close

to our estimate of the measurement sensitivity, which indicates the minimum form

factor we might expect to observe under the typically used counting statistics 15.

This indicates that it is not surprising that we do not observe a clear signal from the

Bragg spots with q ‖ b∗. Hence, we can understand the {1, 1} form factor anisotropy

in terms of the Clem model. However, as in the hexagonal phases, this relies on our

assumptions being correct. The confirmation of this interpretation will require new,

more sensitive measurements that are able to measure the {1, 1} Bragg spots with

q ‖ b∗.

Our interpretation would also benefit from dedicated theoretical calculations of

the internal field distribution, which can make direct predictions for the magni-

tudes of the Fourier components. The theoretical work of Ichioka et al. (1999) does

make predictions of the field-dependence of the {1, 1} form factors for a square

15The estimation of the measurement sensitivity is made by rotating the reciprocal lattice to the
expected Bragg angle for the {1, 1} Bragg spot with q ‖ b∗, and counting just at this angle. The
measure of the intensity extracted over a region on the detector corresponding to the expected
position and size of the Bragg spot corresponds to a minimum measure of the peak intensity of the
rocking-curve. This peak intensity is used to make an estimate of the minimum form factor with its
associated error.
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FLL stabilised by a dx2−y2 gap anisotropy. The prediction is that the form factor

ratio F (q{1,1})/F (q{1,0}) is ∼0.45 at zero field, falls slightly to a minimum value

of ∼0.4 at ∼ 0.1H/Hc2, and increases monotonically with field to be ∼0.7 close

to Hc2. The initial fall of the ratio is consistent with our observations shown in

figure 3.36 (b), though there is a clear quantitative disagreement. However, the

calculations of Ichioka et al. (1999) were carried out at T = 0.5Tc, and later work

from the same group at T = 0.1Tc show a large qualitative difference in the form

of the field-dependence of the {1, 0} form factor between the two temperatures.

Numerical calculations of the {1, 1} form factors for lower temperatures have not

been reported.

Our measurements of {1, 1} spots in the rhombic phase cast light on the difficulty

in measuring the form factors of the {1, 1} spots of the hexagonal phases. Geomet-

rically speaking, for the isotropic hexagonal coordination, q{1,1}/q{1,0} =
√

3, whilst

for the isotropic square coordination, q{1,1}/q{1,0} =
√

2. Hence, at lower fields, to

first approximation, the q-vectors for the {1, 1} spots are proportionally larger for

the hexagonal structures. Using these predicted q-values, and the extracted values

for λ obtained in the previous subsection, we use the Clem model to make predic-

tions for the expected form factor values for the {1, 1} spots. Again, the difficulty

in observing spots for fields above 3 T is consistent with the predicted form factors

lying close to the measurement sensitivity.

3.8 Flux line lattice structure and form factor at higher temper-
atures

3.8.1 Measurements of structure at higher temperatures

We investigated the detailed shape of the FLL at higher temperatures, in order

to deduce how the FLL structure phase boundaries might behave as a function of

temperature within the H‖ c phase diagram. Characterising these phase boundaries

might also provide extra details regarding the physical mechanism behind the FLL

structure transitions, and provide a comparison to the phase diagram of the lightly

twinned YBa2Cu3O7 sample shown in figure 3.14.
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Our preliminary temperature scans indicated the precise shape of the FLL to

be remarkably temperature-independent. To investigate this is more detail, at 6.9 T

we carried out a temperature-warming scan essentially along the high field structure

phase boundary. To perform this scan, initially the FLL was prepared at 2 K via an

OFC procedure. On warming to the desired temperature, a short field-oscillation

was carried out in order to equilibrate the FLL structure. At each temperature, full

rocking-curve measurements were carried out in order to obtain the full integrated

intensity over all types of spot present.

At 2 K and 6.9 T, figure 3.27 shows we start with a co-existence of both inter-

mediate and high field phases. On increasing the temperature, figure 3.39 shows

that both these structures co-exist over the entire range up to 70 K. At temperatures

beyond this, although diffracted intensity was visible, we were unable to fit the po-

sitions of the Bragg spots reliably. We see in figure 3.39 that the precise shape of the

primitive cell for both intermediate (figure 3.39 (a)) and high field (figure 3.39 (b))

structure types is remarkably insensitive to the temperature. In particular, the pre-

cise shape of the primitive cell of the intermediate field phase changes only by ∼1◦

over the entire temperature range. It is clearly noticeable that the structure only

varies with temperature for temperatures above ∼50 K. This can be interpreted that

the temperature at which the FLL structure is frozen-in (the irreversibility line), in

spite of the OFC procedure, is actually at ∼50 K, and not at lower temperatures as

previously thought.

Figure 3.40 shows the temperature-dependence of the fraction of diffracted in-

tensity associated with each of the two domains. To obtain this fraction at each

temperature, for each structure type we calculate the appropriate mean |F (q)| over

all the spot types for each structure. The measure of the total diffracted inten-

sity from both structures is found according to |Ftot(q)|2 = |Fint(q)|2 + |Fhigh(q)|2,
from which the fraction associated with each structure type is found by dividing its

|F (q)|2 by |Ftot(q)|2. Such a fraction does not represent the fraction of the sample

occupied by each domain, unless the scattered intensity of the ‘pure’ phases each

side of the phase boundary is equivalent. We see from figure 3.30 (d) that this is
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Figure 3.39: The temperature dependence, with H ‖ c and at a field of 6.9 T, of the
characteristic primitive cell angle (a) ρ for the intermediate field structure phase
and (b) ν for the high field structure phase. These angle labels are consistent with
those shown in figure 3.27. In each case, the dashed lines are guides to the eye.

not the case, and 6.9 T corresponds to a field slightly deeper into the high field

phase. Our comparison also assumes that the intrinsic temperature-dependence of

the form factor for both phases has an approximately equivalent form, as large dif-

ferences could distort our results. Whilst this will not be strictly true, our pure phase

measurements shown later in section 3.8.3 (figures 3.43 (a) and 3.44) indicate this

is a reasonable assumption. Taking these facts into consideration, figure 3.40 shows

that the intensity fraction ascribed to each domain remains essentially temperature-

independent. However, within the statistical uncertainty, we cannot rule out a very

weak curvature.

Most of our measurements for temperatures above 2 K were carried out using

temperature-warming scans. Unfortunately, due to beam time constraints and the

large size of the superconducting phase diagram, limited time has been spent inves-

tigating hysteretic effects. However, we did carry out some investigations of hystere-

sis at fields deep within the low and intermediate field phases. The amount of hys-

teresis was deduced by comparing the Bragg spot intensities obtained from fixed-

angle temperature-warming scans to corresponding temperature-cooling scans. In

the low field phase at 1 T, a small degree of hysteresis was observed, whilst at 5 T
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Figure 3.40: A warming scan temperature-dependence of the intensity fraction as-
sociated with the intermediate and high field structure types at 6.9 T. The intensity
fraction exhibited by each domain is shown as fraction of 1. The dashed lines
are linear guides to the eye, indicating the intensity fraction remains essentially
temperature-independent.

in the intermediate field phase, there was no difference in spot intensities within

the experimental uncertainty. Though not yet fully characterised, our initial results

suggest that hysteretic effects will not greatly affect the results presented here. Our

measurements of both the detailed FLL structure, and the intensity of each struc-

ture at 6.9 T, indicate the high field phase boundary is essentially temperature-

independent. However, any variation is unlikely to be larger than the hysteretic

field region indicated in figure 3.27. Even though we scanned through the high

field hysteretic region, we would expect a phase boundary of stronger curvature

to be observable in our temperature-dependent scans. The measurements reported

at 6.9 T are currently the only data obtained on using such fine temperature in-

crements. At other fields in the hexagonal phases, coarser temperature scans have

been carried out, providing results consistent with a remarkable insensitivity to the

temperature.

3.8.2 Flux line lattice structure type phase diagram

The insensitivity of the FLL structure to temperature made the deduction of the

structure phase boundary lines for H ‖ c much simpler. Our method for determin-
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ing a phase boundary line is as follows: for a series of fields within the vicinity of

the field co-existence region, the same coarse temperature-scan was carried out. At

each temperature, full rocking curves were obtained in order to obtain the appro-

priate mean |F (q)| over all the spot types for each structure. At each temperature,

we determine the field at which each FLL structure contributes 50 % of the overall

diffracted intensity. Using all of our available information, figure 3.41 shows the FLL

structure type phase diagram. We see that, based on the form factor measurements,

our estimate of the 2 K transition between the low and intermediate field phases is

slightly higher than our initial estimate based on structural measurements. For the

upper phase boundary line however, there is good agreement between the transition

field determined from form factor and structure measurements. We choose to plot

our phase boundary lines as guides to the eye that pass through to the datapoints

computed from form factor measurements. We mention that this diagram has only

been constructed using warming-scan data. It is the intention of future experiments

to learn if hysteretic effects might cause the positions of the phase boundary lines

to be slightly different.

Figure 3.41 reveals our phase boundaries to be essentially flat as a function of

temperature. However, within the accuracy of our measurements, we are unable to

rule out either phase boundary exhibiting a weak curvature at higher temperature.

Our phase diagram for H ‖ c lies in strong contrast to that of the lightly twinned

sample shown earlier in figure 3.14. In that sample, the phase boundary exhibits

a noticeable upward curvature, indicating the temperature recovers the low field

structures which are associated with twin boundary pinning. As the phase boundary

for the twinned sample is continuous, we suggest that its field and temperature

phase diagram is determined by the balance between the intrinsic Fm, and the Fm

of the {110} pinning potential.

Within the theoretical literature, the weak temperature-dependence of our phase

boundary lines is also surprising based on what might be expected for High-Tc ma-

terials. The terms that introduce anisotropy into the flux line-flux line interactions

are predicted to be suppressed with temperature. Within the framework of the qua-
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Figure 3.41: The FLL structure type phase diagram for H ‖ c constructed from
measurements of the FLL structure and form factor. The inset schematic diagrams
indicate the proposed FLL structure for the relevant region of the superconducting
phase diagram. The circle data symbols were obtained from measurements of the
FLL form factor. The diamonds correspond to the estimate of the phase boundary
as determined from structural measurements. The dotted and dashed lines are
determined using just the datapoints determined from the FLL form factor, and
provide guide to the eye estimates of the structure phase boundaries. The solid line
is the melting line is deduced from data presented by Roulin et al. (1998).

siclassical Eilenberger theory, at higher temperatures the quasiparticle excitation

spectrum becomes increasingly isotropic. Hence, any FLL structures stabilised by a

d-wave gap anisotropy are expected to become increasingly isotropic, as the quasi-

particle excitation spectrum becomes increasingly isotropic. The same is also ex-

pected of the various non-local London theories Kogan et al. (1996, 1997a); Affleck

et al. (1997); Franz et al. (1997); Amin et al. (2000), as temperature suppresses the

influence of non-local effects on the interactions between flux lines. Within the GL

theories (Berlinsky et al., 1995; Xu et al., 1996; Shiraishi et al., 1999), the mixed

gradient higher-order terms that introduce the anisotropy into the free energy func-

tional must be suppressed with temperature, such that an isotropic hexagonal coor-

dination is recovered close to Tc2. In fact, our results in figure 3.39 show that the

FLL mostly retains the measure of its distortion right up to Tc2, supporting the idea

that plane and chain states possess a single critical temperature, in agreement with
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the proximity effect models (Atkinson, 1999; Atkinson and Sonier, 2008). How-

ever, even allowing for this first approximation re-scaling of the isotropic hexagon

over the entire phase diagram, from the theoretical perspective, the temperature-

independence of the structure phase boundaries is remarkable. We might also sug-

gest that the similar form of the structure phase boundaries indicates that similar

physics lie behind the FLL structure transitions. This would indicate that the phys-

ical mechanism behind both of the structure transitions is due to an increasing

influence of non-local effects. However, the deduction as to why the temperature is

so uninfluential is currently unexplained.

3.8.3 Temperature-dependence of the form factor

The weak temperature-dependence of the precise FLL structure provided us with

the opportunity to record the temperature-dependence of the form factor, without

using excessive amounts of beamtime. Typically, carrying out such measurements

is a lengthy process. At each temperature, full rocking curves should be carried out

to capture the entire integrated intensity for the Bragg spots, and also to accurately

determine the associated q-vectors. In principle however, the same information

can be obtained by counting just at the Bragg angle at each temperature. At this

angle, the recorded intensity represents that of the peak of the rocking curve. As-

suming the rocking curve width is temperature-independent, this is directly related

to the form factor, |F (q)|. Our preliminary scans indicated that the assumption

of a temperature-independent rocking curve width was reasonable. However, this

assumption is checked within our temperature-scans by adopting a compromise ap-

proach. While at most temperatures we count at fixed rotation angle, at certain

temperatures we perform the full rocking-curve measurements. These measure-

ments check the temperature-independence of the rocking-curve width, and also

that the measures of the form factor obtained at fixed angle are consistent with

those expected if a full rocking-curve measurement is carried out. We will see that

although not perfect, our compromise technique works reasonably well.

Figure 3.42 shows a warming-scan carried out in the low field phase at 0.2 T, an
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Figure 3.42: The temperature-dependence of the normalised form factor at 0.2 T,
for H ‖ c, of a Bragg spot with q ‖ a∗. The filled symbols show the form factor ob-
tained by measuring the diffracted intensity and q at fixed rotation angle. The data
are normalised by extrapolated zero temperature values. The open symbols show
the measure of the form factor obtained using full rocking curve measurements.
These data are normalised to the 2 K measurement, which we assume lies close
to the value of the form factor at T = 0 K. The solid lines indicate the fits to the
fixed angle form factor data according to weak-coupling models described in the
text. The inset shows the temperature dependence of the FWHM of the Lorentzian
lineshapes of these full rocking curve measurements. The dashed line of the inset
is the weighted mean of these curve widths.

applied field where we believe the FLL can be described in terms of the Clem model.

We only show data for the spot type with q ‖ a∗, as essentially identical results were

obtained for the other spot type. In the main panel of figure 3.42, we compare

the measures of the form factor obtained at fixed angle, and those obtained from

full rocking curve measurements. At fixed angle, the form factor is found using

|F (q)|2 ∝ I/q, where I is the diffracted intensity measured on the detector, and q is

the constant q-value. Above Tc, there is no q value with which we could technically

deduce a form factor value. For the datapoints at 85 K and 90 K, we assume the

same q-vector as for lower temperatures, and include these data to indicate the

approximate location of Tc. We see that the normalised results obtained using the

two different techniques exhibit good agreement. However, the inset shows that the

FWHMs of the Lorentzian lineshapes fitted to the rocking-curves of the full rocking
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curve data exhibit some scatter about the weighted mean. This introduces an extra

error into our fixed angle data shown in the main panel. At each temperature, the

calculated error for a fixed angle data point is subsequently the sum of the squares

of the fractional errors obtained from I, q, and the mean FWHM of the Lorentzian

lineshapes fitted to the rocking-curves of the full rocking-curve measurements. This

is also the calculation used for the error bars of the fixed-angle data points of the

temperature-scans shown later in figures 3.43 (a) and 3.44.

We previously saw in section 3.6.2 that the low field form factor can be de-

scribed in terms of the Clem model. In essence, this means that the form factor

|F | ∝ gK1(g)/λ2
b ∝ ns the superfluid density, where the core-correction term gK1(g)

is included, as this term contains the temperature-dependent core-size parameter

ξGL,a(T ). For a clean and single band superconductor, we can subsequently compute

the superfluid density using

ns(T ) ∝ gK1(g)

λ2(T )
∝

[
1 + 2

〈∫ ∞

0

dε
∂f

∂E(k, T )

〉]
gK1(g) (3.6)

where, f = [1 + exp (−βE)]−1 is the Fermi function, and E(k, T ) =
√

ε2 + |∆k(φ, T )|2
describes the quasiparticle excitation spectrum. Here, ε is the single-particle energy

as measured from the Fermi energy, and k is the wave vector. We assume a cylindri-

cal Fermi surface, and that the gap function ∆k(φ, T ) is separable into momentum-

and temperature-dependent components according to

∆k(φ, T ) = ∆k(φ)∆(0)tanh

(
1.74

√
1− T

Tc

)
. (3.7)

The temperature-dependent component has a form that is an approximation to

the predictions of weak-coupling theory (Tinkham, 1996), the resulting values

of which are essentially equivalent to those calculated numerically (Mühlschlegel,

1959). The angularly-dependent component of the gap function is defined ∆k(φ) =
√

2cos(2φ) for d-wave pairing, or can be simply put equal to 1 for s-wave pair-

ing. The brackets 〈. . .〉 indicate an angular average over the Fermi surface. The

term g of the core-correction term of the Clem model reduces to g =
√

2qyξGL,a(T ),

where qy is the experimentally determined constant value. We assume an empirical
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(1− (T/Tc)
2)−1/2 temperature-dependence to the core-size length-scale, and only fit

data up to 0.8Tc in order to avoid the divergence of the temperature-dependence as

T/Tc → 1. The only fitting parameter is ∆(0), which is the gap magnitude.

In figure 3.42 we show the numerical computation of the superfluid density for

the s- and d-wave gap functions. We show the best fits (smallest χ2) for each, and

see that the fit is strongly dependent on the form of ∆k(φ). Our analysis indicates

the major part of the condensate can be attributed to a large d-wave gap on a

cylindrical Fermi surface, with a gap magnitude of ∆d(0) = 19(1) meV. This gap

magnitude is comparable to the value of 22.9(1) meV obtained from apparently

much more sensitive µSR measurements on YBa2Cu3O7−δ (Khasanov et al., 2007).

Thus, assuming the validity of the Clem model, we show the superfluid density as

best represented by a large d-wave gap.

However, our single gap analysis is rather basic. In reality, YBa2Cu3O7 is a multi-

gap material, with an established sub-dominant s-wave component which some

attribute to the chain superconductivity, that skews the nodes of the simple d-wave

gap (Smilde et al., 2005; Kirtley et al., 2006). We analysed Bragg spots with q ‖ a∗,

which should be more sensitive than the off-axis spots to any effects of the chains.

Therefore, we might have expected the temperature-dependences for the off-axis

spots to be slightly different. However, as the temperature-dependences of the two

spot types are measured to be identical within the error, we are unable to observe

any obvious effect of this on our data. If there is any effect, it is therefore rather

small, and in order to identify it we require new and more detailed measurements.

Similarly, more realistic modelling of our data needs detailed calculations that di-

rectly account for the overall Fermi surface anisotropy.

We also mention that one of the proposed tests for the validity of the proximity-

effect model is the observation of an inflection point in the superfluid density at low

temperatures (Atkinson and Carbotte, 1995; Atkinson, 1999). This inflection point

reflects the existence of an s-wave component to the superconducting groundstate,

that is quickly suppressed with field and temperature. Our results shown in fig-

ure 3.42 show no such inflection point. However, inflection points are seen clearly
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in directly comparable µSR measurements on detwinned YBa2Cu3O7−δ (Khasanov

et al., 2007). The reason for this discrepancy between the results obtained using

the two different techniques remains unresolved.

Within the intermediate field phase, we observe most unusual behaviour. The

form factor anisotropy between the different spot types at 2 K, is further manifested

by anisotropic temperature-dependences. Figure 3.43 (a) shows this clearly from

measurements obtained at 5.0 T. For the spots with q ‖ b∗, we observe the form

factor is essentially temperature-independent until ∼ 50 K, whereafter the form

factor falls linearly. For the off-axis Bragg spots, the low temperature-dependence is

slightly more noticeable, but still rather weak, before falling linearly at above 50 K.

Figure 3.43 (b) shows that the form factor anisotropy between the different spot

types falls away monotonically with increasing temperature.

Within the high field structure phase, due to the lower diffracted intensity, it

was not possible to obtain data that were as statistically reliable. For completeness

however, in figure 3.44 we show the temperature-dependence of the form factor

obtained for the {1, 0} spots at 8.25 T. Although less statistically reliable, our results

do suggest a similar form of temperature-dependence to that exhibited by the spots

with q ‖ b∗ of the intermediate field structure phase.

Attempting to model the temperature-dependent data of figure 3.43 (a) using

equation 3.6 fails for both spot types. Within the framework of the fit, this is due to

the increasing size of the core-correction term as a function of temperature, which

limits the maximum value the form factor can have, no matter the magnitude of

∆(0). This means that the essentially flat form factor temperature-dependence at

low temperatures cannot be reproduced. The data can be fitted if we postulate that

ξGL, for whatever reason, is temperature-independent. However, now the best fit is

achieved by a large s-wave gap, which implies the majority gap on the cylindrical

sheet of the model now fully gapped at high fields. We now take a moment to

consider this unlikely scenario in more detail.

A mixed d + s character of the gap function in YBa2Cu3O7 is well established

to be nodal within the plane states at low fields (Smilde et al., 2005; Kirtley et al.,
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Figure 3.43: In (a) we show the temperature-dependence of the normalised form
factor at 5.0 T, and for H ‖ c, for the inequivalent Bragg spots. Filled symbols show
the form factor obtained by measuring the diffracted intensity and q at fixed rotation
angle. The open symbols show measurements of the form factor obtained using full
rocking curve measurements. The inset shows the temperature-dependence of the
FWHM of the Lorentzian lineshapes of the full rocking curve measurements. The
symbols correspond to the relevant measurements in the main panel. The dashed
lines in the inset are the weighted means of these widths. In (b) we show the
temperature-dependence of the ratio between the inequivalent form factors.
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Figure 3.44: The temperature-dependence of the normalised form factor at 8.25 T,
and for H ‖ c, for the Bragg spots with q off-axis. Filled symbols show the fixed
angle measurements of the form factor, whilst open symbols show the measure of
the form factor obtained using full rocking curve measurements. The inset shows
the temperature-dependence of the FWHM of the Lorentzian lineshapes of the full
rocking curve measurements.
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2006). Therefore, in the vicinity of the gap nodes, these exist quasiparticle states

at arbitrarily low energy close to the Fermi level. It is for this reason the superfluid

density shows a well-known approximately linear behaviour at low temperatures,

comparable to that which we observe in figure 3.42. At intermediate fields how-

ever, if we consider that to a first-approximation that the form factor reflects the

superfluid density, our results are reminiscent of a fully gapped state. However, this

could only be accomplished via the opening of a large energy gap at the nodes.

Interestingly, field-induced fully gapped scenarios have long been proposed theo-

retically (Laughlin, 1998; Franz and Tešanović, 1998; Balatsky, 2000). The pre-

diction is that under a magnetic field, the free energy of the superconductor can

be minimised by introducing an imaginary dxy component into a majority dx2−y2-

order parameter. The idxy component forms mainly at the nodes, and the resulting

dx2−y2 + idxy order-parameter is fully gapped. High field tunnelling measurements

on overdoped YBa2Cu3O7−δ indicate the realisation of such a scenario, though any

gap induced is just between 3-10 % the size of the majority dx2−y2-order parame-

ter, and is rapidly suppressed with increasing temperature (it disappears by 8.5 K

at 6 T) (Elhalel et al., 2007; Leibovitch et al., 2008). The rapid suppression of

the minority gap with temperature is also predicted theoretically (Laughlin, 1998;

Balatsky, 2000). There is no suggestion in the literature that a majority s-wave

component emerges as a function of field. This indicates a clear lack of theoretical

support for our model fitting, which we attribute to our model being too simplistic.

Figure 3.45 shows the temperature-dependence of the superfluid density, ns =

(λeff/λ0)
−2, obtained from high-field µSR measurements on YBa2Cu3O6.95 (Sonier

et al., 1999). Whilst, we keep in mind that the parameter λeff is a product of the

data analysis, and represents an average over the plane, we note the similarity of

the temperature-dependence for the data at fields comparable to those of our inter-

mediate field phase. Due to the similarity, we tentatively suggest that the physical

effects behind both experimental observations are of the same origin. The unusual

response was theoretically investigated by Amin et al. (2000). Calculations within

their d-wave non-local London model indicates the origin of the suppression of the
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Figure 3.45: The experimental data is that of Sonier et al. (1999), and shows the
temperature-dependence of the superfluid density (= λeff/λ0) as measured by µSR
at high fields. The theoretical fits are calculated according to the d-wave non-local
theory of Amin et al. (2000). Figure taken from Amin et al. (2000).

superfluid density is attributable to non-local effects that are more potent due to

the nodal form of the gap function. This same effect, as we also mentioned in sec-

tion 3.6.2, weakens the supercurrent response, thus increasing the measured value

of the λeff . The temperature-dependence of the superfluid density is predicted to

deviate from the expected approximately T -linear behaviour, and instead a T 3 de-

pendence is predicted to describe the data below a temperature T ∗. Above T ∗,

quasiparticle states away from the nodes become accessible, the non-local response

becomes weaker, and a the linear temperature-dependent behaviour is recovered.

The application of the model to the experimental data shown in figure 3.45, indi-

cates this model provides a reasonable description. However, our new SANS mea-

surements at intermediate fields show that the anomalous temperature-dependent

response is anisotropic between different types of Bragg spot. Therefore, a theory

such as that of Amin et al. (2000) needs to be extended from its current form in

order to explain our data.

Whilst the work of Amin et al. (2000) considers how non-local effects might

modify the measured value of the penetration depth, we also cannot rule out that

the flux line cores exhibit an unexpected temperature-dependence. For example, a
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naive way to explain the weak low temperature-dependence of the form factor in

the intermediate field phase, would be if the core contracted with increasing temper-

ature. This goes against the effect of the core-correction of the Clem model, where

ξGL is ascribed an empirical temperature-dependence. From a more conventional

viewpoint, the core-size is expected to fall with decreasing temperatures in clean

superconductors according to the Kramer-Pesch effect (Kramer and Pesch, 1974).

However, this effect is expected to be suppressed by impurities, implying our weak

temperature-dependence of the form factor may reflect an unexpected element in

the dirtiness of the superconductivity.

Frustratingly, we can only speculate on the possible physical effects that might

need to be considered in order to explain the weakly temperature-dependent be-

haviour of the FLL form factor. Whilst we focussed on the behaviour in the inter-

mediate field phase, new measurements taken in the rhombic phase, and with im-

proved statistics are needed, in order to obtain a clearer picture of the temperature-

dependent behaviour in the upper part of the phase diagram. Most importantly,

new theoretical work is required in order to interpret our results.

3.9 Summary

In this chapter we have reported the first observations of the intrinsic FLL structure

in a twin-free sample of YBa2Cu3O7. These measurements were made possible by

the high quality of the single crystal samples, within which pinning to twin bound-

aries is nearly entirely suppressed. Our observations with H ‖ c reveal the existence

of three distinct FLL structure types in the field range up to 10.8 T, and temperatures

up to Tc2(H).

The low field structure is single domain and distorted hexagonal, with near-

est neighbours aligned with the real-space b-axis. The long-axis of hexagonal dis-

tortion is parallel to a∗, consistent with that expected by the in-plane electronic

anisotropy. At 2 K, our measurements show that the form factor in this phase is

quickly suppressed with field. As a function of temperature, the form factor ex-
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hibits a monotonic fall on the approach to Tc2. A preferred structural orientation,

and the field-induced suppression of the form factor show that even at low fields,

local London theory is not strictly satisfied. However, both can be reconciled whilst

leaving the FLL structure with a somewhat ‘London-like’ character. For example,

the measure of the distortion of the hexagonal FLL structure can be understood in

terms of the effective mass anisotropy, with our low field values being similar to

those found by other techniques.We propose that the preferred structural orienta-

tion as understandable in terms of a weak non-local effect, whilst the field-induced

suppression of the form factor can be accounted for within the framework of the

Clem model. A simplistic model also indicates the Clem model can provide a picture

for the temperature-dependence of the form factor in this phase.

On increasing the field, we observe the FLL primitive cell to undergo a first-order

90◦ reorientation transition about the field axis. The overall structure is single-

domain and distorted hexagonal, with the long-axis of hexagonal distortion parallel

to a∗. It is likely that the physical mechanism behind the transition between the

low and intermediate field phases as associated with the increasing prominence of

non-local effects associated with either a Fermi surface anisotropy (Kogan et al.,

1997a), or the gap anisotropy (Franz et al., 1997). However, we speculate that

the different orientations of the FLL are the preferred orientations according to the

anisotropies of different Fermi surface sheets. Whether this is the case or not can be

resolved with careful theoretical calculations. However, our results clearly indicate

there are at least two field-dependent non-local components to the flux line-flux

line interactions that compete, and favour orthogonal primitive cell orientations.

Within the intermediate field phase, a noticeable anisotropy emerges between

the form factors of different types of Bragg spot. Using the Clem model, we are un-

able to maintain a consistent description of the form factor at 2 K between the low

and intermediate field phases, without introducing extra assumptions. Our analysis

leads us to tentatively conclude that we can understand non-local effects as result-

ing in a correction to our measured value of the apparent penetration depth as mea-

sured by SANS. The anisotropy observed at 2 K is further manifested in anisotropic
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temperature-dependences of the form factor for different spot types. Now the Clem

model is entirely unable to provide a realistic description of the data. Therefore,

while we can maintain a picture of the field-dependence of the form factor in terms

of the Clem model, describing the temperature-dependence lies beyond it. To make

further progress in understanding our data, dedicated theoretical work is required.

On further increase of the field, the FLL structure undergoes another first-order

transition into a rhombic structure phase. Remarkably, the long axis of distortion

of the rhombic structure is along b∗, which is orthogonal to the direction of distor-

tion of the hexagonal structures. We see that the structure smoothly evolves with

increasing field to approach a square coordination. However, this structure is not

quite realised within the currently available field range. The rhombic structure can

physically be interpreted as stabilised by the increasing prominence of the predomi-

nantly dx2−y2 gap anisotropy. In this case, the flux line nearest neighbour directions

are expected to lie parallel to the nodal directions, indicating the finite aspect ratio

of the rectangle overlaying the rhombic structure reveals the existence of a finite

admixture to the order parameter. However, the stabilisation of a field-dependent

rhombic structure is also consistent with predictions that it is caused by further

non-local effects (Kogan et al., 1997a). Unfortunately, YBa2Cu3O7 is an example

of a material where the predicted orientations of high-field FLL square structures

are qualitatively the same, whether stabilised by non-local effects or gap anisotropy.

Detailed calculations can help determine the physical mechanism behind the stabil-

isation of the rhombic phase.

Our measurements of the form factor in the rhombic phase suggest that non-

local effects do play an increasingly important role at high fields. This was revealed

by our investigations of the next nearest order {1, 1} spots, where we find that

these spots are likely to exhibit a clear anisotropy; the spots with q ‖ a∗ are easily

observed, whilst we have not yet clearly observed those with q ‖ b∗. We attribute

this anisotropy to inequivalent lengths of the q-vector, and a penetration depth

anisotropy, both of which favour the stronger {1, 1} spots to be those with q ‖ a∗.

However, new, more targeted, measurements are needed in order to confirm this
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interpretation.

Overall, our analysis has shown that understanding many of the results of our

experiments requires new theoretical work. It is of interest to understand why

the structure phase boundaries are so weakly temperature-dependent, and also the

precise role that the multi-band Fermi surface plays on our observations of both the

field-dependences of the FLL structure and form factor. Of the theoretical works that

are available for consideration, it seems that the vast bulk of our results are broadly

describable in terms of field-induced non-locality, where it is possible the potency

of non-locality is increased due to the anisotropy of the d-wave gap function. This

could explain why non-local effects seem to play an important role at fields as low

as ∼2 T in this material. In this sense, a distinction between the two anisotropic

effects would seem inappropriate, as the symmetry of both is inherently related to

that of the Fermi surface.

137



Field enhanced flux line lattice in CeCoIn5

Field enhanced flux line lattice in
CeCoIn5

In this chapter we report SANS studies of the mixed state in the heavy-fermion

superconductor CeCoIn5 which reveal new behaviour of the FLL for any type-II su-

perconductor. For the first time in a d-wave superconductor, the major part of the

FLL structure phase diagram is reported for the case of field parallel to the crys-

tal c-axis. Furthermore for this field orientation, we also observe an anomalous

field-dependence to the FLL form factor. At low temperatures, the form factor re-

mains essentially constant up to ≈ 2 T, before increasing by a factor of four on

approaching Hc2. The increase of the form factor lies beyond predictions based on

the Ginzburg-Landau theory, where the form factor is predicted to fall monotoni-

cally with increasing field. Instead, the form factor behaviour can be explained by

using a modified version of the quasiclassical Eilenberger theory that incorporates

a paramagnetic term. Just before Hc2, the form factor is observed to fall again

which we tentatively associate with a flux line core expansion, whose origin is as-

sociated with paramagnetic depairing effects within the cores. We report further

studies at higher temperatures, the case of field applied parallel to the plane, and

of examinations of the FLL in the same region of phase space as occupied by the

Fulde-Ferrell-Larkin-Ovchinnikov (FFLO), or ‘Q’, phases.
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4.1 Introduction to the heavy-fermion superconductor CeCoIn5

Landau introduced the Fermi-liquid theory (Landau, 1957) to address the problem

of introducing interactions into the Pauli-Sommerfeld free electron model. In the

free-electron model, the interactions are neglected and, bearing in mind that the

energy associated with Coulombic repulsion is of the same order as their kinetic

energy, it is surprising that the theory describes any properties of free electrons

at all. The linchpin of the Fermi-liquid theory is the replacement of interacting

fermions by elementary and weakly-interacting quasiparticle excitations. A quasi-

particle possesses the same spin, charge and momentum degrees of freedom as the

free fermions, but, due to adiabatic interparticle interactions, the excitation cannot

be described within a single particle picture. Rather, the excitation describes the

combined motion of a subject particle plus its interactions with surrounding par-

ticles as the subject particle moves in the material. This behaviour has its origin

in the Pauli exclusion principle, and provides a mechanism by which quasiparticles

can be scattered from one state to another, though this scattering is far weaker

than one might expect from bare Coulomb interactions. The Fermi-liquid theory

was successful in providing a phenomenological explanation as to why some exper-

imentally observed properties of metallic systems are similar to the Fermi gas, such

as the low temperature linear specific heat, and why other properties differ, such

as the T 2 temperature-dependence of the low temperature resistivity. Indeed, the

latter relation is commonly used to test a system for Fermi-liquid behaviour.

The physics that surrounds the heavy-fermion materials arises due to these

quasiparticle interactions. A most striking manifestation is seen by a renormali-

sation of the effective carrier mass, showing the interactions to adjust the carrier

motion. Typically for heavy-fermion systems, the effective mass is enhanced by a

factor of between 50 to 1000 times the free electron mass (Fisk et al., 1988). The

increase is experimentally characterised by large Fermi-liquid coefficients, such as

those measured in the linear specific heat (Misra, 2008),

C

T
= γ, γ =

VmkF k2
Bm∗

3h̄2 (4.1)
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where Vm is the molar volume, kF is the Fermi wave vector and m∗ is the ef-

fective carrier mass, and in the T 2 term in the temperature-dependent resistivity

ρ(T )− ρ(0) = AT 2. For normal metals such as copper, the value of γ is ∼1 mJ/mol

K2. For heavy-fermion systems, for temperatures below a coherence temperature,

T ∗, although the T−linear behaviour is retained, the magnitude of γ increases dra-

matically. This increase signifies that the system possesses strong correlations.

The first heavy-fermion material to be discovered was CeAl3 (Andres et al.,

1975). Below temperatures of 0.2 K, both the linear specific heat term and T 2

term in the resistivity were observed to be enormous at γ = 1620 mJ/mol K2,

and A = 35 µΩ cm/K2 respectively. Following this were similar observations in

CeCu2Si2, but with the added discovery of superconductivity with a Tc = 0.5 K

(Steglich et al., 1979). The authors were quick to identify that the large size of

the superconducting specific heat anomaly indicated that mass renormalised quasi-

particles were involved with the pairing. This, plus the further observation that a

slight change in stoichiometry caused the system to order magnetically rather than

superconduct (Gegenwart et al., 1998), raises two important points. Firstly, the ob-

servations are suggestive that magnetic correlations may play an role in the pairing

mechanism. Secondly, the observations show the close proximity in phase space

of different quantum ground states in the system. As a natural extension of this,

heavy-fermion physics is synonymous with the study of quantum critical phenom-

ena (see section 4.1.3).

Nearly all heavy-fermion systems have a rare-earth Ce, or actinide U, f -electron

constituent in their stoichiometry. It is thought that in these materials, the mass

renormalisation stems from Kondo-type interactions between the localised f -electrons

and the itinerant quasiparticles. The growth of this interaction at low temperatures

leads to the slowing of the itinerant quasiparticles, and concomitantly an increase of

the band mass. The localised moments also interact with one another, in addition to

the itinerant particles. From this viewpoint, it is easy to comprehend why ordered

magnetism and superconductivity lie close to one another in the phase diagrams

of these materials. Clearly if the superconductivity is mediated by magnetic fluc-

140



Field enhanced flux line lattice in CeCoIn5

Figure 4.1: The crystal structure of CeCoIn5, shows the existence of two inequiva-
lent In sites. The inset axes define the crystallographic directions. The a-axis lattice
parameter is 4.614 Å whilst the c-axis lattice parameter is 7.552 Å. The density is
∼ 8 g.cm−3.

tuations, these will be most pronounced in close proximity to a magnetic ordering

instability.

A wide range of experimental studies on the CeMIn5 (M=Co,Ir,Rh) family of

heavy-fermion compounds have shown this particular group to exhibit a rich va-

riety of exciting physics. The crystal structures of these materials are tetragonal

with space group P4/mmm, and composed of alternating stacks of CeIn3 and MIn2

layers. Figure 4.1 shows the structure for the case of the subject material of this

chapter, CeCoIn5.

4.1.1 Superconducting CeCoIn5

CeCoIn5 is one of the more prominent members of the Ce-family of heavy-fermion

compounds. It is an ambient pressure superconductor with a zero-field Tc = 2.3 K;

the highest of any heavy-fermion material. Experimental evidence clearly suggests

the order parameter symmetry to have line nodes, as seen for example in obser-

vations of power law dependences to both the thermal conductivity (κ ∝ T 3) and

heat capacity (C ∝ T 3) below Tc (Movshovich et al., 2001). The precise detail of
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whether the order parameter symmetry is dx2−y2 or dxy was initially actively dis-

cussed in the literature. Measurements made on rotating the field within the basal

plane revealed a fourfold oscillation in the thermal conductivity (κ) that was inter-

preted as being consistent with a dx2−y2-symmetry (Izawa et al., 2001). However,

the fourfold oscillation observed in angularly-dependent specific heat C measure-

ments was observed to be of a sign that favours a dxy gap symmetry (Aoki et al.,

2004). The contradictory evidence obtained from the two studies is resolved by

the theoretical work of Vorontsov and Vekhter (2006). Within the framework of a

microscopic theory, the fourfold oscillation observed in C (θ, T,H) is predicted to

change sign at lower temperatures than those at which the measurements of Aoki

et al. (2004) were performed. At low field and temperature, the sign of the four-

fold data obtained from the C (θ, T, H) is reconciled with the κ (θ, T, H) data, thus

providing convincing evidence for a dx2−y2 symmetry of the order parameter.

Measurements of the characteristic length-scales show CeCoIn5 to be a strongly

type-II material. Experimental studies of the London penetration depth report val-

ues that range from 1900 Å (Ormeno et al., 2002) to 2800 Å (Özcan et al., 2003).

Estimates of the coherence length can be derived from the Ginzburg-Landau ex-

pression for Hc2. We will see in the next section that the low temperature upper

critical field is subject to the effects of Pauli-limiting, rendering the usual Ginzburg-

Landau expression invalid. However, at higher temperature, these effects are much

weaker, and it is possible to make an estimate of the expected value of Hc2 the

zero temperature in the absence of Pauli-limiting. This is obtained from the gradi-

ent dHc2/dT |T=Tc, taken close to the zero-field Tc. Using this approach, the zero-

temperature values for the out-of-plane and in-plane upper critical fields are es-

timated to be Hc2‖c ∼15 T and Hc2‖a,b ∼35 T as determined from magnetisation

measurements (Tayama et al., 2002). This yields estimates of the coherence length

as ξa,b ∼ 50 Å and ξc ∼ 30 Å, thus showing κ to be always at least ∼ 40, and the

material strongly type-II.

CeCoIn5 is also an unusual example of an extremely clean high-κ superconduc-

tor. The electronic mean-free path `, as measured by microwave surface impedance
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measurements, is found to to be long at ∼ 4µm at 400 mK (Ormeno et al., 2002),

showing `/ξ ∼ 1000. These observations are also supported by thermal Hall con-

ductivity measurements (Kasahara et al., 2005). The large mean free path, com-

bined with the small Fermi energy and large effective carrier mass, places the ma-

terial well into the superclean limit (EF /∆ ¿ `/ξ).

Finally we note that due to the relative complexity of the Fermi surfaces in

heavy-fermion materials, the superconductivity is strongly suspected to exhibit multi-

band, and hence multi order-parameter effects. For example, the weight of the f -

electron character, that gives rise to heavy-fermion superconductivity, may well vary

between different Fermi surface sheets, along with a variation in coupling strength

between them (Settai et al., 2007). Evidence for multi-band superconductivity in

CeCoIn5 is provided by thermal conductivity measurements at temperatures down

to 10 mK (Seyfarth et al., 2008). In this study, in addition to the large d-wave

superconducting gap, a second line node gap, associated with a light carrier mass

band (Settai et al., 2001) is observed. However, the weight of this small gap is

quenched rapidly with field, and it exhibits an extremely small upper critical field

of ∼ 20 mT, which is approximately equivalent to Hc1 of the large gap. These ob-

servations serve as a reminder of the subtlety of the physics of these materials, and

how the signatures of strong correlations will not be manifested equally on all the

Fermi surface sheets.

4.1.2 Orbital vs. Pauli Limiting

Heavy-fermion superconductors are good candidates to exhibit the effects of Pauli-

limiting because the large effective carrier mass favours higher orbitally-limited

critical fields. The clear evidence that CeCoIn5 is a Pauli-limited superconduc-

tor, is provided from both magnetisation (Tayama et al., 2002) and heat capac-

ity studies (Bianchi et al., 2002). Some raw isothermal magnetisation curves for

fields parallel to the a-axis (H ‖ a) that were reported in the magnetisation study

of Tayama et al. (2002), are shown in figure 4.2 (a). At high temperature, the

field-dependence of the magnetisation varies smoothly between the superconduct-
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(a) Isothermal magnetisation data for H ‖ a (b) (H,T ) phase space

Figure 4.2: Figure (a) shows some of the isothermal magnetisation data obtained
on CeCoIn5 with H ‖ a. The dashed line guide to the eye fits to the low tempera-
ture data indicate that the transition into the normal state is discontinuous at low
temperature. At higher temperature, the transition between the normal and su-
perconducting states is seen to be continuous. The arrows indicate the position of
Hc2. Figure (b) shows a summary of the magnetisation data in terms of the position
of the Hc2 boundary in (H,T ) phase space for H ‖ a and H ‖ a. Open (closed)
symbols correspond with cases where the transition between the superconducting
and normal states is first-(second-)order. The open triangle data of (b) corresponds
to those temperatures where a hysteresis peak was observed in the magnetisation
data. Figures after Tayama et al. (2002).

ing and normal states, signifying the transition between them as continuous. This

is consistent with orbitally-limited behaviour. For low temperatures however, a no-

ticeable kink is discernible at Hc2, providing evidence that the transition between

the normal and superconducting states is first-order. In figure 4.2 (b), the result-

ing (H,T ) phase diagrams for both principal crystal directions show the field- and

temperature-dependence of the Hc2 boundary, and the nature of the transition be-

tween the superconducting and normal states.

Along the two principal crystal directions, the upper critical fields are found to be

approximately Hc2‖c ∼ 4.95 T and Hc2‖a ∼ 11.6 T at zero temperature. These values

are much lower than the zero temperature orbitally limited critical fields estimated

from the gradient dHc2/dT |T=Tc reported in the last subsection. The suppression

is a direct indication of the increasing prominence of Pauli paramagnetic effects at

low temperatures. From the data shown in figure 4.2 (b), we see that the region

where the transition between the superconducting and normal states is first-order

144



Field enhanced flux line lattice in CeCoIn5

is restricted to low temperatures, T ≤ 0.3 Tc. Theoretically, in the strong Pauli limit,

the first-order boundary extends as high in temperature as 0.56 Tc (Saint-James

et al., 1969; Ketterson and Song, 1999). This suggests that orbital effects still play

a role in CeCoIn5, which they must do for the FLL to even emerge, though these are

superceded for T ≤ 0.3 Tc.

4.1.3 Quantum criticality in CeCoIn5

Quantum critical behaviour is commonly associated with the heavy-fermion sys-

tems, where different quantum ground states are often found to exist in close prox-

imity. In heavy-fermion systems, the two ground states are typically magnetically

ordered and paramagnetic states. The preferred ground state can be obtained by

changing the system environment using an appropriate tuning parameter. If, on ad-

justing the tuning parameter, the system undergoes a quantum phase transition, the

system is said to possess a quantum critical point (QCP) at the critical value of the

tuning parameter. It is interesting to note that superconductivity is a ground state

that is also often found in close proximity to a QCP. Quantum critical behaviour

within the vicinity of a QCP is experimentally characterised by a break down of the

Fermi-liquid picture of metals, and, as a result, non-Fermi liquid behaviour.

Evidence for non-Fermi liquid behaviour associated with quantum criticality in

CeCoIn5 is available from a variety of experimental sources (Petrovic et al., 2001b;

Bianchi et al., 2003b; Paglione et al., 2003). Figure 4.3 (a) shows some of the low

temperature resistivity data obtained by Bianchi et al. (2003b) with H ‖ c. For fields

close to Hc2, the resistivity does not follow the T 2 dependence expected from Fermi

liquid theory, though this is recovered at higher fields. The clear difference between

the Fermi liquid and non-Fermi liquid regimes is seen in the inset to figure 4.3 (a).

Using their data, figure 4.3 (b) shows that Bianchi et al. (2003b) were able to con-

struct a phase diagram showing the extremely close proximity of non-Fermi-liquid

behaviour to superconductivity. Using a scaling argument, the authors deduced

the quantum critical point must be located extremely close to Hc2 (T = 0) of the

superconducting phase diagram. As the transition between the normal and super-
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(a) ρ versus T at high field (b) (T ,H) phase space

Figure 4.3: Figure (a) shows resistivity versus temperature data taken on CeCoIn5

with H ‖ c, for fields close to and above Hc2. The dashed line corresponds to data
at 5.6 T, open triangles data at 6 T, open circles data at 7 T, open diamonds data
at 8 T and crosses data at 9 T. The upper left inset shows a closer look at the 6 T
and 9 T data plotted as a function of T 2, thus showing the recovery of Fermi liquid
behaviour with increasing field. Figure (b) shows the deduced (T ,H) phase space
extending well beyond the superconducting region. The quantum critical point is
deduced to be located extremely close to Hc2. Figures after Bianchi et al. (2003b).

conducting states is first-order at zero temperature, this provided evidence against

the possibility that the quantum criticality is associated with the superconducting

transition. Instead, Bianchi et al. (2003b) suggested their data were consistent with

the onset of an antiferromagnetic QCP, even though long-range antiferromagnetic

order is not observed within the superconducting state for H ‖ c. This raised the

question that the quantum criticality could be ‘unconventional’ and still related to

the superconducting transition. This scenario was later ruled out by resistivity mea-

surements, which showed that as a function of increasing pressure, the locations of

the QCP and Hc2 became displaced in field (Ronning et al., 2006).

The puzzling issue surrounding the location of the magnetically ordered state

persists for H ‖ c, though it is possible an answer is provided by the recent neutron

scattering study of Kenzelmann et al. (2008). In that study with H ‖ [110] (dis-

cussed in more detail in section 4.1.6) an antiferromagnetic spin density wave is

stabilised in the low temperature and high field part of the superconducting phase
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diagram. However, rather than the proximity to a QCP providing the energy scale

for the stabilisation of the antiferromagnetism, the authors argue this energy scale

is made inaccessible by the emergence of superconductivity. Instead, it is the onset

of superconductivity that stabilises the magnetism, and in fact, the quantum phase

transition is never realised. However, magnetic structure has only been reported

for H ‖ [110], and it remains unclear whether or not a similar phase is stabilised

for H ‖ c. It is also unclear the role, if any, that such proximity to magnetism and

critical fluctuations might have in the superconducting state. For example, de-Haas

van-Alphen measurements in the mixed state (Settai et al., 2001) show the heavy-

fermion mass diverging on the approach to the QCP. This could manifest itself in the

properties of the FLL. For example, according to the GL theory, and therefore rele-

vant for form factor models derived from GL theory (Appendix D), the GL coherence

length (equation 1.23) and the penetration depth (equation 1.26) are sensitive to

the effective mass of the carriers.

4.1.4 Band structure in CeCoIn5

The band structures of the f -electron heavy-fermion materials are notoriously com-

plex. They consist of numerous Fermi surfaces and, as mentioned previously, the

weight of the f -character can vary markedly between the different sheets. An im-

portant question in the study of the Fermi surface of a 4f -electron material is de-

ciphering the contribution of the f -electrons. Above the coherence temperature,

4f -electrons are localised and do not contribute to the spectral weight at the Fermi

surface. Below this temperature, the 4f -electrons gradually become itinerant and

therefore do contribute a larger spectral weight. Therefore, if certain details of the

Fermi surface are temperature-dependent, they can, when compared with an ap-

propriate theoretical model, be used to decipher the role of the 4f -electrons as a

function of temperature.

It is expected that the details of the Fermi surface will reflect the low dimen-

sionality of the crystal structure shown in figure 4.1. As our FLL studies are at low

temperatures deep in the Kondo regime, the f -electrons will be itinerant, and con-

147



Field enhanced flux line lattice in CeCoIn5

Figure 4.4: The principal Fermi surfaces consistent with the de-Haas van-Alphen
experiments of Settai et al. (2001) (as shown in Settai et al. (2007)) and computed
within a 4f -itinerant electron model. The labels in α and β represent the orbits of
the cyclotron masses measured in the experiment, with these orbits shown by solid
black lines. After Settai et al. (2001, 2007).

tribute at the Fermi surface. Therefore, we consider the results of the early de-Haas

van-Alphen (dHvA) study of Settai et al. (2001), as these were recorded at temper-

atures well below 1 K, and are expected to be most relevant to our studies of the

FLL. The major Fermi surfaces deduced from the comparison between the experi-

mental data and theoretical calculations are shown in figure 4.4. Smaller, though

more three-dimensional, sheets are not shown.

The good agreement with the 4f -itinerant band model calculations show the

two principal Fermi surfaces to be composed of distorted cylinder-like sheets. This

low dimensionality is thought to be derived from the hybridisation between the d

electrons of the Co atom and 5p electrons of the In atoms. As a consequence, the

density of states at the Fermi energy is small, and there are few itinerant electrons in

the CoIn2 layer. Since the early dHvA study of Settai et al. (2001), the conclusions

about the low dimensional and distorted cylinder shape of the major sheets are in

agreement with other experimental (Hall et al., 2001; Koitzsch et al., 2009), and

theoretical (Elgazzar et al., 2004) works. The possible effect of the cylindrical Fermi

surfaces on the FLL is not easy to decipher due to their distorted shapes. However,

some of the cyclotron orbits shown in figure 4.4 clearly trace out a path with a
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fourfold symmetry about their respective Fermi surface sheet, though some of these

fourfold details are oriented 45◦ apart.

4.1.5 The Fulde-Ferrell-Larkin-Ovchinnikov phase

Perhaps what has attracted most attention in the research into CeCoIn5 is the gen-

uine possibility that novel superconducting pairing states might exist at low tem-

peratures and high fields. The necessary conditions for such pairing states were

considered soon after the BCS theory (Bardeen et al., 1957). Independently, Fulde

and Ferrell (1964) and Larkin and Ovchinnikov (1965) (FFLO) predicted that in

the presence of a suitably large exchange field, an inhomogeneous superconducting

state, in which the pairing state carries a finite momentum q, could be realised.

This state is characterised by an order-parameter that changes sign as a function of

position in real space which is more stable than the usual spatially constant energy

gap. This effect arises due to a competition between the superconducting conden-

sation energy and the effect of spin splitting (Zeeman effect) on the electron energy

bands. As such, in the FFLO phase, Cooper pairs form between Zeeman split Fermi

surface sheets, and possess a finite centre of mass momentum, (k ↑,−k + q ↓). The

condensation energy gain of such a finite momentum pair is less than for the BCS

pair, but this is counterbalanced by the reduction in the Zeeman energy of the pair

under the applied field.

Although there is no consensus behind the unconventional pairing scheme of

the heavy-fermion superconductors, it is informative to compare the FFLO pairing

scheme to the conventional BCS scheme (k ↑,−k ↓), as shown in figure 4.5. Due

to the finite contribution of q to FFLO pairing state, the spatial dependence of the

order parameter predicted to exist by Fulde and Ferrell is described by

∆ (r) = ∆1exp (iq · r) (4.2)

where the magnitude of the order parameter ∆1 is homogeneous, but the phase

changes sign in real space. Larkin and Ovchinnikov showed this solution to be

equivalent in energy with ∆ (r) = ∆1exp (−iq · r), but that this degeneracy can
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Figure 4.5: A comparison between (a) the BCS pairing state of (k ↑,−k ↓), and (b)
the predicted FFLO pairing state (k ↑,−k + q ↓). In (b), the inner and outer circles,
respectively represent the Fermi surfaces of the Zeeman split spin up and spin down
Fermi surface sheets. The electron with momentum

(−k′ + q ↓) does not lie on the
inner Fermi surface. After Matsuda and Shimahara (2007).

be lifted by forming the linear combination of ∆ (r) = ∆1exp (iq · r) and ∆ (r) =

∆1exp (−iq · r). The resulting gap variation they proposed was

∆ (r) = ∆1 (exp (iq · r) + exp (−iq · r)) = 2∆1cos (q · r) (4.3)

which provides a lower free energy than equation 4.2, when the superconductivity

is Pauli-limited. Hence, in the LO regime the amplitude of the order parameter

takes on a real-space modulation of periodicity 2π/q. This implies that, in the LO

regime, the superconducting state is characterised by nodal sheets in the bulk of

the superconductor, with a propagation direction perpendicular to the planes of the

modulation. In the vicinities of these nodal planes where the gap is suppressed, one

might expect to find the usual paramagnetic moment induced by the field.

The region of phase space over which an FFLO state is predicted to exist is small,

occurring close to Hc2 and for low temperatures. The precise region is further de-

pendent on the sample type and purity. Due to the strict requirements of the host

material, experimental evidence for the realisation of the FFLO phase is scarce.

Such a material is expected to be strongly type-II, and possess a large Maki parame-

ter indicating the system to be Pauli-limited. For an s-wave system, theory suggests

that αM ∼ 1.8 is sufficient to allow the stabilisation of the FFLO state (Gruenberg

and Gunther, 1966). In CeCoIn5 estimates of αM for both H ‖ c and H ‖ a are al-

ways at least ∼ 4, indicating the paramagnetic effects in CeCoIn5 to be sufficiently
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large relative to the orbital effects. The material also has to be extremely clean, as

the singlet pairing between the Zeeman-split Fermi surfaces is sensitive to impurity

scattering. Finally, the stability of the FFLO state is enhanced by a certain degree

of Fermi surface anisotropy. This can be inferred from figure 4.5 (b). In a three-

dimensional superconductor with a spherical Fermi surface, the pairing q-vector

is only strictly satisfied at a point on either Fermi surface. If the Fermi surface is

two-dimensional and cylindrical this point extends to a line, and if this cylinder is

distorted, this optimisation (or nesting) of q can enhance the region in momentum

space where the pairs can form (Matsuda and Shimahara, 2007). This suggests that

low dimensionality and Fermi surface anisotropy favour the FFLO phase. CeCoIn5

satisfies all these requirements listed above, making it a prime candidate for the

observation of the FFLO phase.

Experimentally, various thermodynamic studies of CeCoIn5 have provided evi-

dence for the stabilisation of a distinct thermodynamic phase consistent with the

expected location of the FFLO phase (Bianchi et al., 2003a; Capan et al., 2004;

Martin et al., 2005) (for a full review of these studies, see Matsuda and Shima-

hara (2007)). Interestingly, the experimental character of the anomalous phases

is anisotropic between crystal directions. The region of the superconducting phase

diagram where the anomalous phase is stabilised for H ‖ c is relatively smaller than

the corresponding region for either of H ‖ a or H ‖ [110] (see for example, Bianchi

et al. (2003a)). This is in spite of the fact that the Pauli spin susceptibility for H ‖ c

is approximately twice as large than for field in the plane (Tayama et al., 2002). A

speculative explanation for this is that the relevant Fermi surface anisotropy for the

case of field in the plane allows the formation of a more stable FFLO phase than for

field perpendicular (Matsuda and Shimahara, 2007).

The experimental observation of anomalous superconducting phases in CeCoIn5

has led to them being hailed as evidence for a realisation of the FFLO state. How-

ever, despite the efforts of microscopic studies, in particular those of nuclear mag-

netic resonance (NMR), the macroscopic evidence is not supported by an unam-

biguous microscopic observation.
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Figure 4.6: 115In-NMR Knight shift spectra as a function of temperature for (a) H ‖ a
and 11.3 T and (b) (a) H ‖ c and 4.8 T. The black spectra are in the normal state,
and the red curves in the superconducting state. The 115In site sample corresponds
to In(2) of figure 4.1. After Matsuda and Shimahara (2007) and Kumagai et al.
(2006).

As NMR is an extremely powerful tool which is often used to probe the micro-

scopic state of the host material, we take a moment to consider the results of these

studies. Figure 4.6 shows 115In-NMR Knight shift spectra taken as a function of de-

creasing temperature on moving into the proposed FFLO phase. The Knight shift

of the resonance frequency arises as a consequence of the paramagnetism of the

conduction electrons under the applied field. This paramagnetism induces an ‘ex-

tra’ field at the nuclear site, and the resonance frequency shifts away from the zero

field value. On entering the superconducting state, the Knight shift is suppressed

as some of the spin polarised electrons take part in the pairing. However, as ob-

served in the NMR spectra taken on CeCoIn5 shown in figure 4.6, a subsidiary peak

emerges in the spectra on moving through the superconducting transition, with a

frequency similar to that in the normal state. This was taken to be evidence for the

existence of normal quasiparticle states, consistent with those that might exist at the

FFLO nodal planes. Although these (Kumagai et al., 2006; Matsuda and Shimahara,

2007), and other (Kakuyanagi et al., 2005) NMR studies interpreted their findings

as evidence for an FFLO phase, other interpretations of NMR results argue that the

anomalous features they see are possibly due to the onset of magnetism (Mitrović

et al., 2006; Young et al., 2007). This issue is still unresolved, with Koutroulakis
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Figure 4.7: A schematic diagram of the spatial distribution of the bound quasipar-
ticle states of a FFLO flux line. The flux line is parallel to the field, and bound
quasiparticle states are also induced about the horizontal FFLO nodal plane. Quasi-
particles following paths (i) and (ii) will experience a ±π phase change of the order
parameter and be bound. Quasiparticles tracing path (iii) will experience a π ± π
phase change and thus will not be bound. Note that the quasiparticle states within
the flux line do not cross the nodal sheet, thus giving the flux line its distinct topo-
logical structure.

et al. (2008) offering more recent evidence that their NMR data does not rule out

the co-existence of both FFLO and a magnetic phase in the high field and low tem-

perature region of the superconducting phase diagram. To summarise, the NMR

studies are inconclusive.

On the other hand, SANS studies of the FLL could offer direct evidence of an in-

homogeneous superconducting state through direct imaging of the flux lines. Dedi-

cated theoretical studies (Tachiki et al., 1996; Mizushima et al., 2005; Ichioka et al.,

2007) have shown that within the FFLO phase the flux lines should adopt an un-

usual topology, and local moments are predicted to emerge where the supercon-

ducting order parameter is suppressed. In principle, these moments can be probed

directly by neutron scattering. In the vicinity of an FFLO flux line, the spatial spec-

trum of bound quasiparticle states becomes modulated due to a π phase winding

around the flux line core, or about a nodal plane of the order parameter. Figure 4.7

shows a schematic diagram of the flux line topology induced by the FFLO state.

The quasiparticle trajectories (i) and (ii) will experience a sign change of ±π in
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the order parameter on moving to the opposite side of the flux line, or across the

FFLO nodal plane respectively. These states are bound due to Andreev reflection.

However, quasiparticles following trajectory (iii) will experience a π± π phase shift

of the order-parameter on crossing the nodal sheet and moving to other side of the

flux line, and will be unbound. At the point where a flux line crosses a nodal plane

of the order parameter, the lack of bound quasiparticle states is associated with a

suppression of the screening currents. Throughout the bulk of the material, this

results in a segmentation of the flux lines, with a segmentation period, Λ = 2π/q.

The imaging of the magnetic contrast associated with this modulation period would

provide strong microscopic evidence for the existence of an FFLO phase.

4.1.6 The Q-phase

Recently, the question of describing the anomalous superconducting phase in CeCoIn5

took a new twist with the discovery of the so-called ‘Q-phase.’ In their neutron scat-

tering study, Kenzelmann et al. (2008) searched for magnetic structure in the low

temperature and high field portion of the superconducting phase diagram consis-

tent with the region of the proposed FFLO phase. With the field applied along a [110]

direction figure 4.8 (a) shows that magnetic Bragg peaks were observed. The char-

acteristic propagation vector of Q = (0.5 + q, 0.5 + q, 0.5), where q ∼ 0.06, showed

these peaks to be associated with an amplitude modulated, incommensurate, anti-

ferromagnetic spin density wave. Remarkably, the antiferromagnetism is only sta-

bilised within the superconducting phase diagram, being the red region highlighted

in figure 4.8 (b). Outside of this phase region, both within the superconducting

and normal states, no magnetic Bragg peaks are seen. The authors suggested this

observation provided strong evidence that the incommensurate magnetism and su-

perconductivity enjoy a symbiotic relationship in this portion of the phase diagram,

in strong contrast to the usually antagonistic nature of magnetic and superconduct-

ing ground states. They further discuss how, on decreasing the field from above

Hc2 into the superconducting phase, the onset of the antiferromagnetism is unlikely

to be caused by the system undergoing a quantum phase transition as anticipated
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(a) Magnetic Bragg peaks at q = (h, h, 0.5) (b) (H,T ) phase space for H ‖ [110].

Figure 4.8: Figure (a) shows the experimental data of magnetic Bragg peaks ob-
served in the (h, h, 0.5)-plane at various fields and temperatures. The propagation
vector was observed to be at Q = (0.5 + q, 0.5 + q, 0.5), where q is found to be
∼0.06. Figure (b) is a phase diagram constructed from the neutron scattering data
with the region in red corresponding to the phase space where magnetic Bragg
peaks are observed. The inset of this figure shows the deduced form of the spin
density wave associated with the local Ce3+ moments. Both figures after Kenzel-
mann et al. (2008).

from the associated antiferromagnetic fluctuations observed just above Hc2. Instead

the antiferromagnetism is stabilised by the opening of the superconducting gap, ap-

parently superceding the effects of quantum criticality.

Using a phenomenological coupling theory, the authors suggest that magnetic

and superconducting order parameters could co-exist, preserve symmetry, and con-

serve momentum if the superconducting gap function, and hence Cooper pairs,

carry a finite momentum. Thus, the study of Kenzelmann et al. (2008) provides

the first experimental observation of a condensate that carries an intrinsic momen-

tum. A finite momentum to the Cooper pair is consistent with that expected for

the FFLO pairing scheme, though that observed by Kenzelmann et al. (2008) comes

with an important difference; in the FFLO phase the finite value of the momentum

is field-dependent varying as 2µBH/h̄vF . The q of the pairs in the Q-phase, ob-

tained from the measured incommensurability vector of the antiferromagnetism, is

observed to be field-independent, suggesting the existence of a new and different

pairing channel that is also conducive with the appearance of magnetic order.
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It is finally worth noting that the establishment of the Q-phase does not rule out

the existence of an unusual FFLO phase. There is also a possibility that the two

phases co-exist in a novel fashion. For example, it is not impossible to envisage a

scenario where the antiferromagnetism is incipient in the nodal planes of a non-

standard FFLO type state, though this question is left to be addressed with further

experimental and theoretical work.

4.2 Studies of the flux line lattice in CeCoIn5 and paramagnetic
superconductors

Most of the information about the FLL in CeCoIn5 has obtained from SANS studies.

The first SANS observations of the FLL were reported by Eskildsen et al. (2003).

In that study, with field parallel to the c-axis, and at temperatures of 50 mK, a

two domain hexagonal FLL structure was observed at low field. Each domain of

this structure was observed to possess nearest neighbours oriented along {110}
directions, and the overall FLL structure exhibits an average fourfold symmetry

consistent with that of the underlying crystal. At a field of approximately 0.6 T, the

FLL structure was observed to undergo what was likely to be a first-order transition

into a square-like phase, which persisted until the highest reported field of 2.0 T.

The observed orientation of the square phase was interpreted as consistent with that

expected if the structure were stabilised by a dx2−y2-order parameter anisotropy;

that is with nearest neighbours aligned with {110} directions. This gave weight in

favour of the dx2−y2-order parameter, being important in the early discussions in the

literature on the precise details of the d-wave order-parameter symmetry.

The later study of DeBeer-Schmitt et al. (2006), again with H ‖ c, provided a

clearer picture on the details of the field-dependence of the FLL structure. At 0.5 T,

figure 4.9 (a) shows the same low-field and two domain hexagonal structure as

observed by Eskildsen et al. (2003). The precise shape of the hexagonal structures

was found to be only weakly distorted from the isotropic hexagon, with a character-

istic opening angle of the primitive cell measured to be ∼ 58◦ at all fields. By 0.55 T

however, figure 4.9 (b) shows that the FLL structure actually undergoes a first-order
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Figure 4.9: FLL diffraction patterns observed in applied fields of (a) 0.5 T, (b) 0.55 T
and (c) 0.75 T. All patterns are obtained at a temperature of 50 mK, and with
field parallel to the c-axis, note the {110} direction indicated in (a) is valid for all
patterns. After DeBeer-Schmitt et al. (2006).

structure transition and is now composed of two rhombic domains. The aspect ra-

tio of these rhombic domains monotonically decreases with increasing field, until

they undergo a second-order phase transition into a stable square structure at an

estimated field of 1.1 T. Again, the square structure was observed to persist up to

the highest available field of 2.0 T. Therefore, these new measurements revealed

that, as function of field at 50 mK, the FLL structure undergoes both a first- and

second-order structure transitions within the field range up to 2.0 T (just ∼ 40 % of

Hc2).

An important feature to note about the interpretation of the sequence of FLL

structure phase transitions reported in Eskildsen et al. (2003), and DeBeer-Schmitt

et al. (2006), is that the authors favoured the scenario where the stabilisation of a

square FLL structure was due to the increasing prominence of the order parameter.

However, they acknowledge that it is not possible to preclude the possibility that

the transition sequence is influenced by non-local effects combined with a Fermi

surface anisotropy (Kogan et al., 1997a). In particular, in Eskildsen et al. (2003) a

comparison is drawn between the observed results in CeCoIn5, and similar results

seen in the borocarbide ErNi2B2C (Eskildsen et al., 1997b), where non-local effects

are thought to provide a good explanation of the variation in the FLL structure.

However for the results obtained on CeCoIn5, the emphasis is placed more on the
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(a) Field-independent form factor (b) Field-dependent core-size

Figure 4.10: Figure (a) shows a graph of the field-dependence of the flux line lattice
form factor, for applied fields up to 2.0 T. The dashed and dotted lines are fits to
the Clem model with field-independent fitting parameters. The solid line represents
a mean value of the form factor across the entire field range. Figure (b) shows a
graph of the deduced field-dependence of the Ginzburg-Landau coherence length ξ,
plotted as a function of field (solid squares) and as a function of FLL lattice spacing
(open squares), for applied fields up to 2.0 T. The solid line is a guide to the eye,
and the dashed line a linear fit of the empty squares. In both figures, all data are
obtained at 50 mK and with H ‖ c. Figures after DeBeer-Schmitt et al. (2006).

influence of the order-parameter anisotropy.

The most remarkable result obtained in the study of DeBeer-Schmitt et al. (2006)

was the observation that the FLL form factor remains essentially field-independent

up to 2.0 T. This field-independence is shown in figure 4.10 (a). An analysis of

the form factor data was carried out using the Clem model (Clem, 1975) where

the field-dependence of the form factor is described in terms of the characteristic

length scales of the penetration depth λ, and a flux line core size parameter ξGL,

which is the Ginzburg-Landau (GL) coherence length. The constant FLL form fac-

tor could not be described using the Clem model in the usual sense, that is fitting

the data using just single, field-independent, values for both the penetration depth

and the core-size parameter. Attempts to fit the data using reasonable and constant

values for λ and ξGL are shown by the dashed and dotted lines in figure 4.10 (a).

These provide worse descriptions of the data than a constant form factor. In order
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to describe the field-independence of the form factor, the Clem model was gener-

alised somewhat by invoking a field-dependence to the core-size parameter ξGL.

Figure 4.10 (b) shows the extracted field-dependence of ξ obtained by keeping λ

constant, and adjusting the value of ξGL until the resulting form factor matched

that observed experimentally. This apparently showed the core-size both contract-

ing with increasing field, and varying linearly with 1/
√

H, which is proportional to

a, the FLL parameter. The physical mechanism behind a field-induced core contrac-

tion was related to theoretical work carried out by Kogan and Zhelezina (2005).

Within the framework of their weak-coupling model, a field-induced contraction of

the core-size is predicted to occur with increasing field as a consequence of the high

cleanliness of the system. The rate of change of ξGL as a function of a, dξ/da, is

predicted to have a value in the range between 0.2/
√

2π to 0.4/
√

2π. The gradi-

ent dξ/da obtained from the linear fit in figure 4.10 (b) is 0.55(2)/
√

2π, and thus

somewhat larger than the proposed theoretical range. In spite of this, the authors

concluded that core contraction provided a good description of their data.

However, a possible physical mechanism that may also have played role in main-

taining the constant form factor is that of field-induced paramagnetism. As CeCoIn5

is a Pauli-limited superconductor at low temperatures, it might be expected that in

the presence of the large Zeeman effect, paramagnetic effects might play a role in

the mixed state. Such effects have only been considered comparatively recently,

both theoretically (Ichioka and Machida, 2007), and via a combined experimen-

tal and theoretical study of the borocarbide superconductor TmNi2B2C (DeBeer-

Schmitt et al., 2007). The theoretical model developed in both studies is based on

extending the usual quasiclassical Eilenberger theory by incorporating an extra term

that accounts for the paramagnetism. The resulting model successfully reproduces

the similar and anomalous field-dependences of the FLL form factor observed both

in CeCoIn5 (DeBeer-Schmitt et al., 2006) and TmNi2B2C (DeBeer-Schmitt et al.,

2007). Due to the relevance of both studies to the subsequent reports on CeCoIn5,

we briefly review them now.

TmNi2B2C has a superconducting transition temperature Tc of 11 K, and be-
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Figure 4.11: The field-dependence of the first-order flux line lattice form factor of
TmNi2B2C at temperatures of (A) 1.6 K, (B) 3.5 K and (C) 5.0 K. The data are
fitted by the predictions of the quasiclassical Eilenberger theory, with different val-
ues of the paramagnetism parameter µ appropriate for the different temperatures.
After DeBeer-Schmitt et al. (2007).

low 1.5 K, the Tm moments order antiferromagnetically. Above TN the exchange

interaction between the field-induced 4f moments of the Tm sub-lattice and the

conduction electrons, results in an enhanced Zeeman effect on the conduction elec-

trons and the emergence of enhanced Pauli paramagnetic effects. As a further con-

sequence of the field-induced Tm magnetisation, the superconducting phase dia-

gram is highly unusual (Eskildsen et al., 1998). Starting from low temperature, Hc2

monotonically falls until TN , after which Hc2 rises to a maximum value of 1 T at

5 K, before falling monotonically on the approach to Tc at zero field. To investigate

the effect of the paramagnetism on the FLL in TmNi2B2C, the field-dependence of

the first-order FLL form factor was recorded for temperatures of 1.6 K, 3.5 K and

5.0 K (all above TN). Figure 4.11 shows their resulting field-dependencies. The

form factor data clearly shows unusual behaviour. In most other superconductors,

the form factor falls monotonically as a function of increasing field. In the param-

agnetic phase of TmNi2B2C however, the form factor remains robust at low fields,

and only falls to zero relatively close to Hc2.

Figure 4.11 also shows a comparison of the experimental data with the calcula-

tions carried out using the quasiclassical Eilenberger theory. This model, developed
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in the reports of DeBeer-Schmitt et al. (2007) and Ichioka and Machida (2007),

builds on previous versions of the quasiclassical Eilenberger theory (Ichioka et al.,

1999; Nakai et al., 2002) by incorporating the paramagnetism via a Zeeman en-

ergy term µB. Here µ is a theoretical parameter which accounts for represents the

relative strength of the paramagnetic effect, and which further accounts for the ex-

change coupling between the Tm moments and the conduction electrons. Within

the calculations, a two-dimensional Fermi surface and fourfold symmetric gap func-

tion are assumed, along with a square FLL structure. The parameter µ is varied

according to the strength of the Tm magnetisation at different temperatures, and

takes values of µ = 1.71 at 1.6 K, µ = 1.28 at 3.5 K and µ = 0.86 at 5.0 K. From

figure 4.11 we see that a reduction in µ partially corresponds to a change in the low

field gradient of the field-dependence of the form factor, which goes from positive

to negative with increasing temperature. Clearly, the stronger the paramagnetic

effect, and the lower the temperature, the more robust is the low field form factor

as a function of field. Moreover, on moving towards the normal state, the form

factor at lower temperature plummets more quickly to zero due to the effects of

paramagnetic depairing, which are stronger for larger µ.

The physical reason for the robust nature of the low field FLL form factor in

TmNi2B2C is due to a field-induced accumulation of a paramagnetic moment. This

effect is strongest within the flux line cores, as at these regions the order param-

eter is suppressed from the bulk value, and there exist single quasiparticle states

that are subject to the exchange field. The imbalance in the spin population un-

der an applied field results in the emergence of the paramagnetic moment, and an

enhanced field distribution B (r). This effect is shown schematically in figure 4.12

which shows the results of calculations that were carried out within the same para-

magnetic quasiclassical Eilenberger theory (Ichioka and Machida, 2007). In these

calculations, a d−wave pairing symmetry is assumed, leading to the fourfold sym-

metry of the various spatial distributions calculated in the left-hand panels of fig-

ure 4.12. The calculations show that the field-induced paramagnetic moment is

enhanced exclusively around the flux line core, particularly along the anti-nodal di-

161



Field enhanced flux line lattice in CeCoIn5

Figure 4.12: Calculations of the spatial distribution of (a) the pair potential |∆|, (b)
the field-induced paramagnetic moment M (r), and (c) to overall induction B (r) for
varying strengths of paramagnetic effects. The left hand panels show these spatial
structures in a single unit cell of the FLL, for the case where µ = 1.7. The right
panels show cuts along the direction r from the flux line centre to the midpoint
between nearest neighbour flux lines, and for µ = 0.02. 0.86, 1.7 and 2.6. The
calculations were carried out at T = 0.1 Tc and B = 0.1. After Ichioka and Machida
(2007).

Figure 4.13: In (a) the field-dependence of the first-order FLL form factor is calcu-
lated using the model of Ichioka and Machida (2007), at T = 0.1 Tc and for values
of µ = 0.02, 0.86, 1.7 and 2.6. The data are plotted as a function of field parameter
H, which is equal to a numerical factor times Hc2(T = 0, µ = 0). In (b) are the same
calculations as shown in (a) but normalised to a scale of H/Hc2 where Hc2 for each
µ corresponds to 5 T. The inset circles are the experimental data of DeBeer-Schmitt
et al. (2006) obtained on CeCoIn5, as presented in figure 4.10 (a). After Ichioka
and Machida (2007).

162



Field enhanced flux line lattice in CeCoIn5

rections which correspond to the ‘ridge’ features visible in figures 4.12 (b) and (c).

Figure 4.12 (c) shows that the overall superposition of the induced paramagnetic

and conventional diamagnetic contributions leads to a greater internal induction at

larger µ, even though figure 4.12 (a) shows the pair potential to become suppressed

within the cores, leading to an effectively larger core size. This larger internal in-

duction in the core vicinity helps to maintain the field-contrast, and hence the form

factor to higher fields.

The field distributions B (r) for different values of µ are calculated as a function

of field, in order to provide a prediction of the field-dependence of the first-order

FLL form factor. Although the results of the calculations shown in figure 4.13 were

tailored towards explaining the unusual field-dependence of the form factor seen in

CeCoIn5 (DeBeer-Schmitt et al., 2006), and as such used appropriate material pa-

rameters, they are qualitatively applicable to those results obtained on TmNi2B2C.

Figure 4.13 (a) shows the predicted field-dependence of the form factor as a func-

tion of theoretical parameter H, which is related to the field. For a particular value

of µ, the value of H where the calculation of the form factor stops corresponds to

Hc2. It is worth noting that this becomes suppressed with increasing µ. Further-

more, if µ is large enough, the form factor remains finite on reaching Hc2, corre-

sponding to a first-order transition between the superconducting and normal states.

The important result is that if µ is large enough, the form factor remains constant,

and can even rise, as a function of increasing field. This is consistent with the re-

sults seen in CeCoIn5 at low field (DeBeer-Schmitt et al., 2006) and in qualitative

agreement with the SANS results obtained on TmNi2B2C (DeBeer-Schmitt et al.,

2007). In the absence of the paramagnetic effect, the monotonic decrease of the

form factor with field, as was appropriate for use with YBa2Cu3O7 in the last chap-

ter, is recovered. On scaling the parameter H so that all of the calculated curves

in figure 4.13 (a) lie on a normalised H/Hc2 scale (where Hc2 = 5 T, suitable for

CeCoIn5 with H ‖ c), Ichioka and Machida find that the low field form factor data

first-shown in DeBeer-Schmitt et al. (2006) is well explained if paramagnetic effects

play a role, particularly if the paramagnetic parameter µ = 1.7.

163



Field enhanced flux line lattice in CeCoIn5

A final point to note is that TmNi2B2C does not exhibit a Pauli-limited upper

critical field, even though paramagnetic effects are induced in the mixed state. The

characterisation of the paramagnetic effects induced in TmNi2B2C provide a natural

comparison with which to compare the possible paramagnetic effects induced in

Pauli-limited CeCoIn5.

4.3 Motivation for new SANS studies of the flux line lattice in
CeCoIn5

Due to the rich variety of unconventional behaviour exhibited by CeCoIn5, the mo-

tivation for further studies in the mixed state is clear. The first SANS studies (Es-

kildsen et al., 2003; DeBeer-Schmitt et al., 2006) uncovered high field square FLL

structures, and the possible effects of an anomalous core-contraction, and field-

induced flux line core paramagnetism for H ‖ c. However, the results presented

before this thesis were only reported at temperatures of 50 mK, and fields up to

2 T. It is of great interest to understand the field- and temperature-evolution of both

the FLL structure and form factor over the rest of the superconducting phase dia-

gram. Recording both will be critical to understanding the mixed-state behaviour,

and maintaining a consistent physical interpretation of the observations.

The prospect of carrying out SANS measurements at fields higher than 2 T for

H ‖ c leads to the prospect of observing the FLL within the part of the supercon-

ducting phase diagram associated with the proposed FFLO, and possible Q-, phases.

It is of great interest to observe if the stabilisation of such phases has an observable

influence on the FLL. This is in addition to investigating the possible effects of Pauli

paramagnetism and quantum critical behaviour at low temperature.

The natural extension to these studies with H ‖ c is to apply the field paral-

lel to the plane. With H ‖ [110], the Q-phase has been observed, and the rela-

tive size of the region of the superconducting phase diagram associated with the

Q-phase (or FFLO phase) is experimentally characterised to be larger (see for ex-

ample (Bianchi et al., 2003a)). Moreover, the FLL structure and orientation, and

the field-dependence of the FLL form factor, are entirely unknown for this field
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geometry.

4.4 Sample preparation, characterisation and mounting

Across all the experiments carried out on CeCoIn5, a few different samples of

CeCoIn5 have been used. All were co-aligned mosaics of single crystal CeCoIn5,

with the single crystals either provided by C. Petrovic, of Brookhaven National Lab-

oratory, USA, or A.D. Bianchi, of Université de Montréal, Canada. Single crystals

from each source were not mixed together for any sample, and reasonable agree-

ment was obtained across all samples.

The single crystals from each source were grown in a flux containing excess

In (Petrovic et al., 2001b,a). The excess In is combined with stoichiometric volumes

of Ce and Co in an alumina crucible, with the crucible encapsulated in an evacuated

quartz ampoule. The melt is made at ∼1150◦C and then cooled via a two stage

process. The first stage is an initial rapid cool from ∼1150◦C to ∼750◦C whereby

the melt is homogenised. The second is a slower cool from∼750◦C to ∼450◦C

with the ampoule removed from the oven. During the second cool, the excess In

is removed by centrifugation. Each single crystal grows as a platelet, always with

large area c-faces (of order 1 cm2) and a thin dimension of order 0.5 mm or less.

Crystal characterisation was carried out by the groups who fabricated the crys-

tals. The CeCoIn5 crystals are of high quality, with typical x-ray studies (powder

and single crystal) showing the crystals to be single phase within the resolution of

the x-ray technique used. The resistivity ratio reported by Petrovic et al. (2001a)

for typical samples is large with values between ρ(300 K)/ρ(2 K) = 50 - 80. The

zero-field superconducting transition width (according to the 10% - 90% criterion)

estimated from Bianchi et al. (2003b) is narrow at ∆Tc ≤ 0.1 K. The characterisa-

tion indicates the high crystal quality, and the superclean nature of the material.

The preparation of the samples for the SANS measurements was dependent on

the field geometry used. Most experiments were carried out in the traditional ge-

ometry of field and crystal c-axis approximately parallel to the neutron beam. For
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Figure 4.14: Photographs of CeCoIn5 samples used for the SANS experiments re-
ported in this thesis. Each photo shows the samples glued to the sample plate that
is attached to the dilution refrigerator (DR). The sample shown in figure (a) is a
sample suitable for SANS investigations for H ‖ c. The crystal axes indicate that the
c-axis lies out of the plane of the page. The sample shown in figure (b) is a sample
suitable for SANS investigations for field in the basal plane. The crystals are cut
into thin rods before being glued onto the Al plate. The crystal axes indicate that an
a-axis lies out of the plane of the page. In this picture, the sample holder is already
attached to the cold tail of the DR. Photographs courtesy of S. Gerber, PSI.

these experiments, the form of the single crystals as c-axis platelets is ideal, as these

can be glued on their flat faces to a pure Al plate. Each sample was composed of a

mosaic of single crystal platelets co-aligned by eye (using a microscope to observe

the prominent (100) edges) about the c-axis. The typical mosaicity about the c-

axis for such a sample was checked using the MORPHEUS instrument at PSI, and

found to be ≤ 1.5◦. This lies within the in-plane resolution of the SANS instrument.

Although this mosaicity was checked just once for a certain sample, the result can

be considered representative of all samples used. Figure 4.14 (a) shows a photo-

graph of a typical mosaic sample used for the H ‖ c measurements. To maximise

the diffracted intensity, a similarly densely packed mosaic is mounted onto another

Al plate which is mounted back to back with the plate shown in the photograph.

However, care has to be taken not to make the overall thickness of the sample too

great. In Appendix B we show the 1/e length to be just 0.7 mm for neutrons of
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wavelength 5 Å. Therefore, the typical mean thickness of all H ‖ c samples was low,

varying between 0.2 and 0.4 mm.

The preparation of a sample used to observe the FLL with field in the basal plane

was a little more involved. In order to use the traditional SANS geometry of field

parallel to the neutron beam, the single crystals had to be re-oriented. However,

due to the strong neutron absorption, it is not possible to construct a sample simply

by mounting single crystal platelets on their sides. Rather, the platelets must be

cut into thin rods, with each rod mounted separately on the Al plate such that an

a-c face is flat. An example of one of the samples used in the SANS experiments

is shown in figure 4.14 (b). The average thickness of the sample was estimated

to be ∼0.5 mm. Subsequent characterisation using neutrons showed an in-plane

mosaicity similar to that of the H ‖ c sample.

4.5 High field flux line lattice structure with field parallel to c-
axis

Unusually for a d-wave superconductor, as Hc2 for this field geometry is just 4.95 T,

the imaging of the FLL in CeCoIn5 can be carried out over the entire superconduct-

ing phase diagram. Here, we describe the field- and temperature-dependence of the

FLL structure observed with H ‖ c, at fields and temperatures higher than those pre-

viously reported by Eskildsen et al. (2003) and DeBeer-Schmitt et al. (2006). The

previous studies revealed the existence of three distinct FLL structure types, which

are shown in figure 4.15. For the hexagonal and rhombic phases, the overall FLL

structure is composed of two energetically equivalent domains. The observation of

multi-domain FLL structures is not unusual in materials where the field is applied

along a fourfold symmetry axis. If the symmetry of the crystal is higher than the

intrinsic symmetry of a FLL domain, this will force the nucleation of enough lower

symmetry FLL domains such that the average symmetry of the multi-domain FLL

structure is the same as that of the crystal. Excellent examples of this are discussed

in the rigorous studies of the FLL structure in conventional Nb, where a variety of

structure types are observed for the case of field parallel to a four-fold symmetry
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(a) (b) (c)

Figure 4.15: Schematic diagrams of the FLL structure types observed in CeCoIn5

for H ‖ c. Starting from low field, the transition sequence on moving towards
intermediate fields is (a) hexagonal to (b) rhombic to (c) square. The hexagonal
and rhombic FLL structures exhibit two degenerate FLL domains, each distinguished
by filled and empty circles. The square phase is single domain. The characteristic
opening angle of the primitive cell is indicated by the angle β.

direction (Laver et al., 2006, 2009).

4.5.1 Flux line lattice structure

At the base temperature of 50 mK, after confirming the results of the previous inves-

tigations for fields up to 2.0 T, the FLL structure was measured as a function of field

right up to Hc2. Figure 4.16 shows some examples of new high field diffraction pat-

terns obtained at 50 mK. Figure 4.16 (a) shows the square phase is seen to persist

until at least 3.0 T. On increasing the field, figure 4.16 (b) shows that by 4.3 T, the

square structure has been replaced by a re-emergent rhombic FLL structure which is

qualitatively the same as that seen at low fields; the flux line nearest neighbours lie

close, but not parallel to, the 〈110〉 directions. The transition between the two struc-

ture phases is likely continuous, being similar to the case for the low field rhombic

to square FLL structure transition. On further increase of the field, between the

fields of 4.3 T and 4.7 T, a final transition between the rhombic phase and a dis-

torted hexagonal phase like that shown in figure 4.16 (c) takes place. This high

field transition is qualitatively similar to that seen between the low field hexagonal

and rhombic structure phases; it is likely to be first-order, and the composition and

orientations of the FLL structures are the same as indicated in figure 4.15 (a) and

(b). We note that as a function of increasing field, the high field transition sequence
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(a) (b) (c)

Figure 4.16: Diffraction patterns obtained from the FLL in CeCoIn5 in applied fields
of (a) 3.0 T, (b) 4.3 T and (c) 4.7 T. All patterns were obtained at 50 mK and with
H ‖ c. The [110] crystallographic direction shown in (a) is valid for all figures.

of square to rhombic to hexagonal, is the precise opposite of the low field transition

sequence.

The new results show that although at low temperatures there are four transi-

tions in the FLL structure across the field range, each of these is an example of just

one of two transition types. We now determine the location in field of each tran-

sition, considering in more detail examples of the structure transitions in the new

data at higher fields.

Square to rhombic transition

At low fields, with increasing field the rhombic structure smoothly distorts to un-

dergo a continuous phase transition into a stabilised square structure. By inspec-

tion, it is likely that the high field rhombic phase re-emerges continuously from the

square phase. We now consider this transition in more detail. Figures 4.17 (a)

to (c) show examples of the diffraction data obtained at 50 mK, and over a selec-

tion of fields close to the re-entrant transition. In each figure, just the right hand

quadrant of reciprocal space was recorded, as this is all that is required in order

to re-construct the entire diffraction pattern. At 3.2 T, the single spot aligned with

[110] direction indicates the FLL structure to be square. By 3.4 T, figure 4.17 (b)

shows this spot to have now broadened slightly azimuthally. At 3.6 T, figure 4.17 (c)

shows that the FLL structure is clearly in the rhombic phase, with one each of the
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Figure 4.17: The top right quadrant of reciprocal space of the FLL diffraction pat-
terns recorded in applied fields of (a) 3.2 T, (b) 3.4 T and (c) 3.6 T. The [110]
direction indicated in (a) is valid for all the images, the temperature was 50 mK,
and H ‖ c. All patterns were collected during the same experiment.

Bragg spots belonging to one of the rhombic domains of the FLL. We see the tran-

sition is manifested on the detector by an azimuthal elongation of a square spot

that splits into the two spots expected of the rhombic phase. The field at which

this process starts is the transition field between the two structure types. However,

it is not possible by inspection to determine when this spot broadening starts due

to the finite instrumental resolution. For fields just above the transition, although

the intrinsic FLL structure has changed slightly, any change in Bragg spot shape is

within the bounds of the resolution function, and hence unobservable.

We overcome this problem by modelling the field-dependence of the precise spot

positions within the rhombic phase, and then extrapolating this dependence back

in field to deduce the field at which the spot of the square phase starts to split. To

do this, we define an order-parameter δ, which is the angular separation between

the direction of the q-vector of a Bragg spot in the rhombic structure phase to that

of the [110] direction of a Bragg spot in the square structure phase. Figure 4.18 (a)

provides a schematic visualisation of this, and shows that all spot angles are defined

relative to a vertical coordinate axis.

Adopting a free-energy approach to describe the field-dependence of δ, we de-

fine the free energy for a particular FLL configuration FFLL as dependent on the
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Figure 4.18: In (a) we define the angles that the Bragg spot q-vectors make with
respect to a vertical axis. In the rhombic phase these angles are τ1 and τ2 for rhombic
spot 1 and 2 respectively, whilst in the square phase this angle is τs which is parallel
to [110]. These angles are used to define the order parameter δ2, see text. In (b) we
show an example of the use of the order parameter method (described in the text)
on data obtained at 500 mK. The fields where the linear extrapolations intercept
the horizontal axis provide estimates of the transition field.

square of δ

FFLL = (BT −B) δ2 + Cδ4 (4.4)

where B is the induction (=µ0H), BT is the transition field, and C is a field-

independent constant. Note by symmetry we only require even power terms of

δ. Minimising equation 4.4 leads to

δ2 =
1

2C
(B −BT ) (4.5)

which shows δ2 to be linear in field, and reveal the transition field BT when δ2 = 0.

In accordance with figure 4.18 (a), we define δ2 = (sinτs − sinτi)
2 , (i = 1, 2) and, for

a given temperature, plot the field-dependence of δ2. An example implementation

of the method for data obtained at 500 mK is shown in figure 4.18 (b). For each spot

of the rhombic phase, the linear extrapolation in field to δ2 = 0 yields the field at

which the q-vector of the spot lies parallel to [110], and the structure is square. The

transition field is taken as the mean value of the intercepts with the horizontal axis
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for each of the linear fits of the two rhombic spots. The difference between these

two values could be considered representative of the error in the analysis method.

However, a truer measure of the error is derived from the uncertainty in each of the

two linear fits. Therefore, for the case shown in figure 4.18 (b), the transition field

BT (T = 500 mK) = 3.2(1) T. Such an analysis method was used to determine the

square to rhombic FLL structure transition field for temperatures up to 1125 mK.

This method was also applied in a similar manner to characterise the low field

rhombic to square phase boundary. Data obtained in the new experiments allow

the deduction of the transition field for temperatures up to 750 mK.

Rhombic to hexagonal transition

In their original discussion on the low field transition between hexagonal and rhom-

bic phases Eskildsen et al. (2003) mentioned that a continuous transition between

these two structure types is unlikely. Our observed transition involves not only a

change in FLL structure, but also a 45◦ reorientation of the primitive cell. Such a

reorientation cannot be reproduced by smoothly distorting one structure type into

the other.

The first-order transition field between the high field rhombic and hexagonal

phases is deduced by inspection to be that at which the rhombic and hexagonal

phases were observed to coexist. As an example of the implementation of this

method, figure 4.19 shows the top right quadrant of reciprocal space obtained for

a selection of high fields at 50 mK. Clearly between the fields of 4.3 T and 4.5 T,

the structure undergoes a first-order transition between the two phases. At 4.4 T,

figure 4.19 (b) shows an essentially continuous streak of diffracted intensity, which

encompasses the expected Bragg spot positions for both phases. Here, we suggest

that the two structures co-exist at 4.4 T, and likely in the presence of some disorder.

By inspection, we declare the transition field BT (T = 50 mK) = 4.4(1) T, with

the error derived from the incremental change in field. At higher temperatures,

similar inspection of the data yields the rhombic to hexagonal transition field for

temperatures up to 1000 mK.
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Figure 4.19: The top right quadrant of reciprocal space of the FLL diffraction pat-
terns recorded in applied fields of (a) 4.3 T, (b) 4.4 T and (c) 4.5 T. The [110]
direction indicated in (a) is valid for all the images, the temperature was 50 mK,
and H ‖ c. All patterns were collected during the same experiment.

We attempted to carry out the inspection method at low field, in order to deduce

the temperature-dependence of the hexagonal to rhombic phase boundary. How-

ever, the few measurements that were taken at temperatures above 50 mK suffered

from low statistics. After careful consideration of the data, it was concluded that it

was not possible to characterise in confidence the hexagonal to rhombic transition

field at any higher temperatures beyond that at 50 mK reported in DeBeer-Schmitt

et al. (2006).

FLL characteristic angle β as a function of field

The different character of the FLL structure transitions is perhaps clearest on plot-

ting the field-dependence of the primitive cell opening angle β. Using the definition

of β for each structure phase as shown in figure 4.15, in figure 4.20 we show the

field-dependence of β at 50 mK, and over the entire field range up to Hc2. The first-

order character of the transitions between rhombic and hexagonal phases is clear,

with a discontinuous change in β at the relevant transition field. Similarly, the con-

tinuous transition separating the rhombic and square structure phases is evident

by the smooth variation of β with field in the rhombic phase on approaching the

lock-in square structure phase with β = 90◦. Similar measurements were obtained

at higher temperatures, to support the conclusion of the locations of the transition
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Figure 4.21: The FLL structure phase diagram with H ‖ c. Empty triangles cor-
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structure phase boundaries where a reliable determination was not possible from
the data obtained.
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fields, and the order of the FLL structure transition.

FLL structure phase diagram

In figure 4.21, we present the deduced FLL structure phase diagram for H ‖ c.

Solid lines indicate confidently determined FLL structure phase boundary lines, with

dashed lines representing best estimates only based on the available data. This is

a little disappointing, as characterising the low field phase boundary lines could

provide an interesting comparison to those in the phase diagram of YBa2Cu3O7 pre-

sented in the previous chapter. At intermediate fields, the estimation of the position

of the low field branch of the rhombic to square transition line does not preclude

an unexpected field- or temperature-dependence to that indicated in figure 4.21.

However, the data do not provide any evidence against either.

In spite of the uncertainty at low fields, the upper portion of the phase diagram

is reliably established, the details of which represent genuinely new results for this

class of material. The square to rhombic re-entrant transition line is suppressed with

temperature, showing the reduced stability of the square phase to both high field

and temperature. The phase diagram also shows that the upper field rhombic to

hexagonal phase boundary line is only weakly temperature-dependent, suggesting

the rhombic to hexagonal transition has a different physical origin to the rhombic

to square transition. We note that this uppermost phase boundary line does not

intersect Hc2 at the cross-over temperature between where the superconducting to

normal transition is first- or second-order. Although this would suggest that the FLL

structure is not determined by proximity to a Pauli limited upper critical field, this

is a detail we re-explore in the next subsection.

4.5.2 Discussion of flux line lattice structure

At low field and temperature, the possible physical mechanisms behind the hexago-

nal to rhombic to square sequence of FLL structure transitions have been discussed

previously (Eskildsen et al., 2003; DeBeer-Schmitt et al., 2006). Both of these stud-

ies suggested that the transition sequence is explainable in terms of an increasing
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prominence of a dx2−y2 order parameter anisotropy (Ichioka et al., 1999). However,

each also acknowledge that such a sequence could be driven by the increasing role

of non-local effects (Kogan et al., 1997a). According to the theoretical predictions

of Kogan et al. (1997a) (shown in figure 1.3), as a function of increasing field, the

primitive cell undergoes a first-order transition from having nearest neighbours at

45◦ to the crystal axes, to a primitive cell with nearest neighbours aligned parallel

with the crystal axes. The second structure then smoothly distorts into a lock-in

square phase at high field. This sequence is precisely the same as we observe.

The measurements of these low field structure phases reveal that, for tempera-

tures up to at least 750 mK (Tc/3), the low field rhombic to square transition field

is essentially temperature-independent. Similarly, our best estimate of the phase

boundary line separating the low field hexagonal and rhombic phases is suggested

to be only weakly temperature-dependent. A weak temperature-dependence of a

square FLL structure is not what might be naively expected from comparisons to

the theoretical predictions for precisely the same reasons as previously mentioned

when discussing the weakly temperature-dependent phase boundary lines observed

in YBa2Cu3O7 presented in the previous chapter. According to the quasiclassical the-

ory, where a square structure is stabilised by the fourfold gap anisotropy (Ichioka

et al., 1999) the influence of this anisotropy is expected to become suppressed

with temperature. Within the non-local London theory of Kogan et al. (1997a),

the non-local correction terms which describe the stabilisation of the square FLL

due to non-local effects are predicted by a factor of approximately 2 between low

temperatures and Tc. Hence, we expect more isotropic FLL structures to be recov-

ered on increasing the temperature. On consideration of these points, we note that

we suspect these effects to be more noticeable at temperatures higher than (Tc/3).

Re-investigating the low field structure transition boundaries shown in figure 4.21

could cast some light on the role of thermal fluctuations on the low field transitions.

At high field and low temperature, the re-entrant sequence of transitions was

unexpected, and reflects a field-induced suppression of the stabilising anisotropy

of the square phase. At this stage, we rule out a possible role for field-induced
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Figure 4.22: The field-dependence of the rocking curve width at 50 mK, and H ‖ c.
The inset indicates the definition of the FWHM of the gaussian lineshape fitted
to the rocking curves. In the main panel, the field-dependence of this measured
quantity is compared to an estimate of the instrumental resolution showed by the
red line.

FLL disorder. Across all experiments carried out with H ‖ c, the rocking-curve

widths lie close to, or at, that of the instrument. Figure 4.22 shows an example

of the field-dependence of the rocking curve FWHM at 50 mK, for a set of rocking

curves obtained under identical experimental conditions. Discounting any effects

of FLL disorder, we now consider the available theoretical predictions for the FLL

structure in the upper half of the phase diagram. The quasiclassical Eilenberger

theory of Nakai et al. (2002) details a re-entrant square to rhombic transition at

high field, which derives from a close balance between the competing anisotropies

of the Fermi surface and the gap function. However, for reasonable values of the

various anisotropy parameters, the resulting FLL structure phase diagram predicts

the emergence of a second square phase at high field, which clearly does not re-

semble the behaviour seen in CeCoIn5. A high field re-entrant rhombic phase is also

predicted to emerge as a consequence of strong thermal fluctuations (Gurevich and

Kogan, 2001). In this scenario, the fluctuations weaken the stabilising anisotropy at

high field, which in this case is due to non-local effects. This model is also deemed

unsuitable to explain our superconducting phase diagram, as the effects of thermal

fluctuations at high fields are likely only applicable very close to Hc2. Furthermore,
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whilst it is possible that such fluctuations play a role in suppressing the square phase

at intermediate field and at higher temperature, at high field and low temperature

our square FLL structure phase is suppressed well short of Hc2.

A more promising theoretical explanation for our observed high field transition

sequence has recently been proposed by Hiasa and Ikeda (2008). Using a Ginzburg-

Landau model, the authors are able to qualitatively reproduce the main features at

high field of the experimentally observed FLL structure phase diagram. Although

the model is not expected to be numerically accurate regarding reproducing the

FLL structure phase diagram precisely, it is reasonable to suggest that the model

will reflect the physics by which a square phase is suppressed with field. The cal-

culated structure phase diagram is shown in figure 4.23. At low temperatures, the

re-entrance of the rhombic phase with increasing field is attributed to paramag-

netic depairing in the flux line cores. As a result of the depairing, the stabilising

anisotropy of the square phase, which in the model is due to the fourfold core

anisotropy induced by the gap function anisotropy, is suppressed with increasing

field.

The positive slope of the upper branch of the square to rhombic phase boundary

suggests the paramagnetic depairing effect to be suppressed with temperature. This

is in contrast to the experimentally observed negative slope. The authors suggest

that critical thermal fluctuations could induce a reduction in the mean free path

`, which brings the slope of the upper branch of the thick red curve in figure 4.23

slightly more in to agreement with the experimental data. This correction is com-

paratively weak however, leading the authors to suggest that a further additional,

and currently unknown, correction is needed. Aside from this detail, the phase di-

agram of figure 4.23 captures many of the features of the phase diagram shown in

figure 4.21. Furthermore, by mixing in a weak fourfold Fermi surface anisotropy

that competes with that of the order parameter, the model also predicts the stabil-

isation of an upper hexagonal phase of correct orientation close to Hc2 and at low

temperature. This Fermi surface anisotropy further results in the stabilisation of

the same hexagonal phase at low fields (not shown in figure 4.23). Therefore it
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Figure 4.23: The high FLL structure phase diagram calculated within the Ginzburg-
Landau theory of Hiasa and Ikeda (2008). For all calculations, αM = 2.8. The
blue circles and dashed line respectively represent the lock-in phase boundary of
the square FLL structure phase, and Hc2, for the case for ` →∞. The thick and thin
red solid lines respectively represent the same boundaries but now with ` = 14.5ξ0.
In addition, the region at low temperatures and high field between the red dashed
and solid lines hosts a hexagonal structure of orientation consistent to that shown
in figure 4.15 (a).

seems that a reasonable physical explanation for the qualitative features of the en-

tire structure phase diagram is derivable from the GL model where the anisotropies

of the order parameter and Fermi surface compete. However, the potency of the

Fermi surface anisotropy is relatively weak. It only provides the dominant struc-

tural Fm either at low field where the influence of the flux line core is too weak, or

at high fields, where the order parameter anisotropy is suppressed by paramagnetic

depairing.

Although unpublished, recent calculations made using the quasiclassical Eilen-

berger theory Ichioka and Machida (2009) also support the conclusion that param-

agnetic depairing effects within the flux line cores destabilise the square structure.

This high field depairing results in the suppression of the core anisotropy induced

by the order-parameter, leading to the re-entrance of the rhombic and hexagonal

FLL phases, and more isotropic FLL interactions. It is further possible that high field

depairing may explain the qualitatively similar sequence of FLL structure phase
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transitions seen in TmNi2B2C (Eskildsen et al., 1998).

4.6 Field enhanced flux line lattice with field parallel to c-axis

In this subsection, we show that the ability to characterise the major part of the

FLL structure phase diagram for fields close to Hc2 stems from a highly anomalous

field-dependence of the FLL form factor. Already the study of DeBeer-Schmitt et al.

(2006) revealed an unusual behaviour of the form factor for fields up to 2.0 T,

and at 50 mK. Here, we extend these low field measurements by measuring |F (q)|2

for fields right up to Hc2, and carry out further measurements at higher tempera-

tures. We will see that the field-dependence of the form factor observed in CeCoIn5

behaves in stark contrast to the predictions of phenomenological theory.

4.6.1 Field- and temperature-dependence of the flux line lattice form factor

The calculation of the form factor |F (q)| for an individual Bragg spot was carried out

in accordance with the details laid out in Appendix A. For the hexagonal and rhom-

bic structure phases, there are two domains that occupy the sample volume. For

measurements of Bragg spots in these two phases, the overall form factor sums the

contributions due to each domain according to |Ftot(q)|2 = |Fdom1(q)|2 + |Fdom2(q)|2,
where, for example, |Fdom1(q)|2 is the mean value of |F (q)|2 for all the spots of the

domain.

An extra detail that emerges from analysing the form factor of the high field

hexagonal phase is the emergence of a small, but clear, anisotropy in the value

of |F (q)|2 between the different types of Bragg spot. Figure 4.24 (a) provides a

definition of the two inequivalent spot types of this structure. For a certain do-

main, two of the spots have q ‖ [110] whilst the q-vectors of the other four

spots lie away from these directions. Our analysis reveals that, over the field

range, the value of |F (q ‖ [110])|2 is a factor of 1.20(3) larger than the value

of |F (q off-[110])|2. Figure 4.24 (b) further shows that this anisotropy is essen-

tially field-independent, and measurements at higher temperatures showed this

anisotropy to be also temperature-independent. This anisotropy is not what might
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Figure 4.24: In (a) we show a schematic describing the inequivalent Bragg spots of
the upper hexagonal phase. In (b) we plot the field-dependence of the form fac-
tor ratio |F (q ‖ [110])|2 / |F (q off-[110])|2 between these different spot types. The
blue line is a linear fit to the data, showing the anisotropy to be essentially field-
independent.

be naively expected for a dx2−y2 gap function, as the gap is smaller along the {110}
directions and we would expect a weaker supercurrent response. In the absence

of an explanation for such an anisotropy in the literature, we speculate that the

weaker field-modulation along the {110} directions could be invoked by Fermi sur-

face effects, possibly in the form of a non-local correction. It is also possible an

explanation for the anisotropy lies with the different lengths of q-vector of the dif-

ferent types of spot. To account for the anisotropy, the computation of the overall

form factor in the upper hexagonal phase is a mean of the contributions for all six

spots. In cases where not all spots were measured equally, a weighted mean was

formed, which allows for this anisotropy.

The overall field-dependence of the form factor at 50 mK is shown in figure 4.25.

Very few new measurements of the form factor were performed at low field, as these

measurements had been carried out previously in the study of DeBeer-Schmitt et al.

(2006). Correspondingly, it is not possible to ascribe a field-dependence to the low

field data beyond that previously reported. Rather, these datapoints can be con-

sidered as consistent with the previous work. Instead, we concentrated on higher

field measurements, where figure 4.25 shows we observe most unusual behaviour.
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On increasing the field above 2 T, the form factor increases markedly up to a peak

value at high field. On the approach to Hc2, the form factor is observed to fall again

slightly from this peak value, whereafter it falls sharply to zero on passing through

Hc2. The latter behaviour is consistent with the experimentally observed (Tayama

et al., 2002; Bianchi et al., 2002), and theoretically predicted (Chandrasekhar,

1962; Clogston, 1962), first-order transition between the superconducting and nor-

mal states that arises due to Pauli-limiting.

Figure 4.25 also indicates that there is no obvious signature of the sequence

of FLL structure transitions in the form factor data, although the apparent peak

value of the form factor coincides with the location in field of the upper rhombic

to hexagonal transition field. Despite this coincidence, it seems unlikely that the

peak in the form factor is correlated to the structure transition. Measurements at

higher temperature shown in figure 4.26 indicate that even though the form factor

initially rises with field for all temperatures up to 1250 mK, the peak position of the

form factor becomes suppressed with field. Simple inspection shows the variation

in temperature of both the uppermost phase boundary line and the peak in the form

factor to be uncorrelated, exemplified by the fact that there is no upper hexagonal

phase at a temperature of 1250 mK. Therefore, we do not associate any direct

changes in FLL structure with details in the field-dependence of the form factor.

At low fields, we see that the form factor data shown in figure 4.25 are essen-

tially temperature-independent. The distinction between the form factor behaviour

at different temperatures only becomes apparent on moving to higher fields, where

the increase of the form factor at high fields is progressively suppressed with tem-

perature. This suppression is further accompanied by a gradual crossover to more

conventional behaviour of the transition between the superconducting and normal

states. On increasing the temperature up to 500 mK, the sharp fall of the form

factor becomes increasingly less severe on moving through Hc2. By 750 mK, the

form factor falls monotonically to essentially zero at Hc2, consistent with expec-

tations from the thermodynamic measurements (Bianchi et al., 2003a). At this

temperature, the FLL behaviour has just crossed over into the regime where the
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Figure 4.25: The field-dependence of the first-order FLL form factor in CeCoIn5, at
50 mK and for H ‖ c. The red dashed line is a guide to the eye. The blue dashed
and green dashed dot lines are representative of the field-dependence of the form
factor expected according to the Clem model with reasonable fitting parameters.
The shaded portions indicate field regions occupied by the FLL structure as a func-
tion of field, with the black dashed and dotted lines respectively representing the
first- and second-order FLL structure transition boundaries. The point where the
form factor falls to zero represents Hc2, and is taken from thermodynamic measure-
ments (Bianchi et al., 2003a).
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Figure 4.26: The field- and temperature-dependence of the first-order flux line lat-
tice form factor |F (q) |2 over the range of temperatures indicated. The dashed lines
are guides to the eye at each temperature. The points where the form factor falls
to zero represent Hc2, and are taken from thermodynamic measurements (Bianchi
et al., 2003a).
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superconductivity begins to be dominated by orbital effects, and thus supercedes

the Pauli-paramagnetism that gave rise to the first-order transition at Hc2. At higher

temperatures still, the crossover to a conventional regime is clearer, although the

form factor still shows unusual behaviour by initially rising with field. However,

the suppression of this rise, and the more gradual fall with field towards zero form

factor, suggests increasingly conventional behaviour is recovered at higher temper-

atures.

In figure 4.27 (a) we present the temperature-dependence of the diffracted in-

tensity obtained in applied field fields of 4.60 T, 4.85 T and 4.90 T. Across all

temperatures and fields, the FLL structure is hexagonal and remains essentially con-

stant. Therefore, this allowed the collection of the diffracted intensity at the peak

of the rocking curve for a Bragg spot whose q-vector is aligned parallel to a 〈110〉
direction. As the rocking curve widths are essentially resolution limited, the result-

ing measure of the diffracted intensity is proportional to the integrated intensity of

a full rocking curve, and hence proportional to the form factor. The temperature-

dependent data shown in figure 4.27 reveal that the crossover between the regimes

where Hc2 is first- and second-order is also sensitive to the field. The different be-

haviour of the results collected at 4.60 T and those at 4.85 T and 4.90 T is clear.

On moving through Tc2, the intensity of the higher two fields drops in a discon-

tinuous manner, indicating the first-order nature of the transition into the normal

state. The data at 4.60 T falls monotonically as a function of temperature, tending

parabolically towards zero on passing through Tc2. This suggests the superconduc-

tivity is orbitally-limited at Hc2 for the lowest field. However, the intensity scale of

figure 4.27 (a) serves as a reminder that the larger diffracted intensity (and hence

form factor) is associated with the field of 4.60 T, indicating that the effects of

Pauli-limiting are important at all fields.

In figure 4.27 (b) we show the same data as in figure 4.27 (a) but on normalised

intensity and temperature scales. The intensity is normalised at each field by ex-

trapolating the intensity data shown in figure 4.27 (a) down to zero temperature.

The temperature is normalised to the expected critical temperature Tc2(H) as de-

184



Field enhanced flux line lattice in CeCoIn5

0 0.25 0.5 0.75 1

0

1000

2000

3000

4000

5000

Sample Temperature (K)

D
iff

ra
ct

ed
 In

te
ns

ity
 (

C
ts

. p
er

 S
td

. M
on

.)

 

 

4.60T
4.85T
4.90T

(a)

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

Sample Temperature (T/T
c2

)

N
or

m
al

is
ed

 D
iff

ra
ct

ed
 In

te
ns

ity

 

 

4.60T
4.85T
4.90T

(b)

Figure 4.27: In (a) we show the temperature-dependence of the diffracted intensity
at the peak of the rocking curve for a Bragg spot whose q-vector lies parallel to
〈110〉. This is performed at fields of 4.60 T, 4.85 T and 4.90 T. The solid lines are
guides to the eye. In (b) we show the same data as in (a), but with the intensity
normalised to the extrapolated intensity at zero temperature, and the temperature
normalised to the critical temperature for the relevant field. The dashed lines are
guides to the eye.

duced from thermodynamic measurements (Bianchi et al., 2003a). The graph in

figure 4.27 (b) serves to amplify the sharpness of the drop in diffracted intensity

on moving into the normal state at the two higher fields. The drop is also seen to

sharpen up slightly more at the highest field, as might be expected. We also see

that for the two highest fields, the diffracted intensity remains finite at precisely

T/Tc = 1. This likely indicates the presence of some hysteresis, or slightly different

behaviour of the crystals in the mosaic. Such behaviour is unsurprising however, as

the temperature-scans at such highest fields are essentially parallel to the Hc2 phase

boundary, and the transition into the normal state is first-order. Although this ir-

reversible behaviour was not characterised experimentally any further, it does not

detract from the clearly different nature of the superconducting to normal transition

between 4.60 T and the two higher fields investigated.

4.6.2 Discussion of field-enhancement of the flux line lattice form factor

Although the previous study of DeBeer-Schmitt et al. (2006) indicated that the field-

dependence of the form factor was anomalous at low fields, our new measurements
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for fields up to Hc2, and temperatures up to Tc/2 show this departure to be more

spectacular than might have been expected from the previous measurements. In fig-

ure 4.25 we show this explicitly, where we include the predicted field-dependence

of the form factor according to the Clem model (equation 1.43). For the two curves

shown, we use the values for λ and ξ as used by DeBeer-Schmitt et al. (2006); for

both curves a mean literature value of λ = 235 nm is used, and estimates of ξ in

each case are based on HOrb
c2 so that ξ = 5.0 nm and HP

c2 so that ξ = 8.1 nm. Clearly

the Ginzburg-Landau model provides a poor description of the data, as for all fields

the FLL form factor is predicted to fall monotonically with field.

The previous approach of DeBeer-Schmitt et al. (2006) was to generalise the

Clem model by ascribing a field-dependence to the core-size length scale ξGL. We

saw in section 4.2, that the field-independence of the form factor for fields up to

2.0 T could be explained by a field-induced reduction of ξ. For sake of compari-

son, we re-apply the approach here, and extend it up to Hc2, even though the ap-

proximation provided by the Clem model will be rigorously inadequate. We would

also expect λ to be field-dependent across the field range, however, without the

knowledge of what this field-dependence might be, we hold λ constant at 235 nm.

Therefore, using a constant λ, we adjust the value of ξ so the form factor predicted

by the Clem model matches that observed experimentally.

Figure 4.28 (a) shows the resulting field-dependence of ξ at 50 mK on applica-

tion of the generalised Clem model. The data indicate that for a core-contraction

to explain the field enhancement of the form factor, the core-size must contract

by a factor of ∼ 6 between the fields of 1.0 T and ∼ 4.4 T, the approximate field

at which the core-size is a minimum. For higher fields than this, the core-size ex-

pands slightly, which it must do in order to reproduce the form factor fall just below

Hc2. In figure 4.28 (b) we plot the extracted value of ξ versus the FLL parameter

a, which itself is extracted from the q-vector. For the data in this figure, the bulk

of the data is reasonably well represented by the indicated linear fit. This linear

fit only extends up to the field of maximum form factor. For the data at higher

fields (and smaller FLL parameter), the core-size expands slightly, thus deviating
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Figure 4.28: In (a) we examine the field-dependence of the core-size parameter
ξ. The value for ξ is found from the Clem model, and is the Ginzburg-Landau
coherence length. The red dashed line is a guide to the eye. In (b) we subsequently
plot the variation of ξ versus the lattice parameter, which is found from q. The bulk
of the data are well represented by the linear fit indicated by the red dashed line.
This fit is not extended through the entire dataset, as the inset shows that for the
data at smallest lattice parameters, ξ increases for decreasing lattice parameter. The
linear fit extends up the value of a which corresponds to the peak in the form factor.

from this linear tendency. The core-expansion is shown more clearly in the inset of

figure 4.28 (b).

In the previous study of DeBeer-Schmitt et al. (2006), the ξ versus a data were

well fitted linearly with a gradient dξ/da = 0.55(2)/
√

2π. The corresponding gradi-

ent of the red dashed line shown in figure 4.28 (b) is twice as large at 1.10(4)/
√

2π.

The size of this gradient is in strong disagreement with the predictions of Kogan and

Zhelezina (2005). Their model is used to predict the expected contraction of the

core-size at low temperature and in the clean limit. The core is predicted to con-

tract with field, but by a factor of ∼ 50 % across the field range from 0.2 H/Hc2

up to Hc2. The resulting gradient dξ/da is expected to have a value in the range

between 0.2 - 0.4/
√

2π, and is therefore too shallow to describe our data. This es-

sentially means that the flux line cores do not contract fast enough with increasing

field to explain the form factor increase. Expressed another way, within the theory

the ratio ξ/a always increases as a function of field over the entire field range. For
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core-contraction alone to explain the observed enhancement of the form factor, ξ/a

has to fall as function of increasing field. Similar conclusions are drawn from the

numerical calculations of Ichioka et al. (1999). In these calculations at T = 0.5Tc,

the flux line cores are also predicted to contract with increasing field, but by only

∼ 50 % across the entire field range. If we consider the BCS coherence length,

ξBCS = h̄vF /π∆0, on ascribing a field-dependence to ξBCS, then either vF decreases

with field, or ∆0 increases. The former is unlikely; a reduced vF corresponds to

an increase in the effective mass, and thus also in λ. Similarly, an enhancement

of ∆0 is also unlikely, as this would need to be rather large to explain our results.

Therefore, based on the available literature, and simple arguments, it seems very

unlikely that flux line core contraction alone can explain the observed increase of

the form factor.

A more likely explanation for the increase of the form factor is found within

the quasiclassical Eilenberger theory with the inclusion of the paramagnetic ef-

fect (Ichioka and Machida, 2007). In figure 4.13 (a) we see the predictions for

the field-dependence of the form factor for various strengths of paramagnetic ef-

fect. An increased strength of the effect is denoted by a larger value of µ. We firstly

note from figure 4.13 (a) that when the paramagnetic effect is strong enough, the

form factor remains finite on reaching Hc2. As this is qualitatively similar our ob-

servations at low temperature, this immediately suggests that field-induced core

paramagnetism is likely to play a role in the mixed state in CeCoIn5.

Based on the previous measurements up to 2.0 T (DeBeer-Schmitt et al., 2006),

Ichioka and Machida (2007) indicate that the most appropriate value of the theoret-

ical parameter µ which describes the form factor data is 1.7 (see figure 4.13 (a)).

However, according to the predictions made using the theory, this value of µ is

not large enough to cause the increase in the form factor that we observe exper-

imentally. We also note that according to these calculations, the flux line cores

are not predicted to contract at any field (Ichioka and Machida, 2009). Instead,

the increase in the form factor is generated by a larger paramagnetic effect, when

µ = 2.6. Hence, it is important to consider the most appropriate value of µ which
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may describe our data. We now show the relationship between the parameter µ,

and the Maki parameter αM , the latter of which is related to the material prop-

erties of CeCoIn5. To do so, we note that within the literature, there are at least

three ways of describing the strength of the Pauli paramagnetic effect; the Maki

parameter introduced in section 1.6, αpara introduced by Adachi et al. (2005),

αpara =
µBHOrb

c2

2πkBTc

(4.6)

and the paramagnetism parameter µ which is introduced within the Eilenberger

theory (Ichioka and Machida, 2007),

µ =
µBB0

πkBTc

(4.7)

where B0 is a scaling parameter related to Bc2, and refers to the field-scale used

by Ichioka and Machida (2007). The parameter HOrb
c2 of equation 4.6 is equal to

0.561 of the Eilenberger unit B0 shown in equation 4.7. If we divide αpara by µ, we

obtain
αpara

µ
=

HOrb
c2

2B0

∼ 0.28. (4.8)

By substitution of equation 1.61 into equation 4.6 and re-arranging, we find αM ∼
7.12 αpara, and therefore using this result in combination with equation 4.8 we

obtain

µ =
αM

1.99
. (4.9)

Therefore, we see that µ is sensitive to the values of the Pauli- and orbitally-

limited upper critical fields. Within the literature, estimates for the latter are some-

what variable, such that µ could vary between a range of values. The previously

suggested value for µ of 1.7 implies that HOrb
c2 ∼11.8 T. This estimate for HOrb

c2 dif-

fers from, for example, the estimate of Tayama et al. (2002) of ∼ 15 T, which yields

a value for µ of 2.15. Therefore, it seems reasonable to suggest that, based on the

available estimates of HOrb
c2 , µ may actually be larger than the value of 1.7 previ-

ously used to describe the observations of DeBeer-Schmitt et al. (2006). A larger

value of µ fits in with the requirement of the quasiclassical theory to cause the in-

crease in the form factor that we observe experimentally. However, even within

189



Field enhanced flux line lattice in CeCoIn5

the range of acceptable µ values, the form factor is not predicted to increase by

the amount shown in figure 4.25. Hence, whilst there is a qualitative agreement

between our low temperature form factor data and the predictions of Ichioka and

Machida (2007), even for a realistic range of µ values, a quantitative agreement is

lacking.

We now consider possible reasons for this discrepancy. A possible physical effect

not accounted for within the theory of Ichioka and Machida (2007) is the non-

Fermi liquid behaviour associated with the QCP located near Hc2. The theory in-

herently assumes Fermi liquid behaviour, but anomalous behaviour in the fermionic

properties could exert an influence on the FLL. The onset of non-Fermi liquid be-

haviour within the mixed state is indicated by a divergence of m∗ on the approach

to Hc2 (Settai et al., 2001; Bianchi et al., 2003b). A divergent heavy-fermion mass

might be expected to lead to an enhancement of the paramagnetism parameter µ

(by crudely considering µ ∝ BOrb
c2 , where BOrb

c2 ∝ (m∗)2). However, we might then

expect the core-size to contract. Both of these effects would be expected to main-

tain, or increase the form factor at higher fields. These arguments are speculative,

and not supported theoretically. However, if a divergent heavy-fermion mass is a

contributory factor to the increase of the form factor, then a certain degree of gener-

alisation of the theory of Ichioka and Machida (2007) is required. Based on the ar-

guments above, a divergent m∗ would cause the parameter µ to be field-dependent,

leading it to increase on the approach to Hc2.

Ichioka and Machida (2009) have recently investigated modifications to their

calculations presented in Ichioka and Machida (2007), in order to address the dis-

crepancy between the theory and experiment. They re-calculated the expected

field-dependence of the form factor as a function of parameter µ, but considered an

isotropic and three-dimensional Fermi surface instead of a purely two-dimensional

Fermi surface. The results of the calculations are shown in figure 4.29.

We see that for progressively larger values of µ, the qualitative form of the field-

dependence of the form factor approaches that of our experimental observations.

This is particularly the case for µ =5, where the size of the fall of the form factor
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Figure 4.29: The calculated predictions of the field-dependence of the first-order
form factor for increasingly large values of µ. The Fermi surface is three dimensional
and isotropic, the order-parameter is dx2−y2, κ =89, T = 0.2Tc and the FLL structure
is hexagonal. After Ichioka and Machida (2009).

close to Hc2 is in better agreement with our experimental data, over the somewhat

larger high field fall predicted for when µ = 2.6 figure 4.13 (a). Therefore, it

seems necessary to introduce a certain amount of three-dimensionality to the Fermi

surface in these calculations, even though the Fermi surface of CeCoIn5 is known to

be quasi two-dimensional. This is indicated more clearly in figure 4.30 (a), which

show calculations of the predicted field-dependence of the form factor at µ = 5.

The figure indicates the calculations for the three-dimensional Fermi surface to be

closer to the experimental observations than for the two-dimensional Fermi surface.

Indeed, for such a high µ in the two-dimensional case, the slight fall of the form

factor just below Hc2 is not reproduced.

Figure 4.30 (b) provides further support for a larger µ value and three-dimensional

Fermi surface, by calculating the field-dependence of the form factor under such

conditions, but at higher temperatures. The qualitative agreement with the exper-

imental data is good; even at 0.5 Tc the form factor initially rises due to the Pauli

paramagnetism before being suppressed at higher fields, consistent with our obser-

vations. We also see the field at which the form factor peaks is also suppressed with

increasing temperature, and that the form factor exhibits increasingly conventional

behaviour by falling monotonically to zero on the approach to Hc2.

Whilst it seems plausible that a more three-dimensional Fermi surface needs to
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(a) (b)

Figure 4.30: The predicted field-dependence of the first-order FLL form factor for
µ =5, a dx2−y2 order parameter, and κ =89 for (a) both three- and two-dimensional
Fermi surfaces at T = 0.2Tc, and (b) for a three-dimensional Fermi surface, and
also as a function of temperature. For both figures, triangle symbols indicate the
FLL structure to be hexagonal, and square symbols indicate the FLL to be square.
After Ichioka and Machida (2009).

be included within the calculations, we should consider what would physically al-

low the value of µ to take on larger values. We showed earlier that µ is essentially

determined by the experimentally determined value of HP
c2, and an estimated value

of HOrb
c2 . As HOrb

c2 is only estimated from the gradient dHc2/dT |T=Tc, we suggest that

the value of HOrb
c2 deduced from measurements close to Tc might not accurately re-

flect the value of HOrb
c2 at much lower temperatures. If non-Fermi liquid behaviour

is important at low temperatures and high field within the mixed state, the usual

method of finding HOrb
c2 from the gradient dHc2/dT |T=Tc may not be valid. A di-

vergent heavy-fermion mass could enhance HOrb
c2 beyond a value previously antici-

pated, essentially amounting to allow µ to be field-dependent such that it increases

on approaching Hc2. Experimentally, heat capacity measurements observe a field-

dependence to the low energy density of normal states (Ikeda et al., 2001) such

that it increases on the approach to Hc2, in support for the necessity of allowing µ

to be field-dependent.
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4.6.3 Fall of the flux line lattice form factor just below Hc2

Previously, we introduced the field- and temperature-dependence of the FLL form

factor for H ‖ c. For all temperatures, and for fields below Hc2, the magnitude of

the form factor is suppressed from a peak value on moving to the highest fields. It

remains of interest to address the physical origin of the fall of the form factor from

the peak value.

Initially, it was suggested in Bianchi et al. (2008) that at 50 mK, the fall might

reflect the onset of an FFLO-type state, where theory predicts the flux lines to adopt

a modulated topology (Tachiki et al., 1996; Mizushima et al., 2005; Ichioka et al.,

2007). In this scenario, the form factor of the FLL Bragg peak is expected to be

lower due to the reduced field contrast at the nodal points of the flux lines. A simple

argument in favour of this would be to expect the temperature-dependence of the

field at which the form factor peaks to be correlated with that of the FFLO phase

boundary. In figure 4.31 we plot this temperature-dependence, and clearly see

no correlation with any major feature within the superconducting phase diagram.

Although we cannot rule out a contribution to the fall of the form factor at low

temperatures, it seems unlikely that a the onset of an FFLO, or Q-phase, is the

dominant physical mechanism behind the high field fall of the form factor.

The calculations of Ichioka and Machida (2009) within the quasiclassical Eilen-

berger are able reproduce the high field fall of the form factor, apparently in the

absence of an FFLO state. We therefore look more closely at the theory in order

to identify the physical mechanism behind the fall. For large µ values, and a two-

dimensional Fermi surface, the authors are able to identify the contributions to the

overall internal magnetisation. These components are the usual diamagnetic con-

tribution associated with the screening currents, and the field-induced core mag-

netisation. Whilst the neutron is sensitive to the net magnetisation, the theoretical

work is able to identify the contribution due to each. Figure 4.32 shows that the dia-

magnetic contribution to the overall field contrast falls away with increasing field

in the manner expected for conventional materials. However, the field-dependence
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Figure 4.31: FLL structure phase diagram for CeCoIn5 with H ‖ c. Phase boundaries
separating regions of different FLL structure are shown by gray dotted lines. The
inset diagrams show the three FLL configurations, where a [100] direction is verti-
cal, and first-order Bragg spots belonging to different FLL domains are denoted by
open and filled circles respectively. The green and black solid lines show where the
superconducting to normal state transition is first- and second-order respectively.
The open blue circles show the temperature evolution of the maximum of the form
factor (|F (q) |2), with the blue dashed line being a guide to the eye. The error bars
of the data points are comparable in size to the data symbol. The area enclosed by
the green solid and red dash-dot lines provide an estimate of the region occupied
by the FFLO phase, as deduced from other studies (Bianchi et al., 2003a; Kumagai
et al., 2006).

of the core magnetisation rises markedly with field, and is the dominant component

of the overall magnetisation at high fields. However, even at the highest fields, this

component begins to fall, and it seems that the fall in the form factor is correlated

to this reduction in core magnetisation. Therefore, it is clearly of interest to look in

more detail at the field evolution of the spatial distribution of the field-induced core

magnetisation. In figure 4.33 (a), we show calculated spatial structure of the core

magnetisation M (r) as function of the applied field. At low fields, the spatial extent

of the core magnetisation is unimportant. However, at higher fields, and particu-

larly close to the upper critical field, the spatial distribution becomes significantly

broader. This means that the paramagnetic flux line cores are predicted to expand,

and at the highest fields they start to overlap. Figure 4.33 (b) also shows the spatial

increase of core magnetisation is also reflected by an increase in the spatial extent
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Figure 4.32: The field-dependence of the form factor for µ = 2.6, T = 0.1Tc, κ = 89,
a square FLL structure and a two-dimensional Fermi surface. The coloured regions
indicate the relative contribution to the overall internal magnetisation arising due to
the field-induced flux line core paramagnetism (green) and the orbital contribution
that arises due to the screening currents (blue). After Ichioka and Machida (2009).

(a) (b)

Figure 4.33: Numerical calculations of the field-dependence of the spatial distribu-
tions of (a) the core-induced paramagnetic moment M (r), and (b) the amplitude
of the pair potential |∆ (r)|. For both figures, r is the distance away from the flux
line core in the direction of the nearest neighbour flux line of a square FLL. Where
the line stops corresponds to half the distance between nearest neighbours. The
calculations consider the case where µ = 2.6, T = 0.1Tc, κ = 89, and the Fermi
surface is two-dimensional. Figures after Ichioka and Machida (2009).

195



Field enhanced flux line lattice in CeCoIn5

of |∆ (r)|. Noticeably, |∆ (r)| is also more strongly suppressed at higher fields, which

indicates the importance of paramagnetic depairing within the cores. Overall, these

effects at the highest fields are due to an expanding of the flux line cores, and the

reduction in the FLL form factor close to Hc2 is due to a reduced spatial confinement

of the field induced core magnetisation.

Measurements of higher-order Bragg spots

To provide experimental evidence for such a core expansion, we carried out system-

atic measurements of the field-dependence of the {1, 1} form factors at ∼ 60 mK.

It is suspected that the influence of a high field core expansion will manifest more

strongly in the higher-order spots. To understand this proposal, consider the simple

phenomenological model of Yaouanc et al. (1997). This model directly relates the

form factor to a measure of the core-size via the insertion of a core-correction term,

such as exp (−qρc) or exp(−(qρc)
2), into the numerator of the simple London model

(see Appendix D). Here q is the q-vector, and ρc denotes the measure of the core-

size (often denoted as ξ). Any constants in the exponential have been absorbed into

ρc. This is perhaps the simplest model where the measured form factor can be writ-

ten as F (q) ∼ exp (−qρc). According to this simple model, we can plot lnF versus

q, and we see that d(lnF )/dq will be linear with a gradient of magnitude ρc. By

carrying out such an analysis over a range of fields, we obtain a field-dependence

of the measure of the core-size. Although such a simple model will likely be inac-

curate, our discussion highlights the principle that we expect the rate at which the

form factor falls with q to be dependent on the core-size.

A systematic set of measurements were carried out, whereby the first-order form

factor was recorded in the same manner as previously, but whereby we also mea-

sured as many types of {1, 1} spots as possible. In order to understand our analysis,

in figure 4.34 we show schematic diagrams of the three different FLL structure

types. In the figure, we indicate the {1, 0} and {1, 1} Bragg spots for each structure

type, and also the different types of q-vector. We only carried out measurements at

fields corresponding to the upper three phases of the structure phase diagram, and
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Figure 4.34: Schematic diagrams indicating the positions in reciprocal space of the
{1, 1} Bragg spots with respect to the {1, 0} Bragg spots, for (a) the square FLL
structure, (b) the rhombic FLL structure, and (c) the hexagonal FLL structure. In
each case, the dashed lines indicate the FLL structure deduced from the first-order
spots, and the arrows indicate the types of q-vector for both the {1, 0} and the {1, 1}
Bragg spots for a single domain. For clarity, in (b) and (c) we only present q-vectors
for a single domain of the two that are present.
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have not yet observed {2, 0} Bragg spots at any field.

Analysing the {1, 1} Bragg spots of a square structure is simple, and is carried

out in the same way as for the {1, 0} spots. In the rhombic phase, within a single

domain there are two types of {1, 1} spot with noticeably different q-vectors. For

each domain, we obtain the
∣∣F (

q11,1

)∣∣2 and
∣∣F (

q11,2

)∣∣2 form factors by respectively

taking the mean of the form factors for the q11,1 and q11,2 spots. We then sum the

contributions from the two domains to obtain the overall {1, 1} form factor for each

type of q-vector. For example, for the q11,1 type of spot, the overall form factor is

found using
∣∣Ftot

(
q11,1

)∣∣2 =
∣∣Fdom1

(
q11,1

)∣∣2 +
∣∣Fdom2

(
q11,1

)∣∣2.
Within the upper hexagonal phase, the situation is more complicated because

for each domain there are strictly two different types of q-vectors for both the {1, 0}
and {1, 1} spots (see figure 4.34 (c)) and unfortunately, until now, it has not been

possible to measure the form factors of all the different spot types, at all fields. At

no fields at all did we observe the form factor for the spots of type q11,2, and at

most fields in this phase, only spots of type q10,2 and q11,1 were measured. The

signal associated with the spots of type q11,1 was extremely weak, which meant we

were only able to obtain a measure of the form factor by counting at the Bragg

angle. The inability to measure full rocking-curves introduces a larger degree of

uncertainty into our results. To present the q-dependence of the form factor for

each spot type, we follow the approach adopted in the rhombic phase. That is,

within each domain, we find the mean form factor value for the spot type, and then

sum the contributions for that spot type from the two domains.

In figure 4.35 (a) we show form factor versus q over the investigated field range.

We have normalised all the form factors such that the {1, 0} form factors shown

in figure 4.35 (a) fall on the guide to the eye shown in figure 4.25. To find the

best description of the data at each field, we can only consider the data at fields

within the rhombic phase, as here there are more than two datapoints. After careful

consideration, we find a simple linear fit on the linear-linear scale provides a better

description of the data than an exponential form. Subsequently, at all other fields

with just two datapoints, we apply a linear fit. In figure 4.35 (b), we show the

198



Field enhanced flux line lattice in CeCoIn5

0.02 0.03 0.04 0.05 0.06 0.07
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

|q| (Ang.−1)

|F
(q

)|
 (

m
T

)

 

 
1.80T
2.00T
2.60T
3.00T
3.30T
3.50T
3.70T
3.85T
4.00T
4.30T
4.40T
4.50T
4.55T
4.65T
4.75T
4.85T

(a)

1.5 2 2.5 3 3.5 4 4.5 5
6

8

10

12

14

16

18

Applied Field (T)

M
ag

ni
tu

de
 o

f L
in

ea
r 

F
it 

G
ra

di
en

t (
m

T
.A

ng
)

 

 
Magnitude of the Linear Fit Gradient

(b)

Figure 4.35: In (a) we show all the form factors obtained at various fields and at
∼ 60 mK, and plot them versus q on a linear scale. At all fields, when appropriate
we fit the data linearly. Otherwise we apply the linear fit. Square symbols, dia-
mond symbols and triangle symbols indicate data taken in the square, rhombic and
hexagonal structure phases respectively. In (b) we show the field-dependence of
the magnitude of the gradient of the linear relation that was fitted/applied to the
data shown in (a).

field-dependence of the magnitude of the linear gradient |dF/dq|, as obtained from

the data shown in figure 4.35 (a). We see that the magnitude of the slope becomes

progressively steeper on the approach to Hc2. However, this gradient has units

of [Field][Length], and cannot be taken as a measure of the core-size. However,

now we reach the problem of the next step in the analysis, as it is unclear how to

manipulate the data in order to extract a measure of the core-size.

The quasiclassical Eilenberger theory can be used to directly calculate the ex-

pected form factors for both the {1, 0} and {1, 1} spot types. We then compare the

predicted form factors for the {1, 0} and {1, 1} Bragg spots in the presence of the

core expansion at high fields, and see how the resulting q-dependence of the form

factor compares to the experimental data. At the time of writing, the first calcula-

tions have recently been carried out by M. Ichioka of Okayama University, Japan.

Under the conditions of T = 0.1Tc, κ = 89 and for the case of µ = 2.6, he calculates

the {1, 0} and {1, 1} form factors for a square structure at all fields. The results of

the calculations lie in stark contrast to our experimental data, with |dF/dq| falling
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monotonically with field. However, the calculations neglect the experimentally ob-

served changes in FLL structure, which may contribute to change in the behaviour

of |dF/dq| with field. In spite of this however, the initial calculations do not look so

promising.

In order to be able to treat our data more quantitatively, an alternative approach

might be to find a form of phenomenological model for the form factor that pro-

vides the best approximation to the numerical calculations. Such a model would

allow us to extract a core-size length-scale from our data, whilst maintaining con-

sistency with the microscopic calculations. The simplest models that are easiest to

use are those of Yaouanc et al. (1997) introduced earlier, where the core-size is

contained within an exponential term with an argument dependent on the prod-

uct of q and ρc. At the time of writing, Ichioka and Machida (2009) have recently

investigated the quality of the approximation to the quasiclassical theory on us-

ing the exponential terms proposed by Yaouanc et al. (1997). Unsurprisingly, the

quality of the approximation is sensitive to the form of the term used, and other

parameters such as the temperature. Therefore, it remains unclear which model

is the more appropriate. Indeed, these exponential relationships are not obviously

compatible with our data, where we find that the form factor and q enjoy a linear

relationship on a linear-linear scale. However, we cannot rule out that a more com-

plicated phenomenological term could describe our data. Finding the best form of

phenomenological expression involves making quantitative comparisons between

the predictions based on using the phenomenological model and the quasiclassical

calculations for constant parameters. The form of any cut-off must depend on q and

ξ, though a knowledge of precisely how the form factor will depend on both param-

eters, should allow us to determine whether or not we observe a core expansion at

high fields.
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4.7 Measurements with field in the basal plane

Here, we outline the main observations of our SANS studies with field in the plane.

Only a limited number of experiments have been carried out for this field geometry

during the time of this thesis, leaving the physical picture incomplete and the focus

of future experimental work. However, here we introduce the main observations,

and draw comparison with the rather more detailed studies carried out for H ‖ c.

4.7.1 Flux line lattice structure with field in the plane

Field parallel to the a-axis, H ‖ a

With H ‖ a, and at ∼ 70 mK 16, the FLL structure type remains constant over the

entire investigated range in field between 2.0 T and 10.9 T. Figure 4.36 shows

an example of this FLL structure, in a diffraction pattern obtained in an applied

field of 8.0 T, but at ∼ 85 mK. The diffraction pattern shows the FLL structure

to be composed of a distorted single hexagonal domain aligned with the atomic

lattice. The hexagonal structure is strongly elongated along the c∗ direction, and

this is indicative of the underlying crystal anisotropy. The Bragg spots whose q-

vectors lie parallel to c∗ are extremely weak and barely visible in the figure. The

simple explanation for this can be derived from equation 2.20, where the diffracted

intensity for Bragg spots at larger q is lower.

Although the structure type remains constant for this field geometry, there ap-

pears to be a slight field-dependence to the precise shape of the hexagonal struc-

ture. In figure 4.37 we show the field-dependence of the anisotropy parameter

η at ∼ 70 mK, where η is deduced from the primitive cell angle φ indicated in

figure 4.36 17. Within anisotropic London theory, η is equivalent to the penetra-

tion depth anisotropy. Although this simple relation is likely invalid for the mea-

surements reported here, the characterisation of the distortion is at least reflecting

the Fermi surface anisotropy. Interestingly, it appears that on moving from low to

16For these experiments with field in the plane, the base temperature provided by the DR was
slightly higher than for H ‖ c.

17The method for extracting η from the primitive cell angle is described in Appendix C.
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Figure 4.36: The FLL diffraction pattern obtained in CeCoIn5 for H ‖ a, at a field of
8.0 T and temperature of 85 mK. The dashed green hexagon indicates the overall
FLL structure, which characteristic angle φ.

higher fields, the FLL structure becomes slightly more isotropic. However, on mov-

ing toward the highest fields, in particular, on crossing the possible FFLO/Q-phase

boundary line, the structure becomes more distorted again. This excludes the point

at the highest investigated field of 10.9 T, which does not agree with the general

trend.

Further possible evidence for anomalous behaviour at high field is provided by

the details of the FLL quality. Figure 4.38 (a) shows the field-dependence of the

FWHM of the Gaussian lineshape that is fitted to the rocking curves of the Bragg

spots. We cannot deduce much from the field-dependence of the rocking-curve

width for spots with q ‖ c∗. However, the rocking-curves widths for the off-axis

spots lie close to the instrumental resolution until the highest fields, whereafter the

FWHM noticeably broadens on the approach to Hc2. This is in contrast to the case

for H ‖ c, where the rocking curve FWHM remained close to the instrument resolu-

tion across the entire field range. Figure 4.38 (b) shows the field-dependence of the

Bragg spot azimuthal FWHM spread. Interestingly, the field-dependence of the az-

imuthal spread indicates worsening orientational order as a function of increasing

field, again with the quality deteriorating more rapidly at the highest fields.

Although CeCoIn5 is a superclean material, we cannot rule out that the deteri-
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of Bianchi et al. (2003a).
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Figure 4.38: Investigations of the field-dependence of the FLL quality in CeCoIn5

for H ‖ a. In (a) we show field-dependence the Bragg spot gaussian FWHM of the
rocking curve for the Bragg spots with q ‖ c∗ (filled green triangles) and the off-axis
Bragg spots (filled blue squares). The estimated resolution for these two types of
Bragg spot are indicated by the green and blue dashed lines respectively. In (b)
we show the field-dependence of the the Bragg spot azimuthal FWHM, with the
Bragg spots with q ‖ c∗ indicated by open green triangles, and the off-axis Bragg
spots indicated by the open blue squares. The estimated resolution indicated by the
orange dashed line is common for both spot types. In both figures, the black dashed
line represents Hc2, and the red dotted line the estimated location of the FFLO/Q-
phase boundary. Both boundaries are deduced from Bianchi et al. (2003a).
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oration in the FLL quality is due to pinning of the FLL to crystal imperfections and

inhomogeneities. It is interesting that the field at which the rate of FLL deteriora-

tion increases is approximately correlated with the proposed onset of the FFLO, or

Q-phase, state. This may be coincident, but an enthusiastic interpretation would be

to associate the deterioration in FLL quality with the onset of such a state. In the

FFLO scenario for example, the order parameter is suppressed in the planes at the

point where ∆ changes sign. These planes might provide an unexpected source of

flux line pinning which gives rise to the reduction in the order of the FLL.

However, an important test yet to be made for the H ‖ a geometry is whether

the FLL order is sensitive to field oscillations, as was the case for YBa2Cu3O7 at

low fields in the last chapter. For all measurements carried out for H ‖ a, no field

oscillations were applied. Investigating the effect of field oscillations on the FLL

quality might reveal whether pinning does play a role at unexpectedly high field.

Furthermore, measurements at higher temperatures than ∼70 mK have not been

carried out for in this field geometry, so it remains unknown how the FLL structure

varies as a function of temperature. It would be of interest to look more closely at

the FLL order in the high-field region of the phase diagram, to see if the onset of

FLL disorder correlates with the FFLO/Q-phase boundary as functions of both field

and temperature.

Field parallel to [110], H ‖ [110]

For the case of H ‖ [110] and at a temperature of 85 mK, similarly distorted single

domain hexagonal structures are observed as for the case of H ‖ a. Example diffrac-

tion patterns are shown in figure 4.39. At fields of 7.5 T and below for this field

geometry, the orientation of the hexagonal structure is of the same type as for the

case of H ‖ a. However, by 9.5 T, the primitive cell has undergone a field-driven 90◦

re-orientation transition. The nature of the transition is most likely first-order; as a

function of field on moving between the transition there is no clear smooth varia-

tion of the spot shape or position that would suggest a continuous transition. More

tellingly, there is relatively large hysteretic field region where the precise details of
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Figure 4.39: The FLL diffraction patterns obtained in CeCoIn5 for H ‖ [110], at a
temperature of 85 mK, and applied fields of (a) 7.5 T and (b) 9.5 T. The dashed
line patterns indicate the overall FLL structure, with characteristic angles of (a) φ
and (b) ρ.

the FLL structure are unclear.

Figure 4.40 shows the accumulated, and provisional, FLL structure phase dia-

gram for this field geometry. Measurements in this field geometry were carried out

for fields up to 10.7 T, and a selection of higher temperatures in order to elucidate

the details of the FLL structure transition phase boundary line. However, stymied

by the hysteresis around the transition, it was not possible to confidently deduce

even the precise transition field at base temperature, let alone how it evolves at

higher temperatures. From figure 4.40 we can infer that the hysteretic region at

base temperature could be as wide as ∼1 T in field, allowing us to estimate the

transition field to be 8.1(5) T. For this field geometry, although a series of measure-

ments were carried out over a range of fields and temperatures, due to the weak

signal a systematic investigation of the FLL quality has not possible up to present.

4.7.2 Discussion of flux line lattice structure transition with field parallel to
[110]

When the field is applied in the basal plane, it seems that the resulting FLL structure

phase diagrams are comparatively featureless when compared to those obtained for
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Figure 4.40: The incomplete FLL structure phase diagram for the case of H ‖ [110].
The dashed green and solid black lines correspond to where the transition between
the superconducting and normal states is first- and second-order respectively. The
thick red line indicates the proposed FFLO/Q-phase boundary, with the data taken
from the study of Bianchi et al. (2003a). The positions of the symbols within the su-
perconducting phase diagram correspond to where measurements of the FLL struc-
ture have been made up to now. Red filled squares indicate the identification of
the low field structure (figure 4.39 (a)), blue filled diamonds the location of the
high field structure(figure 4.39 (b)), and green filled circles indicate measurements
within the hysteretic region, where there is uncertainty as to the precise structure.

H ‖ c. This indicates the importance of the order-parameter anisotropy in under-

standing the results for a given field geometry. Of the in-plane results, it is of interest

to understand why there is a field-driven FLL structure transition when H ‖ [110],

but no structure transition for H ‖ a. Figure 4.40 shows the FLL structure transition

field not to be correlated with the FFLO/Q-phase boundary. Furthermore, many

measurements in and around the vicinity of the FFLO/Q-phase seemingly do not

indicate a dependence of the FLL structure type on a novel type of superconducting

state.

The transition that we observe is a re-orientation transition that is qualitatively

the same as that seen between the low and intermediate field phases of YBa2Cu3O7.

In that material, we attributed the transition to non-local effects. In the face of a

similar comparison, a similar explanation could be offered for CeCoIn5. However,

we note that for H ‖ a, the field is parallel to an antinode of the dx2−y2 order pa-

rameter. For H ‖ [110], the field is parallel to a node. From this point of view, the

206



Field enhanced flux line lattice in CeCoIn5

FLL structure transition could be associated with d-wave effects. Preliminary calcu-

lations using the quasiclassical Eilenberger theory have been carried out (Ichioka

and Machida, 2009), in order to test if there is a dependence on the direction the

field is applied relative to the node or antinode. At the time of writing, the results

of numerical calculations were inconclusive. At high field, the free energy mini-

mum Fm, of the FLL structure for H ‖ a is associated with the structure shown in

figure 4.36. However, the calculations predict the 90◦ re-orientation transition to

occur as a function of decreasing field for this field direction. For H ‖ [110], across

the entire field range the orientational Fm is associated with a FLL structure like

that shown in figure 4.39 (b), and there is no transition predicted as a function of

field. We might take these results as indicating that FLL structure does not depend

on the direction of applied field relative to the dx2−y2 order parameter. However, the

calculations did not account for the observed distorted shape of the FLL, or com-

pare the calculated Fm of FLL structures whose shapes are determined by the order

parameter and Fermi surface anisotropy. Such theoretical work is on-going.

4.7.3 Field-dependence of the form factor with field in the plane

With the field in the plane, we are sensitive to the out-of-plane penetration depth,

and the in-plane susceptibility. The latter will be important, as at high field the

quasiclassical calculations show the core magnetisation is the largest component

of the internal magnetisation, and hence form factor. Tayama et al. (2002) have

measured the anisotropy in the susceptibility χc/χab to be∼ 2. Therefore, we expect

the form factor to be weaker for fields for field in the basal plane.

With H ‖ a, we were able to carry out a systematic investigation of the field-

dependence of the FLL form factor. Before presenting these results, we address the

question of whether there exists a form factor anisotropy between the different spot

types of the distorted hexagonal FLL structure. For perpendicular fields, there ex-

isted a clear anisotropy between the different spot types in the high field hexagonal

structure phase. For the only FLL structure type we observe for H ‖ a, the spots are

associated with two different directions, those with q ‖ c∗, and those with q 6‖ c∗. An
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investigation of the FLL form factors of the different spot types showed the error-

weighted ratio of |F (q ‖ c∗)|2 to |F (q 6‖ c∗)|2 to be 1.02(8) across the entire field

range. Hence we conclude that within the sensitivity of the measurements, there is

no form factor anisotropy between the different spot types of the hexagonal struc-

ture. Therefore, the overall form factor at a certain field is calculated according to

an error-weighted mean of all available spots.

The resulting field-dependence of the first-order FLL form factor at ∼ 70 mK is

presented in figure 4.41. Similar to the low temperature data obtained for H ‖ c,

the form factor increases with field. Again, after the form factor has risen to a

peak value, it falls on the approach to Hc2. Unfortunately, measurements at fields

closer to Hc2 than 10.9 T were not possible, due to the limitations of the available

magnetic field. However, the similarity of the overall field-dependence with the

corresponding H ‖ c measurements suggests that the two field-dependences can be

explained within a similar physical framework.

Up until the time of writing, very few measurements of the FLL form factor

with H ‖ [110] have been carried out. The measurements presented in figure 4.40

were more concerned with observing the FLL structure, and values of the form fac-

tor cannot be obtained from these measurements. For this reason, and as nothing

systematic can be gleaned from the few datapoints we have, we await future exper-

imental work to obtain the more complete picture for this particular field direction.

4.7.4 Discussion of field-dependence of form factor with field parallel to a

On comparing the low temperature field-dependences of the form factor for H ‖ c

and H ‖ a we see qualitatively similar behaviour between the two. The most notice-

able difference between the two field directions is the form factor magnitude. This

is emphasised in figure 4.42 where we plot the field-dependence of the first-order

form factor for both field directions on a normalised field-scale. It is remarkable

to see that the difference in form factor magnitude between the two directions is

essentially constant over the normalised field-range, being approximately a factor

of 8 in |F (q)|2.
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Figure 4.41: The field-dependence of the first-order FLL form factor for the case of
H ‖ a, and at a temperature of ∼ 70 mK. The dashed blue line is a guide to the eye
fit of the data. The black dashed line represents Hc2, and the red dotted line the
estimated location of the FFLO/Q-phase boundary. Both boundaries are deduced
from Bianchi et al. (2003a).
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Figure 4.42: A comparison between the field-dependence of the first-order FLL form
factor for the cases of H ‖ c at ∼ 50 mK and H ‖ a at ∼ 70 mK. The vertical scale
is logarithmic, and the horizontal scale is field normalised to Hc2. The dashed line
are guides to the eye for the data.
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Initially we can ascribe the difference in magnitude to the anisotropy in the sus-

ceptibility (Tayama et al., 2002). Between the principal crystal directions and at low

temperature, this anisotropy is approximately a factor of 2. We would expect the

contribution of the field-induced core moment to the FLL form factor to dominate

at high fields, and to be less important at low field. Therefore, if the susceptibility

anisotropy is the sole cause for the anisotropy in the form factor ratio, we might

also expect this ratio to vary as a function of normalised field. At high field, we

would expect the anisotropy to be accountable in terms of the anisotropy in the

susceptibility. At lower field, we might expect another anisotropy to manifest, such

as that possibly associated with the penetration depth. The field-dependent ratio

of the form factor for H ‖ a and H ‖ c is observed to remain approximately con-

stant as a function of normalised field. Therefore, accounting for the difference in

the susceptibility alone is insufficient to provide a sole explanation for the approxi-

mately field-independent factor of 8 difference in |F (q)|2. Our results still suggest

that for all fields and field directions the form factor behaviour is dominated by

paramagnetic effects, and that they can be understood qualitatively in terms of the

quasiclassical Eilenberger theory (Ichioka and Machida, 2007). However, it is also

necessary to invoke other currently unaccounted for physical effects which may also

be anisotropic.

We see from figure 4.42 that at the highest fields, there is possibly a deviation

between the form of the two field-dependencies. For H ‖ a, the field at which the

form factor peaks is a lower fraction of Hc2 than for H ‖ c, and the form factor fall

at the highest fields is also proportionally larger. This suggests that the physical

mechanism that gives rise to this detrimental effect on the high field form factor

behaves differently under parallel fields, or again, an enthusiastic interpretation

would be that the additional effect of the onset of an FLLO/Q-phase state may be

manifesting on the FLL. However, further experimental work is required, particu-

larly with H ‖ [110], where relatively few measurements have been carried out.

Only then can reliable comparisons be drawn with the detailed picture of H ‖ c,

and the results of theoretical calculations.
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4.8 Search for the Larkin-Ovchinnikov flux line modulation

Here, we briefly outline the results of SANS investigations within the low tem-

perature and high field region of the superconducting phase diagram, where the

FFLO/Q-phase state is predicted to be stabilised. In the Larkin-Ovchinnikov (LO)

scenario of FFLO, due to the oscillatory nature of the order parameter amplitude in

real-space, the flux lines are proposed to adopt a modulated topology (Tachiki et al.,

1996; Mizushima et al., 2005; Ichioka et al., 2007). In principle, the periodicity as-

sociated with the inhomogeneous state can be probed via SANS measurements.

The calculations of Ichioka et al. (2007) suggest that the FFLO modulation re-

flected in both the modulation of the flux line, and by the paramagnetic moment

that accumulates within the FFLO nodal plane, are able to provide sufficient field

contrast for detection by SANS. The prediction is that Bragg spots associated with

the field contrast modulation are observed as ‘satellites’ of the usual Bragg spots

associated with the FLL configuration. In the traditional SANS geometry with field

parallel to the neutron beam, these satellites are expected to lie out of the plane of

the two dimensional reciprocal FLL. In order to observe this scattering and bring a

Bragg satellite onto the diffraction condition, it is necessary to rotate the reciprocal

lattice by large angles. Then the observation of the FFLO modulation is seen in the

form of subsidiary peaks of the rocking-curve, in addition to the usual Bragg peak

associated with the FLL.

A more appealing way to visualise the predicted Bragg satellites directly on the

detector is to adopt the field-perpendicular experimental geometry. In this situation,

the cryomagnet is rotated by 90◦ with respect to the neutron beam, and the scatter-

ing associated with both the first-order spots of the FLL, and the FFLO modulation,

can be observed on the detector simultaneously. Figure 4.43 indicates what the

possible diffraction pattern might look like once summed over all rocking angles.

One of the great hindrances of the search for the FFLO modulation is the pre-

dicted weakness of the FFLO satellites. In the work of Ichioka et al. (2007), even the

closest satellites to the FLL Bragg peak are predicted to be an order of magnitude
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Figure 4.43: A schematic diagram of the expected diffraction pattern obtained from
Bragg scattering due to a FLL with FFLO modulation. The diagram indicates the
field perpendicular experimental geometry; the neutron beam (shown into the
page) is shown as perpendicular to the applied field. The resulting scattering is
therefore above and below the horizontal plane. The large grey spots represent the
Bragg spots associated with the FLL. The small blue spheres indicate the expected
Bragg ‘satellites’ associated with a FFLO modulation. The smaller size of the Bragg
satellites indicates that they are expected to be weaker than the FLL Bragg spot.

weaker in |F (q)|2. This gets progressively weaker for larger q-vectors associated

with the FFLO modulations, as indicated in figure 4.43. Perhaps as a consequence

of this, and despite concerted efforts both in the perpendicular field geometry and

the traditional SANS geometry, no evidence for a FFLO modulation satellite has

been observed for H ‖ c or field in the plane. In the presence of a null result, we

conclude that the signal due to the modulation is weaker than expected. It is also

possible that the LO interpretation of the FFLO phase is not realised. In this case,

the novel phase seen in this material would be solely associated with the Q-phase,

even if such a phase has not yet been observed for all field configurations.

4.9 Summary

In this chapter, we have reported SANS studies of the FLL in CeCoIn5, a mate-

rial with a ground state that exhibits both d-wave superconductivity and strong

paramagnetism. Our observations indicate that both of these properties are influ-
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ential on the observed FLL structure with H ‖ c. The physical mechanisms behind

the low field hexagonal to rhombic to square sequence of FLL structure transitions

can be considered in same terms as those for the structure transition sequence of

YBa2Cu3O7; namely as caused by the increasing prominence with field of non-local

effects in combination with a Fermi surface anisotropy, or due to the increasing

prominence of the dx2−y2 order-parameter anisotropy. At higher field, the re-entrant

transition sequence of square to rhombic to hexagonal represents a field-induced

suppression of the in-plane anisotropy that stabilised the square FLL structure ob-

served at intermediate field. Dedicated theoretical work (Hiasa and Ikeda, 2008;

Ichioka and Machida, 2009) indicates that the suppressed anisotropy is that associ-

ated with the flux line core, which itself reflects the spatial anisotropy of the dx2−y2

order-parameter. Thus the calculations indicate that the square structure phase can

be understood as stabilised due to the influence of the gap anisotropy. The physical

reason for the suppression of the fourfold core anisotropy is due to paramagnetic

depairing at high field; an effect that is strongest within the vicinities of the flux

line cores. Similarly, increasing the temperature results in the suppression of the

square FLL structure, as expected if such a structure stabilised by the anisotropy of

the dx2−y2 order-parameter.

Field-induced core paramagnetism also plays a crucial role in understanding the

behaviour of the FLL form factor. As a function of increasing field, and for tem-

peratures up to Tc/2, the form factor is observed to increase. This is in contrast to

predictions made using phenomenological theories, which predict the form factor

to fall monotonically as a function of field. Our results are in qualitative agreement

with the predictions made using a version of the quasiclassical Eilenberger theory

that accounts for a paramagnetic effect (Ichioka and Machida, 2007, 2009). The

calculations suggest that the increase of the FLL form factor is due to an increasing

contribution of a field-induced core magnetisation to the overall internal magneti-

sation. This core-component is field-dependent, and increases as a function of field,

which directly results in the observed increase of the FLL form factor.

For temperatures below 750 mK, we observe the form factor to rise to a peak
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value, and then fall slightly on the approach to Hc2. At Hc2, the form factor falls

sharply to zero, which is consistent with the expected first-order transition be-

tween the superconducting and normal states observed in thermodynamic stud-

ies (Tayama et al., 2002; Bianchi et al., 2002). With increasing temperature, the

peak in the form factor is suppressed in both magnitude and field, and by 750 mK,

the form factor falls monotonically to zero on approaching Hc2. This indicates that

the superconductivity is orbitally-limited at Hc2, and that more conventional FLL

behaviour is recovered at higher temperatures. However, an initial field-induced

increase of the form factor for all temperatures investigated up to ∼ Tc/2, indicat-

ing that the effects of field-induced core paramagnetism remain important over this

entire temperature range.

At low temperature, we tried to understand the physical reason for the form fac-

tor fall just below Hc2. According to the predictions of numerical calculations (Ichioka

and Machida, 2009), the reduction in the form factor is due to a high field expan-

sion of the flux line cores. This occurs due to paramagnetic depairing within the

flux line cores, which causes an increase in their spatial extent, and hence that of

the core magnetisation. The experimental verification of this core expansion has

proved challenging. A systematic set of SANS measurements was carried out in or-

der to record the field-dependence of both {1, 0} and {1, 1} spots. On analysing the

q-dependence of the form factors at each field, we find that the field-dependence

of |dF/dq| increases smoothly with field. However, the predictions made according

to the quasiclassical Eilenberger theory disagree with our observations, and predict

|dF/dq| to fall monotonically with field. This disagreement currently remains unre-

solved, and remains an outstanding challenge for explaining our observations of the

mixed state of CeCoIn5 with H ‖ c. In order to extract a measure of the core-size

directly from the data, we propose it is necessary to develop a new form of phe-

nomenological model that makes the best approximation to predictions made using

the Eilenberger theory. We hope this will allow us to analyse our data quantitatively

whilst remaining consistent with the more detailed calculations.

We also presented limited measurements with field in the basal plane. At low
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temperatures, and for H ‖ a, the FLL structure type is single domain and distorted

hexagonal, with the long-axis of the distortion parallel to c∗. This structure type

remains unchanged as a function of field at base temperature. The same structure is

observed at low field and temperature for H ‖ [110], but at ∼ 8 T a first-order 90◦

reorientation transition occurs into a similarly distorted single domain hexagonal

structure. There are currently no physical explanations for the mechanism behind

such a structure transition, or as to why a transition is observed for H ‖ [110], whilst

not for H ‖ a. However, we speculate that this anisotropic behaviour is associated

with the orientation that the field makes relative to a node, or antinode, of the dx2−y2

order parameter. We also note that the structure transition field for H ‖ [110] is

uncorrelated with the proposed FFLO, or Q-phase boundary lines reported by other

experiments. We examined the FLL at fields and temperature within the proposed

FFLO/Q-phase in this field geometry, as well as for H ‖ c, though do not observe

any clear indication of an effect on the FLL due to the stabilisation of a novel phase.

The field-dependence of the form factor was reported at low temperature for

H ‖ a. The form factor exhibits qualitatively similar behaviour as for H ‖ c; field-

induced paramagnetic effects cause the form factor to increase to a peak value,

before falling on the approach to Hc2. As a function of normalised field, the ratio in

|F (q) |2 between the two directions remains approximately constant at∼8, with the

larger form factor associated with that for H ‖ c. This is in qualitative agreement

with that expected from the anisotropy in the susceptibility (Tayama et al., 2002),

though this anisotropy is too small to provide the sole explanation for the difference.

Understanding this form factor anisotropy is left for future work.
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Concluding Remarks and Outlook

In this thesis we have utilised the small-angle neutron scattering technique to

present new observations of the FLL in the High-Tc superconductor YBa2Cu3O7, and

the heavy-fermion superconductor CeCoIn5. Whilst belonging to different classes of

material, they share some common characteristics. For both materials, certain prop-

erties can be changed on doping; reducing the oxygen content of YBa2Cu3O7−δ leads

to the emergence of antiferromagnetic correlations, whilst in CeCoIn5, long-range

antiferromagnetic order is known to be established under the extreme conditions

of high field and low temperature. The close proximity of magnetism and super-

conductivity in both systems indicate that certain electronic states, the d-electron

states in YBa2Cu3O7−δ and the f -electron states in CeCoIn5, are responsible for both

phenomena in each material. Each material also possesses a quasi two-dimensional

crystal structure, which has been suggested to suppress antiferromagnetic fluctua-

tions such that the superconductivity can emerge. Our studies reveal new manifes-

tations of the unconventional superconducting state on the FLL within both materi-

als.

Our measurements on YBa2Cu3O7 were carried out on sufficiently twin-free sam-

ples that the pinning to twin boundaries was largely suppressed. This allowed the

observation of the intrinsic FLL structure with H ‖ c for the first time. We observed

three distinct FLL structure phases, all separated from one another by first-order

phase transitions. Both the low field transition between distorted hexagonal phases,

and the high field transition between distorted hexagonal and rhombic phases, can

be understood as being caused by the increasing importance with field of non-local
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effects on the flux line-flux line interactions. Whilst this is likely the case for our low

field transition, our measurements cannot unequivocally rule out that the high-field

transition is caused solely by an increasing prominence of the gap anisotropy. To

possibly address this issue, we suggest that future experiment might investigate the

FLL with the field applied at an angle to the c-axis. If our high field rhombic struc-

ture is stabilised by the gap anisotropy, then rotating the field about either crystal

axis will move the in-plane anisotropy out of the field direction, and result in an

increase of the transition field into the rhombic phase. However, if the transition is

caused by non-local effects, and the chain states play a role in this, we would expect

the observed effect on the transition field to be dependent on whether the field is

rotated about a, or b. This is a measurement that is planned for the near future.

On this theme, it would also be of great interest to investigate the effect on the FLL

of causing wholesale changes to the Fermi surface by systematically changing the

oxygen doping. This would allow us to observe the interplay between the FLL and

established spin/charge correlations. Measurements at higher magnetic fields are

also clearly of interest, with investigations up to 17 T a genuine possibility within

the very near future.

The ability to observe the intrinsic FLL structures in the twin-free sample al-

lowed us to measure the field- and temperature-dependence of the FLL form factor.

A basic understanding of the form factor in the low field structure phase can be

obtained using the Clem model. However, at higher fields it is necessary to invoke

corrections to, and assumptions of, the characteristic length-scales in order to main-

tain some form of understanding of the field-dependent form factor data. However,

there are no obvious corrections we can introduce in order for us to understand

our temperature-dependent data at higher fields. The understanding of these data

awaits the results of careful and dedicated calculations.

The benefit of dedicated theoretical work is no clearer than for the case of under-

standing our observations of the FLL in the heavy-fermion superconductor CeCoIn5.

This material revealed an exciting mix of unconventional superconductivity and

paramagnetic effects, which resulted in us observing new FLL physics. Initially, we
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were able to record the major part of a rich FLL structure phase diagram for H ‖ c.

At high fields, we observe a square to rhombic to hexagonal transition sequence,

which reflects a suppression of the fourfold core anisotropy which stabilises the

square phase at intermediate fields. This core anisotropy is suppressed by paramag-

netic depairing effects that originate from within the flux line cores. Field-induced

flux line core paramagnetism also results in the field-induced amplification of the

FLL form factor, the observation of which lies in stark contrast to the predicted

monotonic decrease with field according to the conventional theories. A satisfac-

tory explanation for our observations is only provided on harnessing the power of

a version of the quasiclassical Eilenberger theory that accounts for a paramagnetic

effect.

Our measurements at temperatures between 50 mK and 1250 mK detail the bal-

ance between conventional orbital-limiting behaviour, and Pauli-limited behaviour

in this material. At low temperatures, the form factor increases with field, and the

superconductivity is Pauli-limited as evidenced by the sharp fall of the form fac-

tor close to Hc2. However, the size of the form factor increase, and the field at

which the form factor peaks, are both suppressed by increasing temperature. By

750 mK, the superconducting to normal transition is continuous, as expected for

orbitally-limited superconductivity, and increasingly conventional behaviour is re-

covered as a function of increasing temperature. However, for all temperatures up

to 1250 mK, the Pauli paramagnetic effects remain important, as evidenced by the

initial increase in the form factor as a function of field. At low temperatures, and

on the approach to Hc2, the form factor falls with field slightly from its peak value.

Within the framework of the quasiclassical Eilenberger theory, this is ascribed to

a high field expansion of the flux line cores. We attempted to provide evidence

for this core-expansion via measurements of both first- and next-order diffraction

spots. In principle, we believe the information is contained within the data, though

the next step in the analysis is not forthcoming at the time of writing.

With the field applied within the basal plane, our currently limited set of mea-

surements reveal a comparatively featureless FLL structure phase diagram when
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compared with that obtained for H ‖ c. However, for H ‖ a we observe a qualita-

tively similar form to the field-dependence of the form factor at low temperatures,

thus indicating that Pauli paramagnetic effects will also seem to dominate the be-

haviour of the FLL in this field geometry. The focus of future experimental work

on this material is to further characterise the FLL for field in the plane, in partic-

ular for H ‖ [110]. For this direction, the picture is rather incomplete. The new

measurements will include the field-dependence form factor, to see if there is any

difference in the field-dependence between the in-plane orientations. Subsequently,

these measurements would indicate if paramagnetic effects might be sensitive to

whether the field is applied parallel, or antiparallel, to a node of the d-wave order-

parameter.

From the broader perspective of the FLL in heavy-fermion systems, it would be of

further interest to carry out SANS measurements on other members of the CeMIn5

family, in particular CeIrIn5. CeCoIn5 and CeIrIn5 exhibit similar crystal structures

and Fermi surface properties, yet the Tc of CeIrIn5 is just 0.4 K. Therefore, it would

be interesting to understand whether the FLL of CeIrIn5 reflects the difference in

Tc, and also whether the remarkable behaviour exhibited by CeCoIn5 is observable

in similar materials.
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Appendix A - Experimental Details

A.1 A rocking-curve measurement

As in any diffraction experiment, the key information obtained from SANS measure-

ments on the FLL is obtained by carrying out rocking curve measurements. For the

SANS measurements reported in this thesis, this involves rotating a reciprocal lat-

tice vector through the Bragg condition at the detector, and recording the diffracted

intensity as a function of rotation angle. To do this involves careful alignment of

the sample with respect to the field and neutron beam, and then rotation of the

reciprocal lattice.

To perform a rocking curve measurement, the experimenter chooses a series

of angles about which to rotate the reciprocal lattice and measure the diffracted

intensity, which typically has the expected Bragg angle at the midpoint. Ideally the

angular range should take into account the anticipated angular width of the rocking

curve as might be expected from resolution considerations, and be wide enough so

that at the widest scanned angles the observed intensity falls to the background

level.

In SANS experiments, there are two complementary activities that are carried

out on recording the rocking curve of a Bragg spot. The first is to perform back-

ground measurements with no FLL established in the sample (above Tc(H), or af-

ter zero-field cooling). These are then subtracted from foreground measurements

where the FLL is present, leaving just the diffracted signal from the FLL. Back-

ground measurements should ideally be performed over the same angular range

as the foreground measurements, especially if there is angularly dependent back-

ground scattering. All of the diffraction patterns presented in this thesis have had
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background measurements (either at T > Tc or after zero-field cooling) subtracted

from the field-cooled foreground measurements. The second complementary ac-

tivity is essential, and it is to record the intensity and position of the un-diffracted

beam. This intensity is important as it provides a measure of the incident flux of

the neutrons on the sample, and is subsequently used to calculate FLL form factors.

The position of the un-diffracted beam defines the origin of reciprocal space. From

this point, the magnitude of the reciprocal space wavevectors for the Bragg spots

are calculated. Obtaining the full rocking curves, allows the deduction of the pre-

cise positions of the Bragg spots and subsequently the size of the reciprocal lattice

vector. This is all that is needed in order to extract the FLL form factor.

A.2 Data analysis using GRASP

For the results presented in this thesis, the major part of the basic data analysis

has been carried out using the GRASP software developed by C.D. Dewhurst at the

ILL 18. The software is developed within a Matlab R© environment, and as such is

adept at handling the two-dimensional and pixelated multidetector data recorded

by the SANS instrument.

The user interface includes a pane that allows a view of the distribution of the

diffracted intensity across the multidetector at a certain rotation angle of the recip-

rocal lattice. It is also possible to sum the measurements at many rotation angles

together into just one image, providing a picture of the diffracted intensity over an

entire rocking curve. By similarly summing over multiple rocking curves, it is pos-

sible to deduce the FLL coordination by showing all of the first-order Bragg spots in

just one image. An example of this is shown in figure A.1. In the viewing window

of the front panel, we see some SANS foreground data summed over numerous

rocking curves. The corresponding background data is subtracted. Statistical noise

that occurs close to the beam stop is masked, and the data have been smoothed by

a 2× 2 pixel gaussian envelope that is smaller than the instrumental resolution 19.

18At the time of writing, the software is freely available from the internet at
http://www.ill.eu/instruments-support/instruments-groups/groups/lss/grasp/home/.

19Note, that any smoothing treatment to the image observed in the front-end of the software is
purely a visual effect. It does not influence the data analysis within the software routines.
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Figure A.1: Image capture of the front-end of the GRASP software (version 5.09).
SANS data over multiple rocking curves is loaded, showing all the first-order Bragg
spots in a single image. A sector box is defined on the detector over area occupied
by the upper right Bragg spot.

Figure A.2: Image capture of a rocking curve plot output by the GRASP software,
and fit with a suitable lineshape function. The horizontal axis is in units of degrees
of rotation angle of the reciprocal lattice about the vertical axis, where zero corre-
sponds to the straight through position. The vertical axis is in units of total counts
within the sector box per standard monitor.
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In figure A.1 we have also defined a sector box on the detector to lie over the

region occupied by the upper right Bragg reflection. This box defines an area of

pixels, and it is over this region on the detector that the rocking curve is obtained in

order to calculate the integrated intensity for the Bragg reflection. At each angle of

the rocking curve, the program sums the pixel counts within the box, and presents a

graph of the angular dependence of the summed box intensity. The output rocking

curve for the sector box shown in figure A.1 is shown in figure A.2. To obtain

the raw integrated intensity Iraw(Gh,k), the curve is fitted with a suitable lineshape

function and the area between the curve and the background level is integrated.

The raw measure of the integrated intensity can be used to calculate the FLL

form factor |F (Gh,k) |2. In order to to do this, we initially re-arrange equation 2.20

to show the relationship between the form factor, the reciprocal lattice vector Gh,k,

and the intrinsic integrated intensity Iint(Gh,k).

Iint(Gh,k)cos(ζ) = 2πV φn

(γ

4

)2 λ2
n

Φ2
0Gh,k

|F (Gh,k) |2, (A.1)

We remind ourselves that V is the sample volume, φn is the incident neutron flux,

γ is a constant equal to 1.91, λn is the neutron wavelength, and Φ0 is the flux

quantum h/2e. The term cos(ζ) is the Lorentz correction factor, which corrects the

raw integrated intensity Iraw(Gh,k) to the intrinsic integrated intensity expected if

the reciprocal lattice were to cut through the Ewald sphere directly, Iint(Gh,k). This

correction factor requires determining the angle ζ that the reciprocal lattice vector

makes relative to the direction normal to the rotation axis of the reciprocal lat-

tice. Of course, for the case where the reciprocal lattice vector does cut through

the Ewald sphere directly, ζ = 0, and Iraw(Gh,k) = Iint(Gh,k). In general however,

it is necessary to accurately determine ζ, and make the Lorentz factor correction.

To do this, we initially use the rocking-curve to identify the most statistically rele-

vant data. For example, from figure A.2, we would choose to load the data taken

at the two or three measurement angles that gives the largest intensity. At these

few measurement angles, the position of the Bragg spot as measured on the de-

tector is most likely to represent its true position in reciprocal space. Using these

few measurements summed into one foreground image, the Bragg spot position is
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fitted using a two-dimensional gaussian function that returns the the centre of mass

position of the spot in terms of x and y pixel coordinates. These coordinates can be

compared to those of the direct beam measurement in order to deduce the angle

that the Bragg spot makes to relative to the rotation axis. By comparing the pixel

positions of both the Bragg spot under question and the direct beam, the magni-

tude of the reciprocal lattice vector Gh,k can be calculated with a knowledge of the

sample-to-detector distance and the pixel size. Therefore, with the the knowledge

of both the intrinsic integrated intensity, and the magnitude of Gh,k, the FLL form

factor for a certain Bragg spot can be obtained.
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Appendix B - Neutron absorption by
YBa2Cu3O7 and CeCoIn5

B.1 Calculating the 1/e length for YBa2Cu3O7 and CeCoIn5

In this appendix we determine the neutron absorption of the materials studied in

this thesis, YBa2Cu3O7 and CeCoIn5. This is characterised by the 1/e length, which

corresponds to the thickness of material that attenuates the neutron beam by such

this factor at a given wavelength. The 1/e length is calculated according to

1/e =
1∑

coh +
∑

inc +
∑

abs

(B.1)

where
∑

coh,
∑

inc and
∑

abs are respectively the macroscopic coherent, incoherent

and absorption scattering cross-sections per unit volume. Each of these macroscopic

cross-sections can be calculated by summing over the contributions to each from

the stable isotopes of each element. Tabulated values for the elemental microscopic

cross-sections can be obtained from those reported in Neutron News (1992) 20. In

table B.1, we list the microscopic neutron scattering cross-sections for each of the

constituent elements of YBa2Cu3O7 and CeCoIn5. Taking the example of calculating

the macroscopic absorption cross-section,

∑

abs

= N
∑

j

pjnjσabs,j (B.2)

where the sum in j represents the sum over all the stable isotopes, pj is the natural

abundance of the isotope as a fraction of 1, nj is the number of times this atom

20These tabulations are freely available on the internet at the National Institute for Standards and
Technology (NIST) website: http://www.ncnr.nist.gov/resources/n-lengths/
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Element A Z Natural σcoh σinc σabs

Abundance (%) (barns) (barns) (barns)
Y 39 89 100 7.55 0.15 1.28
Ba 56 130 0.11 1.6 0 30.0(5)

132 0.1 7.6 0 7
134 2.42 4.08 0 2.0(1.6)
135 6.59 2.74 0.5 5.8
136 7.85 3.03 0 0.68
137 11.23 5.86 0.5 3.6
138 71.7 2.94 0 0.27

Cu 29 63 69.17 5.2 0.006 4.5
65 30.83 14.1 0.4 2.17

O 8 16 99.762 4.232 0 0.0001
17 0.038 4.2 0.004 0.236
18 0.2 4.29 0 0.00016

Ce 58 136 0.19 4.23 0 7.3(1.5)
138 0.25 5.64 0 1.1
140 88.48 2.94 0 0.57
142 11.08 2.84 0 0.95

Co 27 59 100 0.779 4.8 37.18
In 49 113 4.3 3.65 0.000037 12.0(1.1)

115 95.7 2.02 0.55 202(2)

Table B.1: Neutron absorption cross-sections for the stable isotopes of the elemen-
tal constituents of YBa2Cu3O7 and CeCoIn5. The absorption cross-sections were
measured with neutrons of wavelength 1.8 Å, and the data were obtained from an
article in Neutron News (1992).

appears in the unit cell, (e.g. when including either of the In isotopes of CeCoIn5,

nj = 5), and σabs,j is the microscopic absorption cross-section of the isotope. Finally,

N is the number density = ρNA/mmol. Here, ρ is the overall molecular density, NA is

Avogadro’s number and mmol is the molecular mass. The macroscopic cross-section

can be normalised to units of inverse length by dividing by 1 barn (1.10−24 cm2).

Correctly summing the coherent, incoherent and absorption cross-sections allows

the estimation of the 1/e length. Note all values in table B.1 are valid for a neutron

wavelength of 1.8 Å. To estimate the overall 1/e length at different wavelength λn,

just the macrosopic absorption cross-section is multiplied by a factor λn/1.8. The

macroscopic coherent and incoherent scattering lengths are not dependent on λn.
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Taking the example of CeCoIn5, with mmol = 774 g and ρ ∼ 6 g.cm−3, the 1/e

length is ∼ 0.7 mm at λn = 5 Å. This short length can be attributed to the strong

absorption of In, leading to the necessity for thin samples in the SANS experiments.

On the other hand, YBa2Cu3O7 with mmol = 668 g and ρ ∼ 5 g.cm−3 has a 1/e length

of ∼ 2.0 cm at λn = 5 Å. Therefore, absorption is not an issue for the 0.35 mm thick

samples used for the measurements in this thesis.
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Appendix C - The measure of
distortion of hexagonal FLL

structures

In this Appendix, we provide a geometrical derivation of the relationship be-

tween a FLL primitive cell opening angle, and the axial ratio of the ellipse that

overlays the Bragg spot distribution of a hexagonal FLL structure. This method of

analysis was found to give values of the elliptical axial ratio η, which were found to

be reproducible and accurate.

C.1 General geometrical construction

Our method takes advantage of the properties of Bravais lattices, and the subse-

quent observation that positions of three first-order Bragg spots can always be over-

laid by an ellipse. Figure C.1 (a) schematically shows an isotropic and hexagonal

FLL, whose distribution of Bragg spots may be overlaid by an ellipse of axial ratio

1, i.e. a circle. Note that to keep a degree of generality, the coordinate axes have

been chosen so that the hexagonal structure is of arbitrarily oriented with respect

to them. However, we are free to choose a coordinate axis that is parallel to the

direction of distortion of the distorted hexagonal structures. Figure C.1 (b) shows

the result of a London-like scale transformation on the isotropic lattice, so that the

isotropic hexagonal FLL distorts by
√

η along the ky direction, and by 1/
√

η along

the kx direction. This results in the Bragg spots lying on an ellipse.

In reference to figure C.1, it is straightforward to show that on distorting the
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(a) Isotropic hexagonal FLL
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(b) Distorted hexagonal FLL

Figure C.1: In (a) we show an isotropic hexagonal FLL structure of arbitrary orien-
tation with respect to the coordinate axes. In (b) the isotropic hexagonal structure
of (a) is distorted along ky such that the distribution is elliptical. In both cases,
filled blue circles represent Bragg spots, and the indicated angles are measured
with respect to the positive ky direction i.e. a long axis of the direction of ellipti-
cal distortion. The angles shown in (a) are analogous to those shown in (b), but
different in magnitude due to the distortion.

isotropic circular arrangement of Bragg spots

tanε = η tanα (C.1)

where ε and α are the angles defined in figures C.1 (a) and (b) respectively, whilst

η is the elliptical axial ratio defined earlier. Note for a given value of η, the same

relation between ε and α as shown in equation C.1 exists between ζ and β, and υ

and δ. It is clear that

tan (ζ − ε) = tan 60◦ =
√

3. (C.2)

Hence using equations C.1 and C.2, and using trigonometry, we obtain

tanζ − tanε

1 + tanζ tanε
= tan 60◦ =

√
3 =

η tanβ − η tanα

1 + η2 tanβ tanα
. (C.3)

Re-arranging the right hand side of equation C.3 yields

√
3 η2 tanβ tanα− η (tanβ − tanα) +

√
3 = 0 (C.4)

and solving equation C.4 gives

η =
(tanβ − tanα)±

√
(tanβ − tanα)2 − 12tanα tanβ

2
√

3tanα tanβ
. (C.5)
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Note that in equation C.5, the way we have constructed the situation will force us

to choose the negative sign.

For completeness, it is worth considering the possible choices of angles α and

β to use with equation C.5. The equation will diverge as either of α or β tend to

zero. Therefore, for hexagonal FLL structures arbitrarily oriented with respect to

the coordinate axis, the value of η will remain finite. However, the sensitivity of

the value of η to variations in α are large when α is close to zero (for example, as

shown in figure C.1 (b)). An investigation of equation C.5 shows that values of η

which are less sensitive to experimental error can be obtained by choosing angles

that approximately bisect an axis of high symmetry. So choosing the example of

the ellipse in figure C.1 (b), one would choose to respectively replace α and β in

equation C.5 with β and δ as defined in the figure. For any arbitrarily oriented

arrangement of Bragg spots, a judicious choice of angles based on the approximate

bisection of a high symmetry axis is required to gain the most reliable value of η.

C.2 Special cases of hexagonal FLL structure orientation

In this thesis, FLL structures are reported where the hexagonal distribution of the

Bragg spots is not arbitrary with respect to the coordinate axes. In these situa-

tions, Bragg spots are aligned both with the coordinate axes, which themselves

are defined by the reciprocal atomic lattice, and the major or minor axis of the el-

lipse that overlays their distribution. Figure C.2 shows examples of two distorted

hexagonal structures with nearest neighbours aligned with the real space x-axis

(figure C.2 (a)) and the real-space y-axis (figure C.2 (b)). For the case shown in

figure C.2 (a), the axial ratio of the ellipse that overlays the Bragg spots can be ob-

tained by respectively substituting the defined values of the angles µ and ι for the

angles α and β of equation C.5. However, using the general equation for an ellipse,

it can be shown that

η =

√
3

tanµ
(C.6)

where µ is as defined in figure C.2 (a). The numerical value obtained using equa-

tion C.6 is exactly the same as obtained on using equation C.5. Similarly for obtain-
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(a) Flux line nearest neigh-
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direction

k
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ρ

(b) Flux line nearest neigh-
bours along the real-space y
direction

Figure C.2: Schematic diagrams of distorted hexagonal FLL structures with nearest
neighbours aligned with (a) the real-space x-axis and (b) the real-space y-axis. In
these cases, the direction of nearest neighbour alignment also corresponds to either
a major or minor axis of the elliptical distortion.

ing a value of η for the FLL structure depicted in figure C.2 (b), equation C.5 can be

used, where −ρ/2 and ρ/2 would be substituted in for α and β respectively. How-

ever, again using simple geometrical rules, precisely the same answer is obtained

using equation C.7, where ρ is as defined in figure C.2 (b).

η =
1√

3tan
(

ρ
2

) (C.7)
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Appendix D - Finding a suitable
phenomenological model for the

form factor

In chapter 3, we present our analysis of the field-dependence of the FLL form

factor at 2 K, in YBa2Cu3O7. The type of phenomenological model that we should

use to analyse our data, based on those available, is not immediately obvious. Here

we present and briefly discuss the models that are most commonly used to describe

form factor data deep within the mixed state (see for example, (Cubitt et al., 2007;

Densmore et al., 2009; Eskildsen et al., 2009)). The simplest model is the uniaxial

London model, where the form factor is related to the London penetration depth

λL, the magnitude of the scattering vector q and the mean induction within the

sample 〈B〉.
F (q) =

〈B〉
1 + q2λ2

L

(D.1)

However, this simple relation implies the existence of the unphysical effect of a

logarithmic divergence of the field at the flux line axis.

Clem (1975) proposed a model which accounts for the effect of the flux line

cores on the magnitude of the measured form factor. The model was first intro-

duced in section 1.2.2, and incorporates a variational core length-scale parameter

ξν into the Ginzburg-Landau theory. Here, we re-state the final result valid for

high-κ materials and for fields along an axis of four-fold symmetry.

F (q) = 〈B〉 gK1 (g)

(1 + q2λ2)
, g =

ξν

λ

(
1 + q2λ2

)−1/2 (D.2)
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Here ξν =
√

2ξGL, the Ginzburg-Landau coherence length. In the limit of κ → ∞
and B → 0, the London model of equation D.1 is recovered. Even though the

Clem model was originally developed for s-wave materials, calculations of first-

order form factors within the quasiclassical Eilenberger theory show no large effect

between s- and d-wave pairing symmetries, and no large difference between hexag-

onal and square FLL structures (Ichioka et al., 1999). Therefore we assume these

details to not be important over our field range.

Later, Hao and Clem (1991) attempted to improve the accuracy of the model at

lower temperature by letting ξν be field-dependent according to

ξν = ξGL

(√
2− 0.75

κ

) (
1 + b4

)1/2 [
1− 2b (1− b)2]1/2

(D.3)

where b = B/Bc2. In the limit of high-κ and b → 0, ξν ∼
√

2ξGL as expected for

the Clem model. A second correction term which originates from a suppression of

the superfluid density is f 2
∞ = 1 − b4. This term factors into the numerator of the

expression for F (q). The model that incorporates these two corrections into the

Clem model is called the Hao-Clem (HC) model.

The form of the Clem model is essentially the simple London model, with a

gK1(g) term that accounts for the effect of the flux line cores. According to Yaouanc

et al. (1997), the term gK1(g) can be approximated for all g either by a term,

exp
(−√2ξGLq

)
, or by, exp (−2ξ2

GLq2). As further comparison, we also consider the

proposed form of the core correction term according to Brandt, exp (−0.25ξ2
GLq2),

which was deduced from his solutions of the GL equations close to Tc2 (Brandt,

1972).

In figure D.1 we compare the predictions for the field-dependence of the form

factor according to the various models. Firstly, we see the necessity of consider-

ing the core-correction term; the pure London model (black dotted line) predicts

the form factor to be field-independent, so this simple model is inappropriate for

describing the data shown in figure 3.30. We further see that the approximations

to the Clem model according to Yaouanc et al. (1997), and the form proposed

by Brandt (1972), result in predictions that are in poor agreement with the Clem

and HC models. Therefore, as there is nothing to be gained by making these ap-
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Figure D.1: The field-dependence of the form factor |F (q)| calculated using the
various models described in the text. For all calculations, material parameters ap-
propriate for YBa2Cu3O7 are used; λL =150 nm (Basov et al., 1995), ξGL =1.81 nm
such that Hc2 =100 T. We assume an isotropic hexagonal FLL structure.

proximations, we do not make further use of them here. The question remains

however as to which of the Clem or HC models is the most appropriate. In general,

we note that Ginzburg-Landau models are only strictly applicable close to Tc2, and

therefore not applicable for our FLL experiments which are carried out deep within

the mixed state. The models proposed by Clem (1975) and Hao and Clem (1991)

attempt to extend this range of validity over a larger field range, which ultimately

represents an approximation to the predictions of more detailed calculations. The

quality of these approximations has been somewhat examined by Brandt (1997,

2003). In his work he numerically solves the GL equations in order to calculate the

magnetisation and internal field distribution. In principle, the results obtained are

valid for any field at high-κ (Brandt, 1997). In his later work, Brandt (2003) shows

that, over our field range, the HC model provides a poorer approximation to the

exact solutions of the GL model, with the Clem model recommended as being more

appropriate. Therefore, we proceed with attempting to model our form factor data

in Chapter 3 using the Clem model.
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Publications arising from work in this thesis

A.D. Bianchi, M. Kenzelmann, L. DeBeer-Schmitt, J.S. White, E.M. Forgan et al.,
“Superconducting Vortices in CeCoIn5: Toward the Pauli-Limiting Field” Science 319,
177 (2008).

J.S. White, V. Hinkov, R.W. Heslop, R.J. Lycett, E.M. Forgan et al., “Fermi Sur-
face and Order Parameter Driven Vortex Lattice Structure Transitions in Twin-Free
YBa2Cu3O7” Phys. Rev. Lett. 102, 097001 (2009).

J.S. White, P. Das, M.R. Eskildsen, L. DeBeer-Schmitt, E.M. Forgan et al., “Obser-
vations of Pauli Paramagnetic Effects on the Flux Line Lattice in CeCoIn5” (In prepa-
ration).

Other publications arising during the thesis period

R. Cubitt, J.S. White et al., “Small-angle neutron scattering measurements of the
vortex lattice in CaC6” Phys. Rev. B 75, 140516(R) (2007).

J.S. White, E.M. Forgan et al., “Finite gap behaviour in the superconductivity of the
infinite layer n-doped high-Tc superconductor Sr0.9La0.1CuO2” J. Phys.: Condens. Mat-
ter 20, 104237 (2008).

J.S. White, S.P. Brown, E.M. Forgan et al., “Observations of the configuration of
the high-field vortex lattice in YBa2Cu3O7: Dependence upon temperature and angle of
applied field” Phys. Rev. B 78, 174513 (2008).

D.S. Inosov, T. Shapoval, V. Neu, U. Wolff, J.S. White et al., “Symmetry and
disorder of the vitreous vortex lattice pointing to unusually strong flux pinning in an
overdoped BaFe2−xCoxAs2 superconductor” (Submitted to Supercond. Sci. Technol.
(2009)).
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Brûlet, A. (2004). Influence of twin boundaries on the flux-line-lattice structure in
YBa2Cu3O7−δ : A small-angle neutron scattering. Phys. Rev. B, 70:024502.

Smilde, H. J. H., Golubov, A. A., Ariando, Rijnders, G., Dekkers, J. M., Harkema,
S., Blank, D. H. A., Rogalla, H., and Hilgenkamp, H. (2005). Admixtures to d-
Wave Gap Symmetry in Untwinned YBa2Cu3O7 Superconducting Films Measured by
Angle-Resolved Electron Tunneling. Phys. Rev. Lett., 95:257001.

Soininen, P. I., Kallin, C., and Berlinsky, A. J. (1994). Structure of a vortex line in a
dx2−y2 superconductor. Phys. Rev. B, 50:13883.

Sonier, J. E., Brewer, J. H., Kiefl, R. F., Morris, G. D., Miller, R. I., Bonn, D. A.,
Chakhalian, J., Heffner, R. H., Hardy, W. N., and Liang, R. (1999). Field Induced
Reduction of the Low-Temperature Superfluid Density in YBa2Cu3O6.95. Phys. Rev.
Lett., 83:4156.

Sonier, J. E., Kiefl, R. F., Brewer, J. H., Bonn, D. A., Carolan, J. F., Chow, K. H.,
Dosanjh, P., Hardy, W. N., Liang, R., MacFarlane, W. A., Mendels, P., Morris,
G. D., Riseman, T. M., and Schneider, J. W. (1994). New muon-spin-rotation
measurement of the temperature dependence of the magnetic penetration depth in
YBa2Cu3O6.95. Phys. Rev. Lett., 72:744.

Squires, G. L. (1996). Introduction to the Theory of Thermal Neutron Scattering.
Dover, 1st edition.

Steglich, F., Aarts, J., Bredl, C. D., Lieke, W., Meschede, D., Franz, W., and Schäfer,
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