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Abstract 21 

Short-term high altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and 22 

decreases left ventricular (LV) volumes. However, relatively little is known of the long-term 23 

cardiac consequences of prolonged exposure in Sherpa, a highly-adapted HA population. To 24 

investigate short-term adaptation and potential long-term cardiac remodelling, we studied 25 

ventricular structure and function in Sherpa at 5050 m (n=11; 31±13 y, mass 68±10 kg, 26 

height 169±6 cm) and lowlanders at sea level (SL) and following 10±3 d at 5050 m (n=9; 27 

34±7 y, mass 82±10 kg, height 177±6 cm) using conventional and speckle-tracking 28 

echocardiography. At HA, PASP was higher in Sherpa and lowlanders when compared to 29 

lowlanders at SL (both P<0.05). Sherpa had smaller right ventricular (RV) and LV stroke 30 

volumes than lowlanders at SL with lower RV systolic strain (P<0.05) but similar LV systolic 31 

mechanics. In contrast to LV systolic mechanics, LV diastolic untwisting velocity was 32 

significantly lower in Sherpa when compared to lowlanders at both SL and HA. After partial 33 

acclimatization, lowlanders demonstrated no change in RV end-diastolic area, however both 34 

RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia 35 

induced a reduction in RV systolic function that was also evident in Sherpa following chronic 36 

exposure. We propose this was consequent to a persistently higher PASP. In contrast to the 37 

RV, remodelling of LV volumes and normalization of systolic mechanics indicate structural 38 

and functional adaptation to HA. However, altered LV diastolic relaxation after chronic 39 

hypoxic exposure may reflect differential remodelling of systolic and diastolic LV function. 40 

Key words:  41 

Hypoxia; Cardiac Remodelling; Ventricular mechanics; Sherpa.  42 
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Introduction 43 

High altitude (HA) exposure challenges the cardiovascular system to meet the metabolic 44 

demand for oxygen (O2) in an environment where arterial O2 content is markedly reduced. 45 

The drop in arterial O2 has both direct and indirect consequences for the heart, including 46 

depressed inotropy of cardiac muscle (40, 44), changes in blood volume and viscosity and 47 

vasoconstriction of the pulmonary arteries (33). Despite these broad physiological changes, 48 

which have been previously reviewed (28, 49), there is evidence that the heart copes 49 

relatively well at high altitude (29, 34).  50 

Short-term HA exposure in lowland natives is characterised by a decreased plasma volume, 51 

an increased sympathetic nerve activity and pulmonary vasoconstriction (17, 30, 37), all of 52 

which have considerable impact on cardiac function and, in time, could stimulate cardiac 53 

remodelling. Himalayan native Sherpa, who are of Tibetan lineage and have resided at HA 54 

for approximately 25,000 years (2), are well adapted to life at HA demonstrating greater lung 55 

diffusing capacity (11) and an absence of polycythaemia in comparison to acclimatised 56 

lowlanders (4). Previous studies have also reported Sherpa to have higher maximal heart rates 57 

and only moderate pulmonary hypertension in comparison to lowlanders at HA (11, 25). Due 58 

to their longevity at HA, Sherpa provide an excellent model to investigate the effects of 59 

chronic hypoxic exposure. Despite this, neither the acute nor life-long effects of HA on right 60 

and left ventricular structure and function have been fully assessed in lowlanders or the 61 

unique Sherpa population.  62 

Due to the unique arrangement of myofibres, cardiac form and function are intrinsically 63 

linked as reflected in the cardiac mechanics (left ventricular twist and rotation and ventricular 64 

strain) that underpin ventricular function. In response to altered physiological demand, 65 

ventricular mechanics acutely change (16, 41) and chronically remodel (31, 42) in order to 66 

reduce myofibre stress and achieve efficient ejection (5, 47). Therefore, concomitant 67 

examination of myocardial mechanics and ventricular structure in both the acute and chronic 68 

HA setting will provide novel insight into human adaptation to hypoxia.   69 

To investigate the effects of chronic hypoxic exposure, we compared ventricular volumes and 70 

mechanics in Sherpa at 5050 m with lowlanders at sea level. In addition, to reveal potential 71 

stimuli for remodelling and to examine the time course of adaptation, we also compared 72 

Sherpa to lowlanders after short-term HA exposure.  73 
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We hypothesised that (i) Sherpa would exhibit smaller left ventricular (LV) volumes and a 74 

higher right (RV) to left ventricular ratio (RV/LV) than lowlanders at sea level, (ii) LV 75 

mechanics in Sherpa will closely resemble those of lowlanders at sea level and (iii) following 76 

partial acclimatization to HA, LV volumes would be reduced in lowlanders and LV 77 

mechanics acutely increased.   78 
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Methods 79 

Study Participants and Design 80 

All experimental procedures and protocols were approved by the Clinical Research Ethics 81 

Board at the University of British Columbia and the Nepal Health Medical Research Council, 82 

and conformed with the Declaration of Helsinki. Eleven Caucasian male lowlanders (34±7 83 

years) and eleven Nepalese male highland Sherpa (31±13 years) provided informed consent 84 

and volunteered to participate in the study. Four weeks prior to departure, Caucasian 85 

participants underwent a thorough transthoracic echocardiographic assessment (TTE) close to 86 

sea level  (SL; Kelowna, Canada; 344 m) and then after 10 ± 3 days at the Ev-K2-CNR 87 

Pyramid Laboratory (Lobuche, Nepal; 5050 m). One lowlander was excluded due to poor 88 

acoustic windows and a second due to significant non-altitude related illness. Sherpa were 89 

assessed at 5050 m only. All participants were free from respiratory and cardiovascular 90 

disease and were not taking any prescription medications. The native Sherpa participants 91 

originated from, and were residents of the Khumbu Valley at an altitude greater than 3000 m 92 

and self-identified to be of Sherpa ethnicity. None of the Sherpa had travelled below 3000 m 93 

for at least 6-months prior to testing. Although it was not possible to rigorously assess 94 

physical activity, it is our belief that Sherpa and lowlander participants were relatively 95 

comparable in this regard, with Sherpa making their living through expedition trekking and 96 

lowlanders engaging in frequent recreational activity.  97 

Stature, mass, blood pressure and oxygen saturation (SaO2) were recorded prior to each TTE.  98 

Venous blood samples were taken from lowlanders to assess total haemoglobin (HemoCue®, 99 

Ängelholm, Sweden) concentration and haematocrit (Micro Haematocrit Reader) to 100 

approximate changes in plasma volume (PV) (9), assuming that erythropoiesis would have 101 

only minor effects in the timeframe of our study (37). After travel to Nepal and four nights in 102 

Kathmandu (1400 m), the participants flew to Lukla (2800 m) and began a ten-day ascent to 103 

the Pyramid Research Centre (5050 m). During the following nine days, a cautious ascent 104 

profile was adopted with no more than 300 m net gain in altitude per day. To aid 105 

acclimatization, three full rest days with no net change in altitude were included in the ten-106 

day ascent. 107 

 108 

 109 
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Transthoracic Echocardiography 110 

All echocardiographic images were recorded on a commercially available portable ultrasound 111 

system (Vivid q, GE Medical Systems, Israel Ltd) using a 1.5-4 MHz phased array 112 

transducer. Images were captured by the same highly trained cardiac sonographer with the 113 

participant lying in the left lateral decubitus position. Following 10 minutes of supine rest, 114 

parasternal long- and short-axis images and apical four chamber views were recorded at end-115 

expiration and three consecutive cardiac cycles were stored for offline analysis (Echopac, GE 116 

Medical, Horten, Norway). Heart rate (HR) was recorded via ECG.  117 

Ventricular Structure 118 

Left ventricular wall thickness and internal diameter were measured from the 2D parasternal 119 

long-axis view. Left ventricular mass was calculated using the current American Society of 120 

Echocardiography guidelines and relative wall thickness was defined as [(2 x LV posterior 121 

wall thickness)/LV internal diameter] (26). Systolic and diastolic eccentricity index was 122 

calculated from the parasternal short-axis view at the mitral valve level to assess the impact 123 

of RV pressure increase on LV shape (39). Left ventricular end-systolic volume (ESV), end-124 

diastolic (EDV) volume and LV ejection fraction were calculated from planar tracings of the 125 

LV endocardial border in the apical four- and two-chamber views (Simpson’s biplane 126 

approach) (26). Left ventricular end-diastolic length was also measured using an apical four-127 

chamber view and defined as the distance from the mitral valve hinge point plane to the most 128 

distal endocardium at the apex of the LV. Right ventricular end-diastolic area (EDA) was 129 

calculated by tracing the endocardial border from a modified apical four-chamber orientation. 130 

Right Ventricular basal diameter was also recorded from an apical four-chamber view (38) 131 

and divided by LV basal diameter to obtain the ratio of RV/LV diameter (RV/LV).  132 

 133 

Scaling of Cardiac Parameters 134 

To account for the potential influence of body size, cardiac parameters were allometrically 135 

scaled for height. The data were tested for the appropriateness of ratiometric scaling (3) and 136 

discounted if the coefficient of variation for height divided by the coefficient of variation for 137 

the cardiac parameter was not equal to the Pearson’s product moment correlation between the 138 

two variables (43). To determine whether the data could be grouped to derive a single 139 

exponent, an analysis of covariance (ANCOVA) was performed. As the exponents for 140 
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lowlanders and Sherpa were similar, a common exponent was calculated for each parameter 141 

and used to scale structural and volume parameters.  142 

 143 

Systolic Function 144 

Left ventricular stroke volume (SV) was calculated as EDV-ESV and multiplied by HR for 145 

cardiac output. Right ventricular SV was obtained by placing a sample volume in the RV 146 

outflow tract (RVOT) from a parasternal short axis to obtain the velocity time integral. This 147 

was then multiplied by the cross sectional area of the RVOT measured from the same view. 148 

Tissue Doppler imaging (TDI) was used to assess peak LV and RV myocardial velocity 149 

during systole (S’) with the sample volume placed in the basal septum and RV free wall, 150 

respectively. M-mode echocardiography was used to assess the tricuspid annular plane 151 

systolic excursion (TAPSE) (22). The pulmonary vascular response was quantified as the 152 

peak systolic tricuspid regurgitation jet velocity (V) recorded in an apical 4-chamber view 153 

using continuous wave Doppler and the right ventricle (RV) to right atrium (RA) pressure 154 

gradient was calculated using the simplified Bernoulli equation (4V2). With the addition of 155 

RA pressure, estimated using collapsibility index of the inferior vena cava, pulmonary artery 156 

systolic pressure (PASP) was also calculated (38). 157 

 158 

Diastolic Function 159 

Pulsed-wave Doppler recordings were obtained to assess transmitral early (E) and late (A) 160 

diastolic filling velocities from an apical 4-chamber view with the sample volume placed 161 

between the tips of the open mitral valve.  From the TDI traces described above, peak early 162 

diastole (E’) and late diastole (A’) were identified and isovolumic relaxation time (IVRT) 163 

was assessed as previously described (1). 164 

 165 

Ventricular Mechanics: Strain, Rotation and Twist 166 

Left ventricular circumferential strain, LV rotation and their time derivatives strain rate and 167 

rotational velocity were assessed from parasternal short-axis views obtained from the LV 168 

base at the level of the mitral valve and the LV apex. The LV apex was defined as the point 169 
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just above end-systolic luminal obliteration and obtained by moving the transducer 1-2 inter-170 

costal spaces caudally from the basal position to align with the apical short-axis (46), keeping 171 

the LV cross-section as circular as possible. Left ventricular and RV longitudinal strain and 172 

strain rate were analyzed from an apical 4-chamber view. Images were acquired with the 173 

highest possible frame rate (>70 frames per second) and kept constant for repeat 174 

examinations. All images were analyzed off-line using 2-D speckle tracking analysis to 175 

assess global rotation, rotational velocity, strain, strain rate and to calculate LV twist and 176 

untwist (‘LV mechanics’) (Echopac, GE Medical, Horten, Norway, V110.1.1). In order to 177 

time align and adjust for inter- and intra-individual variability of heart rate and frame rate, 178 

post-processing was completed as previously described (41, 42). Briefly, raw frame-by-frame 179 

data were exported to bespoke software (2D Strain Analysis Tool, Stuttgart, Germany) and 180 

cubic spline interpolation was applied. Twist variables were calculated by subtracting the 181 

apical frame-by-frame data from the basal data. The time it took to achieve peak: twist, 182 

twisting velocity, rotation, rotational velocity, strain and strain rate from the onset of systole 183 

was expressed as a percentage of the cardiac cycle. Peak basal rotation during isovolumic 184 

contraction was defined as the peak counter clockwise basal rotation during early systole.  185 

For analysis and interpretation of diastolic mechanics, untwist was expressed as the 186 

percentage of peak twist to normalise for differences in absolute peak twist (32). Peak 187 

untwisting velocity has previously been shown to provide an accurate and reproducible 188 

measure of diastolic function, and has been validated against invasive measures of LV 189 

chamber stiffness (50).  Untwist data were analyzed up to 50% diastole as previously 190 

reported (45). To account for differences in absolute (ms) and relative (% diastole) 191 

differences in IVRT, percentage untwist was expressed relative to IVRT.  192 

  193 

Statistical Analyses 194 

Comparison of lowlander and Sherpa was performed using independent samples t-test. The 195 

two lowlander conditions were analyzed using paired samples t-tests. For detailed analysis of 196 

untwisting mechanics, a mixed-design repeated measures analysis of variance (ANOVA) was 197 

used. Alpha was set a priori to 0.05. All statistical analyses were performed using the 198 

Statistical Package for Social Science software (SPSS for Windows 19.0, Chicago, Il, USA).  199 

  200 
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Results  201 

Hemodynamics  202 

Sherpa exhibited higher systemic and pulmonary systolic pressure and a lower SaO2 in 203 

comparison to lowlanders at sea level (Table 1). Heart rate was higher in Sherpa than 204 

lowlanders at sea level and HA. Once lowlanders had partially acclimatised to HA, 205 

differences in hemodynamics and oxygen saturation were no longer evident (Table 1). High 206 

altitude exposure in lowlanders was associated with a significant increase in haematocrit (47 207 

± 2 vs. 59 ± 5 %, P<0.01) and haemoglobin concentration (15.1 ± 0.7 vs. 15.9 ± 0.6, P<0.05), 208 

from which a 20 ± 7 % decrease in PV was estimated.  209 

Ventricular Structure 210 

Following scaling, Sherpa demonstrated smaller wall thicknesses, LV mass and ventricular 211 

volumes in comparison to lowlanders at sea level with no between-group differences in 212 

relative wall thickness observed (Table 2). Sherpa had a similar eccentricity index to 213 

lowlanders at HA, however both were moderately higher than lowlanders at sea level 214 

(P<0.05). After exposure to HA, lowlanders reported a reduced LV EDV and LV mass, 215 

meaning differences observed between lowlanders at sea level and Sherpa were no longer 216 

evident. Despite a reduction in LV EDV and PV, lowlanders reported no change in RV EDA. 217 

 218 

Systolic Function 219 

When compared to lowlanders at sea level, Sherpa demonstrated a lower SV (P<0.05) 220 

however there were no significant differences in ejection fraction or cardiac output. Right 221 

ventricular systolic performance, as measured by TAPSE, was lower in Sherpa compared to 222 

lowlanders at sea level. There were no differences in RV or LV SV between Sherpa and 223 

lowlanders at 5050 m. 224 

 225 

Diastolic Function 226 

Sherpa exhibited a lower early transmitral velocity, elevated atrial contribution to LV filling 227 

and lower E’ compared to lowlanders at sea level.  Additionally, both LV and RV IVRT were 228 

longer in Sherpa and lowlanders at 5050 m (Table 3) compared to lowlanders at sea level. 229 
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Ascent to HA reduced the ratio of early to late transmitral filling (E/A ratio) and tissue 230 

(E’/A’) velocities in lowlanders.  231 

 232 

Ventricular Mechanics: Strain, Rotation and Twist 233 

Systolic Mechanics 234 

(i) Left ventricular 235 

For simplicity we report LV twist and not LV torsion, as normalising for LV length did not 236 

alter the results. When Sherpa were compared to lowlanders at sea level, the pattern of LV 237 

mechanics was similar showing no statistical differences other than a longer time to peak LV 238 

systolic longitudinal strain in Sherpa (Figure 1;Table 4). However, at 5050 m basal rotation 239 

was greater and apical rotation lower in the Sherpa, but there was no difference in peak twist. 240 

This difference in basal and apical rotation between Sherpa and lowlanders at 5050 m can be 241 

explained by acute changes in lowlander mechanics following short-term HA exposure. Peak 242 

systolic basal rotation was approximately halved and rotation during isovolumic contraction 243 

(IVC) doubled after partial acclimatization (Figure 1; Table 4). In contrast to the base, apical; 244 

rotation, systolic rotational velocity, circumferential strain and strain rate were all increased 245 

(Figure 1; Table 4).  246 

(ii) Right ventricular 247 

In Sherpa, peak RV longitudinal strain was lower and occurred later in the cardiac cycle 248 

when compared to lowlanders at sea level (P<0.05). Following short-term HA exposure, 249 

lowlanders reported a reduction in peak RV longitudinal strain meaning the difference 250 

between lowlanders and Sherpa observed at sea level was no longer evident (Table 4; Figure 251 

2). 252 

Diastolic Mechanics 253 

Despite the same peak twist, Sherpa showed a lower peak untwisting velocity than 254 

lowlanders at both sea level and 5050 m (Figure 1, see annotation). Relative to peak twist, 255 

Sherpa achieved significantly less untwisting during the first 45% of diastole than either of 256 

the lowlander conditions (Figure 3). However, when considered relative to the longer IVRT 257 

observed in Sherpa, no differences in the percentage of untwist prior to mitral valve opening 258 
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were evident.  Time to peak LV diastolic strain rate was longer in Sherpa than lowlanders at 259 

sea level, but not different at 5050 m. Additionally, time to peak RV diastolic strain rate was 260 

longer in Sherpa and lowlanders at 5050 m compared to lowlanders at sea level (Figure 2).  261 

 262 

  263 
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Discussion 264 

The purpose of this study was to assess the impact of chronic hypoxic exposure on cardiac 265 

structure and function in HA Sherpa residents through comparison with lowlanders at sea 266 

level and after short-term HA exposure. The main findings were: (i) Sherpa have smaller 267 

relative left ventricular size compared to lowlanders at sea level yet no difference in the 268 

RV/LV area ratio; (ii) Sherpa exhibited slower diastolic relaxation and similar systolic 269 

mechanics in comparison to lowlanders at sea level; (iii) in lowlanders, short-term HA 270 

exposure resulted in increased PASP, reduced RV strain and SV and a mismatch between 271 

right and left ventricular filling; and (iv) acute changes in loading conditions and an increase 272 

in PASP lead to a differential response in LV mechanics at the base and apex.  273 

 274 

Comparison of Cardiac Structure and Function in Sherpa and Lowlanders 275 

Sherpa are renowned for their superior exercise and mountaineering performance (12). In sea 276 

level athletes, higher levels of aerobic fitness normally coincide with a large LV EDV thus 277 

enabling a larger SV (24). However, cross-sectional comparison in the present study revealed 278 

smaller absolute and relative LV size in Sherpa when compared to lowlanders at sea level. 279 

Whilst cross-sectional comparisons cannot establish cause and effect, it is tempting to 280 

speculate that the lower RV systolic function observed may result in decreased LV filling and 281 

act as a stimulus for structural remodelling and could determine cardiac development in HA 282 

natives. This hypothesis is partially supported by findings in pulmonary hypertension 283 

patients, where a reduced RV function has been shown to decrease LV filling (27) which 284 

ultimately results in ventricular remodelling and a smaller LV (7). It should, however, be 285 

noted that despite a decrease in our load-dependent measures of RV systolic function, 286 

intrinsic contractility is often preserved in high attitude populations, even in patients with 287 

chronic mountain sickness (34). This suggests that the alterations in RV longitudinal function 288 

observed previously (21) and in the current study likely reflect altered loading conditions 289 

rather than pathological dysfunction.  290 

To generate the required cardiac output with a smaller LV and hence SV, heart rate needs to 291 

be higher. In agreement with this, previous authors have shown a greater maximal heart rate 292 

in Sherpa compared to lowlanders at HA (25). Therefore, whilst cardiac output may be 293 

similar between Sherpa and lowlanders, the way in which it is achieved could differ. 294 
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Although we observed a smaller LV EDV in Sherpa compared to lowlanders, Sherpa did not 295 

demonstrate a statistically significantly larger RV/LV area ratio (P=0.2). This finding is in 296 

contrast to the short-term HA response in lowlanders and also Andean HA natives (21). 297 

Although this contradicts our hypothesis, and may be related to limited statistical power, it is 298 

also possible that it reflects genetic differences between ethnic groups. Tibetans have been 299 

shown to exhibit a lower incidence of RV hypertrophy than other ethnic groups who have 300 

migrated to and reside at HA (15). As such, it is possible that Sherpa do not demonstrate the 301 

disproportionate increase in RV size seen in other populations.  302 

 303 

Impaired Diastolic Relaxation and Comparable LV Systolic Mechanics in Sherpa compared 304 

to Lowlanders at Sea Level 305 

Modification of diastolic function at HA has been widely reported in the literature with a 306 

decrease in both LV and RV E/A ratio as the most common finding (8, 21). Researchers have 307 

speculated that either changes in intrinsic properties such as calcium handling or ATP 308 

availability, or loading conditions modify diastolic function (19-21, 23). In the present study 309 

we examined myocardial mechanics to assess the impact of HA exposure on diastolic 310 

function. Temporal analysis of our data shows that in Sherpa, peak RV and LV longitudinal 311 

systolic strain occurred during early diastole. This is in contrast to lowlanders at sea level 312 

where peak longitudinal strain immediately precedes pulmonary and aortic valve closure. Our 313 

results support the work of Gibbs (14) who suggested that increased pulmonary pressures at 314 

HA impact LV filling by prolonging the systolic ejection time.  315 

While Sherpa achieved less untwisting during early diastole compared to lowlanders at sea 316 

level or HA, IVRT was significantly longer and the percentage of untwist preceding mitral 317 

valve opening was not different (Figure 3; annotation). Lower untwist during early diastole, 318 

as seen in healthy ageing (45), and prolongation of IVRT may reflect a smaller, stiffer LV in 319 

Sherpa. In combination, delayed systolic and diastolic longitudinal strain, prolongation of 320 

IVRT, and slower untwist velocity suggest altered diastology. Interestingly, despite a longer 321 

IVRT in lowlanders at HA, greater untwisting during early diastole was achieved compared 322 

to Sherpa. This may represent an acute response to the lower LV filling pressure and greater 323 

systolic apical rotational velocity, which over time may act as a stimulus for chronic 324 

remodelling.  325 
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As shown in Figure 1, lowlanders demonstrate rapid changes in systolic mechanics after 326 

ascent to HA. It is known that LV mechanics adjust in response to altered hemodynamics to 327 

optimise efficiency and equalize fibre stress across the myocardium (47). The profile of 328 

systolic LV mechanics in Sherpa, however, is more comparable to lowlanders at sea level 329 

than at HA. As mechanical stress is linearly related to myocardial oxygen demand (6), 330 

changes in LV mechanics could represent altered myocardial efficiency. In this context, the 331 

heart of lowlanders at HA may be inefficient initially. However, prolonged exposure, as 332 

experienced by Sherpa, may result in remodelling of the ventricular wall, normalization  of 333 

mechanics and improved myocardial efficiency. Moreover, as there are no differences in 334 

relative wall thickness between lowlanders and Sherpa, it would appear the Sherpa LV is not 335 

exposed to a greater stress than that of lowlanders. Previously we have shown the importance 336 

of a mechanical reserve in response to exercise in healthy lowlanders at sea level (41). The 337 

‘normalised’ systolic mechanics in Sherpa may facilitate this reserve, which is likely absent 338 

during acute HA exposure due to higher resting levels of twist, rotation and strain. Whilst 339 

systolic mechanics appear to normalise, diastolic mechanics suggest impaired relaxation. 340 

However, it is interesting that the higher untwisting velocity observed in lowlanders at 5050 341 

m is not able to facilitate LV filling and increase EDV, suggesting other factors independent 342 

of myocardial relaxation reduce LV EDV. Whether the altered diastolic mechanics in Sherpa 343 

represent positive long-term adaptation or an inability to remodel is not known, but it appears 344 

from our data that systolic function has a greater capacity to adapt to residence at HA.  345 

 346 

Ventricular Mismatch: Preserved Right Ventricular End-Diastolic Area and Decreased Left 347 

Ventricular Volume after Acute HA Exposure 348 

Short-term HA exposure increased PASP and reduced plasma volume in lowlanders, as has 349 

been previously reported (21, 35, 37). However, despite the reduction in plasma volume, 350 

there was no change in RV EDA indicating that either RV filling was maintained or, due to a 351 

reduced RV SV, the same EDA was achieved with a lower filling pressure (36). There was, 352 

however, a reduction in LV EDV, a finding previously thought to be partly related to the 353 

lower blood volume observed with short-term HA exposure (8). Our data indicate that the 354 

reduction in LV filling may be independent of changes in blood volume and more likely 355 

related to the decreased RV SV observed. The reduction in RV SV at HA coincided with a 356 

reduction in systolic performance as quantified by RV longitudinal strain and TAPSE. It is 357 
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likely that in response to increased PASP, and therefore RV afterload, RV systolic 358 

performance is impaired and SV is reduced. This in turn impacts on LV diastolic function 359 

resulting in modified LV filling, as evidenced by the change in E/A, and ultimately decreased 360 

LV EDV.  361 

 362 

Differential Response in LV Basal and Apical Mechanics in Lowlanders following ascent to 363 

5050 m 364 

Following ascent to HA, lowlanders demonstrated a reduction in peak LV basal systolic 365 

rotation and an increase in LV apical circumferential strain and rotation. It is likely that the 366 

reduction in LV EDV, increase in PASP and subsequent changes in LV geometry, as 367 

indicated by an increased LV eccentricity index, play a significant role in the differential 368 

response of the base and apex. Increased PASP and altered LV geometry have been shown to 369 

lower peak LV basal rotation in pulmonary hypertension (10) while a reduction in LV 370 

preload has been associated with increased apical rotation (13, 18). In addition to the decrease 371 

in peak LV basal systolic rotation, basal rotation during IVC was elevated in lowlanders at 372 

HA as previously described where PASP is increased or LV preload reduced (10, 48). The 373 

increase in rotation during IVC alters the starting position of clockwise systolic basal 374 

rotation. However, the net change in rotation between peak IVC and peak systole remains 375 

relatively constant at sea level and HA, with no change in circumferential deformation. As 376 

this modification of basal rotation was not evident in Sherpa, who exhibited a similar PASP, 377 

it seems more likely that the decrease in basal rotation was due to decreased LV filling rather 378 

than significant LV-RV interaction.  379 

In contrast to basal mechanics, and in agreement with our hypothesis, systolic apical rotation 380 

and circumferential strain were significantly increased at HA compared to sea level. This is 381 

likely related to the decreased LV EDV and increased sympathetic drive previously reported 382 

at HA (17). Although the importance and functional significance of changes in apical 383 

mechanics is yet to be determined, such changes likely signify enhanced systolic function at 384 

HA. For example, increased apical rotation and deformation could help to maintain ejection 385 

fraction and prevent further decline in stroke volume in the presence of decreased LV filling.  386 

 387 

 388 
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Limitations and Future Directions 389 

We acknowledge the limitations associated with small, cross-sectional studies however due to 390 

logistical difficulties and expense associated with work of this nature, large longitudinal 391 

studies are less practicable. Due to the anatomy of the heart, imaging of the right ventricle 392 

with ultrasound is not ideal, however, the guidelines published by the American Society of 393 

Echocardiography were followed (38) and magnetic resonance imaging was not available. 394 

Whilst all participants were physically active and matched for age, we were unable to 395 

quantify physical activity patterns and therefore cannot rule out the influence of training 396 

status. Lastly, we acknowledge the confounding nature of drawing comparisons between two 397 

diverse ethnic groups, it is possible that Sherpa may exhibit different cardiac phenotypes 398 

irrespective of HA exposure. However, in order to address our primary research question it 399 

was not possible to avoid the comparison of different ethnic groups. Future research should 400 

attempt to investigate the combined influence of chronic altitude exposure and healthy aging, 401 

the reversible nature of long-term cardiac adaptation to HA and the consequences for exercise 402 

capacity in Sherpa. 403 

Conclusions 404 

Life-long HA exposure resulted in structural and functional remodelling of the Sherpa heart. 405 

Altered biventricular loading conditions are likely the cause for the physiological adaptation 406 

observed. Despite a higher RV afterload, there was no evidence of disproportionate RV 407 

structural enlargement in Sherpa, which may be a consequence of environmental or genetic 408 

adaptation. Normalization of LV systolic mechanics in Sherpa but slower diastolic relaxation 409 

indicates differential functional remodelling that has not been observed previously in HA 410 

populations and its functional relevance remains to be confirmed. Lowlanders also 411 

demonstrated increased RV afterload and consequently altered RV function, which may 412 

impair LV filling. Decreased LV filling is accompanied by an increase in apical systolic 413 

mechanics likely helping to prevent a further decline in SV.  Persistent under filling of the 414 

LV and elevated apical mechanics may restrict cardiac reserve during exercise and be the 415 

precursor to the chronic LV structural and functional remodelling observed in well-adapted 416 

Sherpa population.   417 

 418 

 419 
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Figure Legends 578 

Figure 1- Temporal representation of twist, basal and apical rotation and their 579 

respective velocities in lowlanders at sea level and 5050 m and Sherpa at 5050 m. 580 

Annotations indicate key findings. For clarity, statistical differences have not been 581 

identified. Please refer to Table 3. RV, right ventricle; LV, left ventricle; AVC, aortic valve 582 

closure.  583 

 584 

Figure 2- Temporal representation of RV and LV strain and strain rate in lowlanders at 585 

sea level and 5050 m and Sherpa at 5050 m. Annotations indicate key findings. For 586 

clarity, statistical differences have not been identified. Please refer to Table 3. RV, right 587 

ventricle; LV, left ventricle; AVC, aortic valve closure; PVC, pulmonary valve closure.   588 

 589 

Figure 3. Panel A illustrates the slower untwisting in Sherpa expressed relative to peak 590 

systolic twist up to 50% diastole. Sherpa isovolumic relaxation time (IVRT) is double 591 

that of lowlanders at sea level when expressed as a % of diastole. Vertical lines indicate 592 

mitral valve opening for each condition and horizontal lines indicate the percentage of 593 

untwist preceding mitral valve opening. Panel B shows % untwist in three conditions 594 

against % IVRT. No statistical differences were observed when untwisting was 595 

normalised for IVRT duration. Data presented are mean ± SEM; * p<0.05 vs. lowlander 596 

sea level; † p< 0.05 vs. 5050m lowlander. AVC, aortic valve closure; MVO, mitral valve 597 

opening; SL, sea level.  598 

599 
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 Tables 600 

Table 1. Anthropometric and cardiovascular measurements in lowlanders at sea level 601 

and 5050 m and Sherpa at 5050 m.  602 

 603 

 604 

Data presented are mean ± SD; * p<0.05 vs. sea level; † p< 0.05 vs. 5050m lowlander. SaO2, 605 

oxygen saturation; MAP, Mean Arterial Pressure; BP, Blood Pressure; bpm, beats/min; 606 

PASP, pulmonary artery systolic pressure.  607 

SL 5050

Mass (kg) 82 ± 10 78 ± 10 68 ± 10 *†

SaO2 (%) 98 ± 2 82 ± 3 * 83 ± 3 *
Systolic BP (mm Hg) 113 ± 8 127 ± 6 * 120 ± 10

Diastolic BP (mm Hg) 59 ± 5 79 ± 6 * 79 ± 8 *
MAP (mm Hg) 77 ± 4 93 ± 8 * 89 ± 9 *
Heart Rate (bpm) 54 ± 6 61 ± 16 76 ± 14 *†
PASP (mmHg) 19.7 ± 3.0 28.1 ± 4.7 * 28.8 ± 4.8 *

Altitude (m)

Sherpa 5050 m
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Table 2. Absolute and relative ventricular structural parameters in lowlanders at sea 608 

level and 5050 m and Sherpa at 5050 m.   609 

  610 

Data presented are mean ± SD; * p<0.05 vs. sea level; † p< 0.05 vs. 5050m lowlander. IVSd, 611 

interventricular septum diameter diastole; LVIDd, left ventricular internal diameter diastole; 612 

LVPWd, left ventricular posterior wall diastole; EDV, end-diastolic volume; ESV, end-613 

systolic volume; SV, stroke volume; Q�, cardiac output; EDA, end-diastolic area; ESA, end-614 

systolic area.  615 

Absolute LV Structural Parameters
IVSd (cm) 1.21 ± 0.08 1.19 ± 0.14 1.00 ± 0.20 *†

LVIDd (cm) 4.74 ± 0.30 4.57 ± 0.26 * 4.15 ± 0.24 *†

LVPWd (cm) 1.18 ± 0.11 1.10 ± 0.11 1.02 ± 0.09 *

LV Mass (g) 211 ± 22 190 ± 29 * 139 ± 31 *†

EDV (ml) 129 ± 15 107 ± 16 * 82 ± 13 *†

ESV (ml) 54 ± 8 44 ± 8 * 33 ± 7 *†

SV (ml) 75 ± 8 63 ± 10 * 49 ± 8 *†

Q̇ (l/min) 4.0 ± 0.6 3.9 ± 0.7 3.5 ± 0.7

Ejection Fraction (%) 55 ± 3 58 ± 5 57 ± 4

LV Eccentricity Index (Systole) 1.03 ± 0.06 1.08 ± 0.06 * 1.08 ± 0.08 *
LV Eccentricity Index (Diastole) 1.06 ± 0.05 1.13 ± 0.09 * 1.13 ± 0.09 *
Relative Wall Thickness 0.51 ± 0.06 0.50 ± 0.05 0.49 ± 0.04

Relative LV Structural Parameters
IVSd/ Height (mm/m0.83) 7.55 ± 0.58 7.41 ± 0.92 6.50 ± 1.32 *

LVIDd/ Height (mm/m1.21) 23.71 ± 1.77 22.81 ± 1.52 * 21.90 ± 1.24 *

LVPWd/ Height (mm/m1.11) 6.25 ± 0.70 5.84 ± 0.71 5.67 ± 0.43 *

LV Mass/ Height (g/m3.27) 33.27 ± 5.70 29.61 ± 6.33 * 24.83 ± 5.62 *

EDV/ Height (ml/m3.79) 14.87 ± 2.67 12.41 ± 2.81 * 11.10 ± 1.79 *

ESV/ Height (ml/m1.51) 22.90 ± 3.42 18.54 ± 3.60 * 14.94 ± 2.85 *†

SV/ Height (ml/m3.68) 9.17 ± 1.65 7.79 ± 1.92 * 6.96 ± 1.13 *

Q̇/ Height (l/min/m2.95) 0.74 ± 0.11 0.72 ± 0.10 0.74 ± 0.11

Absolute RV Structural Parameters

EDA (cm3) 23.3 ± 3.6 23.6 ± 3.1 19.0 ± 2.5 *†

ESA (cm3) 13.9 ± 2.5 14.8 ± 3.2 11.7 ± 1.9 *†

SV (ml) 77 ± 13 63 ± 16 * 50 ± 10 *†

Relative RV Structural Parameters

EDA (cm3/m1.05) 12.80 ± 2.30 12.96 ± 2.04 10.92 ± 1.41 *†

ESA (cm3/m0.79) 8.88 ± 1.74 9.45 ± 2.11 7.72 ± 1.26 †

SV (ml/m3.31) 11.52 ± 1.90 9.51 ± 2.46 * 8.85 ± 2.05 *

RV-LV Proportional Measurements
RV-LV Basal Diameter Ratio 1.05 ± 0.20 0.97 ± 0.12 1.11 ± 0.13 †

RV-LV Area Ratio 0.67 ± 0.10 0.75 ± 0.07 * 0.72 ± 0.10

Altitude (m)

Sherpa 5050 mSL 5050 m
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Table 3. Left and right ventricular function from Doppler, tissue Doppler and M mode 616 

echocardiography.  617 

 618 

Data presented are mean ± SD; * p<0.05 vs. sea level; † p< 0.05 vs. 5050m lowlander. E, 619 

early; A, late; S’, peak systolic tissue velocity; E’, peak early diastolic tissue velocity; A’, late 620 

diastolic tissue velocity; IVRT, isovolumic relaxation time; TAPSE, tricuspid annular plane 621 

systolic excursion.   622 

Doppler and Tissue Doppler Parameters
Transmitral E Velocity 0.90 ± 0.14 0.77 ± 0.14 * 0.76 ± 0.20 *
Transmitral A Velocity 0.44 ± 0.08 0.47 ± 0.08 0.53 ± 0.09 *
E/A Ratio 2.05 ± 0.31 1.65 ± 0.22 * 1.47 ± 0.48 *
Septal S' 0.09 ± 0.01 0.09 ± 0.02 0.08 ± 0.01

Septal E' 0.14 ± 0.01 0.11 ± 0.01 0.11 ± 0.03 *
Septal A' 0.08 ± 0.02 0.09 ± 0.02 0.08 ± 0.01

Septal E'/A' Ratio 1.68 ± 0.27 1.27 ± 0.36 * 1.39 ± 0.48

RV S' 0.14 ± 0.02 0.14 ± 0.03 0.13 ± 0.01

RV E' 0.16 ± 0.02 0.15 ± 0.03 0.15 ± 0.05

RV A' 0.12 ± .0.3 0.12 ± 0.02 0.11 ± 0.04

LV IVRT (ms) 55 ± 9 69 ± 14 * 68 ± 11 *

LV IVRT as Percentage of Diastole (%) 8 ± 1 11 ± 2 * 16 ± 4 *†

RV IVRT (ms) 41 ± 11 78 ± 14 * 64 ± 20 *

TAPSE 2.9 ± 0.3 2.3 ± 0.3 * 2.2 ± 0.4 *

Altitude (m)

SL 5050 m Sherpa 5050 m
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Table 4. Myocardial Mechanics in Lowlanders at sea level and 5050 m and Sherpa at 623 

5050 m.   624 

 625 

Data presented are mean ± SD; * p<0.05 vs. sea level; † p< 0.05 vs. 5050m lowlander. Time 626 

to peak is expressed as a percentage with 0-100% for systole and 101-200% representing 627 

diastole. 628 

 629 

SL 5050

Twist (˚) 13.6 ± 2.6 18.1 ± 5.6 15.0 ± 5.6

Systolic Twist Velocity (˚/s) 88 ± 24 125 ± 48 93 ± 25

Untwisting Velocity (˚/s) -123 ± 30 -153 ± 38 -93 ± 31 †*

Basal IVC Rotation (˚) 1.6 ± 1.3 3.9 ± 1.9 * 1.9 ± 1.0 †
Basal Rotation (˚) -6.7 ± 1.3 -2.9 ± 1.9 * -5.2 ± 2.4 †
Basal Systolic Rotational Velocity (˚/s) -63 ± 22 -67 ± 28 -55 ± 25

Basal Diastolic Rotational Velocity (˚/s) 63 ± 27 51 ± 24 53 ± 26

Basal Circumferential Strain (%) 17.8 ± 2.5 18.9 ± 3 17.8 ± 2.5

Basal Circumferential Strain Rate (%/s) 1.1 ± 0.1 1.2 ± 0.3 1.1 ± 0.2

Apical Rotation (˚) 7.3 ± 2.2 15.5 ± 4.8 * 10.5 ± 4.3 †
Apical Systolic Rotational Velocity (˚/s) 46 ± 13 101 ± 40 * 66 ± 20 †*
Apical Diastolic Rotational Velocity (˚/s) -60 ± 18 -125 ± 30 * -69 ± 18 †
Apical Circumferential Strain (%) 25.0 ± 4.9 29.2 ± 6.4 * 23.8 ± 3.8

Apical Circumferential Strain Rate (%/s) 1.4 ± 0.3 2.1 ± 0.7 * 1.60 ± 0.3

Longitudinal Strain Peak (%) 19.1 ± 2.7 18.4 ± 2.1 18.5 ± 1.1

Longitudinal Strain Time to Peak (%) 98 ± 2 103 ± 5 * 102 ± 4 *
Longitudinal Strain Rate Peak (%/s) 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.1

Longitudinal Strain Rate Time to Peak (%) 43 ± 10 42 ± 10 42 ± 9

Longitudinal Diastolic Strain Rate Peak (%) 1.5 ± 3 1.2 ± 0.2 1.4 ± 0.3

Longitudinal Diastolic Strain Rate Time to Peak (%) 118 ± 2 122 ± 7 128 ± 9 *

Longitudinal Strain Peak (%) 24.7 ± 3.2 21.8 ± 2.7 * 18.9 ± 2.5 †*
Longitudinal Strain Time to Peak (%) 99 ± 3 103 ± 3 104 ± 5 *
Longitudinal Systolic Strain Rate Peak (%/s) 1.2 ± 0.2 1.2 ± 0.2 1.1 ± 0.1

Longitudinal Systolic Strain Rate Time to Peak (%) 53 ± 16 40 ± 8 * 41 ± 18 *
Longitudinal Diastolic Strain Rate Peak (%) 1.7 ± 0.4 1.3 ± 0.2 1.5 ± 0.3

Longitudinal Diastolic Strain Rate Time to Peak (%) 117 ± 2 123 ±7 * 128 ± 8 *

Left Ventricular Twist Parameters

Right Ventricular Longitudinal Parameters

Left Ventricular Basal Parameters

Left Ventricular Apical Parameters

Left Ventricular Longitudinal Parameters

Altitude (m)

Sherpa 5050 m
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