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Abstract 
When business processes depend on the processing 

capabilities within a data center, the typical system 

architecture use a high-availability setup to maintain a 

high level of service. Faced with a specific machine-to-

machine system consisting of many endpoints that 

collect and forward data to the data center we argue 

that the dependability of the overall system does not 

necessitate a high level of service for the data center 

components. Taking an existing discrete event 

simulation model of a distributed technical system we 

investigate and discuss the effects of prolonged outages 

of the data center on the major business processes of 

the system. 

 

1. Introduction  

 
The value chain [1] perspective emphasizes those 

activities that contribute directly to the product and the 

firms’ profit. Beyond these primary activities a 

sizeable number of support activities contribute 

indirectly. However, one support activity – the day-to-

day operations of the information systems – is de facto 

already part of every primary activity: Business 

processes need information and information systems to 

run efficiently and to sustain a competitive advantage 

[2]. 

In a software-intensive world business processes 

depend – in the sense of [3] – on the information 

processing where dependability has five major 

attributes: availability, reliability, safety, integrity and 

maintainability. In this article we focus on two 

attributes, availability and reliability, to discuss their 

effects on the architecture of information systems.  

The starting point for our investigation is an 

existing distributed machine-to-machine system, the 

German automatic toll system. This system collects the 

tolls from heavy goods vehicles (HGVs) driving on 

federal toll roads in Germany (for more details see e.g. 

[4] and references therein). About 90% of the tolls are 

collected automatically by the more than 950000 on-

board-units deployed in the HGVs (upper part in figure 

1), for the remainder the users choose either a manual 

log-on at a toll station terminal or the internet log-on to 

pay the tolls for a planned route in advance. The toll 

system collects a total of ~ 4.4 bn € annually [5] and is 

an example for a liability-critical system, i.e. errors 

may directly result in financial damages. 

In the next section we describe the typical steps 

undertaken to achieve a high level of service – 

predominantly in the backend systems. Section 3 takes 

the point of view of the end-to-end processing in the 

case of the automatic toll collection. We argue that the 

machine-to-machine system can leverage the 

distributed clients, i.e. the OBUs in the toll system 

example, to achieve dependability. To that extent 

section 4 describes a sequence of simulation runs 

where the backend systems are offline for increasing 

periods of time. During the offline period the OBUs 

buffer the data and start transmitting once the backend 

systems become available. The accuracy of the 

simulation results depends (among other things) on the 

statistics used in modeling the user behavior. Section 5 

 
 
Figure 1: High-level architecture of the toll 
system with a fully automatic mode using 
OBUs and a manual log-on via internet or toll 

station terminals 
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discusses these statistics and compares the simulation 

model with observations from the real-world system. 

 

2. Achieving a high level of service  

 
The main purpose of a software-intensive system is 

to render a service – either for a person or to another 

technical system. In the generic terms of [3] the service 

is the systems’ behavior as perceived by the users in 

terms of what the system is intended to do. This 

definition allows for a degree of recursiveness: Figure 

1 could be read as showing a single system, i.e. the 

high-level architecture of the German toll system, or 

many loosely connected systems interacting with each 

other. 

These opposite views of what constitutes a ‘system’ 

lead to different conclusions when discussing non-

functional requirements [6], e.g. expressed as 

constraints (e.g. regarding the interfaces, performance, 

operations, life-cycle or software economics [7]): Who 

or what depends on the correct functioning of the 

system? The generic answer should include a specific 

requirement, e.g. concerning the quality of the service 

[8]. Looking back at [3] the quality of the service could 

be described amongst others in the terms of availability 

and reliability:  

 Is the service supposedly rendered by the system 

available? 

 Does the system provide the correct service 

continuously? 

The latter question is the topic of section 4.2 where 

we discuss the quality attributes reliability and integrity 

for the period of resuming normal operations after a 

prolonged unavailability of the central system. The 

answer to the first question is usually given as a metric 

measuring the availability of the service. However, the 

metric depends on the point-of-view: If the system is 

seen as a system-of-systems, i.e. each block in figure 1 

constitutes a separate system; the availability is defined 

and measured for each system on its own. This 

approach readily leads to very high demands on the 

availability of systems. An example is given in figure 2 

where two systems A and B follow the same 

architecture using a (simplified) layer model. When 

application B is seen as rendering a service for 

application A, the availability should be measured at 

the application-level of system B. 

A simple assumption for the availability of an 

application stack as depicted in figure 2 is the “and” 

combination of the component availabilities: The 

hardware with its data center surroundings must be 

operational, the operating system the data persistence 

layer and the application itself running to render the 

service of a single system. One consequence could be 

to raise the availability of each component: The data 

center can be built without single-point-of-failures, e.g. 

up to multiple active power and cooling paths in a 

Tier-IV data center [9], [10] yielding a site availability 

of > 99.99%, server and storage hardware with internal 

error detection and recovery and support staff on-site 

around the clock. Increasing the availability even 

further requires the duplication of the system under 

consideration. When a fault occurs either in the soft- or 

hardware the system switches to the replica and 

continues operating. In that way many (but not all) 

faults can be hidden [11] – increasing the time-to-

failure and reducing the time-to-repair. 

Increasing the requirements for the availability of 

each system the cost of operations shows a 

disproportionate increase. Over the past decade novel 

IS operators started to offer cloud computing where 

some functionality partakes in existing very large 

installations with massive redundancy (e.g. [12]). 

Looking at the toll system example at least some 

systems offer themselves for a cloud solution, e.g. the 

internet log-on system or the systems receiving the toll 

data and providing updates to the OBU fleet. Other 

systems, e.g. the large-scale billing application, might 

not yet be ready to transition to a cloud provider – with 

availability and business continuity listed as a primary 

obstacle [13]. 

Returning to the toll system example from figure 1 

the emphasis on the availability of sub-systems is at 

least in parts misleading: These systems are either 

sourced from business partners or physically deployed 

in the HGVs. Therefore the next section shifts the 

focus to discuss availability along the complete 

business process of collecting tolls. 

 
 

Figure 2: Stylized layer model of two 
application stacks A and B rendering a 

service at a given quality. 
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3. End-to-end processing 

 
Looking at the toll system as a single system 

rendering the service of collecting the tolls due for 

driving on German federal toll roads the attribute 

availability could be defined for the end-to-end 

processing of the tolls. This perspective takes a large 

part of the value chain (see figure 3) – generating toll 

data through the use of OBUs, transmission of toll data 

to the centrals system and download of updates to the 

OBUs – to define the service rendered to the user, i.e. 

the HGVs' driver. Apart from power-cycling the OBUs 

the automatic toll system does not require user 

interaction, i.e. it is a machine-to-machine system. In 

that respect we suggest to use the metric POFOD 

(probability of failure on demand), the proportion of 

the overall fleet where OBUs are no longer able to 

generate new toll data. When this happens the OBU 

signals its unavailability to the user and the user is 

required to participate in the manual or internet log-on 

instead. Different reasons can trigger this situation: 

The local storage space is exhausted, domain-specific 

limitations are reached (e.g. the maximum time period 

without successful communication or the credit 

implied by the stored toll data). These triggers depend 

only on the usage of a specific OBU – in that sense 

there is no fleet-wide failure mode, the high-

availability is inherent in the usage of independent 

OBUs. Of course, the possibility of system-wide 

software faults exists and must be addressed by other 

means.  

As long as the sub-systems are loosely coupled, the 

components can hide periods of unavailability: Neither 

the billing process nor the update process is required to 

run in real-time (for the typical time scales see figure 3, 

lower part). Similar to telco operations, the billing 

cycle typically operates on a monthly basis, updates of 

geo and map data take days to weeks to propagate 

across the OBU fleet. Toll data is of course generated 

in direct proportion to the HGV driving at a time scale 

of seconds or minutes – as toll events while on a toll 

road in the case of a thick-client OBU or as positional 

data for subsequent processing in the central system in 

the case of a thin-client OBU. 

Following this approach the metric for the systems' 

availability is the proportion of the OBUs that are 

powered on and signal ‘out-of-service’ to the driver. 

Anything leading up to this unavailability corresponds 

at most to delayed processing – toll data needs more 

time to arrive in the data center and is therefore 

included only on future bills. It has to be assumed that 

the operator of the toll system is required to finance the 

delayed processing, i.e. the typical amount of tolls 

needs to be transferred to the German federal 

government in time and can only be recovered from the 

users when the billing process has caught up with the 

data backlog. In addition to the cost of financing the 

operator is assumed to bear the risk of default on the 

side of its users, i.e. over time some users become 

unable to pay past tolls.  

 

4. Simulation setup and results  

 
To investigate the attribute availability from an 

end-to-end perspective we use an existing realistic 

discrete event simulation model of the German 

automatic toll system [14]. To measure the POFOD 

metric we enhance the OBU logic in the simulation 

model to include different triggers for the OBU to 

signal its unavailability. The most important trigger is 

the exhaustion of the storage space reserved for toll 

data – a fleet-wide parameter that we discuss in section 

4.1 in more detail. Another trigger in a thick-client 

 
 

Figure 3: The value chain of the automatic toll system and the typical time scales of automatic 
processes. The simulation model includes an abstraction of the OBU processes, the data 

transmission and the servers receiving and storing the toll data. 
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OBU is the validity of the OBUs' geo and map data. In 

this article we assume that the server providing updates 

remains available at all times and as a consequence the 

validity of the local data is a negligible trigger for 

OBUs to be out-of-service. However, at the end of a 

fleet-wide update when the new map and geo data 

becomes valid, those OBUs that were unable to fetch 

the update in advance will be out-of-service until the 

update is successfully downloaded and applied.  

In addition to the OBU-logic we added the data 

mining capabilities to the simulation model to measure 

the fleet-wide percentage of OBUs that are out-of-

service in two different ways: 

 Counting all OBUs even when they are powered 

off or not within the reach of the German mobile 

data networks or  

 taking only the active OBUs (powered-on and in 

Germany) into account. 

The latter is close to the POFOD metric, i.e. it is the 

percentage of OBUs signaling the driver that the OBU 

is out-of-service. While the driver will perceive this as 

outage, the real metric would be lower since HGVs 

spend only ~ 50% of their driving time on toll roads.  

The users’ perspective expressed with the POFOD 

metric is an emergent property of the whole socio-

technical system: “[…] that which cannot be predicted 

through analysis at any level simpler than that of the 

system as a whole” [15]. To investigate the effects of 

server outages on the automatic toll collection we set 

up a series of simulation runs (see figure 4) where the 

server receiving toll data is unreachable for 1 to 10 

days consecutively starting with the Saturday at the 

end of the third week in the simulation run. The – 

seemingly arbitrary – choice of 10 days is motivated by 

an outage starting on a weekend and running into a 

week with public holidays (e.g. on Friday and Monday 

on a Easter weekend in Germany) where the access to 

personnel would typically be restricted. 

Simulation runs for this scenario are repeated for 

different sizes of the buffer allotted on the OBUs for 

storing toll data. The simulation runs include another 

two weeks after the service is restored to observe the 

return to normal operations. In any other respect we 

use the existing realistic simulation model without 

alteration: The size of the OBU fleet is 900 000, OBUs 

lose their network connectivity briefly and frequently, 

resource restrictions apply as in the real-world system. 

Besides the server receiving the toll data no other 

component has any outages in the simulation run. 

 

4.1 Mitigating outages 
 

Under normal operating conditions the OBUs are 

far from signaling ‘out-of-service’: Toll data is 

buffered and there is ample space and time available to 

hide brief technical outages, e.g. of the mobile data 

network or the backend system. Map and geo data is 

distributed in advance so that only those few OBUs 

that were offline for several weeks need to fetch an 

update immediately after powering on or returning to 

Germany. In this scenario OBUs buffer only enough 

data to allow for efficient technical processes, e.g. 

considering the server load in the central system and 

the network characteristics. In effect the buffer holds 

only a small amount of data under normal operating 

conditions (normalized as 1 in figure 5). 

With the onset of the 10-day period of the toll data 

server unavailability toll data can no longer be sent 

from the OBUs to the central system. Over time the 

OBUs buffer the toll data generated while driving on 

toll roads (see figure 5), the total amount of toll data 

buffered increases linearly over time with different 

rates on weekdays and weekends. Of course, once the 

 
 

Figure 4: The simulation runs include an 
offline period of the toll data server with a 

duration of 1 to 10 consecutive days. 
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Figure 5: The toll data buffered by the OBUs 
increases proportionally over time while the 
receiving toll data server is offline. Choosing 
a small buffer size leads to an exhaustion 
(blue line), a larger buffer (red, green) is 
sufficient for this example. 
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buffer on a given OBU is exhausted, it can no longer 

participate in the automatic toll system: In figure 5 the 

blue line gives the results for a simulation setup where 

the buffer size is insufficient for long outages. In 

comparison to buffer size twice or four times as large 

the total amount of toll data buffered across the whole 

fleet starts to drop off after five days while the number 

of OBUs signaling a full buffer increases (not shown in 

figure 5). At that time some of the most active HGVs 

covered so many kilometers on toll roads that the 

buffer is completely full. As time progresses more and 

more HGVs reach this level. Doubling the buffer size 

is already sufficient in our scenarios to ensure that 

almost all OBUs remain in-service over the 10-day 

offline period. 

Taking the users’ point-of-view it is important to 

note that the driving patterns of individual HGVs differ 

drastically. Almost 10% are either powered off or 

outside of Germany over long periods of time – 

buffering toll data is obviously not a concern for these 

OBUs. Considering the active HGVs the activity 

follows of course a strong daily and weekly pattern 

(see e.g. [4]). To determine the buffer size needed to 

mitigate a given duration of server unavailability we 

depend on the total amount of toll data gathered by a 

given OBU over time. The example uses a 10-day 

period (including two weekends and two days of public 

holidays) to be buffered by the OBUs – most OBUs 

cope easily with the outage even when using a small 

buffer (as shown in figure 5). The most active users 

quickly exhaust the available buffer space in the first 

simulation scenario (relative buffer size “1” in figure 

6) leading to a sizable portion of the OBU fleet being 

out-of-service after the 10-day offline-period. It is 

interesting to note the “saturation” of the buffer across 

the OBU fleet: The second Monday, i.e. the final day 

of the offline period, leads to a sudden increase of 

OBUs out-of-service by about 4 percentage points – 

the ‘average’ driving patterns apparently begin to 

exhaust the buffer after 9 days. 

Increasing the buffer size on the OBUs quickly 

improves the simulation results (see figure 6). Even a 

20% increase in buffer size almost halves the number 

of OBUs out-of-service after 10 days. Quadrupling the 

buffer size suffices for almost all driving patterns. Yet 

some OBUs are very active on toll roads and will still 

exhaust the buffer. To pinpoint this behavior we look 

at the cumulative distribution function (CDF) for the 

amount of toll data generated by an OBU over one 

week (figure 7, the x-axis gives the toll data in 

arbitrary units). Over the course of a week most HGVs 

drive only a moderate distance on toll roads (the 

median in figure 7 is close to „1“). However, some 

HGVs are considerably more active – the CDF is 

shown up to “5” units of toll data collected and still 

includes only 99,18% of the OBUs in the real-world or 

99,38% in the simulation. 

Comparing the weekly HGV activity as generated 

in the driving patterns simulation model (red line, 

figure 7) with the real-world data (blue line) we note 

that the driving patterns used in the simulation run 

deviate noticeably: In reality HGVs generate less toll 

data than in the simulation. In that way the simulation 

paints a pessimistic picture of the percentage of OBUs 

exhausting their buffer space. However, future work is 

needed to improve the match between the simulated 

and real-world driving patterns. 
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Figure 6: Percentage of OBUs whose toll 
data buffer is exhausted. 6 simulation results 
for buffer sizes differing by a factor of 4 are 

shown. 
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Figure 7: CDF of the toll data collected per 
OBU over one week as used in the 
simulation (red line) compared to the real-

world driving patterns (blue line). 

6297



 

4.2 resuming operations 
 

When the server receiving the toll data resumes 

operation, in our example in the night between Monday 

and Tuesday after being offline for 10 days, the OBUs 

quickly reconnect and transmit the buffered toll data. 

Depending on the retry-mechanism OBUs try to reach 

the central system periodically with a decreasing 

frequency so as to avoid any overload situation due to 

retries. Within the first hours after the toll data server 

resumes operations most OBUs have completely 

transmitted their buffered toll data (see the quick fall-

off in figures 5 and 6) – if the OBU is powered on and 

within Germany. Looking at the overall amount of toll 

data residing on the OBU fleet (figure 5) even several 

days later almost 5 times as many toll data remain 

throughout the OBU fleet than prior to the offline 

period. In turn the risk of losing toll data (e.g. if the 

OBU is destroyed or the HGVs owner files for 

bankruptcy) is proportionally higher. The cost of 

delayed processing is therefore at least the sum of 

financing the delay and writing off unrecoverable tolls. 

All simulation runs show that the server load at the 

toll data server remains similar to normal operating 

conditions even when more toll data is transmitted. To 

gauge the sensitivity of the simulation runs to the 

server capacity we added one additional scenario 

where the number of parallel connections is limited to 

1/3 of the typical daily peak load. Even then the off-

peak hours suffice to return to normal operations with 

only marginal side-effects. 

This work emphasizes the availability of an 

automatic system and we have shown that end-to-end 

availability can be assured even if some parts are 

offline for considerable periods of time. However, one 

aspect should not be forgotten: [3] mentions reliability 

as one aspect, i.e. the “continuity of correct service” – 

in our case the overall detection quota (typically on a 

level close to 99.9% [17]). Even when we have shown, 

that the service can resume with almost no impact on 

users – it did in all scenarios put the OBUs of at least 

the most active HGVs out-of-service. While these 

users are still able to log-on manually, the question is 

open, at what level of impact the system can still be 

considered to render a “correct service”. 

 

5. Limitations  

 
Dealing with simulations and statistics is in itself a 

limitation – neither part is perfect and it may not be 

possible to verify the model with real-world data. 

Returning to the CDF of the weekly HGV activity we 

ask whether there is a chance to encounter ‘black 

swan’ statistics [16]? In some systems – most notably 

safety-critical systems – even a single extreme event 

must be considered. In our example the impact on a 

single user is at most the need to switch to manual log-

on or the loss of toll data. What could be the statistical 

outliers in our case? 0.8% of the OBUs collect more 

tolls in a week than the maximum value shown in 

figure 6. This compares to 0.6% as generated by the 

model of the user behavior used in the simulation runs. 

In both cases the most active OBUs create about twice 

as much data as chosen as cut-off in figure 6. Even 

with the largest buffer used in our simulation runs 

about 1 in 500 OBUs will be out-of-service as it fills its 

buffer completely.  

The knowledge on the real-world statistics is 

limited to an analysis of a time period of several 

months since any older data is and must be deleted. 

Looking at the maximum daily toll generated by OBUs 

we see that OBUs can be much more active: A single 

day suffices to reach well beyond the median of the 

weekly activity seen in the OBU fleet. If this behavior 

became the norm even the largest buffer used in our 

scenarios would fill up within days. 

 

6. Summary  
 

Availability – one of the aspects making up a 

dependable system – is usually defined in terms of sub-

systems, e.g. a server or a network connection. Taking 

the example of the automatic German toll system we 

argue that availability in a machine-to-machine system 

should be defined end-to-end rather than at the 

component level. Using an existing simulation model 

we showed that a prolonged offline-period of a server 

can be mitigated through local buffering of toll data. 

Looking at the underlying statistical data we note that 

the generated data differs from the real-world 

observations, the simulation includes too many highly 

active OBUs. 
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