

A Synchronized Shared Key Generation Method for Maintaining End-to-End

Security of Big Data Streams

Deepak Puthal

University of Technology

Sydney, Australia

 deepak.puthal@gmail.com

Surya Nepal, Rajiv Ranjan

CSIRO Data 61, Australia

 Surya.Nepal@csiro.au,

rranjans@gmail.com

Jinjun Chen

University of Technology

Sydney, Australia

 jinjun.chen@gmail.com

Abstract
A large number of mission critical applications

ranging from disaster management to smart city are

built on the Internet of Things (IoT) platform by

deploying a number of smart sensors in a heterogeneous

environment. The key requirements of such applications

are the need of near real-time stream data processing in

large scale sensing networks. This trend gives birth of

an area called big data stream. One of the key problems

in big data stream is to ensure the end-to-end security.

To address this challenge, we proposed Dynamic Prime

Number Based Security Verification (DPBSV) and

Dynamic Key Length Based Security Framework

(DLSeF) methods for big data streams based on the

shared key derived from synchronized prime numbers in

our earlier works. One of the major shortcomings of

these methods is that they assume synchronization of the

shared key. However, the assumption does not hold

when the communication between Data Stream

Manager (DSM) and sensing devices is broken. To

address this problem, this paper proposes an adaptive

technique to synchronize the shared key without

communication between sensing devices and DSM,

where sensing devices obtain the shared key re-

initialization properties from its neighbours.

Theoretical analyses and experimental results show that

the proposed technique can be integrated with our

DPBSV and DLSeF methods without degrading the

performance and efficiency. We observed that the

proposed synchronization method also strengthens the

security of the models.

1. Introduction

There are a large number of critical applications,

such as large-scale sensor networks for environment

sensing, disaster management, remote health

monitoring and smart homes, that require near real-time

data stream to be processed in datacentres for enabling

data-driven decisions. These applications produce high

volume, velocity data that should be processed in near-

real time to detect events such as heart-attacks in the

context of remote health monitoring and telephony

frauds in the context of telecommunication. These

applications require a paradigm shift as compared to

traditional store and process later approaches [1].

Clearly, traditional approaches cannot support near real-

time decision making. To address this near real-time

decision making requirement, a new cloud-based

computing paradigm based on Stream Processing

Engines (SPEs) has evolved [4, 17, 18]. SPEs can

process the data stream on the fly [15, 16] in contrast to

store and process later approaches enabled by batch

processing engines such as Apache Hadoop and

Amazon Elastic MapReduce. The need of real-time

processing for high volume and high velocity input data

arises due to the need of real time detection of events in

combination with the fact that the data cannot be

persisted for later analysis for practical reasons (e.g.,

data storage overhead) [12]. SPEs can process data in

near real-time, but they have security limitations as

discussed next. In addition, Data Stream Manager

(DSM) undertakes the security verification of the data

blocks on-the-fly before SPEs. These features present

significant opportunities and challenges in the area of

data security and freshness of big data stream [11, 12].

Let us consider a Disaster Management (DM)

application to motivate the end-to-end (i.e., from

Sensing Devices to Cloud Data Centre processing layer)

security problem that exists with the current generation

of SPEs and relevant stream processing algorithmic

approaches. DM applications rely on near real-time

processing of sensor data in the cloud. Efficiency and

effectiveness of decision making and event (e.g.,

flooding, tsunami, landslides etc.) detection in DM

applications is dependent on the following security

related properties of the sensor data including

confidentiality, integrity, authenticity and freshness.

Any compromise on the above mentioned security

related properties of data during processing and/or

transmission will lead to inaccurate event detection and

decision making. Ultimately this leads to the loss of

lives and critical infrastructures. Hence, these

applications require end-to-end security to increase the

reliability of the data analysis pipelines.

6011

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41889
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/77240191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

StreamShield is a stream centric architecture for

security and privacy in data stream environments, where

authors highlighted the requirement of security in data

stream for the very first time [2]. Authors broadly

divided the security issues in two parts (i.e. data security

and query security) and both these security issues were

applied for stream data analysis. Following this

architecture, we identify four important requirements

and properties for security verification of big data

stream: (a) near real-time security verification, (b)

dealing with high volume and velocity of data, (c) the

data items should only be accessed once, and (d) the

original data are not available for comparisons [11, 12,

13, 14]. We focused on addressing big data stream

security requirements by keeping all these big data

stream constraints. We proposed a novel light weight

security model by ensuring end-to-end security for big

data streams. First, we proposed a Dynamic Prime

Number Based Security Verification (DPBSV) scheme

for big data stream processing, which is based on a

common shared key that is updated dynamically by

generating synchronized pairs of prime numbers [11,

12]. Later to make it more efficient and reduce the

computational overhead and buffer size, we proposed a

Dynamic Key Length Based Security Framework

(DLSeF) based on the shared key derived from

synchronized prime numbers [13, 14]. These two

techniques were proposed to maintain the end-to-end

security of big sensing data stream and perform security

verification at DSM.

All these above security solutions follow the

independent rekeying process without further

communications between the source sensors and DSM

after handshaking. However, it is impossible to continue

the key update and data transmission without any

interruptions in a hostile nature of source sensing area.

Hence, the source side key generation synchronization

is a major problem with above security solutions

(DPBSV and DLSeF). In these models, a source node

sends a request message to DSM to get the

synchronization properties if there is any kind of key

desynchronization, which is not an efficient way to get

synchronization properties. By focusing on this

problem, we propose a novel synchronization method in

this paper in which source sensors get synchronization

properties from their neighbours. As the sensing sources

are distributed in a hostile environment and nodes do not

have any neighbour/network information, it is a

challenging task to identify the authenticated neighbour

and retrieve the synchronization properties. The

contributions of the paper is summarized as follows:

• We present a synchronized shared key

generation method.

• We apply the synchronization method over

DPBSV and DLSeF security architecture.

• We evaluate the model both theoretically and

empirically.

The rest of this paper is organized as follows.

Section 2 details the related literature. Section 3 presents

the problem statement for key synchronization in the big

data stream based applications. Section 4 describes the

proposed synchronization method and its association

with DLSeF architecture. Section 5 presents the

theoretical analysis, and section 6 evaluates the

performance and efficiency of the method through

experiments. Section 7 concludes the paper by outlining

potential future works.

2. Related works

Ensuring the end-to-end security of big data streams

has emerged as an important research topic in many

stream processing applications such as disaster

management, telephony fraud detection and credit card

fraud detection. In this section, we describe related

works that cover the research areas such as stream

processing, and secure authentication of neighbours.

Stonebraker et al. [1] outlined eight core features

that a framework or system must possess in order to be

able to efficiently handle stream processing workloads.

These core features include (i) the continuous flow

nature of data stream, (ii) handling the data

imperfection, (iii) maintaining the data security, (iv)

integrated store and stream data, (v) partition and scale

applications automatically, (vi) query processing on

streams, (vii) expectations of query outcomes and (viii)

process and respond instantaneously. Our aim is to

ensure the data safety (iii) and availability (viii) features

of big data streams. Nehme et al. initially proposed an

architecture by addressing the needs of data security and

query security in streaming environments [2]. They

proposed a continuous access control architecture,

named StreamShield, which ensures query security.

However, StreamShield is unable to ensure end-to-end

data security of streams.

Arasu et al. proposed a Data Stream Management

System (DSMS), called STanford stREam data

Manager (STREAM) [4]. It is intended to deal with high

velocity data rates and substantial numbers of

continuous queries through adaptive resource

allocation; however, STREAM cannot ensure data

security properties. Similar to STREAM, StreamCloud

is a large scalable elastic data streaming system for

processing large data stream in cloud [3].

Sung et al. describes an identification based node

authentication, which can be used to solve key

agreement problem in a three-layer interaction of sensor

networks [8]. Authors consider the characteristics,

architecture, and vulnerability of the sensors, and

provides an ID-based node authentication scheme. An

Elliptic Curves Cryptography (ECC) based

6012

authentication protocol has been proposed in WSN [9]

for device authentication. Khan et al. [10] showed the

M.L. Das-scheme’s security pitfalls and proposed an

improvement and security patches that attempt to fix the

susceptibilities of this scheme. Both of the above are a

secure authentication protocol but are computationally

rich, which do not follow the big data stream properties

as stated in the Introduction section. Park [24] explained

an interesting technique to get the time stamp from

neighbours for robustness to clock skews among nodes.

The neighbour is authenticated to get the

synchronization properties. In [25], a sensor classified

its neighbours based on the geographic location and

communicated to the trusted neighbours. Our network

structure is different from other network structure by

considering DSM as a centralized processor; so we need

a new solution for our model. In this paper, we propose

a new synchronization method on the above DPBSV

and DLSeF models.

3. Problem statement

Security of big sensing data stream is a major issue

for several applications including disaster management,

emergency management, event detections etc. [12]. By

considering these applications, DPBSV and DLSeF are

two security solutions proposed to maintain the end-to-

end security in big sensing data stream. In both of these

models, source sensor devices and DSM never

communicate between themselves after handshaking.

During handshaking process, DSM sends the key

generation properties to source sensors and the sensors

save the sensitive key generation properties in secure

module of the sensor such as TPM. The TPM is a

dedicated security chip following the Trust Computing

standard specification for cryptographic microcontroller

systems [23]. TPM provides a cost effective way of

“hardening” many recently deployed applications, those

are previously based on software encryption algorithms

with keys kept on a host’s disk [19, 23]. It provides a

hardware based trust, which contains cryptographic

functionality like key generation, store, and

management in hardware. So source sensor performs the

rekeying process independently. The above security

solutions follow these methods to satisfy the big data

stream properties (from Introduction Section). Here,

synchronization in shared key generation between the

source and DSM is a major issue and needs to be solved.

The complete architecture of data flows from source

sensing device to cloud datacenter with possible attacks

is shown in Figure 1. We refer to [8] for further

information on stream data processing in cloud.

To address these issues and make the security

solutions more efficient, we propose a novel

synchronization technique for big data stream.

Authentication of neighbour nodes to get the keys, clock

skew, and other properties are very common for wireless

sensor networks [24, 25]. We use a similar method with

minor modifications according to our network structure

to get the key synchronization properties from

neighbours. Different network structures use different

properties such as cluster head or group key or base

station information, for neighbour node authentication

[26, 27]. According to our network structure, all sources

have DSM properties along with the current time

interval. So we use these properties for neighbour

authentication. We follow the method to get the

properties from neighbours because all source sensors

use the same key in the given time interval to perform

the encryption. There are two major synchronisation

issues that need to be addressed for DPBSV and DLSeF

model: (a) time synchronization (follow particular time

to start the key generation process), and (b) the

synchronisation of the shared key when source sensor

missed the current key because of a malicious activity

or natural hazards.

As the source sensing area is distributed in nature

and the source performs the shared key generation

independently, time to start the key generation is a

challenging and important issue for security models. In

any hazardous situations, sensors may miss the shared

keys or key synchronization. Because of the TPM

properties, key generation properties remain safe in

sensors. So sensors only need the key generation

properties to restart synchronize key generation and

send data blocks to DSM.

Figure 1. Overlay architecture of sensing
device to cloud data processing center, and

possible attacks during data flow.

4. Proposed synchronization method

Our security model is motivated by the concept of

moving target defense. The basic idea is that the keys

6013

are the targets of attacks by attackers. To avoid such

problems in big sensing data streams, we proposed

novel techniques such as DPBSV [12] and DLSeF [14].

In these models, if an intruder/ attacker eventually hacks

the key, the data and time period is selected in such a

way that he/she cannot predict the key or its length for

the next session. In such models, there are two major

synchronisation issues that need to be addressed: (a) the

precise time to start the key generation process (time

synchronization) and (b) the synchronisation of the

shared key as discussed before. While addressing the

synchronisation issues, it is important to note that no

compromise is made on the authenticity, integrity and

partial confidentiality (maintain confidentiality in real

time) of the data, which are important to make decision

from the collected data. In this paper, we have addressed

the initial process synchronization properties with the

lost shared key synchronization over DLSeF model.

Table 1. Notations used in our model

Acronym Description

𝑆𝑖 ith source sensing device’s ID.

Di DSM ID

𝐾𝑖 ith source device’s secret key.

𝐾𝑠𝑖 ith source device’s session key.

𝑘𝑙 Key length

𝐾𝑆𝐻 Secret shared key at sensor and DSM

𝐾𝑆𝐻− Previous secret shared key.

𝑟 Pseudo random number.

𝑡 Interval time to generate the prime

number.

𝑇 Timestamp added with data blocks.

T′ Current time

T′′ Time to start the process.

𝑃𝑖 Random prime number.

𝐾𝑑 Secret key of the DSM.

𝐼𝐷 Data for integrity check.

𝐴𝐷 Secret key for authenticity check.

𝐸() Encryption function.

𝐻() One-way hash function.

𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) Prime number generation function.

KeyGen Key generation procedure.

Key-Length

()

Key length selection procedure.

⊕ Bitwise X-OR operation.

∥ Concatenation operation.

RQA Authentication request message.

RPA Authentication response message.

Similar to DPBSV and DLSeF security solutions

[11, 12, 13, 14], we added synchronisation processes

(both time synchronization and key synchronization) to

them with the standard steps: system setup,

handshaking, rekeying, key synchronization and

security verification. We follow DLSeF system setup,

handshaking, rekeying model with minor modifications

before synchronization properties are described. Table 1

provides the notations used in modelling our method.

We next describe the proposed method.

Figure 2. Secure authentication between
Sensor and DSM during system setup (from
DLSeF model [13]).

4.1. System setup

In this step, we assume that DSM has all deployed

sensing device’s identities (IDs) and respective secret

keys because the network is untrusted and hostile in

nature. Sensing devices and DSM implement some

common primitives such as hash function (i.e. H()), and

common key (K1- K4), which are executed during the

initial identification and system setup steps.

The proposed authentication process follows the

DLSeF authentication phase that includes five different

steps [13, 14]. The first three steps are for the sensing

device and DSM authentication process and the final

two steps are for the session key generation process as

shown in Figure 2. The session key (Ksi) is utilized

during the handshaking process which was generated

during the system setup step.

We keep the hashing and shared key at the source

sensor to use in future for data encryption and neighbour

authentication (refer Figure 2). We are using the trusted

part of sensors (i.e. TPM) to keep the secret information

of source sensors [19].

4.2. Handshaking

In the handshaking process, the DSM sends the key

generation and synchronization properties to sensors

based on their individual session key (Ksi) established

earlier during authentication process.

The dynamic prime number generation function

computes the relative prime number, which always

depends on the previous prime number [13]. It is also

already proved that the generated number will always be

prime number and synchronized between source devices

and DSM [13]. We follow DLSeF method for rekeying

time interval according to the key length.

DSM sends a time chunk, i.e., T′′ along with other

properties i.e. 𝐾𝑑, 𝑡, , 𝑃𝑖,

6014

𝑃𝑟𝑖𝑚𝑒 (), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(), 𝐾𝑆𝐻, 𝐾𝑒𝑦𝐺𝑒𝑛 [11, 12, 13,

14]. This time stamp (T′′) is used at source to initialize

the key generation process and sent the encrypted data

blocks to the DSM. If any sources missed the time stamp

to initialize the process, it will send request to DSM to

get the time stamp again. New sources joining to the

network need to follow the step to start the key

generation/ rekeying process.

Si ← DSM: { 𝐸𝐾𝑠𝑖
(𝐾𝑑 , 𝑡, T′′, 𝑃𝑖 ,

𝑃𝑟𝑖𝑚𝑒 (), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ(), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛)}

All of these above transferred information are stored

in the trusted part of source for future rekeying process

(e.g., TPM) [19].

Table 2. Time taken by symmetric key (AES)
algorithm to get all possible keys using the
most advanced Intel i7 processor.

Key Length 32 64 128

Key domain size 4.295e+

09

1.845e

+19

3.4028e

+38

Time (in

nanoseconds)

7.301e+

09

3136e

+19

5.7848e

+35

4.3. Rekeying

Our proposed method not only calculates the

dynamic prime number to update the shared key without

further communication after handshaking, but also

dynamically change the key length at sensor and DSM.

We follow the DLSeF Rekeying process to ensure that

the protocol remains secured [13]. According to the

properties of the TPM, no one have access to contents

which is stored inside the TPM. Only the corresponding

sensor can access TPM properties [19]. From the

Handshaking process, sensors are aware of the Prime

(Pi), KeyLength, and KeyGen. Now we describe the

complete rekeying process by using those functions and

keys from DLSeF model. The synchronized dynamic

prime number Pi is generated on both ends, i.e., sensors

and DSM [13], to be used for the rekeying process. Now

sensors need to wait for the time T′′ to start the key

generation process.

ALGORITHM 1. Key Generation (Rekeying) Process

1. Dynamic prime number Prime (𝑃𝑖) [13].

2. Following DLSeF method [13]:

2.1 t (time interval) = {t1, t2, t3, …}

Here t1, t2, t3, … are the time interval for

rekeying. (32/64/128-bit key from DLSeF)

2.2 At time (t), 𝑆𝑖 and D compute 𝐾𝑆𝐻=

𝐸𝐾𝑆𝐻
(H(𝑃𝑖 , 𝐾𝑑)).

2.3 After time (t), reinitialize from Step 1.

3. The encryption process at sensor as follows

3.1 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻 // For integrity check

3.2 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻 // For Authentication check

4. Si → DSM: {(ID∥(AD∥T))}// Data format to DSM

By following DLSeF model, sensors generate the

shared key 𝐾𝑆𝐻=(𝐸(𝑃𝑖,𝐾𝑑)) using the prime number 𝑃𝑖,
and DSM’s secret key 𝐸(P𝑖,𝐾𝑑). We use the secret key

of DSM to improve the robustness of the security

verification process and fixed the initial key length as 64

bits. The data blocks divided into two different parts,

i.e., authentication and integrity verification. One is

encrypted DATA based on shared key 𝐾𝑆𝐻 for integrity

checking (i.e., 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻), and the other part is

for the authenticity checking (i.e., 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻). The

resulting data block ((DAT𝐴⊕𝐾𝑆𝐻) ∥ (𝑆𝑖⊕𝐾𝑆𝐻)) is sent

to DSM as follows:

Si → DSM: {(𝐼𝐷∥(𝐴𝐷∥T))}.

The procedure of rekeying process is shown in

Algorithm 1.

Figure 3. Neighbour node discover to get the
current state of key generation properties.

Figure 4. Neighbour discovery to get the key
synchronization properties with all possible
conditions. (a) node Si sends RQA message to
all its one-hop neighbours; (b) the sender
receives the RPA of individual RQA; (c) Si send
ACK to only authenticated synchronized
neighbours; (d) node Si receives the
synchronization properties.

4.4. Key synchronization

Synchronization is one of the major issues during the

rekeying process between sensors and DSM, as they are

6015

not interacting after handshaking process. The shared

key synchronization is based on the initial key

generation process followed by the rekeying. So the

initial key synchronization is to make a common time to

start the key generation process. In our model, DSM

works as a centralize controller. So DSM initiates the

key generation process. As defined before, during the

handshaking process DSM sends back to the source (Si)

with a time stamp T′′ to initialize the key generation

process.

There are potentially two cases (i) sensor starts the

process on time to maintain synchronization; (ii) sensor

may be missing the time stamp T′′ or later receives the

key generation properties after time stamp. In the second

case, source sensor send request to get the next time

stamp for key generation process.

There are several reasons for sensors to be out of

sync such as inability of the source node to generate the

shared key by some computational overhead or by any

natural disaster or by any malicious activity. Even if a

sensor missed the synchronization, it does not miss the

key generation properties because of the TPM features

[19]. In such cases, the source sensor (Si) gets

synchronization properties from its neighbours.

According to the source network structure, sensors do

not have neighbour information. So it’s a challenging

task to identify the neighbours and get the key

synchronization properties. The procedure to obtain

shared key properties from unknown neighbours is

given below.

4.4.1. Initial setup. Let us assume that sensor (Si)

missed the synchronization. The Sensor (Si) computes a

Pseudo Random Number, i.e., PRN(r), using the current

prime number (Pi) and the shared key (KSH) to generate

the authentication request message (RQA) i.e. RQA ←

H(EKSH(r ∥ Pi ∥ Kd)). Then the resultant RQA, DSM ID

(Di) and time stamp (T) encrypt with mutual key K4

from the system setup steps (EK4(RQA ∥ T ∥ Di)) (refer

to Figure 2). We use this key for encryption because all

the authenticated nodes have this key from DSM during

the system setup phase.

4.4.2. Synchronization phase. The out of sync sensor

(Si) broadcasts this to its one-hop neighbours. When the

neighbour sensors receive the information, it decrypts

with its mutual key i.e. K4 (DK4(RQA ∥ T ∥ Di)). It

compares the received time frame (T) with its current

time (T′) to check the data freshness and avoid the replay

attack (T - T′ ≤ ΔT). If the time difference is less then

ΔT, then it accepts the data packet; otherwise it is

discarded. Here ΔT is the average time required to

transmit data packet between source and DSM.

The neighbour node (denoted as Sj) compares the

received DSM ID with its own DSM ID to validate the

source as the authenticated one. To make the

authentication process stronger, we perform two layer

encryption of the request (RQA). Sensor (Sj) perform

the hash and decrypt the second layer with the shared

key (KSH), i.e. H(DKSH(r ∥ Pi ∥ Kd)). It uses previous

shared key if the shared key 𝐾𝑆𝐻− is modified in the

meantime and compares the DSM ID by retrieving it

using the DSM secret key (Di← retriveKey(Kd)).

After authentication process, Sj prepares

authentication response message (RPA) by including its

own ID, DSM ID and pseudo random number r (RPA ←

EKSH(Sj ∥ Di ∥ r)). It then encrypts the RPA along with

DSM key and time stamp by using the same key K4

(EK4(RPA ∥ Kd ∥ T)).

Once Si receives the RPA, it is processed in the same

way to authenticate the node Sj (DK4(RPA ∥ Kd ∥ T)).

First it compares the time to avoid replay attack (T - T′

≤ ΔT) and compares the DSM ID (Di← retriveKey(Kd))

and value of r to perform authentication. Here

desynchronized source node (Si) encounters three

different types of neighbours: malicious node,

desynchronized authenticated node and synchronized

authenticated node as shown in Figure 4. Malicious

neighbours cannot decrypt Si request because it is

encrypted by the secret key. But a desynchronized

authenticated node can read the request. Once it came to

know that the source (Si) is seeking the key

synchronization properties, it sends the response with its

desynchronization indication. The source discards the

RPA received from such nodes. If the source node

receives RPA from authenticated synchronised

neighbour, Si choses such node by sending the ACK in

order to get the key synchronization properties

(EKSH(ACK ∥ Si ∥ T)).

This acknowledgement message (i.e. ACK) confirms

the mutual authentication between the source and

synchronised neighbour to obtain the key

synchronization properties (DKSH(ACK ∥ Si ∥ T)). After

receiving the acknowledgement message, the

authenticated neighbour gets the source node ID and

sends the shared key properties (Pi, KSH, t) to source

node as EKSH(Pi, KSH, t, T).

When the desynchronized source gets the shared key

synchronization properties (DKSH(Pi, KSH, t, T)), it can

generate the shared key by itself, because it has the

prime number (Pi), shared key (KSH), and time to change

the next key (t). Every time we are checking the time

interval in order to avoid the replay and DoS attacks.

The stepwise representation of the neighbour

authentication to obtain the shared key properties is

shown in Figure 3.

4.4.3. New node synchronization. If there is a new

source node joining to the network, then it starts the

authentication process with DSM to get the key

generation properties. After receiving the key

generation properties from DSM, the node (n) either

6016

starts the process or authenticate with the neighbour

nodes to compare the synchronization properties.

4.5. Security verification

In this step, the DSM first checks the authenticity in

each individual data block 𝐴𝐷 and then the integrity

with the randomly selected data blocks 𝐼𝐷. Here data

block is divided into two blocks for authenticity

checking and integrity checking. Along with

authenticity checking, we add timestamp (T) in order to

get the data freshness and avoid replay attack. We

change the security verification for data integrity in

random interval of data packets according to the DLSeF

properties [13, 14]. We prefer to change the integrity

verification interval that is directly proportional to the

shared key length because the key length is inversely

proportional to the possibilities of data accessible. The

data block at DSM for security verification is

represented as: {(𝐼𝐷∥(𝐴𝐷∥T))}. DSM first checks the

authentication part to get the timestamp. It compares its

own timestamp with the received one i.e. T - T′ ≤ ΔT. If

the time interval is less than or equal to the predefined

time ΔT, then it accepts the data; otherwise it is rejected.

This will help to maintain the data freshness and avoid

the replay attack. Initial time checking and the

authenticated source checking can avoid the DoS (denial

of service) attack. Another important advantage of

adding the time stamp (T) is to get the shared key used

for the encryption process. If the shared key is updated

after receiving the data block encryption, then DSM

uses the previous shared key (𝐾𝑆𝐻−) for decrypting the

data instead of current key (𝐾𝑆𝐻).

We are updating the shared key before the possible

attacks. For the authenticity check, the DSM decrypts

𝐴𝐷 with shared key 𝑆𝑖=𝐴𝐷⊕𝐾𝑆𝐻. Once Si is obtained,

the DSM checks its source database and extracts the

corresponding secret key 𝐾𝑖 (𝐾𝑖 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝑆
𝑖
)).

In the integrity check process, the DSM decrypts the

selected data such as 𝐷𝐴𝑇𝐴=𝐼𝐷⊕𝐾𝑆𝐻 to get the

original data and checks MAC for the data integrity.

5. Theoretical analysis

This section provides a theoretical analysis of our

proposed model to show that the proposed

synchronization method works efficiently by getting the

shared key properties from the neighbours. We also

apply the synchronization properties over DPBSV and

DLSF and prove that the models are safe against the

network attacks. Proposed synchronization method

never interrupt the shared key generation at sensors.

We have made a number of practical and realistic

assumption in our method. In the following, we first

describe those assumptions.

Assumption 1. In our method, the data that was

encrypted by a symmetric-key algorithm cannot be

decrypted by any parties, unless they have the

session/shared key.

Assumption 2. Shared key (KSH) calculation

procedures reside inside trusted parts of the sensor (like

TPM) so that no one is authorized to access and

manipulate them [12].

We define our threat model, which is similar to the

most cryptologic analyses, to the shared key properties

as follows:

Theorem 1. According to the proposed synchronization

method, the shared key (KSH) is always synchronized

between Source sensor (Si) and DSM.

Proof: We are following the DLSeF security

verification model and added the shared

synchronization properties to it. According to DLSeF

properties, the dynamic shared key length varies in 32

bit, 64 bit, and 128 bit; these keys are updated both

source and DSM ends. The shared key is updated

without further communications between Si and DSM

after handshaking. A variation in key length introduces

a complexity to the attackers to predict the next shared

key. The ECRYPT II recommendations on key length

say that a 128-bit symmetric key provides the same

strength of protection as a 3,248-bit asymmetric key.

Advanced processor (Intel i7 Processor) took about 1.7

nanoseconds to try out one key from one block. With

this speed, it would take about 1.3 × 1012× the age of

the universe to check all the keys from the possible key

set [22]. All the related key domain and the time

required to get the possible keys by using Inter i7

processor are listed in Table 2. We follow the DLSeF

model to select the key lengths [13].

Here, we are highlighting the synchronization in two

places (i) source sensor with DSM at initial key

generation process and (ii) while obtaining the

synchronization properties from neighbour. For the first

option (during the handshaking process), DSM sends

the key generation properties to Si along with the

timestamp (T′′) to set the key generation time. Then both

DSM and Si generate the shared key with dynamic

length and interval as in DLSeF method. This means the

shared key will be synchronized at both ends. In second

option (obtaining the synchronization properties from

neighbours), if any of the source desynchronized, it

initiates the neighbour authentication process to

discover authenticated synchronized neighbour (see

Figure 3). After authentication, neighbour sends the key

generation properties EKSH(Pi, KSH, t, T), where T is for

data freshness and t is the start of the key generation

process. Then source Si can use the current key and use

these properties to update the next key (i.e.

𝐾𝑆𝐻=(𝐸(𝑃𝑖,𝐾𝑑))) after time t. Now source Si became

synchronize with other sources and DSM.

6017

Theorem 2. After applying synchronization, security

verification models (DPBSV and DLSeF) are protected

against authentication, integrity and partially

confidentiality.

Proof: Please refer to [11, 12] for the attack

properties associated with DPBSV model and [13, 14]

with the DLSeF model. By considering TPM properties,

we know that an attacker cannot get the secret

information (Pi, Ki, KSH) or the key generation properties

(KeyGen). During the neighbourhood authentication

procss, a sensor (Si) shares the synchronization

properties after authentication and gets the DSM ID and

the secret key (see Figure 3). So there are no possibilities

for the malicious nodes to trap authenticated sensors to

get the shared key generation properties. Following

neighbour synchronization properties, malicious nodes

cannot interfere because neighbours identify each other

through the DSM ID (Kd) and the encryption process

uses the secret key (EK4). Those properties are not

known to malicious nodes. We know that an intruder

cannot get the currently used KSH within the time

interval t (see Table 2), because our proposed method

calculates Pi randomly after time interval t and then uses

the value Pi to generate KSH. But an attacker can

introduce itself as an authenticated node to send packets.
We know that DPBSV [11] and DLSeF [13] are

protected against authentication, integrity and partially

confidentiality. From above, we conclude that, an

attacker cannot get the shared key information during

neighbour synchronization. By combining the above

two we conclude that the security verification models

are safe after including the synchronization properties.

Theorem 3. After applying the synchronization, the

security verification models avoid replay attacks.

Proof: There are potentially two places for replay

attacks (i) during the neighbour authentication; (ii) the

security verification at DSM. In both of these cases we

are adding a time stamp i.e. T in packets. During the

security verification at DSM, DSM checks for the data

freshness by comparing the time interval between the

sent and received time of data blocks such as T - T′ ≤

ΔT. If the interval is less than or equal to ΔT, then the

data block is accepted; otherwise it is rejected.

Application of this rule keeps rejecting the delayed data

packets. but maintains the data freshness and avoids the

replay attacks. Through the time interval (ΔT), it is easy

for DSM to find the shared key used for encryption

(𝐾𝑆𝐻− or KSH). We also follow the same method to avoid

replay attack during neighbour authentication. By using

such method, our model is proven to be more efficient

to avoid the DoS attacks.

6. Experiment and evaluation

In order to evaluate the performance of the proposed

key synchronization method under the adverse

conditions, we validate our proposed method in a well-

established security protocol simulation environment.

We first verify the security method using Scyther [5],

and then measure the efficiency of the same in the JCE

(Java Cryptographic Environment) [6]. Finally, we

check the performance of security aware sensor data

encryption and sensor node performance in COOJA

simulator provided by Contiki OS [7].

6.1. Security verification

The proposed method for synchronized shared key

is implemented in the Scyther simulation environment

using the Security Protocol Description Language

(.spdl). The efficacy of the proposed security is

observed for two important instances (i) during the

security verification at DSM and (ii) during neighbour

authentication process. According to the features of

Scyther, Si is the sender (i.e., source sensor), Sj is the

neighbour of Si (neighbour authentication) and D is the

recipient (i.e., DSM). Apart from these, we follow the

default properties of Scyther. Many types of

cryptographic attack can be considered in our simulation

context. In our case, we focus on integrity,

authentication, data confidentiality (in real time), and

replay attacks as discussed above. We used Scyther, an

automatic security protocols verification tool, for

verifying our model.

Figure 5. Secure authentication results.

Figure 6. Security verifications results at DSM.

Results: We did our simulation using variable

numbers of data blocks in each run. Our experiment

ranges from 10 to 100 instances with the intervals of 10.

During the neighbour authentication, both sensors Si

and Sj authenticate themselves while hiding the DSM

ID and secret key. In the experiment, we did not

encounter any attacks that can compromise the security

6018

properties of the big data streams. Results shown in

Figure 5 validate the above hypothesis; it also and shows

the neighbour authentication in the Scyther

environment. As stated in [13], we perform the security

verification at DSM; here, we follow the same concept

while adding the new key synchronization process.

Figure 6 shows the results of the security verification at

DSM after combining the synchronization method with

DLSeF.

Figure 7. Performance of security verification

at DSM.

6.2. Performance comparison

 The performance comparison experiment is carried out

in JCE (Java Cryptographic Environment). The

performance is based on the features of JCE in java

virtual machine version 1.6 64 bit. JCE is the standard

extension to the java platform which provides a

framework implementation for cryptographic methods.

We have performed experiments with different sizes of

data blocks by applying the synchronization over

DLSeF and named as MS-DLSeF (DLSeF modified for

synchronization). We also applied the same

synchronization proprieties over DPBSV and named as

MS-DPBSV (DPBSV modified for synchronization).

The results of our experiments are shown in Figure 7.

We compare the performance of our proposed method

over DLSeF (MS-DLSeF) and DPBSV (MS- DPBSV)

with the advanced encryption standard (AES) [20, 21],

DPBSV [11, 12] and DLSeF [13, 14]. Apart from the

neighbour synchronization we follow the properties of

DPBSV and DLSeF. From Figure 7, it is clear that the

synchronization method does not degrade the

performance of DPBSV and DLSeF in terms of security

verification speed.

6.3. Sensor node performance

 We experimented with the performance of the sensors

in terms of the overheads involved while computing

synchronized shared keys in COOJA simulator provided

by Contiki OS [7]. We modelled the two most common

types of sensor, i.e., Z1 and Trotsky. A Z1 sensor node

is equipped with the low power microcontroller

MSP430F2617, which features a powerful 16-bit RISC

CPU @16 MHz clock speed, built-in clock factory

calibration, 8 KB RAM and a 92 KB Flash memory.

TmoteSky is an ultra-low power sensor, and it is

equipped with the low power microcontroller

MSP430F1611, which has a built-in clock factory

calibration, a 10 KB RAM and a 48 KB Flash memory.

(a) Energy for
neighbour

authentication

(b) Energy for
security

verification
Figure 8. Energy consumption by using

COOJA in Contiki OS.

In this experiment, we measured the performance of

sensors while they transmit/receive information from

neighbours or dynamically update the shared key for

undertaking security verification process. Figure 8 (a)

shows the energy required by sensors during

transmitting/receiving synchronization properties from

neighbours and Figure 8 (b) shows the power

consumption behaviours for the key generation process.

From these experiments, we conclude that our proposed

method is lightweight as both the application of

synchronization properties and security verification

model consume very little sensor battery power.

From the above experiments, we conclude that our

proposed method is secured and efficient in term of

security verification speed.

7. Conclusion and future works

In this paper, we proposed a shared key

synchronization method to ensure an end-to-end

security in big data stream processing system consisting

of distributed sensors and cloud-hosted stream

processing engines (DSM). The proposed

synchronization technique was implemented and

verified in our previously proposed DPBSV and DLSeF

security verification method for big data streams. In

these previous models, sensors and DSM update their

shared key independently without requiring further

communication after handshaking phase. Proposed

method synchronize the shared key without

communication between sensing devices and DSM,

where sensing devices obtain the shared key re-

initialization properties from its neighbours. By

6019

theoretical analyses and experimental evaluations, we

showed that our proposed synchronization method

successfully scales within the DPBSV and DLSeF

models. In our future work, we will implement the

proposed model in a real IoT application that requires

near real-time decision making. We will further improve

our techniques to meet the requirements of dynamic IoT

networks.

8. Acknowledgements

This research is funded by an Australia India strategic

research grant, titled “Innovative Solutions for Big Data

and Disaster Management Applications on Clouds

(AISRF-08140),” from the Department of Industry,

Australia. The research in this paper is also partially

supported by ARC LP140100816.

9. References

[1] M. Stonebraker, U. Çetintemel, and S. Zdonik. "The 8

requirements of real-time stream processing." ACM SIGMOD

Record, 34(4), 2005, pp. 42-47.

[2] R. Nehme, et al. "StreamShield: a stream-centric approach

towards security and privacy in data stream environments."

In Proc. of ACM SIGMOD International Conference on

Management of data, 2009, pp. 1027-1030.

[3] V. Gulisano, et al. "Streamcloud: An elastic and scalable

data streaming system." IEEE Transactions on Parallel and

Distributed Systems, 23(12), 2012, pp. 2351-2365.

[4] A. Arasu, et al. "STREAM: the stanford stream data

manager (demonstration description)." In Proc. of ACM

SIGMOD international conference on Management of data,

2003, pp. 665-665.

[5] Scyther,[Online]

http://www.cs.ox.ac.uk/people/cas.cremers/scyther/

[6] M. Pistoia, et al. "Enterprise Java 2 Security: Building

Secure and Robust J2EE Applications." Addison Wesley

Professional, 2004.

[7] Contiki OS: http://www.contiki-os.org/ (accessed on:

04.08.2015).

[8] S. Sung, and J. Ryou. "ID-based sensor node authentication

for multi-layer sensor networks." Journal of Communications

and Networks, 16(4), 2014, pp. 363-370.

[9] H. Yeh, et al. "A secured authentication protocol for

wireless sensor networks using elliptic curves

cryptography." Sensors 11(5), 2011, pp. 4767-4779.

[10] M. Khan, and K. Alghathbar. "Cryptanalysis and security

improvements of ‘two-factor user authentication in wireless

sensor networks’." Sensors 10(3), 2010, pp. 2450-2459.

[11] D. Puthal, et al. "DPBSV--An Efficient and Secure

Scheme for Big Sensing Data Stream." In Proc. of

Trustcom/BigDataSE/ISPA, vol. 1, pp. 246-253. IEEE, 2015.

[12] D. Puthal, et al. "A Dynamic Prime Number Based

Efficient Security Mechanism for Big Sensing Data Streams."

Journal of Computer and System Sciences 83(1), 2017, pp. 22-

42.

[13] D. Puthal, et al. "A Dynamic Key Length Based Approach

for Real-Time Security Verification of Big Sensing Data

Stream." In Proc. of 16th International Conference on Web

Information System Engineering (WISE), 2015, pp. 93-108.

[14] D. Puthal, et al. " DLSeF: A Dynamic Key Length based

Efficient Real-Time Security Verification Model for Big Data

Stream." In ACM Transactions on Embedded Computing

Systems (TECS), 2016.

[15] D. Carney, et al. "Monitoring streams: a new class of data

management applications." In Proc. of 28th international

conference on Very Large Data Bases, 2002, pp. 215-226.

[16] S. Chandrasekaran, et al. "TelegraphCQ: continuous

dataflow processing." In Proc. of ACM SIGMOD

international conference on Management of data, 2003, pp.

668-668.

[17] E. Bertino, S. Nepal, and R. Ranjan. "Building Sensor-

Based Big Data Cyberinfrastructures." IEEE Cloud

Computing 2(5), 2015, pp. 64-69.

[18] R. Ranjan. "Streaming big data processing in datacenter

clouds." IEEE Cloud Computing 1(1), 2014, pp. 78-83.

[19] S. Nepal, et al. "A mobile and portable trusted computing

platform." EURASIP Journal on Wireless Communications

and Networking, 2011(1), 2011, pp. 1-19.

[20] PUB, NIST FIPS. "197: Advanced encryption standard

(AES)." Federal Information Processing Standards

Publication 197, 2001, pp. 441-0311.

[21] S. Heron. "Advanced Encryption Standard (AES)."

Network Security 2009(12), 2009, pp. 8-12.

[22] www.cloudflare.com (accessed on: 04.08.2015).

[23] TCG Trusted Platform Module (TPM) specification,

https://www.trustedcomputinggroup.org/specs/tpm/ (accessed

on: 04.08.2015).

 [24] T. Park. "LiSP: Lightweight Security Protocols for

Wireless Sensor Networks." PhD dissertation, The University

of Michigan, 2005.

[25] RA Shaikh, S. Lee, and A. Albeshri. "Security

completeness problem in wireless sensor

networks." Intelligent Automation & Soft Computing 21(2),

2015, pp. 235-250.

[26] MA Jan, et al. "A Sybil attack detection scheme for a

forest wildfire monitoring application." In Future Generation

Computer Systems, 2016.

[27] D. Puthal, et al. "Threats to Networking Cloud and Edge

Datacenters in the Internet of Things." IEEE Cloud

Computing 3(3), 2016, pp. 64-71.

6020

