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Abstract 
A large number of mission critical applications 

ranging from disaster management to smart city are 

built on the Internet of Things (IoT) platform by 

deploying a number of smart sensors in a heterogeneous 

environment. The key requirements of such applications 

are the need of near real-time stream data processing in 

large scale sensing networks. This trend gives birth of 

an area called big data stream. One of the key problems 

in big data stream is to ensure the end-to-end security. 

To address this challenge, we proposed Dynamic Prime 

Number Based Security Verification (DPBSV) and 

Dynamic Key Length Based Security Framework 

(DLSeF) methods for big data streams based on the 

shared key derived from synchronized prime numbers in 

our earlier works. One of the major shortcomings of 

these methods is that they assume synchronization of the 

shared key. However, the assumption does not hold 

when the communication between Data Stream 

Manager (DSM) and sensing devices is broken. To 

address this problem, this paper proposes an adaptive 

technique to synchronize the shared key without 

communication between sensing devices and DSM, 

where sensing devices obtain the shared key re-

initialization properties from its neighbours. 

Theoretical analyses and experimental results show that 

the proposed technique can be integrated with our 

DPBSV and DLSeF methods without degrading the 

performance and efficiency. We observed that the 

proposed synchronization method also strengthens the 

security of the models. 

1. Introduction  

There are a large number of critical applications, 

such as large-scale sensor networks for environment 

sensing, disaster management, remote health 

monitoring and smart homes, that require near real-time 

data stream to be processed in datacentres for enabling 

data-driven decisions. These applications produce high 

volume, velocity data that should be processed in near-

real time to detect events such as heart-attacks in the 

context of remote health monitoring and telephony 

frauds in the context of telecommunication. These 

applications require a paradigm shift as compared to 

traditional store and process later approaches [1]. 

Clearly, traditional approaches cannot support near real-

time decision making. To address this near real-time 

decision making requirement, a new cloud-based 

computing paradigm based on Stream Processing 

Engines (SPEs) has evolved [4, 17, 18]. SPEs can 

process the data stream on the fly [15, 16] in contrast to 

store and process later approaches enabled by batch 

processing engines such as Apache Hadoop and 

Amazon Elastic MapReduce. The need of real-time 

processing for high volume and high velocity input data 

arises due to the need of real time detection of events in 

combination with the fact that the data cannot be 

persisted for later analysis for practical reasons (e.g., 

data storage overhead) [12]. SPEs can process data in 

near real-time, but they have security limitations as 

discussed next. In addition, Data Stream Manager 

(DSM) undertakes the security verification of the data 

blocks on-the-fly before SPEs. These features present 

significant opportunities and challenges in the area of 

data security and freshness of big data stream [11, 12]. 

Let us consider a Disaster Management (DM) 

application to motivate the end-to-end (i.e., from 

Sensing Devices to Cloud Data Centre processing layer) 

security problem that exists with the current generation 

of SPEs and relevant stream processing algorithmic 

approaches. DM applications rely on near real-time 

processing of sensor data in the cloud. Efficiency and 

effectiveness of decision making and event (e.g., 

flooding, tsunami, landslides etc.) detection in DM 

applications is dependent on the following security 

related properties of the sensor data including 

confidentiality, integrity, authenticity and freshness. 

Any compromise on the above mentioned security 

related properties of data during processing and/or 

transmission will lead to inaccurate event detection and 

decision making. Ultimately this leads to the loss of 

lives and critical infrastructures. Hence, these 

applications require end-to-end security to increase the 

reliability of the data analysis pipelines.  
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StreamShield is a stream centric architecture for 

security and privacy in data stream environments, where 

authors highlighted the requirement of security in data 

stream for the very first time [2]. Authors broadly 

divided the security issues in two parts (i.e. data security 

and query security) and both these security issues were 

applied for stream data analysis. Following this 

architecture, we identify four important requirements 

and properties for security verification of big data 

stream: (a) near real-time security verification, (b) 

dealing with high volume and velocity of data, (c) the 

data items should only be accessed once, and (d) the 

original data are not available for comparisons [11, 12, 

13, 14]. We focused on addressing big data stream 

security requirements by keeping all these big data 

stream constraints. We proposed a novel light weight 

security model by ensuring end-to-end security for big 

data streams. First, we proposed a Dynamic Prime 

Number Based Security Verification (DPBSV) scheme 

for big data stream processing, which is based on a 

common shared key that is updated dynamically by 

generating synchronized pairs of prime numbers [11, 

12]. Later to make it more efficient and reduce the 

computational overhead and buffer size, we proposed a 

Dynamic Key Length Based Security Framework 

(DLSeF) based on the shared key derived from 

synchronized prime numbers [13, 14]. These two 

techniques were proposed to maintain the end-to-end 

security of big sensing data stream and perform security 

verification at DSM.  

All these above security solutions follow the 

independent rekeying process without further 

communications between the source sensors and DSM 

after handshaking. However, it is impossible to continue 

the key update and data transmission without any 

interruptions in a hostile nature of source sensing area. 

Hence, the source side key generation synchronization 

is a major problem with above security solutions 

(DPBSV and DLSeF). In these models, a source node 

sends a request message to DSM to get the 

synchronization properties if there is any kind of key 

desynchronization, which is not an efficient way to get 

synchronization properties. By focusing on this 

problem, we propose a novel synchronization method in 

this paper in which source sensors get synchronization 

properties from their neighbours. As the sensing sources 

are distributed in a hostile environment and nodes do not 

have any neighbour/network information, it is a 

challenging task to identify the authenticated neighbour 

and retrieve the synchronization properties. The 

contributions of the paper is summarized as follows: 

• We present a synchronized shared key 

generation method.  

• We apply the synchronization method over 

DPBSV and DLSeF security architecture.   

• We evaluate the model both theoretically and 

empirically.   

The rest of this paper is organized as follows. 

Section 2 details the related literature. Section 3 presents 

the problem statement for key synchronization in the big 

data stream based applications. Section 4 describes the 

proposed synchronization method and its association 

with DLSeF architecture. Section 5 presents the 

theoretical analysis, and section 6 evaluates the 

performance and efficiency of the method through 

experiments. Section 7 concludes the paper by outlining 

potential future works. 

2. Related works  

Ensuring the end-to-end security of big data streams 

has emerged as an important research topic in many 

stream processing applications such as disaster 

management, telephony fraud detection and credit card 

fraud detection. In this section, we describe related 

works that cover the research areas such as stream 

processing, and secure authentication of neighbours. 

Stonebraker et al. [1] outlined eight core features 

that a framework or system must possess in order to be 

able to efficiently handle stream processing workloads. 

These core features include (i) the continuous flow 

nature of data stream, (ii) handling the data 

imperfection, (iii) maintaining the data security, (iv) 

integrated store and stream data, (v) partition and scale 

applications automatically, (vi) query processing on 

streams, (vii) expectations of query outcomes and (viii) 

process and respond instantaneously. Our aim is to 

ensure the data safety (iii) and availability (viii) features 

of big data streams. Nehme et al. initially proposed an 

architecture by addressing the needs of data security and 

query security in streaming environments [2]. They 

proposed a continuous access control architecture, 

named StreamShield, which ensures query security. 

However, StreamShield is unable to ensure end-to-end 

data security of streams.   

Arasu et al. proposed a Data Stream Management 

System (DSMS), called STanford stREam data 

Manager (STREAM) [4]. It is intended to deal with high 

velocity data rates and substantial numbers of 

continuous queries through adaptive resource 

allocation; however, STREAM cannot ensure data 

security properties. Similar to STREAM, StreamCloud 

is a large scalable elastic data streaming system for 

processing large data stream in cloud [3].  

Sung et al. describes an identification based node 

authentication, which can be used to solve key 

agreement problem in a three-layer interaction of sensor 

networks [8]. Authors consider the characteristics, 

architecture, and vulnerability of the sensors, and 

provides an ID-based node authentication scheme. An 

Elliptic Curves Cryptography (ECC) based 
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authentication protocol has been proposed in WSN [9] 

for device authentication. Khan et al. [10] showed the 

M.L. Das-scheme’s security pitfalls and proposed an 

improvement and security patches that attempt to fix the 

susceptibilities of this scheme. Both of the above are a 

secure authentication protocol but are computationally 

rich, which do not follow the big data stream properties 

as stated in the Introduction section. Park [24] explained 

an interesting technique to get the time stamp from 

neighbours for robustness to clock skews among nodes. 

The neighbour is authenticated to get the 

synchronization properties. In [25], a sensor classified 

its neighbours based on the geographic location and 

communicated to the trusted neighbours. Our network 

structure is different from other network structure by 

considering DSM as a centralized processor; so we need 

a new solution for our model. In this paper, we propose 

a new synchronization method on the above DPBSV 

and DLSeF models. 

3. Problem statement  

Security of big sensing data stream is a major issue 

for several applications including disaster management, 

emergency management, event detections etc. [12]. By 

considering these applications, DPBSV and DLSeF are 

two security solutions proposed to maintain the end-to-

end security in big sensing data stream. In both of these 

models, source sensor devices and DSM never 

communicate between themselves after handshaking. 

During handshaking process, DSM sends the key 

generation properties to source sensors and the sensors 

save the sensitive key generation properties in secure 

module of the sensor such as TPM. The TPM is a 

dedicated security chip following the Trust Computing 

standard specification for cryptographic microcontroller 

systems [23]. TPM provides a cost effective way of 

“hardening” many recently deployed applications, those 

are previously based on software encryption algorithms 

with keys kept on a host’s disk [19, 23]. It provides a 

hardware based trust, which contains cryptographic 

functionality like key generation, store, and 

management in hardware. So source sensor performs the 

rekeying process independently. The above security 

solutions follow these methods to satisfy the big data 

stream properties (from Introduction Section). Here, 

synchronization in shared key generation between the 

source and DSM is a major issue and needs to be solved. 

The complete architecture of data flows from source 

sensing device to cloud datacenter with possible attacks 

is shown in Figure 1. We refer to [8] for further 

information on stream data processing in cloud. 

To address these issues and make the security 

solutions more efficient, we propose a novel 

synchronization technique for big data stream. 

Authentication of neighbour nodes to get the keys, clock 

skew, and other properties are very common for wireless 

sensor networks [24, 25]. We use a similar method with 

minor modifications according to our network structure 

to get the key synchronization properties from 

neighbours. Different network structures use different 

properties such as cluster head or group key or base 

station information, for neighbour node authentication 

[26, 27]. According to our network structure, all sources 

have DSM properties along with the current time 

interval. So we use these properties for neighbour 

authentication. We follow the method to get the 

properties from neighbours because all source sensors 

use the same key in the given time interval to perform 

the encryption. There are two major synchronisation 

issues that need to be addressed for DPBSV and DLSeF 

model: (a) time synchronization (follow particular time 

to start the key generation process), and (b) the 

synchronisation of the shared key when source sensor 

missed the current key because of a malicious activity 

or natural hazards.  

As the source sensing area is distributed in nature 

and the source performs the shared key generation 

independently, time to start the key generation is a 

challenging and important issue for security models. In 

any hazardous situations, sensors may miss the shared 

keys or key synchronization. Because of the TPM 

properties, key generation properties remain safe in 

sensors. So sensors only need the key generation 

properties to restart synchronize key generation and 

send data blocks to DSM.  

Figure 1. Overlay architecture of sensing 
device to cloud data processing center, and 

possible attacks during data flow. 

4. Proposed synchronization method 

Our security model is motivated by the concept of 

moving target defense. The basic idea is that the keys 
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are the targets of attacks by attackers. To avoid such 

problems in big sensing data streams, we proposed 

novel techniques such as DPBSV [12] and DLSeF [14]. 

In these models, if an intruder/ attacker eventually hacks 

the key, the data and time period is selected in such a 

way that he/she cannot predict the key or its length for 

the next session. In such models, there are two major 

synchronisation issues that need to be addressed: (a) the 

precise time to start the key generation process (time 

synchronization) and (b) the synchronisation of the 

shared key as discussed before. While addressing the 

synchronisation issues, it is important to note that no 

compromise is made on the authenticity, integrity and 

partial confidentiality (maintain confidentiality in real 

time) of the data, which are important to make decision 

from the collected data. In this paper, we have addressed 

the initial process synchronization properties with the 

lost shared key synchronization over DLSeF model.  

Table 1. Notations used in our model 

Acronym Description 

𝑆𝑖   ith source sensing device’s ID. 

Di DSM  ID 

𝐾𝑖 ith source device’s secret key. 

𝐾𝑠𝑖  ith source device’s session key. 

𝑘𝑙 Key length  

𝐾𝑆𝐻 Secret shared key at sensor and DSM 

𝐾𝑆𝐻− Previous secret shared key. 

𝑟 Pseudo random number.  

𝑡 Interval time to generate the prime 

number. 

𝑇 Timestamp added with data blocks. 

T′ Current time  

T′′ Time to start the process.  

𝑃𝑖 Random prime number. 

𝐾𝑑 Secret key of the DSM. 

𝐼𝐷 Data for integrity check. 

𝐴𝐷 Secret key for authenticity check. 

𝐸( ) Encryption function. 

𝐻( ) One-way hash function. 

𝑃𝑟𝑖𝑚𝑒(𝑃𝑖) Prime number generation function. 

KeyGen Key generation procedure. 

Key-Length 

( ) 

Key length selection procedure.  

⊕ Bitwise X-OR operation. 

∥ Concatenation operation. 

RQA Authentication request message. 

RPA Authentication response message. 

Similar to DPBSV and DLSeF security solutions 

[11, 12, 13, 14], we added synchronisation processes 

(both time synchronization and key synchronization) to 

them with the standard steps: system setup, 

handshaking, rekeying, key synchronization and 

security verification. We follow DLSeF system setup, 

handshaking, rekeying model with minor modifications 

before synchronization properties are described. Table 1 

provides the notations used in modelling our method. 

We next describe the proposed method.   

 
Figure 2. Secure authentication between 
Sensor and DSM during system setup (from 
DLSeF model [13]). 

4.1. System setup  

In this step, we assume that DSM has all deployed 

sensing device’s identities (IDs) and respective secret 

keys because the network is untrusted and hostile in 

nature. Sensing devices and DSM implement some 

common primitives such as hash function (i.e. H( )), and 

common key (K1- K4), which are executed during the 

initial identification and system setup steps.  

The proposed authentication process follows the 

DLSeF authentication phase that includes five different 

steps [13, 14]. The first three steps are for the sensing 

device and DSM authentication process and the final 

two steps are for the session key generation process as 

shown in Figure 2. The session key (Ksi) is utilized 

during the handshaking process which was generated 

during the system setup step. 

We keep the hashing and shared key at the source 

sensor to use in future for data encryption and neighbour 

authentication (refer Figure 2). We are using the trusted 

part of sensors (i.e. TPM) to keep the secret information 

of source sensors [19].  

4.2. Handshaking  

In the handshaking process, the DSM sends the key 

generation and synchronization properties to sensors 

based on their individual session key (Ksi) established 

earlier during authentication process.  

The dynamic prime number generation function 

computes the relative prime number, which always 

depends on the previous prime number [13]. It is also 

already proved that the generated number will always be 

prime number and synchronized between source devices 

and DSM [13].  We follow DLSeF method for rekeying 

time interval according to the key length.  

DSM sends a time chunk, i.e., T′′ along with other 

properties i.e. 𝐾𝑑, 𝑡, , 𝑃𝑖,
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𝑃𝑟𝑖𝑚𝑒 ( ), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ( ),  𝐾𝑆𝐻, 𝐾𝑒𝑦𝐺𝑒𝑛 [11, 12, 13, 

14]. This time stamp (T′′) is used at source to initialize 

the key generation process and sent the encrypted data 

blocks to the DSM. If any sources missed the time stamp 

to initialize the process, it will send request to DSM to 

get the time stamp again. New sources joining to the 

network need to follow the step to start the key 

generation/ rekeying process.  

Si ← DSM: { 𝐸𝐾𝑠𝑖
(𝐾𝑑 , 𝑡, T′′, 𝑃𝑖 ,

𝑃𝑟𝑖𝑚𝑒 ( ), 𝐾𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ( ), 𝐾𝑆𝐻 , 𝐾𝑒𝑦𝐺𝑒𝑛)}  

All of these above transferred information are stored 

in the trusted part of source for future rekeying process 

(e.g., TPM) [19].   

Table 2. Time taken by symmetric key (AES) 
algorithm to get all possible keys using the 
most advanced Intel i7 processor. 

Key Length 32 64 128 

Key domain size 4.295e+

09 

1.845e 

+19 

3.4028e

+38 

Time (in 

nanoseconds) 

7.301e+

09 

3136e 

+19 

5.7848e

+35 

4.3. Rekeying  

Our proposed method not only calculates the 

dynamic prime number to update the shared key without 

further communication after handshaking, but also 

dynamically change the key length at sensor and DSM. 

We follow the DLSeF Rekeying process to ensure that 

the protocol remains secured [13]. According to the 

properties of the TPM, no one have access to contents 

which is stored inside the TPM. Only the corresponding 

sensor can access TPM properties [19]. From the 

Handshaking process, sensors are aware of the Prime 

(Pi), KeyLength, and KeyGen. Now we describe the 

complete rekeying process by using those functions and 

keys from DLSeF model. The synchronized dynamic 

prime number Pi is generated on both ends, i.e., sensors 

and DSM [13], to be used for the rekeying process. Now 

sensors need to wait for the time T′′ to start the key 

generation process. 

ALGORITHM 1. Key Generation (Rekeying) Process  

1. Dynamic prime number Prime (𝑃𝑖) [13]. 

2. Following DLSeF method [13]: 

2.1 t (time interval) = {t1, t2, t3, …} 

Here t1, t2, t3, … are the time interval for 

rekeying. (32/64/128-bit key from DLSeF) 

2.2 At time (t), 𝑆𝑖 and D compute 𝐾𝑆𝐻= 

𝐸𝐾𝑆𝐻
(H(𝑃𝑖 , 𝐾𝑑)).  

2.3 After time (t), reinitialize from Step 1. 

3. The encryption process at sensor as follows 

3.1 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻 // For integrity check 

3.2 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻 // For Authentication check 

4. Si → DSM: {(ID∥(AD∥T))}// Data format to DSM 
 

By following DLSeF model, sensors generate the 

shared key 𝐾𝑆𝐻=(𝐸(𝑃𝑖,𝐾𝑑)) using the prime number 𝑃𝑖, 
and DSM’s secret key 𝐸(P𝑖,𝐾𝑑). We use the secret key 

of DSM to improve the robustness of the security 

verification process and fixed the initial key length as 64 

bits. The data blocks divided into two different parts, 

i.e., authentication and integrity verification. One is 

encrypted DATA based on shared key 𝐾𝑆𝐻 for integrity 

checking (i.e., 𝐼𝐷=𝐷𝐴𝑇𝐴⊕𝐾𝑆𝐻), and the other part is 

for the authenticity checking (i.e., 𝐴𝐷=𝑆𝑖⊕𝐾𝑆𝐻). The 

resulting data block ((DAT𝐴⊕𝐾𝑆𝐻) ∥ (𝑆𝑖⊕𝐾𝑆𝐻)) is sent 

to DSM as follows:  

Si → DSM: {(𝐼𝐷∥(𝐴𝐷∥T))}.  

The procedure of rekeying process is shown in 

Algorithm 1.  

 
Figure 3. Neighbour node discover to get the 
current state of key generation properties. 

 
Figure 4. Neighbour discovery to get the key 
synchronization properties with all possible 
conditions.  (a) node Si sends RQA message to 
all its one-hop neighbours; (b) the sender 
receives the RPA of individual RQA; (c) Si send 
ACK to only authenticated synchronized 
neighbours; (d) node Si receives the 
synchronization properties. 

4.4. Key synchronization  

Synchronization is one of the major issues during the 

rekeying process between sensors and DSM, as they are 
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not interacting after handshaking process. The shared 

key synchronization is based on the initial key 

generation process followed by the rekeying. So the 

initial key synchronization is to make a common time to 

start the key generation process. In our model, DSM 

works as a centralize controller. So DSM initiates the 

key generation process. As defined before, during the 

handshaking process DSM sends back to the source (Si) 

with a time stamp T′′ to initialize the key generation 

process.  

There are potentially two cases (i) sensor starts the 

process on time to maintain synchronization; (ii) sensor 

may be missing the time stamp T′′ or later receives the 

key generation properties after time stamp. In the second 

case, source sensor send request to get the next time 

stamp for key generation process.  

There are several reasons for sensors to be out of 

sync such as inability of the source node to generate the 

shared key by some computational overhead or by any 

natural disaster or by any malicious activity. Even if a 

sensor missed the synchronization, it does not miss the 

key generation properties because of the TPM features 

[19]. In such cases, the source sensor (Si) gets 

synchronization properties from its neighbours. 

According to the source network structure, sensors do 

not have neighbour information. So it’s a challenging 

task to identify the neighbours and get the key 

synchronization properties. The procedure to obtain 

shared key properties from unknown neighbours is 

given below.  

4.4.1. Initial setup. Let us assume that sensor (Si) 

missed the synchronization. The Sensor (Si) computes a 

Pseudo Random Number, i.e., PRN(r), using the current 

prime number (Pi) and the shared key (KSH) to generate 

the authentication request message (RQA) i.e. RQA ← 

H(EKSH(r ∥ Pi ∥ Kd)). Then the resultant RQA, DSM ID 

(Di) and time stamp (T) encrypt with mutual key K4 

from the system setup steps (EK4(RQA ∥ T ∥ Di)) (refer 

to Figure 2). We use this key for encryption because all 

the authenticated nodes have this key from DSM during 

the system setup phase.    

4.4.2. Synchronization phase. The out of sync sensor 

(Si) broadcasts this to its one-hop neighbours. When the 

neighbour sensors receive the information, it decrypts 

with its mutual key i.e. K4 (DK4(RQA ∥ T ∥ Di)). It 

compares the received time frame (T) with its current 

time (T′) to check the data freshness and avoid the replay 

attack (T - T′ ≤ ΔT). If the time difference is less then 

ΔT, then it accepts the data packet; otherwise it is 

discarded. Here ΔT is the average time required to 

transmit data packet between source and DSM. 

The neighbour node (denoted as Sj) compares the 

received DSM ID with its own DSM ID to validate the 

source as the authenticated one. To make the 

authentication process stronger, we perform two layer 

encryption of the request (RQA). Sensor (Sj) perform 

the hash and decrypt the second layer with the shared 

key (KSH), i.e. H(DKSH(r ∥ Pi ∥ Kd)). It uses previous 

shared key if the shared key 𝐾𝑆𝐻−  is modified in the 

meantime and compares the DSM ID by retrieving it 

using the DSM secret key (Di← retriveKey(Kd)).   

After authentication process, Sj prepares 

authentication response message (RPA) by including its 

own ID, DSM ID and pseudo random number r (RPA ← 

EKSH(Sj ∥ Di ∥ r)). It then encrypts the RPA along with 

DSM key and time stamp by using the same key K4 

(EK4(RPA ∥ Kd ∥ T)).  

Once Si receives the RPA, it is processed in the same 

way to authenticate the node Sj (DK4(RPA ∥ Kd ∥ T)). 

First it compares the time to avoid replay attack (T - T′ 

≤ ΔT) and compares the DSM ID (Di← retriveKey(Kd)) 

and value of r to perform authentication. Here 

desynchronized source node (Si) encounters three 

different types of neighbours: malicious node, 

desynchronized authenticated node and synchronized 

authenticated node as shown in Figure 4. Malicious 

neighbours cannot decrypt Si request because it is 

encrypted by the secret key. But a desynchronized 

authenticated node can read the request. Once it came to 

know that the source (Si) is seeking the key 

synchronization properties, it sends the response with its 

desynchronization indication. The source discards the 

RPA received from such nodes. If the source node 

receives RPA from authenticated synchronised 

neighbour, Si choses such node by sending the ACK in 

order to get the key synchronization properties 

(EKSH(ACK ∥ Si ∥ T)).  

This acknowledgement message (i.e. ACK) confirms 

the mutual authentication between the source and  

synchronised neighbour to obtain the key 

synchronization properties (DKSH(ACK ∥ Si ∥ T)). After 

receiving the acknowledgement message, the 

authenticated neighbour gets the source node ID and 

sends the shared key properties (Pi, KSH, t) to source 

node as EKSH(Pi, KSH, t, T). 

When the desynchronized source gets the shared key 

synchronization properties (DKSH(Pi, KSH, t, T)), it can 

generate the shared key by itself, because it has the 

prime number (Pi), shared key (KSH), and time to change 

the next key (t). Every time we are checking the time 

interval in order to avoid the replay and DoS attacks. 

The stepwise representation of the neighbour 

authentication to obtain the shared key properties is 

shown in Figure 3.  

4.4.3. New node synchronization. If there is a new 

source node joining to the network, then it starts the 

authentication process with DSM to get the key 

generation properties. After receiving the key 

generation properties from DSM, the node (n) either 
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starts the process or authenticate with the neighbour 

nodes to compare the synchronization properties. 

4.5. Security verification  

In this step, the DSM first checks the authenticity in 

each individual data block 𝐴𝐷 and then the integrity 

with the randomly selected data blocks 𝐼𝐷. Here data 

block is divided into two blocks for authenticity 

checking and integrity checking. Along with 

authenticity checking, we add timestamp (T) in order to 

get the data freshness and avoid replay attack. We 

change the security verification for data integrity in 

random interval of data packets according to the DLSeF 

properties [13, 14]. We prefer to change the integrity 

verification interval that is directly proportional to the 

shared key length because the key length is inversely 

proportional to the possibilities of data accessible. The 

data block at DSM for security verification is 

represented as: {(𝐼𝐷∥(𝐴𝐷∥T))}. DSM first checks the 

authentication part to get the timestamp. It compares its 

own timestamp with the received one i.e. T - T′ ≤ ΔT. If 

the time interval is less than or equal to the predefined 

time ΔT, then it accepts the data; otherwise it is rejected. 

This will help to maintain the data freshness and avoid 

the replay attack. Initial time checking and the 

authenticated source checking can avoid the DoS (denial 

of service) attack. Another important advantage of 

adding the time stamp (T) is to get the shared key used 

for the encryption process. If the shared key is updated 

after receiving the data block encryption, then DSM 

uses the previous shared key (𝐾𝑆𝐻−) for decrypting the 

data instead of current key (𝐾𝑆𝐻). 

We are updating the shared key before the possible 

attacks. For the authenticity check, the DSM decrypts 

𝐴𝐷 with shared key 𝑆𝑖=𝐴𝐷⊕𝐾𝑆𝐻. Once Si is obtained, 

the DSM checks its source database and extracts the 

corresponding secret key 𝐾𝑖 (𝐾𝑖 ← 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐾𝑒𝑦(𝑆
𝑖 
)). 

In the integrity check process, the DSM decrypts the 

selected data such as 𝐷𝐴𝑇𝐴=𝐼𝐷⊕𝐾𝑆𝐻 to get the 

original data and checks MAC for the data integrity.   

5. Theoretical analysis 

This section provides a theoretical analysis of our 

proposed model to show that the proposed 

synchronization method works efficiently by getting the 

shared key properties from the neighbours. We also 

apply the synchronization properties over DPBSV and 

DLSF and prove that the models are safe against the 

network attacks. Proposed synchronization method 

never interrupt the shared key generation at sensors.  

We have made a number of practical and realistic 

assumption in our method. In the following, we first 

describe those assumptions. 

Assumption 1. In our method, the data that was 

encrypted by a symmetric-key algorithm cannot be 

decrypted by any parties, unless they have the 

session/shared key.  

Assumption 2. Shared key (KSH) calculation 

procedures reside inside trusted parts of the sensor (like 

TPM) so that no one is authorized to access and 

manipulate them [12].  

We define our threat model, which is similar to the 

most cryptologic analyses, to the shared key properties 

as follows:  

Theorem 1. According to the proposed synchronization 

method, the shared key (KSH) is always synchronized 

between Source sensor (Si) and DSM. 

Proof: We are following the DLSeF security 

verification model and added the shared 

synchronization properties to it. According to DLSeF 

properties, the dynamic shared key length varies in 32 

bit, 64 bit, and 128 bit; these keys are updated both 

source and DSM ends. The shared key is updated 

without further communications between Si and DSM 

after handshaking. A variation in key length introduces 

a complexity to the attackers to predict the next shared 

key. The ECRYPT II recommendations on key length 

say that a 128-bit symmetric key provides the same 

strength of protection as a 3,248-bit asymmetric key. 

Advanced processor (Intel i7 Processor) took about 1.7 

nanoseconds to try out one key from one block. With 

this speed, it would take about 1.3 × 1012× the age of 

the universe to check all the keys from the possible key 

set [22]. All the related key domain and the time 

required to get the possible keys by using Inter i7 

processor are listed in Table 2. We follow the DLSeF 

model to select the key lengths [13]. 

Here, we are highlighting the synchronization in two 

places (i) source sensor with DSM at initial key 

generation process and (ii) while obtaining the 

synchronization properties from neighbour. For the first 

option (during the handshaking process), DSM sends 

the key generation properties to Si along with the 

timestamp (T′′) to set the key generation time. Then both 

DSM and Si generate the shared key with dynamic 

length and interval as in DLSeF method. This means the 

shared key will be synchronized at both ends. In second 

option (obtaining the synchronization properties from 

neighbours), if any of the source desynchronized, it 

initiates the neighbour authentication process to 

discover authenticated synchronized neighbour (see 

Figure 3). After authentication, neighbour sends the key 

generation properties EKSH(Pi, KSH, t, T), where T is for 

data freshness and t is the start of the key generation 

process. Then source Si can use the current key and use 

these properties to update the next key (i.e. 

𝐾𝑆𝐻=(𝐸(𝑃𝑖,𝐾𝑑))) after time t. Now source Si became 

synchronize with other sources and DSM.  
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Theorem 2. After applying synchronization, security 

verification models (DPBSV and DLSeF) are protected 

against authentication, integrity and partially 

confidentiality. 

Proof: Please refer to [11, 12] for the attack 

properties associated with DPBSV model and [13, 14] 

with the DLSeF model. By considering TPM properties, 

we know that an attacker cannot get the secret 

information (Pi, Ki, KSH) or the key generation properties 

(KeyGen). During the neighbourhood authentication 

procss, a sensor (Si) shares the synchronization 

properties after authentication and gets the DSM ID and 

the secret key (see Figure 3). So there are no possibilities 

for the malicious nodes to trap authenticated sensors to 

get the shared key generation properties. Following 

neighbour synchronization properties, malicious nodes 

cannot interfere because neighbours identify each other 

through the DSM ID (Kd) and the encryption process 

uses the secret key (EK4). Those properties are not 

known to malicious nodes. We know that an intruder 

cannot get the currently used KSH within the time 

interval t (see Table 2), because our proposed method 

calculates Pi randomly after time interval t and then uses 

the value Pi to generate KSH. But an attacker can 

introduce itself as an authenticated node to send packets.   
We know that DPBSV [11] and DLSeF [13] are 

protected against authentication, integrity and partially 

confidentiality. From above, we conclude that, an 

attacker cannot get the shared key information during 

neighbour synchronization. By combining the above 

two we conclude that the security verification models 

are safe after including the synchronization properties. 

Theorem 3. After applying the synchronization, the 

security verification models avoid replay attacks. 

Proof: There are potentially two places for replay 

attacks (i) during the neighbour authentication; (ii) the 

security verification at DSM.  In both of these cases we 

are adding a time stamp i.e. T in packets. During the 

security verification at DSM, DSM checks for the data 

freshness by comparing the time interval between the 

sent and received time of data blocks such as T - T′ ≤ 

ΔT. If the interval is less than or equal to ΔT, then the  

data block is accepted; otherwise it is rejected. 

Application of this rule keeps rejecting the delayed data 

packets. but maintains the data freshness and avoids the 

replay attacks. Through the time interval (ΔT), it is easy 

for DSM to find the shared key used for encryption 

(𝐾𝑆𝐻− or KSH). We also follow the same method to avoid 

replay attack during neighbour authentication. By using 

such method, our model is proven to be more efficient 

to avoid the DoS attacks. 

6. Experiment and evaluation 

In order to evaluate the performance of the proposed 

key synchronization method under the adverse 

conditions, we validate our proposed method in a well-

established security protocol simulation environment. 

We first verify the security method using Scyther [5], 

and then measure the efficiency of the same in the JCE 

(Java Cryptographic Environment) [6]. Finally, we 

check the performance of security aware sensor data 

encryption and sensor node performance in COOJA 

simulator provided by Contiki OS [7].   

6.1. Security verification  

The proposed method for synchronized shared key 

is implemented in the Scyther simulation environment 

using the Security Protocol Description Language 

(.spdl). The efficacy of the proposed security is 

observed for two important instances (i) during the 

security verification at DSM and (ii) during neighbour 

authentication process. According to the features of 

Scyther, Si is the sender (i.e., source sensor), Sj is the 

neighbour of Si (neighbour authentication) and D is the 

recipient (i.e., DSM). Apart from these, we follow the 

default properties of Scyther. Many types of 

cryptographic attack can be considered in our simulation 

context. In our case, we focus on integrity, 

authentication, data confidentiality (in real time), and 

replay attacks as discussed above. We used Scyther, an 

automatic security protocols verification tool, for 

verifying our model.  

 
Figure 5. Secure authentication results. 

 
Figure 6. Security verifications results at DSM. 

Results: We did our simulation using variable 

numbers of data blocks in each run. Our experiment 

ranges from 10 to 100 instances with the intervals of 10. 

During the neighbour authentication, both sensors Si 

and Sj authenticate themselves while hiding the DSM 

ID and secret key. In the experiment, we did not 

encounter any attacks that can compromise the security 
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properties of the big data streams. Results shown in 

Figure 5 validate the above hypothesis; it also and shows 

the neighbour authentication in the Scyther 

environment. As stated in [13], we perform the security 

verification at DSM; here, we follow the same concept 

while adding the new key synchronization process. 

Figure 6 shows the results of the security verification at 

DSM after combining the synchronization method with 

DLSeF. 

 
Figure 7. Performance of security verification 

at DSM. 

6.2. Performance comparison 

 The performance comparison experiment is carried out 

in JCE (Java Cryptographic Environment). The 

performance is based on the features of JCE in java 

virtual machine version 1.6 64 bit. JCE is the standard 

extension to the java platform which provides a 

framework implementation for cryptographic methods. 

We have performed experiments with different sizes of 

data blocks by applying the synchronization over 

DLSeF and named as MS-DLSeF (DLSeF modified for 

synchronization). We also applied the same 

synchronization proprieties over DPBSV and named as 

MS-DPBSV (DPBSV modified for synchronization). 

The results of our experiments are shown in Figure 7. 

We compare the performance of our proposed method 

over DLSeF (MS-DLSeF) and DPBSV (MS- DPBSV) 

with the advanced encryption standard (AES) [20, 21], 

DPBSV [11, 12] and DLSeF [13, 14]. Apart from the 

neighbour synchronization we follow the properties of 

DPBSV and DLSeF. From Figure 7, it is clear that the 

synchronization method does not degrade the 

performance of DPBSV and DLSeF in terms of security 

verification speed.  

6.3. Sensor node performance 

 We experimented with the performance of the sensors 

in terms of the overheads involved while computing 

synchronized shared keys in COOJA simulator provided 

by Contiki OS [7]. We modelled the two most common 

types of sensor, i.e., Z1 and Trotsky. A Z1 sensor node 

is equipped with the low power microcontroller 

MSP430F2617, which features a powerful 16-bit RISC 

CPU @16 MHz clock speed, built-in clock factory 

calibration, 8 KB RAM and a 92 KB Flash memory. 

TmoteSky is an ultra-low power sensor, and it is 

equipped with the low power microcontroller 

MSP430F1611, which has a built-in clock factory 

calibration, a 10 KB RAM and a 48 KB Flash memory.  

 
 

(a) Energy for 
neighbour 

authentication 

(b) Energy for 
security 

verification  
Figure 8. Energy consumption by using 

COOJA in Contiki OS. 

In this experiment, we measured the performance of 

sensors while they transmit/receive information from 

neighbours or dynamically update the shared key for 

undertaking security verification process. Figure 8 (a) 

shows the energy required by sensors during 

transmitting/receiving synchronization properties from 

neighbours and Figure 8 (b) shows the power 

consumption behaviours for the key generation process. 

From these experiments, we conclude that our proposed 

method is lightweight as both the application of   

synchronization properties and security verification 

model consume very little sensor battery power.  

From the above experiments, we conclude that our 

proposed method is secured and efficient in term of 

security verification speed.  

7. Conclusion and future works 

In this paper, we proposed a shared key 

synchronization method to ensure an end-to-end 

security in big data stream processing system consisting 

of distributed sensors and cloud-hosted stream 

processing engines (DSM). The proposed 

synchronization technique was implemented and 

verified in our previously proposed DPBSV and DLSeF 

security verification method for big data streams.  In 

these previous models, sensors and DSM update their 

shared key independently without requiring further 

communication after handshaking phase. Proposed 

method synchronize the shared key without 

communication between sensing devices and DSM, 

where sensing devices obtain the shared key re-

initialization properties from its neighbours. By 
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theoretical analyses and experimental evaluations, we 

showed that our proposed synchronization method 

successfully scales within the DPBSV and DLSeF 

models. In our future work, we will implement the 

proposed model in a real IoT application that requires 

near real-time decision making. We will further improve 

our techniques to meet the requirements of dynamic IoT 

networks. 
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