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Abstract 
When concept drift occurs within streaming data, a 

streaming data classification framework needs to 

update the learning model to maintain its performance. 

Labeled samples required for training a new model are 

often unavailable immediately in real world 

applications. This delay of labels might negatively 

impact the performance of traditional streaming data 

classification frameworks. To solve this problem, we 

propose Sliding Reservoir Approach for Delayed 

Labeling (SRADL). By combining chunk based semi-

supervised learning with a novel approach to manage 

labeled data, SRADL does not need to wait for the 

labeling process to finish before updating the learning 

model. Experiments with two delayed-label scenarios 

show that SRADL improves prediction performance 

over the naïve approach by as much as 7.5% in certain 

cases. The most gain comes from 18-chunk labeling 

delay time with continuous labeling delivery scenario 

in real world data experiments.  

 

1. Introduction  

 
A data stream is a continuous source of data that 

arrive over time [1]. The data is often subject to 

unexpected changes, such as a sudden increase in data 

range or appearance of a new class. Changes like these 

that happen in unforeseen ways in a data stream are 

called concept drifts [2].  Examples of concept drifting 

data streams are weather data stream, financial data 

stream, and online-opinion data stream. Concept 

drifting data streams require the data mining 

framework to be able to detect changes in the stream, 

and adapt to them so that the learning model is kept up-

to-date [3]. Numerous studies have been done on 

designing such adapting data mining frameworks [4-

11]. These frameworks continuously monitor the data 

stream for concept drift. Once a drift is detected, the 

frameworks adapt to the change by training new 

models or updating existing incremental models. Often 

the training process requires certain amount of labeled 

data to be effective. Most of the previous studies 

assumed that the required labels are available at the 

time before the training of a new model. This is not the 

case for many real-world data streams, in which human 

experts are required to take time and perform the 

labeling. For instance, a framework for detecting spam 

emails often needs to adapt its learning models to new 

spam patterns. The adaptation usually does not happen 

immediately because the framework needs enough 

people to identify their emails as spams and report 

them. Lots of samples of the new spam pattern need to 

be reported in order to have a good sample size.  In 

cases like this there will most likely be a delay between 

the time when changes in data stream occur and the 

time when labels arrive. We call such cases, where 

building a new model is necessary in response to 

concept drift but the required labels are not 

immediately available, the delayed labeling problem.  

A naive solution of the delayed labeling problem 

will be requesting labels immediately at the time of 

concept drift [15]. Then the framework waits for the 

labeling process to finish before building any updated 

models. We call this the wait-and-train approach. This 

solution has risk of having outdated models during the 

waiting time. If the occurrence rate of concept drift is 

faster than the labeling process, the models of wait-

and-train framework may be permanently outdated. 

Furthermore, if requested labels never become 

available, then the models will never be updated. 

Clearly, a more robust solution is needed other than 

wait-and-train. 

We propose Sliding Reservoir Approach for 

Delayed Labeling (SRADL) framework that addresses 

the problem. Our approach employs a novel method of 

storing and managing available labeled samples. 

SRADL contains three components. Each component 

handles different aspects in a streaming environment 

with delayed labeling: label reservoir that keeps track 

of the arrival of labeled samples, change detection that 

monitors concept drift, and semi-supervised learning 

that updates the framework’s predictive models. Our 

hypothesis is that SRADL will give better 

classification results in a delayed labeling setting when 

compared to the naïve wait-and-train approach. The 

contributions of the paper are the following: 
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1. We formulate and implement a streaming data 

classification framework that handles delayed labeling. 

2.  We show that the framework can produce better 

result than the naïve approach. 

The rest of the paper is organized as follow: 

Section 2 provides reviews on related topics. Then the 

delayed labeling problem will be introduced in Section 

3. SRADL will be formally presented in Section 4. 

Experiments and results will be presented in Section 5. 

Finally Section 6 concludes the study and discusses 

possible future research directions. 

 

2. Related work 

 
Several studies have been done to address concept 

drifts in streaming data. Most of these studies assume 

that labeling process is performed without any delay. 

Farid et al [4] proposed an ensemble classifier that 

employs clustering before classification to identify 

novel class within a data stream. The study assumed 

data instances from the same class form clusters. For 

data instances that are outside existing clusters, they 

are identified as novel class instances and used to train 

new models. Brzezinski et al [5] proposed an ensemble 

approach, named AUE2, which uses Hoeffding Trees 

as components of an ensemble classifier. Hoeffding 

Tree is an incremental classifier able to react to more 

fine-grained changes on a per-sample basis. It is also 

able to track larger changes by combining incremental 

learning with the ensemble approach. Rutkowski et al 

[6] proposed a new decision tree construction method 

for stream data mining. The study derived a new 

splitting criterion based on misclassification errors. 

When combined with the Gini index, their decision tree 

was able to achieve high prediction accuracy in a 

concept drifting stream. Mirza et al [7] proposed subset 

online sequential extreme learning machine (ESOS-

ELM), a framework that tackles concept drifting 

imbalanced data stream mining. The framework 

contains modules that represent short and long memory 

to detect and remember information about current and 

historical concept drifts.  

Numerous studies address the limited availability of 

labeled samples within a data stream. Ditzler et al [8] 

applied semi-supervised support vector machine to 

stream data mining problems. Their ensemble is 

trained, tested and updated using both labeled and 

unlabeled data. Ahmadi et al. [9] applied majority 

voting, previously used for fully labeled classification 

problems, to the ensemble of partially-labeled semi-

supervised classifiers. Hosseini et al. [10] proposed an 

ensemble semi-supervised classification framework 

that is able to handle concept drift and partial labeling. 

Each of their classifier represents a single concept. The 

classifiers are updated using the latest partially labeled 

data. Read et al [11] developed two deep learning 

methods which are able to learn with partially labeled 

data streams. 

There has been researches that mentioned delayed 

labeling problem. Those studies recognize that labels 

can be delayed, but they do not offer an entire 

framework to solve the problem. Mesterharm [12] 

focused on solving the problem of delayed label 

feedback. A delayed label feedback problem is where a 

learning model is trained using labeled samples. The 

learning model cannot be tested because labeled 

samples for testing are not available. The study focused 

on modifying existing learning framework to 

compensate for the delay.  Zliobaite [13] proposed a 

change detection framework that is able to detect data 

changes with unlabeled data, thus reducing how much 

the framework relies on labeled data in order to adapt 

to concept drift.  Masud et al [14] demonstrated the 

problem of delayed labeling in novel class detection 

problem.  It addresses the fact that labels are not 

always available in a real world streaming data 

environment. Their approach is able to utilize 

unlabeled data to reduce the need on labeled samples 

for novel class detection. 

 

3. Delayed labeling problem  

 
When concept drifts occur in a data stream, certain 

amount of labeled data samples are needed for training 

new supervised or semi-supervised learning models 

[3]. A request for labels on selected data samples will 

be made prior to the training. If the labeling is not 

delayed, these requested samples will be labeled 

immediately, hence a new model can be trained shortly 

after. In a delayed labeling setting, the labels will not 

be immediately available and the amount of waiting 

time might or might not be known. When the labels do 

arrive, there are two scenarios in which labels are made 

available, illustrated in Figure 1. As shown in the 

figure, a concept drift is detected at T and 100 samples 

were requested to be labeled.  Figure 1a shows the first 

scenario where the labeling process completes and 100 

samples were obtained at T’. Figure 1b shows the 

second scenario where parts of the 100 samples arrive 

incrementally over time, completing the labeling 

process at T’. In either case, traditional streaming 

mining methodology might need to wait until all 

requested labels are available at T’. Between T and T’, 

these frameworks are still using the model trained 

before T, which is likely outdated because of concept 

drift. In a real world application, the interval of T and 

T’ might potentially be very long, thus reducing the 

overall performance of the framework. Therefore, the 
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main challenge of delayed labeling is how to keep 

learning models up-to-date after a concept drift occurs 

without immediately available labels. The goal of 

solving the delayed labeling problem is to maintain the 

prediction performance during the waiting time so that 

the overall performance of the framework remains 

high. 

 

Figure 1. Illustration of two scenarios of delayed 

labeling. 

 

4.  Sliding Reservoir Approach for Delayed 

Labeling (SRADL) 

 
4.1. Overview 

  
 SRADL uses a chunk based approach to handle 

concept drift detection and model training [16]. A 

chunk based approach divides data streams into fix-

sized groups of data samples, or “chunks”. The 

framework then processes the data stream chunk by 

chunk. It also initializes itself by first using a partially 

labeled chunk from the stream as the initial training 

dataset. The SRADL framework has three main 

components: Concept Drift Detection, Semi-supervised 

Learning, and Labeled Sample Reservoir. The structure 

of the framework is shown in Figure 2.  

The data from the stream are first sent through the 

Concept Drift Detection component. This module uses 

unsupervised approach to detect changes in the data 

stream [17]. Once detected, it signals the Semi-

supervised Learning component to start training a new 

model. The Semi-supervised Learning component then 

immediately trains a new model based on current 

unlabeled samples and stored labeled samples inside 

the Labeled Sample Reservoir. Concept Drift Detection 

also signals Labeled Sample Reservoir to make a 

labeling request. As labeled samples arrive in the 

future, they are stored and managed by the Labeled 

Sample Reservoir.  

 

 
 

Figure 2. Overview of the SRADL framework. 

 

 

4.2. Labeled Sample Reservoir 

  
 The Labeled Sample Reservoir is an ordered, 

fixed-size list of labeled samples. Let R denotes the 

list: 

R = {rn: n=size of reservoir} 

 where  ri is a 4-tuple in the form of: 

ri = (Si, Li, RTi, ATi) 

Si is a data instance sampled from the data stream 

to be labeled. Li is the labeling result of the sample. 

RTi is the time at which the labeling was requested. It 

is instantiated when the sample is sent to experts for 

labeling. ATi is the time at which the label actually 

arrived. It is instantiated when a labeled sample returns 

to the reservoir from an expert. In a delayed labeling 

scenario, RTi ≤ ATi.  

R list is sorted by RT as the primary key and AT as 

the secondary key. The size n is the number of samples 

needed by the learning algorithm to successfully train 

and test a model. For example, if a learning model 

requires 100 samples to be labeled out of every 1000 

unlabeled samples, then n = 100. 

The reservoir is initialized using labeled samples 

from the partially labeled initial training dataset. The 

RTs and ATs of these samples are instantiated to be 0. 

Every time a new labeled sample arrives, it replaces 

the oldest labeled sample in the reservoir according to 

RT first and AT second. In the extreme case, a 

particular newly arrived sample r’ can have RT’ earlier 

than all other samples in the reservoir. This means that 

the time it took to finish labeling r’ is so long that later 

requested labels already occupy the entire reservoir. In 

this case r’ is considered too out-of-date and is 

discarded. 

Since not all samples in the data stream are to be 

labeled, the Labeled Sample Reservoir can employ any 

Time T 

Labeling Request: 100 samples 

a. All labels made available at certain time T’ 

T’ 

Labeling complete 

Time T 

Labeling Request: 100 samples 

b. Labels made available continuous from T to T’ 

T’ 

Labeling complete 

20 samples 40 samples 10 samples 

100 samples 

30 samples 
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labeling selection criteria, such as criteria used in [18] 

and [19]. The decision of which criteria to use should 

be determined by the nature of the dataset and the 

needs of the specific real world application. To 

simplify our approach we selected samples by random. 

 

4.3. Concept Drift Detection 

  
 SRADL’s Concept Drift Detection module can use 

any concept drift detection algorithm, such as 

[20][21][22]. In this study SRADL employs a density 

based concept drift detection approach similar to Ryu 

et.al [17]. Density based detection assumes that 

samples of the same class form clusters. Each cluster C 

is defined by a radius radc and a cluster density dc: 

radc = longest distance between sample and its 

cluster center. 

dc = number of samples in cluster / rad 

Euclidean distance is used for the calculation of radc.  

Initial clusters of samples are obtained from the 

initial training set of the framework. K-means 

clustering algorithm is used [23]. As new sample s 

arrives, if its distance from the center of any existing 

cluster C is less than radc, then the sample is included 

in cluster C. If there does not exist any cluster that s 

can be included in, then s is considered an un-assigned 

sample, denoted by ~s. As time progresses, more and 

more ~s can appear. SRADL will try to cluster ~s after 

each chunk of data. When some of the ~s samples form 

a new cluster, SRADL determines that a potential 

concept drift has happened. The detection process is 

illustrated by Figure 3. In Figure 3-a, two existing 

clusters of samples are divided by a classification 

model. Some newly arrived samples fall out of the 

existing clusters, but the density of the new samples is 

low. The learning model does not need adjustment. 

After some time more samples arrived. The new 

samples form a third cluster as shown in Figure 3-b. 

This event signals the framework that a potential drift 

has occurred. A new learning model is trained in 

response. 

 
 

Figure 3. Illustrating density based concept drift 

detection. 

 

 

a. New samples appear 
outside of two existing 
clusters, but density is 
low. No drift detected  

b. New samples form a 
cluster with enough 
density, drift detected. 

Semi-
supervised 
Learning 

Labeled 
Sample 
Reservoir 

Data  
Stream 

Labeling 
 Process 

Initial Training 
Data 

Reservoir  

Model M1 

Change Detected 

Chunk A 

Request 

Reservoir 

Model M2 

a. At start of the stream, the first chunk is used to train the 
initial model (M1). When change is detected, request label 
and train a new model (M2) 

… 

Request 

Semi-
supervised 
Learning 

Labeled 
Sample 
Reservoir 

Data  
Stream 

Labeling 
 Process 

Change Detected 

Labels 

Model M2 

Test 

b. Continue from a.  Newly labeled samples are added to 
reservoir and used to test new model (M2). The new model is 
retrained if testing shows low performance of the model.  

Reservoir  

Chunk A 

Model M2 

Reservoir  

Labels 

Model M2 

Test 

Reservoir  

Figure 4. Illustration of building and evaluating a model after concept drift through time. 

Time Time 
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4.4. Semi-Supervised Learning 

  
 When concept drift is detected, SRADL 

immediately requests for labeling on samples from the 

current chunk of data. At the same time Semi-

supervised Learning component uses labeled samples 

from the Labeled Sample Reservoir and unlabeled 

samples from the current chunk to train a new semi-

supervised model. Any semi-supervised learning 

algorithm can be used in this component, such as 

[24][25][26]. In this study, SRADL is implemented 

with S3VM [26]. 

After the new model is trained, a performance 

evaluation is done on the new model when previously 

requested labels arrive later. This model-training-

performance-evaluation process is visually illustrated 

in Figure 4. The “Data Stream” axis denotes the data 

stream through time. The “Labeling Process” axis 

denotes the labeling process through time. The 

“Labeled Sample Reservoir” and “Semi-supervised 

Learning” denotes the status of the two components 

through time. At the beginning of the stream (Figure 

4a), the first chunk of data is used for initial training. 

Its samples are partially labeled and put into the 

reservoir. An initial model M1 is also trained. At 

Chunk A, Concept Drift Detection detects a change in 

the stream. It signals Semi-supervised Learning to train 

a new model. At the same time it signals the SRADL 

framework to request for labeling on the current chunk 

of data. Semi-supervised Learning trains a new model 

M2 using labels from the reservoir and unlabeled 

samples in Chunk A. As requested labels arrive later in 

time (Figure 4b), they are added to the reservoir and 

are used to test M2. If M2 is determined to be 

performing well, the model is kept unchanged. 

Otherwise, Semi-supervised Learning repeats a similar 

process to Figure 4a in order to train a new model M2’. 

M2’ is trained using reservoir labels and unlabeled 

samples from the current chunk in the stream (different 

from the chunk used to train M2). SRADL also 

requests for more labels from the M2’ chunk. Model 

M2’ undergoes the same evaluation process as M2 

(Figure 4b). In the extreme case when required labels 

never become available, SRADL is still able to train 

new models using labels in the reservoir. However, the 

evaluation process will not be able to carry out since 

there is no labeled samples to test the performance of 

the new model. 

SRADL uses a performance threshold P to 

determine whether a learning model is low performing 

or not. Any model with performance below P will be 

retrained. P is a parameter that balances between 

computational intensity and performance. The value of 

P is up to specific applications because it is difficult to 

determine the optimal P without the prior knowledge 

about the data. For example, an application for 

predicting which color will be trendy in fashion can 

have a lower P value than an application for predicting 

weather. To keep matters simple, in this study the 

value of P is determined empirically.  

 

5. Experimental Results  

 
5.1. Datasets 

  
 Two datasets were used in the experimentation: 

Rotating Hyperplane and Spam. Rotating Hyperplane 

dataset [27] is created with 10,000 samples. It is a 

binary class dataset with 10 numerical features ranging 

between 0 and 1. A high dimension hyperplane divide 

the dataset into its two classes. Concept drift is created 

by rotating the hyperplane. When generating the 

dataset, parameter K determines how many drift events 

occur and parameter T determines how much rotation 

is done for each drifts. Our dataset was generated using 

K = 4 and T = 1.0.  Spam dataset is a real world 

dataset. It is a text-data-converted numerical dataset, 

where each feature is the occurrence rate of a particular 

word in an email. The dataset has 500 features with 

two classes: spam and not spam. It has 9324 samples in 

total. Our change detection algorithm detected 11 

possible concept drifts in the Spam dataset. These two 

dataset were selected because they contain a good 

number of concept drift. 

 
5.2. Experimental set up 

  
 Two scenarios of labeling arrival time (Figure 1) 

were both explored. The labeling process was 

simulated by first hiding all class labels from the 

framework and only revealing the labels for samples 

that are requested to be labeled. The delay time is 

measured by number of chunks between label 

requesting time and label finishing time. For example, 

a 6-chunk-delay problem when labeling is requested at 

chunk #5 will finish at chunk #11. For the first 

scenario, all requested labels are made available only 

after a pre-defined delay, as shown in Figure 1-a. To be 

precise, for n-chunk-delay experiment, if change were 

detected on the mth chunk, all K requested labels will 

be made available on the (m+n)th chunk. The second 

scenario is where labels are made available 

incrementally over a period of time (Figure 1-b). Each 

chunk after the mth chunk will get K/n number of 

labels. All K requested labels will still be made 

available on the (m+n)th chunk. The delay times for 

each experiment are arbitrarily chosen such that we can 

compare the performance of SRADL against other 
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approaches in various length of delay. In real world 

scenarios, the delay time can vary for each application 

and it is most likely determined by how long it takes 

the experts to finish labeling the data.       

We compared SRADL with three other data stream 

mining approaches: a) static, b) no-delay, and c) wait-

and-train. The static approach assumes there is no 

further changes in the data stream. The learning model 

was trained in the initial chunk and remained 

unchanged throughout the stream. This approach was 

used to show that concept drifts exist in the selected 

datasets. It provides a lower bound of performance. 

No-delay approach obtains labels immediately after 

requested, after which an updated model can be 

immediately trained. This approach was to give an 

upper bound of performance. Wait-and-train approach 

is the naïve solution to delayed labeling problem. It 

waits for the labeling process to finish and only trains a 

new model after all requested labels arrive. 

Performance was measured in area under the prediction 

accuracy curve, calculated by the Trapezoidal Rule that 

simulates integrating of the curve. 

 
5.3. Synthetic data experiment 

  
 For the synthetic dataset the chunk size was chosen 

to be 300. This chunk size was chosen such that the 

initial model can obtain the highest accuracy. The 

threshold performance value P was empirically set to 

be 75% accuracy based on the average accuracy of the 

static model throughout the data stream, which is 75%. 

Figure 5 shows the experimental results of labeling 

scenario 1 and Table 1 shows the area under the curve 

between four approaches. The vertical line in the figure 

denotes the time when concept drift was detected. In 

Figure 5a and 5b, we can see that SRADL first 

performed slightly better than the naïve approach. 

Since the naïve approach waits for the labeling process 

to finish, at the beginning it had the same degrading 

performance as the static approach. After retrain, the 

wait-and-train bounced back nicely and even out-

performed SRADL. For these two cases, the area under 

the curve showed that SRADL performed worse than 

wait-and-train by 3.1% and 1.5% respectively. In 

Figure 5c, it shows that for larger delays SRADL was 

able to perform slightly better than the naïve approach 

from the beginning to the end. The area under the 

curve shows SRADL had a 3.6% increase in 

performance. The small improvement of SRADL 

compared to wait-and-train can be explained by the 

lack of new labels to update the reservoir during the 

labeling process. Since no new labels are available 

during the waiting time, SRADL and wait-and-train 

has the same knowledge about the data stream. Semi-

supervised learning trained using outdated label with 

new unlabeled samples produced worse models than its 

wait-and-train counterpart, which used supervised 

learning models on all requested labels. However, with 

larger delay, the S3VM semi-supervised learning 

algorithm was able to overcome such drawback. 

TABLE 1. AREA UNDER THE CURVE FOR LABELING 

SCENARIO 1 EXPERIMENTS WITH HYPERPLANE. 

TABLE 2. AREA UNDER THE CURVE FOR LABELING 

SCENARIO 2 EXPERIMENTS WITH HYPERPLANE. 

 Figure 6 shows the accuracy curve of Scenario 2 
and Table 2 shows the area under the curve. Figure 6a 
shows that SRADL performed similarly to wait-and-
train until the chunk #20, where wait-and-train started 
to outperform. In 12 and 18 chunk delay experiments 
(Figure 6b and 6c), SRADL greatly outperformed wait-
and-train for the entire dataset. In Table 2 we can see 
that for 6 chunk delay SRADL performed worse by 
merely 0.9% while in the other two cases it out-
performed wait-and-train by 3.1% and 7.5% 
respectively. 

When new labels constantly update the reservoir, 
SRADL is able to effectively utilize the new 
information by integrating them into the latest models. 
SRADL especially showed its benefits on larger 
labeling delay. The naïve approach of wait-and-train is 
limited to an outdated model for a long period of time 
while SRADL improves the model immediately. 

 
5.4. Spam data experiment 

  
 In the Spam experiment the chunk size was chosen 

at 200. In this dataset the average accuracy of static 

model is around 50%, which is too low of a 

performance to be a meaningful threshold. Therefore 

the threshold performance value P is again set to be 

75% accuracy  

Shown in Figure 7 is the result of labeling scenario 

1 experiment of the Spam dataset. The area under the  

 

Delay Static No-delay Wait&Train SRADL 

6 718.5 871.2 817.3 791.0 

12 718.5 871.2 761.6 749.5 

18 718.5 871.2 732.4 759.4 

 

Delay Static No-delay Wait&Train SRADL 

6 718.5 871.2 817.1 809.4 

12 718.5 871.2 761.6 785.7 

18 718.5 871.2 732.4 787.7 
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Figure 5. Experimental results of Hyperplane data with labeling scenario 1. Chunk size 300. Vertical line 

shows time of concept drift. 

Figure 6. Experimental results of Hyperplane data with labeling scenario 2. Chunk size 300. Vertical line 

shows time of concept drift. 
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Figure 7. Experimental results of Spam data with labeling scenario 1. Chunk size 200. Vertical line 

shows time of concept drift. 

Figure 8. Experimental results of Spam data with labeling scenario 2. Chunk size 200. Vertical line 

shows time of concept drift. 
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curve is listed in Table 3. SRADL performed much 

better at 6 chunk delay as shown in Figure 7a. The 

most performance gain came between chunk 15 and 

chunk 30. In 12 chunk delay, SRADL performed worse 

than the wait-and-train approach. Specifically, in 

Figure 7b, SRADL performed similarly compared to 

wait-and-train until chunk 30-44 where SRADL fell 

below the naïve approach. For 18 chunk delay SRADL 

has a similar result than the wait-and-train approach for 

the entire stream. For Area under the curve, SRADL 

performed worse than naïve case in the 12 chunk delay 

case by 6.9%. In the other two cases, SRADL 

outperformed wait-and-train by 6.7% in the 6 chunk 

delay and 1.2% in the 18 chunk delay. 

Again the result showed that SRADL cannot 

benefit from semi-supervised learning algorithm in 

labeling scenario 1 since no new knowledge is gained 

about the data stream during the label waiting time. 

TABLE 3. AREA UNDER THE CURVE FOR LABELING 

SCENARIO 1 EXPERIMENTS WITH SPAM. 

 

TABLE 4. AREA UNDER THE CURVE FOR LABELING 

SCENARIO 2 EXPERIMENTS WITH SPAM. 

Scenario 2 results are shown in Figure 8. For 6 

chunk delay, shown in Figure 8a, SRADL had no large 

improvement over the wait-and-train approach. In fact 

SRADL performed slightly worse for the majority of 

the stream. In Figure 8b, SRADL performed slightly 

worse between chunk 20 and 30, but outperformed 

from chunk 5 to 15 and from chunk 30 to 40. In Figure 

8c SRADL clearly outperformed wait-and-train 

between chunks 15-40, a vast majority of the entire 

dataset. From the area under the curve calculation 

listed in Table 4 we can see that SRADL performed 

slightly worse on 6 chunk delay with 3.5% less area 

under the curve. While on the 12 chunk and 18 chunk 

SRADL outperformed by 1.9% and 7.5% respectively.  

Both synthetic and real world experiment results 

showed that different labeling scenarios have different 

effects on SRADL and wait-and-train. For labeling 

process that return all the labels all together, wait-and-

train is the better approach. Whereas for labeling 

process that can return small amount of labels from 

time to time, SRADL performs better. SRADL also 

universally benefits from larger chunk delays since the 

naïve approach keeps the outdated models for longer 

periods of time in these cases. 

 

6. Conclusion and future works  

 
 In this paper we described the delayed labeling 

problem in streaming data classification. The problem 

arises when a new learning model needs to be trained 

in response to changes in the data stream but the labels 

required for training are not immediately available. We 

proposed a new framework SRADL to handle the 

delayed labeling problem. SRADL contains three 

components: Concept Drift Detection, Semi-supervised 

Learning and Labeled Sample Reservoir. Concept Drift 

Detection monitors the data stream and signals Semi-

supervised Learning component to update its learning 

model. Semi-supervised learning then requests labels 

to be made and trains a new semi-supervised model 

using available labels in the Labeled Sample Reservoir. 

The reservoir is updated whenever latest samples are 

labeled. Our experiments involved two scenarios of the 

labeling process. The first scenario assumes that labels 

will arrive all together after a certain delay. The second 

scenario assumes that labels arrive continuously. We 

compared SRADL with three approaches: static, no-

delay and wait-and-train. In scenario 1, SRADL scored 

similarly compared to wait-and-train in some cases, 

and in some cases worse than wait-and-train. For 

scenario 2, however, SRADL performed much better 

both in synthetic and real-word data set experiments in 

most cases. The most improvement occurred when 

labeling delay time were long.  

Future work should further improve the 

performance of SRADL. For instance, the performance 

evaluation P should be able to be automatically 

adjusted according to application criterions and data 

stream environment. It is also worth investigating 

integration of other state-of-the-art stream mining 

frameworks with the SRADL approach in delayed 

labeling settings. SRADL should also be combined 

with frameworks that solve other streaming data 

challenges such as imbalanced data stream, multi-class 

classification, and recurring drift data streams. 

 

 

 

 

Delay Static No-delay Wait&Train SRADL 

6 473.1 1815.3 1412.7 1362.7 

12 473.1 1815.3 1367.8 1394.6 

18 473.1 1815.3 1295.0 1393.4 

 

Delay Static No-delay Wait&Train SRADL 

6 473.1 1815.3 1396.3 1490.0 

12 473.1 1815.3 1375.6 1280.7 

18 473.1 1815.3 1251.5 1267.3 
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