

Sliding Reservoir Approach for Delayed Labeling in Streaming Data

Classification

Hanqing Hu

University of Louisville

 h0hu0004@louisville.edu

Mehmed Kantardzic

University of Louisville

 mmkant01@louisville.edu

Abstract
When concept drift occurs within streaming data, a

streaming data classification framework needs to

update the learning model to maintain its performance.

Labeled samples required for training a new model are

often unavailable immediately in real world

applications. This delay of labels might negatively

impact the performance of traditional streaming data

classification frameworks. To solve this problem, we

propose Sliding Reservoir Approach for Delayed

Labeling (SRADL). By combining chunk based semi-

supervised learning with a novel approach to manage

labeled data, SRADL does not need to wait for the

labeling process to finish before updating the learning

model. Experiments with two delayed-label scenarios

show that SRADL improves prediction performance

over the naïve approach by as much as 7.5% in certain

cases. The most gain comes from 18-chunk labeling

delay time with continuous labeling delivery scenario

in real world data experiments.

1. Introduction

A data stream is a continuous source of data that

arrive over time [1]. The data is often subject to

unexpected changes, such as a sudden increase in data

range or appearance of a new class. Changes like these

that happen in unforeseen ways in a data stream are

called concept drifts [2]. Examples of concept drifting

data streams are weather data stream, financial data

stream, and online-opinion data stream. Concept

drifting data streams require the data mining

framework to be able to detect changes in the stream,

and adapt to them so that the learning model is kept up-

to-date [3]. Numerous studies have been done on

designing such adapting data mining frameworks [4-

11]. These frameworks continuously monitor the data

stream for concept drift. Once a drift is detected, the

frameworks adapt to the change by training new

models or updating existing incremental models. Often

the training process requires certain amount of labeled

data to be effective. Most of the previous studies

assumed that the required labels are available at the

time before the training of a new model. This is not the

case for many real-world data streams, in which human

experts are required to take time and perform the

labeling. For instance, a framework for detecting spam

emails often needs to adapt its learning models to new

spam patterns. The adaptation usually does not happen

immediately because the framework needs enough

people to identify their emails as spams and report

them. Lots of samples of the new spam pattern need to

be reported in order to have a good sample size. In

cases like this there will most likely be a delay between

the time when changes in data stream occur and the

time when labels arrive. We call such cases, where

building a new model is necessary in response to

concept drift but the required labels are not

immediately available, the delayed labeling problem.

A naive solution of the delayed labeling problem

will be requesting labels immediately at the time of

concept drift [15]. Then the framework waits for the

labeling process to finish before building any updated

models. We call this the wait-and-train approach. This

solution has risk of having outdated models during the

waiting time. If the occurrence rate of concept drift is

faster than the labeling process, the models of wait-

and-train framework may be permanently outdated.

Furthermore, if requested labels never become

available, then the models will never be updated.

Clearly, a more robust solution is needed other than

wait-and-train.

We propose Sliding Reservoir Approach for

Delayed Labeling (SRADL) framework that addresses

the problem. Our approach employs a novel method of

storing and managing available labeled samples.

SRADL contains three components. Each component

handles different aspects in a streaming environment

with delayed labeling: label reservoir that keeps track

of the arrival of labeled samples, change detection that

monitors concept drift, and semi-supervised learning

that updates the framework’s predictive models. Our

hypothesis is that SRADL will give better

classification results in a delayed labeling setting when

compared to the naïve wait-and-train approach. The

contributions of the paper are the following:

1693

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41358
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/77239668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. We formulate and implement a streaming data

classification framework that handles delayed labeling.

2. We show that the framework can produce better

result than the naïve approach.

The rest of the paper is organized as follow:

Section 2 provides reviews on related topics. Then the

delayed labeling problem will be introduced in Section

3. SRADL will be formally presented in Section 4.

Experiments and results will be presented in Section 5.

Finally Section 6 concludes the study and discusses

possible future research directions.

2. Related work

Several studies have been done to address concept

drifts in streaming data. Most of these studies assume

that labeling process is performed without any delay.

Farid et al [4] proposed an ensemble classifier that

employs clustering before classification to identify

novel class within a data stream. The study assumed

data instances from the same class form clusters. For

data instances that are outside existing clusters, they

are identified as novel class instances and used to train

new models. Brzezinski et al [5] proposed an ensemble

approach, named AUE2, which uses Hoeffding Trees

as components of an ensemble classifier. Hoeffding

Tree is an incremental classifier able to react to more

fine-grained changes on a per-sample basis. It is also

able to track larger changes by combining incremental

learning with the ensemble approach. Rutkowski et al

[6] proposed a new decision tree construction method

for stream data mining. The study derived a new

splitting criterion based on misclassification errors.

When combined with the Gini index, their decision tree

was able to achieve high prediction accuracy in a

concept drifting stream. Mirza et al [7] proposed subset

online sequential extreme learning machine (ESOS-

ELM), a framework that tackles concept drifting

imbalanced data stream mining. The framework

contains modules that represent short and long memory

to detect and remember information about current and

historical concept drifts.

Numerous studies address the limited availability of

labeled samples within a data stream. Ditzler et al [8]

applied semi-supervised support vector machine to

stream data mining problems. Their ensemble is

trained, tested and updated using both labeled and

unlabeled data. Ahmadi et al. [9] applied majority

voting, previously used for fully labeled classification

problems, to the ensemble of partially-labeled semi-

supervised classifiers. Hosseini et al. [10] proposed an

ensemble semi-supervised classification framework

that is able to handle concept drift and partial labeling.

Each of their classifier represents a single concept. The

classifiers are updated using the latest partially labeled

data. Read et al [11] developed two deep learning

methods which are able to learn with partially labeled

data streams.

There has been researches that mentioned delayed

labeling problem. Those studies recognize that labels

can be delayed, but they do not offer an entire

framework to solve the problem. Mesterharm [12]

focused on solving the problem of delayed label

feedback. A delayed label feedback problem is where a

learning model is trained using labeled samples. The

learning model cannot be tested because labeled

samples for testing are not available. The study focused

on modifying existing learning framework to

compensate for the delay. Zliobaite [13] proposed a

change detection framework that is able to detect data

changes with unlabeled data, thus reducing how much

the framework relies on labeled data in order to adapt

to concept drift. Masud et al [14] demonstrated the

problem of delayed labeling in novel class detection

problem. It addresses the fact that labels are not

always available in a real world streaming data

environment. Their approach is able to utilize

unlabeled data to reduce the need on labeled samples

for novel class detection.

3. Delayed labeling problem

When concept drifts occur in a data stream, certain

amount of labeled data samples are needed for training

new supervised or semi-supervised learning models

[3]. A request for labels on selected data samples will

be made prior to the training. If the labeling is not

delayed, these requested samples will be labeled

immediately, hence a new model can be trained shortly

after. In a delayed labeling setting, the labels will not

be immediately available and the amount of waiting

time might or might not be known. When the labels do

arrive, there are two scenarios in which labels are made

available, illustrated in Figure 1. As shown in the

figure, a concept drift is detected at T and 100 samples

were requested to be labeled. Figure 1a shows the first

scenario where the labeling process completes and 100

samples were obtained at T’. Figure 1b shows the

second scenario where parts of the 100 samples arrive

incrementally over time, completing the labeling

process at T’. In either case, traditional streaming

mining methodology might need to wait until all

requested labels are available at T’. Between T and T’,

these frameworks are still using the model trained

before T, which is likely outdated because of concept

drift. In a real world application, the interval of T and

T’ might potentially be very long, thus reducing the

overall performance of the framework. Therefore, the

1694

main challenge of delayed labeling is how to keep

learning models up-to-date after a concept drift occurs

without immediately available labels. The goal of

solving the delayed labeling problem is to maintain the

prediction performance during the waiting time so that

the overall performance of the framework remains

high.

Figure 1. Illustration of two scenarios of delayed

labeling.

4. Sliding Reservoir Approach for Delayed

Labeling (SRADL)

4.1. Overview

 SRADL uses a chunk based approach to handle

concept drift detection and model training [16]. A

chunk based approach divides data streams into fix-

sized groups of data samples, or “chunks”. The

framework then processes the data stream chunk by

chunk. It also initializes itself by first using a partially

labeled chunk from the stream as the initial training

dataset. The SRADL framework has three main

components: Concept Drift Detection, Semi-supervised

Learning, and Labeled Sample Reservoir. The structure

of the framework is shown in Figure 2.

The data from the stream are first sent through the

Concept Drift Detection component. This module uses

unsupervised approach to detect changes in the data

stream [17]. Once detected, it signals the Semi-

supervised Learning component to start training a new

model. The Semi-supervised Learning component then

immediately trains a new model based on current

unlabeled samples and stored labeled samples inside

the Labeled Sample Reservoir. Concept Drift Detection

also signals Labeled Sample Reservoir to make a

labeling request. As labeled samples arrive in the

future, they are stored and managed by the Labeled

Sample Reservoir.

Figure 2. Overview of the SRADL framework.

4.2. Labeled Sample Reservoir

 The Labeled Sample Reservoir is an ordered,

fixed-size list of labeled samples. Let R denotes the

list:

R = {rn: n=size of reservoir}

 where ri is a 4-tuple in the form of:

ri = (Si, Li, RTi, ATi)

Si is a data instance sampled from the data stream

to be labeled. Li is the labeling result of the sample.

RTi is the time at which the labeling was requested. It

is instantiated when the sample is sent to experts for

labeling. ATi is the time at which the label actually

arrived. It is instantiated when a labeled sample returns

to the reservoir from an expert. In a delayed labeling

scenario, RTi ≤ ATi.

R list is sorted by RT as the primary key and AT as

the secondary key. The size n is the number of samples

needed by the learning algorithm to successfully train

and test a model. For example, if a learning model

requires 100 samples to be labeled out of every 1000

unlabeled samples, then n = 100.

The reservoir is initialized using labeled samples

from the partially labeled initial training dataset. The

RTs and ATs of these samples are instantiated to be 0.

Every time a new labeled sample arrives, it replaces

the oldest labeled sample in the reservoir according to

RT first and AT second. In the extreme case, a

particular newly arrived sample r’ can have RT’ earlier

than all other samples in the reservoir. This means that

the time it took to finish labeling r’ is so long that later

requested labels already occupy the entire reservoir. In

this case r’ is considered too out-of-date and is

discarded.

Since not all samples in the data stream are to be

labeled, the Labeled Sample Reservoir can employ any

Time T

Labeling Request: 100 samples

a. All labels made available at certain time T’

T’

Labeling complete

Time T

Labeling Request: 100 samples

b. Labels made available continuous from T to T’

T’

Labeling complete

20 samples 40 samples 10 samples

100 samples

30 samples

1695

labeling selection criteria, such as criteria used in [18]

and [19]. The decision of which criteria to use should

be determined by the nature of the dataset and the

needs of the specific real world application. To

simplify our approach we selected samples by random.

4.3. Concept Drift Detection

 SRADL’s Concept Drift Detection module can use

any concept drift detection algorithm, such as

[20][21][22]. In this study SRADL employs a density

based concept drift detection approach similar to Ryu

et.al [17]. Density based detection assumes that

samples of the same class form clusters. Each cluster C

is defined by a radius radc and a cluster density dc:

radc = longest distance between sample and its

cluster center.

dc = number of samples in cluster / rad

Euclidean distance is used for the calculation of radc.

Initial clusters of samples are obtained from the

initial training set of the framework. K-means

clustering algorithm is used [23]. As new sample s

arrives, if its distance from the center of any existing

cluster C is less than radc, then the sample is included

in cluster C. If there does not exist any cluster that s

can be included in, then s is considered an un-assigned

sample, denoted by ~s. As time progresses, more and

more ~s can appear. SRADL will try to cluster ~s after

each chunk of data. When some of the ~s samples form

a new cluster, SRADL determines that a potential

concept drift has happened. The detection process is

illustrated by Figure 3. In Figure 3-a, two existing

clusters of samples are divided by a classification

model. Some newly arrived samples fall out of the

existing clusters, but the density of the new samples is

low. The learning model does not need adjustment.

After some time more samples arrived. The new

samples form a third cluster as shown in Figure 3-b.

This event signals the framework that a potential drift

has occurred. A new learning model is trained in

response.

Figure 3. Illustrating density based concept drift

detection.

a. New samples appear
outside of two existing
clusters, but density is
low. No drift detected

b. New samples form a
cluster with enough
density, drift detected.

Semi-
supervised
Learning

Labeled
Sample
Reservoir

Data
Stream

Labeling
 Process

Initial Training
Data

Reservoir

Model M1

Change Detected

Chunk A

Request

Reservoir

Model M2

a. At start of the stream, the first chunk is used to train the
initial model (M1). When change is detected, request label
and train a new model (M2)

…

Request

Semi-
supervised
Learning

Labeled
Sample
Reservoir

Data
Stream

Labeling
 Process

Change Detected

Labels

Model M2

Test

b. Continue from a. Newly labeled samples are added to
reservoir and used to test new model (M2). The new model is
retrained if testing shows low performance of the model.

Reservoir

Chunk A

Model M2

Reservoir

Labels

Model M2

Test

Reservoir

Figure 4. Illustration of building and evaluating a model after concept drift through time.

Time Time

1696

4.4. Semi-Supervised Learning

 When concept drift is detected, SRADL

immediately requests for labeling on samples from the

current chunk of data. At the same time Semi-

supervised Learning component uses labeled samples

from the Labeled Sample Reservoir and unlabeled

samples from the current chunk to train a new semi-

supervised model. Any semi-supervised learning

algorithm can be used in this component, such as

[24][25][26]. In this study, SRADL is implemented

with S3VM [26].

After the new model is trained, a performance

evaluation is done on the new model when previously

requested labels arrive later. This model-training-

performance-evaluation process is visually illustrated

in Figure 4. The “Data Stream” axis denotes the data

stream through time. The “Labeling Process” axis

denotes the labeling process through time. The

“Labeled Sample Reservoir” and “Semi-supervised

Learning” denotes the status of the two components

through time. At the beginning of the stream (Figure

4a), the first chunk of data is used for initial training.

Its samples are partially labeled and put into the

reservoir. An initial model M1 is also trained. At

Chunk A, Concept Drift Detection detects a change in

the stream. It signals Semi-supervised Learning to train

a new model. At the same time it signals the SRADL

framework to request for labeling on the current chunk

of data. Semi-supervised Learning trains a new model

M2 using labels from the reservoir and unlabeled

samples in Chunk A. As requested labels arrive later in

time (Figure 4b), they are added to the reservoir and

are used to test M2. If M2 is determined to be

performing well, the model is kept unchanged.

Otherwise, Semi-supervised Learning repeats a similar

process to Figure 4a in order to train a new model M2’.

M2’ is trained using reservoir labels and unlabeled

samples from the current chunk in the stream (different

from the chunk used to train M2). SRADL also

requests for more labels from the M2’ chunk. Model

M2’ undergoes the same evaluation process as M2

(Figure 4b). In the extreme case when required labels

never become available, SRADL is still able to train

new models using labels in the reservoir. However, the

evaluation process will not be able to carry out since

there is no labeled samples to test the performance of

the new model.

SRADL uses a performance threshold P to

determine whether a learning model is low performing

or not. Any model with performance below P will be

retrained. P is a parameter that balances between

computational intensity and performance. The value of

P is up to specific applications because it is difficult to

determine the optimal P without the prior knowledge

about the data. For example, an application for

predicting which color will be trendy in fashion can

have a lower P value than an application for predicting

weather. To keep matters simple, in this study the

value of P is determined empirically.

5. Experimental Results

5.1. Datasets

 Two datasets were used in the experimentation:

Rotating Hyperplane and Spam. Rotating Hyperplane

dataset [27] is created with 10,000 samples. It is a

binary class dataset with 10 numerical features ranging

between 0 and 1. A high dimension hyperplane divide

the dataset into its two classes. Concept drift is created

by rotating the hyperplane. When generating the

dataset, parameter K determines how many drift events

occur and parameter T determines how much rotation

is done for each drifts. Our dataset was generated using

K = 4 and T = 1.0. Spam dataset is a real world

dataset. It is a text-data-converted numerical dataset,

where each feature is the occurrence rate of a particular

word in an email. The dataset has 500 features with

two classes: spam and not spam. It has 9324 samples in

total. Our change detection algorithm detected 11

possible concept drifts in the Spam dataset. These two

dataset were selected because they contain a good

number of concept drift.

5.2. Experimental set up

 Two scenarios of labeling arrival time (Figure 1)

were both explored. The labeling process was

simulated by first hiding all class labels from the

framework and only revealing the labels for samples

that are requested to be labeled. The delay time is

measured by number of chunks between label

requesting time and label finishing time. For example,

a 6-chunk-delay problem when labeling is requested at

chunk #5 will finish at chunk #11. For the first

scenario, all requested labels are made available only

after a pre-defined delay, as shown in Figure 1-a. To be

precise, for n-chunk-delay experiment, if change were

detected on the mth chunk, all K requested labels will

be made available on the (m+n)th chunk. The second

scenario is where labels are made available

incrementally over a period of time (Figure 1-b). Each

chunk after the mth chunk will get K/n number of

labels. All K requested labels will still be made

available on the (m+n)th chunk. The delay times for

each experiment are arbitrarily chosen such that we can

compare the performance of SRADL against other

1697

approaches in various length of delay. In real world

scenarios, the delay time can vary for each application

and it is most likely determined by how long it takes

the experts to finish labeling the data.

We compared SRADL with three other data stream

mining approaches: a) static, b) no-delay, and c) wait-

and-train. The static approach assumes there is no

further changes in the data stream. The learning model

was trained in the initial chunk and remained

unchanged throughout the stream. This approach was

used to show that concept drifts exist in the selected

datasets. It provides a lower bound of performance.

No-delay approach obtains labels immediately after

requested, after which an updated model can be

immediately trained. This approach was to give an

upper bound of performance. Wait-and-train approach

is the naïve solution to delayed labeling problem. It

waits for the labeling process to finish and only trains a

new model after all requested labels arrive.

Performance was measured in area under the prediction

accuracy curve, calculated by the Trapezoidal Rule that

simulates integrating of the curve.

5.3. Synthetic data experiment

 For the synthetic dataset the chunk size was chosen

to be 300. This chunk size was chosen such that the

initial model can obtain the highest accuracy. The

threshold performance value P was empirically set to

be 75% accuracy based on the average accuracy of the

static model throughout the data stream, which is 75%.

Figure 5 shows the experimental results of labeling

scenario 1 and Table 1 shows the area under the curve

between four approaches. The vertical line in the figure

denotes the time when concept drift was detected. In

Figure 5a and 5b, we can see that SRADL first

performed slightly better than the naïve approach.

Since the naïve approach waits for the labeling process

to finish, at the beginning it had the same degrading

performance as the static approach. After retrain, the

wait-and-train bounced back nicely and even out-

performed SRADL. For these two cases, the area under

the curve showed that SRADL performed worse than

wait-and-train by 3.1% and 1.5% respectively. In

Figure 5c, it shows that for larger delays SRADL was

able to perform slightly better than the naïve approach

from the beginning to the end. The area under the

curve shows SRADL had a 3.6% increase in

performance. The small improvement of SRADL

compared to wait-and-train can be explained by the

lack of new labels to update the reservoir during the

labeling process. Since no new labels are available

during the waiting time, SRADL and wait-and-train

has the same knowledge about the data stream. Semi-

supervised learning trained using outdated label with

new unlabeled samples produced worse models than its

wait-and-train counterpart, which used supervised

learning models on all requested labels. However, with

larger delay, the S3VM semi-supervised learning

algorithm was able to overcome such drawback.

TABLE 1. AREA UNDER THE CURVE FOR LABELING

SCENARIO 1 EXPERIMENTS WITH HYPERPLANE.

TABLE 2. AREA UNDER THE CURVE FOR LABELING

SCENARIO 2 EXPERIMENTS WITH HYPERPLANE.

 Figure 6 shows the accuracy curve of Scenario 2
and Table 2 shows the area under the curve. Figure 6a
shows that SRADL performed similarly to wait-and-
train until the chunk #20, where wait-and-train started
to outperform. In 12 and 18 chunk delay experiments
(Figure 6b and 6c), SRADL greatly outperformed wait-
and-train for the entire dataset. In Table 2 we can see
that for 6 chunk delay SRADL performed worse by
merely 0.9% while in the other two cases it out-
performed wait-and-train by 3.1% and 7.5%
respectively.

When new labels constantly update the reservoir,
SRADL is able to effectively utilize the new
information by integrating them into the latest models.
SRADL especially showed its benefits on larger
labeling delay. The naïve approach of wait-and-train is
limited to an outdated model for a long period of time
while SRADL improves the model immediately.

5.4. Spam data experiment

 In the Spam experiment the chunk size was chosen

at 200. In this dataset the average accuracy of static

model is around 50%, which is too low of a

performance to be a meaningful threshold. Therefore

the threshold performance value P is again set to be

75% accuracy

Shown in Figure 7 is the result of labeling scenario

1 experiment of the Spam dataset. The area under the

Delay Static No-delay Wait&Train SRADL

6 718.5 871.2 817.3 791.0

12 718.5 871.2 761.6 749.5

18 718.5 871.2 732.4 759.4

Delay Static No-delay Wait&Train SRADL

6 718.5 871.2 817.1 809.4

12 718.5 871.2 761.6 785.7

18 718.5 871.2 732.4 787.7

1698

Figure 5. Experimental results of Hyperplane data with labeling scenario 1. Chunk size 300. Vertical line

shows time of concept drift.

Figure 6. Experimental results of Hyperplane data with labeling scenario 2. Chunk size 300. Vertical line

shows time of concept drift.

1699

Figure 7. Experimental results of Spam data with labeling scenario 1. Chunk size 200. Vertical line

shows time of concept drift.

Figure 8. Experimental results of Spam data with labeling scenario 2. Chunk size 200. Vertical line

shows time of concept drift.

1700

curve is listed in Table 3. SRADL performed much

better at 6 chunk delay as shown in Figure 7a. The

most performance gain came between chunk 15 and

chunk 30. In 12 chunk delay, SRADL performed worse

than the wait-and-train approach. Specifically, in

Figure 7b, SRADL performed similarly compared to

wait-and-train until chunk 30-44 where SRADL fell

below the naïve approach. For 18 chunk delay SRADL

has a similar result than the wait-and-train approach for

the entire stream. For Area under the curve, SRADL

performed worse than naïve case in the 12 chunk delay

case by 6.9%. In the other two cases, SRADL

outperformed wait-and-train by 6.7% in the 6 chunk

delay and 1.2% in the 18 chunk delay.

Again the result showed that SRADL cannot

benefit from semi-supervised learning algorithm in

labeling scenario 1 since no new knowledge is gained

about the data stream during the label waiting time.

TABLE 3. AREA UNDER THE CURVE FOR LABELING

SCENARIO 1 EXPERIMENTS WITH SPAM.

TABLE 4. AREA UNDER THE CURVE FOR LABELING

SCENARIO 2 EXPERIMENTS WITH SPAM.

Scenario 2 results are shown in Figure 8. For 6

chunk delay, shown in Figure 8a, SRADL had no large

improvement over the wait-and-train approach. In fact

SRADL performed slightly worse for the majority of

the stream. In Figure 8b, SRADL performed slightly

worse between chunk 20 and 30, but outperformed

from chunk 5 to 15 and from chunk 30 to 40. In Figure

8c SRADL clearly outperformed wait-and-train

between chunks 15-40, a vast majority of the entire

dataset. From the area under the curve calculation

listed in Table 4 we can see that SRADL performed

slightly worse on 6 chunk delay with 3.5% less area

under the curve. While on the 12 chunk and 18 chunk

SRADL outperformed by 1.9% and 7.5% respectively.

Both synthetic and real world experiment results

showed that different labeling scenarios have different

effects on SRADL and wait-and-train. For labeling

process that return all the labels all together, wait-and-

train is the better approach. Whereas for labeling

process that can return small amount of labels from

time to time, SRADL performs better. SRADL also

universally benefits from larger chunk delays since the

naïve approach keeps the outdated models for longer

periods of time in these cases.

6. Conclusion and future works

 In this paper we described the delayed labeling

problem in streaming data classification. The problem

arises when a new learning model needs to be trained

in response to changes in the data stream but the labels

required for training are not immediately available. We

proposed a new framework SRADL to handle the

delayed labeling problem. SRADL contains three

components: Concept Drift Detection, Semi-supervised

Learning and Labeled Sample Reservoir. Concept Drift

Detection monitors the data stream and signals Semi-

supervised Learning component to update its learning

model. Semi-supervised learning then requests labels

to be made and trains a new semi-supervised model

using available labels in the Labeled Sample Reservoir.

The reservoir is updated whenever latest samples are

labeled. Our experiments involved two scenarios of the

labeling process. The first scenario assumes that labels

will arrive all together after a certain delay. The second

scenario assumes that labels arrive continuously. We

compared SRADL with three approaches: static, no-

delay and wait-and-train. In scenario 1, SRADL scored

similarly compared to wait-and-train in some cases,

and in some cases worse than wait-and-train. For

scenario 2, however, SRADL performed much better

both in synthetic and real-word data set experiments in

most cases. The most improvement occurred when

labeling delay time were long.

Future work should further improve the

performance of SRADL. For instance, the performance

evaluation P should be able to be automatically

adjusted according to application criterions and data

stream environment. It is also worth investigating

integration of other state-of-the-art stream mining

frameworks with the SRADL approach in delayed

labeling settings. SRADL should also be combined

with frameworks that solve other streaming data

challenges such as imbalanced data stream, multi-class

classification, and recurring drift data streams.

Delay Static No-delay Wait&Train SRADL

6 473.1 1815.3 1412.7 1362.7

12 473.1 1815.3 1367.8 1394.6

18 473.1 1815.3 1295.0 1393.4

Delay Static No-delay Wait&Train SRADL

6 473.1 1815.3 1396.3 1490.0

12 473.1 1815.3 1375.6 1280.7

18 473.1 1815.3 1251.5 1267.3

1701

10. References

[1] Babcock, Brian, et al. "Models and issues in data stream

systems." Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database
systems. ACM, 2002..

[2] Tsymbal, Alexey. "The problem of concept drift: definitions
and related work." Computer Science Department, Trinity
College Dublin 106 (2004): 2.

[3] Hoens, T. Ryan, Robi Polikar, and Nitesh V. Chawla.
"Learning from streaming data with concept drift and
imbalance: an overview." Progress in Artificial Intelligence 1.1
(2012): 89-101.

[4] Farid, Dewan Md, et al. "An adaptive ensemble classifier for
mining concept drifting data streams." Expert Systems with
Applications 40.15 (2013): 5895-5906.

[5] Brzezinski, Dariusz, and Jerzy Stefanowski. "Reacting to
different types of concept drift: The accuracy updated ensemble
algorithm." Neural Networks and Learning Systems, IEEE
Transactions on 25.1 (2014): 81-94.

[6] Rutkowski, Leszek, et al. "A new method for data stream
mining based on the misclassification error." Neural Networks
and Learning Systems, IEEE Transactions on 26.5 (2015):
1048-1059.

[7] Mirza, Bilal, Zhiping Lin, and Nan Liu. "Ensemble of subset
online sequential extreme learning machine for class imbalance
and concept drift." Neurocomputing 149 (2015): 316-329.

[8] Ditzler, Gregory, and Robi Polikar. "Semi-supervised learning
in nonstationary environments." Neural Networks (IJCNN),
The 2011 International Joint Conference on. IEEE, 2011.

[9] Ahmadi, Zahra, and Hamid Beigy. "Semi-supervised ensemble
learning of data streams in the presence of concept drift."
Hybrid Artificial Intelligent Systems. Springer Berlin
Heidelberg, 2012. 526-537.

[10] Hosseini, Mohammad Javad, Ameneh Gholipour, and Hamid
Beigy. "An ensemble of cluster-based classifiers for semi-
supervised classification of non-stationary data streams."
Knowledge and Information Systems (2015): 1-31.

[11] Read, Jesse, Fernando Perez-Cruz, and Albert Bifet. "Deep
learning in partially-labeled data streams." Proceedings of the
30th Annual ACM Symposium on Applied Computing. ACM,
2015.

[12] Mesterharm, Chris. "On-line learning with delayed label
feedback." Algorithmic Learning Theory. Springer Berlin
Heidelberg, 2005.

[13] Zliobaite, Indre. "Change with Delayed Labeling: when is it
detectable?." Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on. IEEE, 2010.

[14] Masud, Mohammad M., et al. "Classification and novel class
detection in concept-drifting data streams under time
constraints." Knowledge and Data Engineering, IEEE
Transactions on 23.6 (2011): 859-874.

[15] Krempl, Georg, et al. "Open challenges for data stream mining
research." ACM SIGKDD Explorations Newsletter 16.1
(2014): 1-10.

[16] Fan, Wei. "Streamminer: A classifier ensemble-based engine
to mine concept-drifting data streams." Proceedings of the
Thirtieth international conference on Very large data bases-
Volume 30. VLDB Endowment, 2004.

[17] Ryu, Joung Woo, Mehmed M. Kantardzic, and Myung-Won
Kim. "Efficiently maintaining the performance of an ensemble
classifier in streaming data." Convergence and hybrid
information technology. Springer Berlin Heidelberg, 2012.
533-540.

[18] Wang, Peng, Peng Zhang, and Li Guo. "Mining Multi-Label
Data Streams Using Ensemble-Based Active Learning." SDM.
2012.

[19] Žliobaitė, Indrė, et al. "Active learning with drifting streaming
data." IEEE transactions on neural networks and learning
systems 25.1 (2014): 27-39.

[20] Wang, Shuo, et al. "Concept drift detection for online class
imbalance learning." Neural Networks (IJCNN), The 2013
International Joint Conference on. IEEE, 2013.

[21] Lindstrom, Patrick, Brian Mac Namee, and Sarah Jane Delany.
"Drift detection using uncertainty distribution divergence."
Evolving Systems 4.1 (2013): 13-25.

[22] Pinage, Felipe Azevedo, and Eulanda Miranda dos Santos. "A
Dissimilarity-Based Drift Detection Method." Tools with
Artificial Intelligence (ICTAI), 2015 IEEE 27th International
Conference on. IEEE, 2015.

[23] Hartigan, John A., and Manchek A. Wong. "Algorithm AS
136: A k-means clustering algorithm." Journal of the Royal
Statistical Society. Series C (Applied Statistics) 28.1 (1979):
100-108.

[24] Li, Yu-Feng, James T. Kwok, and Zhi-Hua Zhou. "Semi-
supervised learning using label mean." Proceedings of the 26th
Annual International Conference on Machine Learning. ACM,
2009.

[25] Wang, Yu, et al. "Semi-supervised learning based on nearest
neighbor rule and cut edges." Knowledge-Based Systems 23.6
(2010): 547-554.

[26] Bennett, Kristin, and Ayhan Demiriz. "Semi-supervised
support vector machines." Advances in Neural Information
processing systems (1999): 368-374.

[27] W. Fan, Systematic data selection to mine concept-drifting data
streams, in: KDD'04, 10th International Conference on
Knowledge Discovery and Data Mining, Seattle, WA, August
2004, pp. 128-137.

1702

