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Abstract 

 
Research in the domain of Financial Contagion has 

come to the forefront in recent years. There has been a 

significant focus on this field since the recession of 

2008. In this paper we take a look at simulation based 

modelling to stress test the stability of inter-bank loan 

networks of different structures. We look to analyze the 

effect of various parameters on the stability of these 

networks. We first simulate networks which are 

Homogeneous in nature. We then simulate a 

Heterogeneous (tiered) network. The model also 

introduces an endogenous loaning mechanism to 

imitate a more realistic inter bank loan market. We run 

simulations on these networks to gain a better 

understanding of the propagation of losses through the 

network. After studying the results of these simulations 

we come up with some interesting new insights about 

how parameters like connectivity and size of the 

network, effect a tiered intra-bank financial network. 

One of our key findings is that higher inter-tier 

connectivity is good for the stability of big banks but 

not so much for banks of smaller size. 
 

1. Introduction  

 
The recent global recession of 2008 was a global 

disaster. It led to losses in the home equity network 

that transpired to huge losses being incurred in the 

stock network. According to Business Insider, the 

United States of America lost more than 10 Trillion 

dollars in the crash [19]. According to The Guardian, 

the crash in network also led to more than 500 banks 

declaring bankruptcy and a considerably higher 

number of banks suffered considerable losses, in the 

subsequent years [20]. Modern day financial 

institutions are interlinked between each other. The 

failure of one institution affects the financial health of 

others. This is depicted by common “Too Big to Fail” 

phrase [21] which indicates there are certain big 

financial institutions that can’t be allowed to fail. The 

failure of these banks will lead to catastrophic failure 

of the overall financial systems. However, though there 

is an agreement that there are few banks that are too 

large and too risky to fail, there has not been much 

research or study on how big is too big. There is scant 

understanding of the impact of various characteristics  

 

of financial networks that may affect the stability of the 

network. In light of this tragedy, the study of systemic 

risk in financial Networks has come to the forefront of 

research. Acemoglu et al [3] have studied this aspect 

through an analytical way. They have mathematically 

modeled the financial network and have identified 

several properties and characteristics for stability of the 

financial network.  

 

Though mathematical modeling is important for 

deriving theoretical insights, it is limited by the 

assumptions that are needed to make a mathematical 

model fit to a real life scenario. To address more 

realistic situation, in this paper we use simulation 

based network modeling to identify scenarios where 

failure of one or few banks can lead to failure of the 

overall system. Through simulation based approach we 

determine, how Failure of one individual bank in a 

financial network can cause a cascade of failures 

throughout the system. We take a network model 

approach [1] [2] [3] [4] [5] to do this simulation. In this 

research we focus on the financial sector, specifically 

interbank loan networks.  

 

First we simulate the interbank loan network through a 

simulation of a network of nodes. Next, to do stress 

test of the network, we simulate shocks which can 

assess the stability of the network based on certain 

parameters. A concept known as contagion is 

introduced which affects the whole network of nodes, 

instead of just one bank. The banks have dependencies 

on the other banks when they either borrow money or 

lend money to other banks. Such cases are also handled 

in this model of banking. Let us consider an example 

of a bank which goes bankrupt and crossed the limits 

of capital. The loans it has got have exceeded the limits 

and it cannot repay the loan amount now. In such 

1603

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41347
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/77239657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

cases, the lending banks would be losing the money 

and their net capital (assets) should be updated 

accordingly. If a bank’s asset becomes lower than its 

liabilities, we say it has defaulted and remove it from 

the network. However, removal of one bank from the 

financial system leads to loss of the loan given to the 

removed bank by all other banks in the system. This 

leads to propagation of financial loss through the 

network and may lead to failure (or removal) of more 

banks from the system. As the number of banks failing 

due to such a domino effect increases, more unstable 

the financial network becomes.  

 

In this research we investigate the stability of this 

interbank loan network against certain parameters – 

number of banks, their internal connectivity and the 

severity of a shock. We measure the stability by the 

metric of how many nodes and how much residual 

capital survives in the aftermath of the shock. We also 

analyze a tiered banking network structure with an 

endogenous loaning mechanism, where the decision of 

granting an interbank loan is not random but is based 

on risk and return of the loan.   

 

This research is fundamental to the kind of research 

being sought after by Central Banks around the world 

[11][12]. At the junction of financial crisis, the output 

of this research can be used by central banks to 

determine when and how to intervene. For example, 

whether the central bank should let a bank fail or 

should it intervene – this question has wide political 

and economic implications. However, seldom that 

decision is driven by evidence based research. This 

research aims to close that particular gap.  

 

Some of the specific contributions of this paper are to 

run simulations on tiered networks resembling the real 

world inter bank loan markets and see how 

connectivity and size of the network along with the 

intensity of the shocking mechanism effect the stability 

of such a tiered structure. We analyze in detail the 

effect of such parameters on each individual tier of the 

said banking network.   

 

The rest of the paper is organized as follows in section 

2 we discuss the Related Works to this kind of 

research. In section 3 we describe in detail the model 

and define the key terminologies that have been used in 

the paper. Here we also describe the various methods 

used in the model like the shocking mechanism, the 

endogenous loaning mechanism and how losses 

propagate in the system. In section 4, we discuss about 

the metrics used and analyze the results achieved after 

running simulations. This is followed by Conclusions. 

2. Related Work 

The way we look at the problem is very similar to the 

way a disease spreads through a population where the 

infection can be transmitted from one person to another 

upon contact [13] [14]. This is where the name 

contagion is derived from. This approach of 

determining the stability of a network or propagation 

of a shock has been studied in various other disciplines 

like Biology [13] [14], Economics [15] [17], 

Psychology [16] and Sociology [18] among many 

others.   

 

Even though the interest in contagion has seen 

significant spike in recent years due to the global crisis, 

it is not a new topic, Diamond and Dybvig [22] came 

up with a model for bank runs and related financial 

crises way back in 1983.  There was also considerable 

research done in the field after the Mexican Peso crisis 

of 1994 and the Asian Network crash of 1997 [23][24]. 

However the domain really came to the forefront with 

the influential paper by Allen and Gale [17] where they 

analyzed the fragility of a given network system based 

on its structure by making use of simple examples. 

There has been a lot of theoretical research done in the 

study of contagion [3] [4] [6] [7] [8] [9] [10], but there 

is a lack of empirical research of the field. This lack of 

empirical research has been a problem for central 

banks and regulators. Many central banks around the 

world have conducted research that looks to address 

this issue [11] [12] [8]. However as the data required 

for this kind of research is proprietary in nature, 

research outside of institutions with available data, 

need to resort to simulations. This has led to the use of 

simulations to study the effect stability of network of 

financial institutions in case of instability of one or few 

banks in the network.  

 

Nier et al [5] were one of the first to use simulation 

methods to analyze the interbank loan networks. This 

work, in turn, has greatly inspired a lot of further 

research in this domain. The use of Eboli model which 

equates the default dynamics of the interbank loan 

networks to flow networks in physics, led to this work 

being emulated and improved on further by multiple 

papers. One such paper being Dasgupta et al [1] who 

use simulations to come up with a contagion index 

combining various characteristics of similar network 

models as of [5]. Upper [2] in 2011 used simulations to 

validate the results and compare the various models 

used by different papers; this paper showcases how 

simulations can be used to visualize the loan networks 

as networks or graphs and how it can be a powerful 

tool for analyzing interbank loan networks.   

 

However, most of these simulations have been run on 

Homogeneous networks, networks where all nodes and 
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edges are of equal importance/strength. There has been 

few studies with a two tiered network structure [1] [2] 

[5] [6] [7] [9], where nodes are identical to nodes in its 

own tier but differ from nodes of the other layer. Also 

the edge weights vary leading to this structure being 

very different from the Homogeneous one. Many have 

argued that even though the results achieved in a 

homogeneous network may work in an ideal world, the 

complexity of the real world problems can be 

represented by adding Heterogeneity to the said 

networks. So, [1] and [5] delve into heterogeneity by 

running simulations on a two tiered alpha-beta 

heterogeneous network, [7] investigates the existence 

of dense cores in a heterogeneous network of banks. In 

this paper we extend this work by running simulations 

on a three tiered structure, with heterogeneity among 

nodes in each layer. We emulate a real work bank 

lending network by introducing a third tier which shall 

resemble the sector specific financial institutions (such 

as mutual fund or other financial derivatives of various 

sectors). Here the tier 1 bank is the ‘Big’ banks, so they 

will have a considerably large amount of assets 

whereas second tier banks will be relatively smaller in 

size. The tier 3 will refer to sectors and they represent a 

collection of loanees pertaining to specific domains. So 

for example Real Estate can be regarded as a sector. 

None of the banks will be identical to each other. We 

first validate the results achieved for Homogeneous 

structures and compare them to results obtained by [1] 

[2] and [5]. We then show that similar relationships 

can be observed for a more complex three tiered 

structure as well and derive few more useful insights. 

 

3. Model and Method 

In this section we describe the model and the approach 

in simulating the interbank loan networks. We 

represent each entity in the interbank loan networks 

(such as a bank) as a node in a directed graph. So G = 

(V, E) is the network representation of interbank loan 

network. V is the set of all nodes in the network, where 

each node represents a financial institution (banks) that 

takes part in the interbank loan. An edge 

 is a directional 

edge from  to  represents a loan given by node  

to node . Each node has one important characteristic, 

weight (called node weight) which represents the cash 

in hand with that node (financial institution). Each 

edge has also a weight, which represent the current 

loan amount from node  to . 

 

To model the interbank loan network we first assume 

the interbank loan networks as a network of nodes and 

edges. We allocate node weights to all the nodes and 

edge weights to all the edges, once that is done we sum 

up all the node weights to get the total net capital of the 

network and denote it by N. Similarly we sum up all 

the edge weights to get the total lending or borrowing 

in the network and denote it by E. The ratio of these 

two play an important role as we will see later and we 

denote it as the N/E ratio.  

Before describing the details of the loan network, 

below we first describe few concepts.  

 

Systematic Risk: Systemic risk led to financial crisis in 

2008. It is a problem in banking, where an isolated 

event triggers instability or collapse of the whole 

system. In a banking network, due to a lot of 

dependencies, if one of the banks fail, there may be a 

chance of cascading failure, so losses can propagate to 

all the other banks in the chain. Systemic risk is a 

major concern for central banks, in safeguarding the 

whole financial stability. It occurs, if some of the banks 

in the network have high potential to fail and indirectly 

impose the same onto the whole economy. We check 

for systemic risk in our simulated network by 

providing shock to the system and removing banks 

which default. 

 

Each node in the simulated interbank loan financial 

network is a bank or financial entity that can borrow or 

lend money in the lending network. Below we define 

some common financial terminologies that are used to 

denote the health of a bank. These characteristics will 

be associated with each node in our model and will be 

used to determine the health of the node.  

 

Balance sheets, Assets, Liabilities, Capital: Balance 

sheet is a report which shows the bank’s assets, 

liabilities and the equity share of all the owners [25]. 

An asset has a value which can be converted to cash by 

selling those [25].  

Liability is an obligation that must eventually be paid 

as it is a claim on assets [25]. The owner’s equity in a 

bank is often referred to as bank capital [25]. We can 

quote these as an equation [25], 

  

Assets = Liabilities + Capital 

 

Shock: Now in this model similar to [1] [5] we 

introduce an external shocking mechanism. This 

mechanism has two important characteristics. First, 

across how many banks, such shock is introduced and 

second, if a bank is effected how much of its capital 

does it lose. The second parameter can be regarded as 

the severity of the shock, denoted by φ, whereas the 

first feature is deemed as the reach of the shock, 

denoted by χ. If a bank is hit by a shock, we calculate 

its remaining capital by the following equation: 
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Remaining capital = (1- φ)*(Assets) 

 

The remaining capital definition comes in handy to 

ascertain when a bank fails in our model. Given an 

external shock or a hit we will deem a bank to be 

bankrupt or fail when its remaining capital becomes 

less than its liabilities. Once a bank fails, we remove it 

from the network, and the loans given to that failed 

bank from other banks are deducted from their 

respective assets. So this causes them to lose money 

and thus the initial shock causes losses to propagate 

throughout the entire network. This continues 

iteratively till there is no more bank in the system 

whose remaining capital is less than its liabilities.  

The interbank loan network can follow two different 

structures which we are going to discuss next. 

 

Homogeneous Inter Bank Loan Network 

In this kind of network each node (bank) is identical to 

all the other nodes in the system and each edge is 

identical to all the other edges in the Network. So, all 

the node weights will be equal to each other and all 

edge weights will be equal to each other. These types 

of networks represent those scenarios where all 

commodities in the system are equal to each other, they 

are assumed to be of the nature of Erdos Renyi graphs 

[1]. Though the homogenous assumption is not 

realistic, due to reduced complexities most existing 

research [1] [5] [7] on interbank loan network assumes 

homogeneous network. Such assumptions make the 

model analytically trackable. To make our research 

continuation from the past research, we first study the 

simulation based analysis on homogenous network to 

establish the results based on existing research.  

 

In this structure all banks will have the same net 

capital, so if the total net capital of the network is 

denoted as N and there are n banks, each bank thus, 

will have a capital of . Similarly if the total value 

of the loan network (the amount that has been given 

loan by one bank to another bank) is given as E and 

there are m interbank loans (i.e. edges), each edge in 

the homogeneous network will have an edge weight of 

.  

 

In our simulation of homogenous interbank loan 

network, a χ fraction of banks will be hit by a shock, 

where each of the banks will lose ϕ fraction of their 

assets. If the remaining capital of any bank is less than 

its liabilities, we will deem it to be bankrupt. After the 

initial shock we will see how many of the banks 

default and we will observe how much loss they 

propagate to banks who had lent them money. So this 

phenomenon takes in the form of a contagion and we 

observe how losses propagate throughout the network 

causing knock-on defaults. The number of surviving 

nodes after the network has stabilized is deemed to be 

the stability factor, and this is what we analyze as a 

measure while running our simulations. We will 

discuss the results in the next section. Next, we 

introduce more complex Heterogeneous interbank loan 

networks. 

                                                                                                                                                                 

Heterogeneous Inter Bank Loan Network 

To model the more realistic situation where both banks 

and loans are of varied size, we resort to heterogeneous 

network. Here, each edge and node in the network has 

individual values, which are unequal. As such 

heterogeneous networks are difficult to track 

analytically, existing research in this domain has not 

dealt with this kind of network in great detail. Even in 

existing research, where heterogeneous networks have 

been discussed [1][5], they  assume α-β heterogeneity. 

α-β heterogeneity refers to the structure where α 

fraction of banks have β fraction of the assets, 

generally for more heterogeneity α is close to 0, like 

0.05 and β is closer to 1, say 0.9.   In this research we 

will not make any such assumptions about the loan 

network. Here, with the help of simulation we plan to 

analyze the stability of an endogenous heterogeneous 

interbank loan network – which is the key contribution 

of this paper.  

 

In our model we will not have the α-β heterogeneity. 

We will simply allocate Tier1 banks to be big banks 

with a very high amount of assets (e.g. JP Morgan 

Chase) and similarly the Tier 2 banks (e.g. any 

community bank) to have a considerably lower amount 

of assets. Tier 1 and tier 2 banks invest money in the 

third tier which are the various sector specific financial 

institutions to make money, as depicted by the figure 

below. We allow tier 2 banks to take loans from tier 1 

banks so that they can have more capital to invest in 

the network sectors. Unlike in homogeneous structure, 

here we have a rate of return associated with each loan. 

For each dollar a tier 1 bank loans to a tier 2 bank, it 

has to return r dollars, where r > 1, the exact value of r 

varies from loan to loan (i.e. for different edges). 

Similarly the loan to a sector has a rate of return R 

which vary from loan to loan, but we always have R > 

r > 1, for all R and r. Also there is a time paradigm in 

our model, it is built in a way that each loan from tier 1 

to tier 2 needs to be repaid in 2 time stamps, whereas 

each loan to tier 3 gets repaid within the next time 

stamp itself. This is done so that the lower level banks 

can maximize each loan. Also, there is a risk of failure 

associated with investing in a sector. Typically as the 

rate of return of loan in a sector increases the risk of 

failure of returning on the loan increases too. 
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These loans and investments are not done randomly 

but there is an endogenous decision making involved. 

Suppose a tier 1 bank does not wish to invest in a 

certain sector due to past losses, then it will not loan to 

tier 2 banks which invest money in that particular 

sector. Also a tier 2 bank which is financially sound 

will seek to invest in sectors which have a lower risk of 

failure, whereas a bank which is struggling financially, 

may choose to take greater risks to make sure they do 

not go under and is able to repay all the money it has 

borrowed. So each loan granted or each investment 

made during the simulations is not completely random 

in nature but follows these realistic constraints.  

   

 

Figure 1 A sample 3-tiered Heterogeneous Network 

 
In simulating heterogeneous network, we introduce the 

external shock similar to homogeneous network, but 

instead of hitting banks with shocks, here the sectors 

are targeted. If a sector is hit by a shock, all banks who 

had invested money in that particular sector, lose the 

money invested. Once the initial shock is setup we 

iteratively check if any of the banks default or not, if so 

how many of the banks go bankrupt and then analyze 

how much losses they propagate to banks who had lent 

these money.  

In our heterogeneous network simulations, we observe 

the number of surviving nodes in each tier along with 

the total amount of money left in the system. We do 

this because we believe the amount of the money left 

in the network is a better representative of the state of 

the network. So we run our simulations to check both 

the number of surviving nodes as well the leftover 

amount of money to analyze our results. 

 

4. Results and Discussions 

 

In this section we describe the results obtained by our 

simulated experiments.  

 

Metrics Used 
To describe the current condition of the system, we 

focus primarily on two metrics.  

Number of surviving nodes: This is the metric which 

has been chosen repeatedly in the past as well [1] [2] 

[5]. The objective of this study is to analyze the 

stability of the network. It is a good measure to see 

how many of the initial nodes, survived the contagion. 

We reported this result for both the homogenous and 

heterogeneous networks.  

Percentage of money left in the system: In 

heterogeneous network where the asset of each bank is 

not equal, this is an important metric. For example, if 

30 out of 100 banks survive the contagion, but in total 

they have only 30 dollars left as asset – that’s not a 

good indication of the stability of the network. So we 

use the percentage amount left in the system 

(computed as sum of assets left over for all the 

surviving nodes) compared to the total amount in the 

system before the shock as a metric for stability of the 

network. 

 

Results 
The simulations we run, generate plots which help us 

interpret how each parameter affects the stability of the 

network. Each simulation run, we do, will vary a 

selected parameter, over a range of values as given in 

Table 1 and Table 2, while keeping all others constant 

at the benchmark values. The values that have been 

chosen as parameter ranges are based on past research 

done in this domain. They are inspired from the work 

done by Dasgupta et al. [1], Nier et al.[5] and 

Upper[2]. For each result we run a 100 simulations and 

then average our findings. These experiments will help 

us to understand how the parameters being examined 

influences the stability of the network and whether or 

not should be a factor to be monitored while 

investigating systemic risk. 

Another interesting aspect is the ratio of the total asset 

with the total money being loaned/borrowed in the 

network. This is denoted by N/E ratio and is computed 

as sum of the node weights to the sum of the edge 

weights. We observe the effect of N/E ratio across all 

the simulations we run. For each of these parameters 

that we are examining we plot multiple times with 

different values of the N/E ratio.  

 

Homogeneous Network 
Here in each experiment we introduce shock with χ 

reach and φ severity.  We observe how that translates 

into banks getting bankrupt either with directly being 
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shocked or indirectly through losses propagating from 

bankrupt banks in the network. This continues until the 

network becomes stable, that is there are no more 

banks going bankrupt. The number of surviving banks 

after the network stabilizes is what we are measuring to 

denote the stability of the network.  

Effect of Connectivity: In this experiment we look at 

the effect of connectivity over the stability of the 

network. So here we vary the probability of forming a 

link (i.e. a bank has provided loan to another bank in 

the network) between two nodes from 0.05 to 0.95, 

while keeping all other parameters at the benchmark 

value.  

In Figure 2, we plot the number of solvent banks 

(nodes) as the edge probability increases. From Figure 

2, we see that with increased connectivity, number of 

surviving nodes after the shock stabilizes increases, 

making the network more stable. This result 

demonstrates that for a network, higher connectivity is 

better. Banks, the more they are connected with other 

banks, tend to be more stable as any loss coming in is 

shared by a number of banks and helps in reducing the 

effect of the shock.  

 

 

Conclusion 1: Higher connectivity in the network in 

an interbank loan network, increases the stability of 

the network. Thus banks should loan to multiple other 

banks to increase their stability. 

Also the effect of N/E ratio is also quite clear. With a 

high N/E ratio, the network is more stable even at low 

values of connectivity. 

 

Conclusion 2: Banks should keep higher N/E ratio. 

Thus the banks should be careful about how much 

money they lend compared to the total assets they 

have. 

The first conclusion encourages the diversification, 

which is quite well known in financial market. The 

second asks the bank to increase the reserve they have. 

After the 2008 financial crisis the banks have increased 

their reserve [26].  The above conclusion and simulated 

demonstration support that action. 
 
 

Table 1: Simulation Parameters for Homogeneous Network 
Name of the 

parameter(Variable) 

Description Values / Range Benchmark 

value 

Value 

Distribution 

Node total Total assets in the network 400M, 800M, 1200M           

Edge total Total amount of loans in the network 800M            

Node weight Asset of individual bank (10M, 40M)  Uniform 

Edge weight Amount of the total loan from one bank (origin node) 

to another bank (destination node)  

(1M, 15M)  Uniform 

N/E ratio The ratio of the Node total to the Edge total.  0.5, 1.0, 1.5 1.0  

Number of nodes Number of banks/financial institutions [10, 100] 30 Uniform 

increments of 5 

Connectivity of the 

network 

Probability of forming a directed link between any two 

nodes (i.e. probability that a loan exists from one bank 

to another bank) 

[0.05, 0.95] 0.5 Uniform 

increments of 

0.05 

Φ Severity of the shock 

(percentage of a bank’s asset wiped out by the shock) 

[0.05, 0.95] 0.95 Uniform 

increments of 

0.05 

Χ Reach of the shock (% of banks affected by shock) [0.5, 1]  Uniform 

 

Table 2: Simulation Parameters for Heterogeneous Network 
Name of the 

parameter(Variable) 

Description Values / Range Benchmark Distribution 

n1 Number of banks in tier1 8, 30, 50 30  

n2 Number of banks in tier2 10, 50, 80 50  

n3 Number of nodes in tier 3 4, 6, 15 6  

Asset Range1  Range of Assets of Tier 1 [10000, 14000]  Uniform 

Asset Range2 Range of Assets of Tier 2 [1000 , 8000]  Uniform 

Loan Range 1 Range of total loans from 

tier1 to tier 2 

[10000, 13000]  Uniform 

Loan Range2 Range of total loans from 

tier 2 to sectors 

[6000, 8000]  Uniform 

Χ Fraction of sectors 

shocked 

(0.05,0.95) 0.5 Increments of 0.05 
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Inter-Tier connectivity Number of Tier 2 banks a 

T1 bank is connected to 

5, 25, 50 6  

Rate of return Return for each dollar you 

invest in a sector 

(1.05 → 2.0)  Uniform 

Risk of failure This is the probability, that 

a sector will fail and the 

money invested in it will 

be lost 

(0.05 → 0.8)  Uniform (higher rate of 

return is associated with 

higher risk of failure) 

 
Figure 2: Effect of Network Connectivity in homogenous network 

 
Figure 3: Effect of Number of banks in Homogenous 

network

 
Figure 4: Effect of severity of shock in Homogeneous network 

 

In Figure 3, we look at the effect that number of banks 

has on its stability. Here we see that with increased size 

(i.e. increased number of banks in the network), the 

financial loan market network becomes more stable. 

We also observe that with higher N/E ratio more nodes 

survive the shock thus making the network more 

stable, this supports conclusion 2 above.  
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Conclusion 3: More banks should be created and 

made part of the overall loan network. With increased 

number of financial institutions the stability of the 

overall network increases as depicted by the higher 

number percentage of surviving nodes after the shock. 

In Figure 4, we investigate the stability of the network 

as the severity of shock is increased. Figure 4 plots 

percentage of surviving nodes as the severity of the 

shock increases. We observe though at low severity of 

shock the stability of the network remains (i.e. 

percentage of surviving node) same, at higher severity 

the stability of the network decreases drastically. We 

also note that as the N/E ratio increases, the decrement 

in the percentage of surviving node starts at much 

higher severity of shock, indicating higher stability of 

the network with higher N/E value. 

  

Conclusion 4: Higher severity of shock leads to much 

severe damage to banking network.  

The simulation on homogenous network led us to 

known facts – which validated our approach. Next, we 

describe the simulation of heterogeneous network 

which revealed some interesting new insights.  

 

Heterogeneous Networks 
In heterogeneous network simulations, we determine 

the stability of the network at various severity of the 

shock as the size of the network is varied and as the 

connectivity of the network is varied.  

Each node in the heterogeneous network has different 

asset amount. The loan amount between various banks 

is also different. So in heterogeneous network we use 

the residual value of the total capital (as percentage of 

the initial total capital in the network) as the metric for 

network stability in heterogeneous network.  

 
Figure 5: Effect of connectivity in a Heterogeneous Network 
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Figure 6: Effect of Size in a Heterogeneous Network 

 

In Figure 5, we plot the residual capital as the severity 

of the shock is varied. We plot this for three different 

values of inter-tier connectivity (how many Tier 2 

banks are connected to one Tier 1 bank) – 5, 25 and 50.  

In general for all the graphs as the severity of the shock 

increases the residual capital decreases too – which is 

expected. It is to be noted that at low connectivity 

(Inter-tier connectivity = 5), as the severity of shock 

increases the decrement in residual capital for Tier 1 

bank is drastic (from 77% to 38%). At low 

connectivity, if Tier 2 banks fails, due to low 

connectivity between Tier 1 and Tier 2, the failure is 

easily propagated to Tier 1 banks and Tier 1 banks get 

affected.  

However, as the connectivity increases (Inter-tier 

connectivity = 50), with the increase in severity of 

shock, the decrement in residual capital for Tier 1 bank 

is little (79% to  70%), whereas the decrement in 

residual capital for Tier 2 bank is drastic from 20% to 

4%. As the Tier 1 bank holds the majority of the 

capital in the market, the higher inter-tier connectivity 

reduces the overall reduction of capital due to shock.  

Thus for more stability of the system higher inter-tier 

connectivity between tier 1 and tier 2 is preferred. With 

higher inter-tier connectivity Tier 1 banks loan to 

multiple small Tier 2 banks. So if few of the Tier 2 

banks fail due to wrong investment in Tier 3 sectors, 

the impact on Tier 1 will be much less. 

 

Conclusion 5: Higher inter-tier connectivity leads to 

better stability at Tier 1 (big) banks but lower stability 

at the Tier 2 (small) banks.  

Based on conclusion 5, the central authority should 

encourage big banks to lend to multiple small banks 

(not few selective small banks) to increase the stability 

of the financial loan market. 

 

In Figure 6 we look at the effect of size of the network 

on its stability in heterogeneous network. We combine 

different pairs of values for the Tier 1 and Tier 2 banks 

to get the effect of size of the network to its stability. 

The different combination of values chosen as (Tier 1, 

Tier 2) are [Small = (8, 10), Medium = (30, 50), Large 

= (50, 80)]. As can be seen from Figure 6, in case of 

small network size, the remaining capital decreases 

drastically from 90% to 50% in case of Tier 1 and 65% 

to 8% in case of Tier 2, as the severity of shock is 

increased from 0 to 0.95. With the increased size 

(medium and large network), the remaining capital 

decreases, but not that dramatically for both Tier 1 and 

Tier 2. Also, to note that the reduction of capital 

remaining with the increase of severity of shock in case 

of medium and large network are very similar. This 

indicates that the benefit of increased network size in 

the stability of the network is limited up to certain size 

of the network. After which the benefit saturates. 

 

Conclusion 6: Increasing the size of the network in 

both Tier 1 and Tier 2, in case of heterogeneous 

network increases the stability of the network. 
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However the increase is not linear. The benefit of 

increased size saturates.  

Based on conclusion 6, the central banks should 

encourage higher number of both big banks and small 

banks in the system than very few “too big to fail” 

banks to increase the stability of the financial loan 

market.  

 

5. Conclusions 
In this paper we discussed how different parameters of 

the network effect the stability of network with 

different structures. The paper first analyzes and shows 

the effect of certain parameters on a Homogeneous 

network which give us some results which are of more 

intuitive nature. Then we introduce a tiered network 

with endogenous loaning mechanism, where we get 

few interesting results. (1) How increasing the size and 

connectivity of the tiered network brings more stability 

to the upper tier, whereas being not so beneficial to the 

lower one, in this setting, is one of the major 

contributions of this work. (2) Also seeing that size of 

the network after a certain threshold does not improve 

stability is another interesting finding of this study. 

  

The results we observed are also in accordance to 

Business Insider [19] and Guardian [20], where it was 

noticed that more than 500 banks crashed and more 

than 10 trillion dollars were lost during the recession of 

2008. Out of these 500 banks may be 10-15 can be 

classified as top or mid-tier banks, but the rest tended 

to be smaller in nature. So it can be assessed that the 

lower tier banks lost significantly more money than the 

corresponding top tiered banks. Our other result, that 

the network size has an effect only till a threshold 

value also supports and augments the findings of the 

Bloomberg article “Too Big to Fail”[21].  

In future we would like to extend our work by working 

on an endogenous mechanism which given a network 

would work towards a state with maximum stability.     
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