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[1] The Hawaiian Islands are the most geologically studied
hot-spot islands in the world yet surprisingly, the only large-
scale compilation of marine and land gravity data is more
than 45 years old. Early surveys served as reconnaissance
studies only, and detailed analyses of the crustal-density
structure have been limited. Here we present a new chain-
wide gravity compilation that incorporates historical island
surveys, recently published work on the islands of Hawai‘i,
Kaua‘i, and Ni‘ihau, and >122,000 km of newly compiled
marine gravity data. Positive residual gravity anomalies
reflect dense intrusive bodies, allowing us to locate current
and former volcanic centers, major rift zones, and a previ-
ously suggested volcano on Ka‘ena Ridge. By inverting the
residual gravity data, we generate a 3-D view of the dense,
intrusive complexes and olivine-rich cumulate cores within
individual volcanoes and rift zones. We find that the Hana
and Ka‘ena ridges are underlain by particularly high-density
intrusive material (>2.85 g/cm?) not observed beneath other
Hawaiian rift zones. Contrary to previous estimates, vol-
canoes along the chain are shown to be composed of a
small proportion of intrusive material (<30% by volume),
implying that the islands are predominately built extrusively.
Citation: Flinders, A. F., G. Ito, M. O. Garcia, J. M. Sinton,
J. Kauahikaua, and B. Taylor (2013), Intrusive dike complexes,
cumulate cores, and the extrusive growth of Hawaiian volcanoes,
Geophys. Res. Lett., 40, 3367-3373, doi:10.1002/grl.50633.

1. Introduction

[2] The main Hawaiian Islands evolve from active vol-
canoes on the southeastern end—Mauna Loa, Kilauea, and
Lo‘ihi—to the eroded remnant of Ni‘ihau Volcano 600 km
to the northwest (Figure 4a). Progressive cooling and crys-
tallization of magma in crustal reservoirs and surrounding
rift zones produces rocks rich in olivine (cumulates). These
cumulate cores define the long-term average zones where
magma resided or transited through, prior to surface erup-
tions or emplacement in shallow intrusions [Kauahikaua
et al., 2000]. Encompassing the cumulate cores are larger
zones of dense, dike-rich intrusions—intrusive complexes—
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comprising the magmatic plumbing system feeding each
volcano. Density contrasts between these features and
encompassing lava flows result in positive residual gravity
anomalies [Strange et al., 1965; Kauahikaua et al., 2000;
Flinders et al., 2010] and often correlate with fast seismic
velocities [Okubo et al., 1997; Park et al., 2009]. Here we
invert a new chain-wide compilation of land and marine
gravity data to estimate the volumes, average densities,
and olivine percentages of intrusive complexes and cumu-
late cores underlying all known volcanoes throughout the
Hawaiian Islands.

2. Data Reduction

[3] Our new compilation is composed of 4820 land-based
measurements, including historical data [Strange et al.,
1965] and data from recent studies of Kaua‘i [Flinders et al.,
2010] and the island of Hawai‘i [Kauahikaua et al., 2000].
Free-air anomalies (Figure 1) were produced by removing
elevation contributions (for land-based data) and the WGS84
ellipsoid. The marine portion of the compilation consists of
over 122,000 km of survey data collected on 140 cruises.
The marine data were collected primarily aboard the Uni-
versity of Hawaii’s R/V Kilo Moana, supplemented with
data from the National Geophysical Data Center and the
Japan Agency for Marine-Earth Science and Technology
(Figure 1, inset). These data were filtered to eliminate high-
frequency noise due to changes in survey speed and course
and corrected for crossover errors using x2sys, a part of
the Generic Mapping Tools [Wessel and Smith, 1991]. The
standard deviation of the corrected crossings was 2 mGal.

[4] Complete Bouguer anomalies were produced by
removing the effects of topography/bathymetry using a
two-part prism-based terrain correction (Figure 2) [Flinders
et al. 2010]. Within 500 km of each measurement,
the water column was infilled with submarine crust
(2.7 g/em?®), using a 250 m digital elevation model (DEM)
(www.soest.hawaii.edu/HMRG). The gravitational effects of
subaerial mass (2.4 g/cm?®) were removed using DEMs of
various spatial resolution, dependent on the distance from
the measurement: a 10 m DEM within 2 km of the mea-
surement location, 100 m DEM at distances of 2-20 km,
and a 500 m DEM at distances of 20-500 km. Lastly,
residual gravity anomalies were produced by removing the
long-wavelength signal due to flexural deformation of the
lithosphere from island loading (Figure 3), using an effec-
tive elastic-plate thickness of 30 km (Figure 2, inset) [Watts
and Cochran 1974; Flinders et al., 2010].

3. 3-D Inversion

[s] For inversion, the marine residual gravity data were
down-sampled onto a 500 m cell-spaced geographic grid,
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Figure 1. Free-air gravity anomalies (FAA) showing high correlation with topography and the long-wavelength swell

caused by flexural loading of the oceanic crust. (inset) Color-coded source data; cyan [Kauahikaua et al., 2000], blue
[Strange et al., 1965], white [Flinders et al., 2010], green [R/V Kilo Moana], yellow [JAMSTEC], and red [NGDC].
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Figure 2. Complete Bouguer gravity anomalies calculated using a two-part terrain correction, one for subaerial data and
one for marine data. (inset) An estimation of the long-wavelength signal due to flexural deformation of the lithosphere
from island loading, using an effective elastic-plate thickness of 30 km, which is subsequently removed from the complete
Bouguer data to produce the residual gravity data in Figure 3.
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Figure 3. Residual gravity anomalies along survey tracks indicate density variations relative to 2.7 g/cm®. The most pos-
itive anomalies are attributed to intrusive dike complexes and cumulate cores. Residual lows encompass the regions of
formerly identified large landslide deposits/slumps, Cretaceous seamounts, and possibly incomplete removal of the long-
wavelength flexural signal. Contours show topography/bathymetry at 500 m intervals. (inset) Bathymetry of the Hawaiian

Island Chain with volcano locations.

resulting in 42,326 measurements. The cell spacing used in
down-sampling the data was approximately equal to half
the minimum 1 km horizontal wavelength typically resolv-
able by the marine data. All land residual gravity data were
used. The compiled data set was subdivided into three over-
lapping geographic regions; Kaua‘i/Ni‘ihau, O‘ahu through
Maui, and the island of Hawai‘i. Data for each region were
inverted to produce 3-D models of subsurface density con-
trast using GRAV3D [GRAV3D, 2007]. The subsurface was
discretized into a set of 3-D voxels, each with a constant
density contrast relative to 2.7 g/lcm®, with voxels spanning
1 km in the horizontal and varying in the vertical dimension
from 500 m at the surface to 1500 m at depth. The top of the
model space was bound by topography/bathymetry, while
the model basement, at 20 km below sea level, encompassed
the base of the thickest Hawaiian volcanic crust (13 km)
and 7 km of preexisting oceanic crust [Watts et al., 1985].
The density distribution was found by solving an optimiza-
tion problem of minimizing a model objective function while
generating synthetic data that fall within the uncertainty of
the observed data [e.g., Li and Oldenburg, 1998; Flinders
et al., 2010]. Inversions were subject to the constraint that
densities be between 2.0 (wet sand) and 3.3 g/cm® (olivine).
The three individual inversion models were then merged
into one chain-wide model (Figure 4). These inversions pro-
vided a low misfit to the residual anomalies, ~2 mGal,

and inverting the data with a wide range of initial model
parameters verified the returned inversion structure.

4. Intrusive Complexes and Cumulate Cores

[6] Negative residual gravity (Figure 3) and low crustal
densities (<2.7 g/cm?3, Figure 4d) are associated with sev-
eral of the previously mapped debris-avalanche deposits
and slumps [Moore et al., 1989], as well as Cretaceous
seamounts, the Moloka‘i Fracture Zone, and possibly incom-
plete removal of the flexural signal. Positive residual gravity
and high crustal densities (>2.7 g/cm?) are associated with
volcanic centers and major rift zones. We interpret the largest
of these anomalies to correspond to underlying intrusive
complexes—regions of high dike concentration—and cumu-
late cores (Figures 4a and 4c). We delineate intrusive com-
plexes by the 2.85 g/cm® density isosurface, corresponding
to 60% or more of dikes with a density of 2.95 g/cm?
(Kilauea 10 wt% MgO at 200°C/1500 bar-KWare Magma
[Wohletz 1999]) in a host extrusive rock of 2.7 g/cm®. Con-
sistent with this definition, the 2.85 g/cm? isosurface lies
within the 50-65% dike concentration used to define the
dike-complex zone of Ko‘olau volcano by Walker [1986].
Cumulate cores were defined by the 3.00 g/cm?® density iso-
surface, equivalent to 35% or more olivine (3.2-3.3 g/cm?)
in the intrusive complex density of 2.85 g/cm?®. Approximate
uncertainties in the isosurface volumes were found by using
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Figure 4. (a) Map view of the density isosurfaces from the inverted 3-D density model, illuminated from the NE. Red isosurfaces (2.85 g/cm®) are attributed to intrusive
complexes, black isosurfaces (3.00 g/cm?®) to cumulate cores. Contours show topography/bathymetry at 500/1000 m intervals. (b) Island volume/intrusive complex volume.
(c) Isosurface view in cross section along the length of the chain, viewed from the south. (d) Density model at four depths.
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the merged density model to forward model-simulated resid-
ual gravity anomalies at our observation locations. These
simulated values were then reinverted, using the original
uncertainty matrix, to find a new density model. A com-
parison of the original density model to the new model
corresponded to £25% volume uncertainty for both the 2.85
and 3.00 g/cm? isosurfaces.

[7] Intrusive complexes are observed beneath all volca-
noes, with the maximum intrusive complex volume ranging
up to 10,550 +2600 km? (Kaua‘i; Table 1). The olivine
contents of the intrusive complexes, estimated as a percent-
age of the total isosurface volume if the average density
was due to only olivine (3.2-3.3 g/cm?) and intrusive basalt
(2.85 g/cm?), were between 2 and 25% (Table 1). Differ-
ences in the volume of individual intrusive complexes do
not vary with their distance along the chain. Instead, the vol-
umes of the intrusive complexes appear to correlate with the
volumes of the associated volcanoes (Figure 4b). Volcano
volume estimates were taken from Robinson and Eakins
[2006], explicitly separating the volume of Hana Ridge from
Haleakala Volcano, and from Sinton et al. (Kaena Volcano
a precursor volcano of the island of Oahu, Hawaii, submit-
ted to Geological Society of America Bulletin, 2013) for
Ka‘ena Ridge and Wai‘anae Volcano, where a small volume
of Ka‘ena Ridge (2525 km?) has been allocated to a sepa-
rately proposed volcanic center. These correlations suggest
an inherent relationship between the volume of erupted lava
and the total volume of intrusive material.

[8] Within the intrusive complexes, dense cumulate cores
(>3.0 g/cm®) were detected under the majority of volca-
noes, with volumes ranging from <10 km® (Kilauea) to
1,870 £470 km® (Kaua‘i). Estimated olivine content is
greatest in Mauna Loa (= 84%) and least in Kaho‘olawe
and Lana‘i (=42%), averaging =50% throughout the
chain (Table 1). Cumulate cores were not present under
Loih‘i, Hualalai, West Moloka‘i, or East Moloka‘i volca-
noes (Figure 4a). The four largest cumulate cores are spaced
sporadically, underlying Kaua‘i (1870 & 470 km?), Ko‘olau
(1160 £ 290 km?), Ni‘ihau (300 & 80 km?), and Mauna Loa
(280 4 70 km?), although the volume of Mauna Loa’s cumu-
late core is likely to be underestimated because it is still
an active volcano and the cumulate core is presumably still
accumulating.

5. Rift Zones and Unrecognized Volcanoes

[0] Rift-zone-related intrusive complexes are observed
beneath the major submarine ridges and tend to be linear fea-
tures that trace back to individual volcanoes (2.80 g/cm? iso-
surface; Figure 4a). Prominent examples include Kilauea’s
East Rift Zone, the southwest rift zone of Wai‘anae, and
the western rift zone of West Moloka‘i. However, these
rift zones are underlain by distinctly less dense intrusions
than those beneath Hana (Haleakala) and Ka‘ena (Wai‘anace)
Ridges. The rift-zone intrusive complexes along the Hana
and Ka‘ena ridges are markedly atypical based on their large
volumes, spatial extents, and high residual gravity.

[10] The 120 km long, 50 km wide Hana Ridge is under-
lain by two dense intrusive bodies (Figure 4a), neither of
which is associated with a local bathymetric high. If these
features are considered to be part of the Haleakala rift
zone, they would constitute the most voluminous, dense,
and distal rift-zone extension from a volcano throughout the

entire chain. Alternatively, these bodies may represent the
intrusive complexes of one or two shield volcanoes that did
not develop beyond a juvenile stage and were later buried in
rift-zone volcanics.

[11] Ka‘ena Ridge is comparable to Hana Ridge in length
and maximum width but contains significant bathymetric
relief, including a large (11 km diameter) flat-top cone
located near the center of the ridge. Two unique grav-
ity anomalies/intrusive complexes are seen beneath Ka‘ena
Ridge, a broad eastern anomaly and a more distinct west-
ern anomaly, neither of which appears to extend from the
Wai‘anae rift zone (Figure 4a). Sinton et al. (submitted
manuscript, 2013) showed that most of Ka‘ena Ridge is
chemically, structurally, and chronologically distinct from
Wai‘anae Volcano and likely represents a precursor volcano
to the island of O‘ahu, consistent with speculations of Moore
et al. [1989]. Although the broad eastern gravity anomaly
has no associated bathymetric high, it is likely associated
with this precursor volcano (Ka‘ena Volcano), with its older
structure possibly buried by younger Wai‘anae flows. The
western gravity anomaly is located 3 km from the center of
the 11 km diameter large cone, which is thought to have
formed subaerially, given the presence of massive ‘a‘a flows
[Coombs et al., 2004]. Geologic samples acquired during a
previous remotely operated vehicle (ROV) dive appear to
be geochemically similar to the rest of the ridge [Coombs
et al., 2004; Sinton et al., submitted manuscript, 2013].
However, given the distinction between this western grav-
ity anomaly and the broad eastern anomaly (Figures 3 and
4a), its association with the nearby large cone, and the rela-
tively sparse geologic sampling of Ka‘ena Ridge in general
(Sinton et al., submitted manuscript, 2013), it remains uncer-
tain whether this anomaly represents an extension of the
Ka‘ena Volcanic system or yet another, unrecognized vol-
cano. We refer to the western feature as Uwapo—Hawaiian
for bridge, because it may span the volcanic gap between
the islands of Kaua‘i and O‘ahu. While the modeled intru-
sive complex beneath Uwapo is small (200 &= 50 km?), it is
roughly half the intrusive-complex volume beneath Hualalai
Volcano (450 £ 110 km?).

6. Extrusive Versus Intrusive Volcano Building

[12] The gravity results indicate that individual volcanoes
in the main Hawaiian Islands are composed, on average,
of less than 10% dense intrusive material (>2.85 g/cm?;
Table 1). An upper bound estimate was made by decreas-
ing the density isosurface for intrusive complexes from
2.85 g/em® to 2.80 g/cm?, approximately equivalent to
changing from a 60% to 40% dike concentration and equal
to the cutoff between intrusive and extrusive basalt used by
Moore [2001]. Using this constraint and calculating an intru-
sive/extrusive ratio across the entire chain, results in a mean
increase to only 30% intrusive material.

[13] Our estimate of a low intrusive proportion (10-30%)
is contrary to prior conclusions that the Hawaiian Islands are
built through predominately endogenous growth, with previ-
ous estimates that intrusions account for 65-90% of the total
volume [Francis et al., 1993; Dzurisin et al., 1984]. These
estimates were based on geologically short-term observa-
tions of the active Kilauea Volcano, specifically heat loss
over the Kupaianaha lava pond (1986—1992 [Francis et al.
1993]) and uplift of Kilauea summit (1956—1983 [Dzurisin
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Table 1. Volcanic Features and Their Cumulate Cores/Intrusive Complexes?

Volume Isosurface Avg.p Core/I.C.* Vol. Olivine Content Core/I.C. Volume Isosurface Avg.p Core/I.C.2 Vol. Olivine Content Core/1.C.

Volcano/Rift (km?) (g/em’)  (g/em?) (km?)° (%) (% of Volcano)® Volcano/Rift (km?) (g/em’)  (g/em?) (km?)° (%) (% of Volcano)®
Loih‘i 1,700 2.85 2.89 10 9-12 1 Kilauea 31,600 2.85 2.88 1,700 67 5
Mauna Loa 74,000 2.85 291 7,500 12-16 10 3.00 3.03 <10 40-51 <1
3.00 3.18 280 74-94 <1 Pu‘u ‘0% 2.85 2.87 460 5-7 <1
3.00 3.01 <10 3747 <1
Hualalai 14,200 2.85 2.87 450 6-7 3 Mauna Kea 41,900 2.85 2.90 6,150 10-13 15
3.00 3.03 230 39-51 1
Mahukona 13,500 N/A N/A N/A N/A N/A Kohala 36,400 2.85 2.90 7,600 11-14 21
3.00 3.02 240 3748 <1
Kaho*olawe 26,300 2.85 2.90 2,100 12-16 Haleakala 34,900 2.85 2.92 2,000 15-19 6
3.00 3.02 50 3747 <1 3.00 3.05 230 45-58 1
Hana Ridge 34,900 2.85 2.88 750 6-7 2
Lana‘i 21,100 2.85 2.90 850 11-14 4 West Maui 9,000 2.85 2.94 450 19-25 5
3.00 3.02 30 37-48 <1 3.00 3.12 70 59-76 1
West Moloka‘i 30,300 2.85 2.87 2,000 4-5 7 East Moloka“i 23,900 2.85 2.87 850 4-5 3
Wai‘anae 37,100 2.85 2.90 6,750 11-14 18 Ko‘olau 34,100 2.85 2.93 8,300 18-23 24
3.00 3.03 270 41-52 <1 3.00 3.04 1,160 42-54 3
Uwapo 2,525 2.85 2.88 200 6-8 8 Ka‘ena 24,575 2.85 2.86 650 2-3 3
Ni‘ihau 21,700 2.85 291 4,000 14-17 18 Kaua‘i 57,600 2.85 2.94 10,550 19-25 19
3.00 3.02 300 38-49 1 3.00 3.07 1,870 49-63 3

Middlebank N/A 0.15 2.87 350 5-6 N/A

21.C. = intrusive complex.

For the 2.85 g/cm? isosurface, volumes rounded to nearest 50 km?; for 3.00-3.10 g/cm? isosurfaces, volumes rounded to nearest 10 km?.
°Reservoir volume as a percentage of the volcano volume is the ratio of the calculated reservoir volume to the volcano volume.

SHONVIOTOA NVIIVAVH 40 HLMOYUD FAISOALXH "1V LH SYIANITA



FLINDERS ET AL.: EXTRUSIVE GROWTH OF HAWAIIAN VOLCANOES

et al., 1984]). Given our conclusion of primarily extrusive
growth, the minimization of the chain-wide residual grav-
ity anomaly by a submarine density of 2.7 g/cm?, and that
the majority of each volcano is built during its tholeiitic
shield stage (~95% [Clague and Dalrymple 1987]), we con-
clude that the majority of each volcano (>70%) is likely
composed of submarine extrusive flows formed during the
main shield stage. The disparity between previous estimates
of extrusive/intrusive ratios and our own may be due to the
limited time (years) and localization (Kilauea Volcano) of
prior observations or a change in the extrusive/intrusive ratio
throughout a volcano’s growth.

[14] Voluminous extrusive growth also contrasts with
the dominantly intrusive nature of continental volcanism
as well as the formation of normal oceanic crust and flood
basalt provinces [e.g., Crisp, 1984; White et al., 2006]. In
continental settings, magma travels greater path lengths
through relatively thick and low-density continental crust
and thus is more likely to intrude [White et al., 2006].
Oceanic flood basalt provinces also require magma to
penetrate thick crust (=30 km or more [Crisp, 1984]),
additionally having numerous source dikes that span a
wide region, leading to a larger intrusive contribution. At
mid-ocean ridges, most of the crust is constructed within
a vertical accretion zone, proximal to the ridge axis, and
the thickness of the intrusive material is controlled by the
local temperature structure [Hooft and Detrick, 1993]. In
contrast, Hawaiian volcanism originates from magma that
penetrates a relatively thin crust <20 km (oceanic crust plus
the volcano [Watts et al., 1985]). Additionally, magma trav-
els from depth to the near surface primarily through a single
central vertical conduit [Okubo et al., 1997; Kauahikaua et
al., 2000] and typically one or two rift zones. While intru-
sions occur in the central conduit and rift zones, magma
retains sufficient mobility such that the major volume of the
volcano is formed from lavas erupted well away from these
localized sources.
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