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In the absence of sufficient combined nitrogen, some filamentous cyanobacteria differentiate nitrogen-
fixing heterocysts at approximately every 10th cell position. As cells between heterocysts grow and divide,
this initial pattern is maintained by the differentiation of a single cell approximately midway between
existing heterocysts. This paper introduces a mathematical model for the maintenance of the periodic
pattern of heterocysts differentiated by Anabaena sp. strain PCC 7120 based on the current experimental
knowledge of the system. The model equations describe a non-diffusing activator (HetR) and two inhibitors
(PatS and HetN) that undergo diffusion in a growing one-dimensional domain. The inhibitors in this model
have distinct diffusion rates and temporal expression patterns. These unique aspects of the model reflect
recent experimental findings regarding the molecular interactions that regulate patterning in Anabaena.
Output from the model is in good agreement with both the temporal and spatial characteristics of the pattern
maintenance process observed experimentally.

Keywords: pattern formation; reaction diffusion; bacteria; Anabaena

AMS Subject Classifications: 92C15; 92C80; 92-04; 35Q80

1. Introduction

A fundamental paradigm of developmental biology is the establishment of a regular pattern
of differentiated cells from a group of equivalent cells. A subgroup of developmental patterns
specifies within a field of cells the differentiation of cells into structures equidistant from one
another. The generation of such periodic patterns has been described mathematically by reaction–
diffusion equations, and the structures formed include sensory bristles in Drosophila [22], hair-like
trichomes on the surface of Arabidopsis leaves [12], and heterocysts in filaments of the cyanobac-
terium Anabaena. In the latter, individual cells differentiate at approximately 10-cell intervals
into nitrogen-fixing heterocysts that supply the remainder of cells with fixed nitrogen when little
is available in the surrounding medium (Figure 1(a)). The one-dimensional pattern of only two
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622 M. Zhu et al.

Figure 1. Patterns of heterocysts in Anabaena with different genetic backgrounds. (a) Wild-type Anabaena 24 h after
the induction of differentiation by removal of combined nitrogen forms a periodic pattern of heterocysts. (b) Wild-type
Anabaena in the presence of combined nitrogen, nitrate in this case, lacks heterocysts. (c) A mutant strain with patS
deleted from the chromosome forms extra heterocysts 24 h after the induction of differentiation. (d) A mutant strain with
hetN deleted from the chromosome forms extra heterocysts 48 h after the induction of differentiation. Carets indicate
heterocysts.

cell types and the genetically tractable nature of the organism make it an attractive system for
investigation of periodic patterns in biology.

Heterocysts are terminally differentiated cells that do not divide. About 12 h after the induction
of heterocyst formation by transfer to a medium lacking fixed nitrogen, cells irreversibly commit
to differentiating into heterocysts, and about 18 h after induction heterocysts are morphologically
distinguishable from surrounding undifferentiated ‘vegetative’ cells and become functional at
about 24 h [30]. Nitrate or ammonium in adequate concentrations suppresses the formation of
heterocysts, in which case the filament composed exclusively of vegetative cells (Figure 1(b)). The
elaboration of heterocysts facilitates the spatial separation of an oxygen-labile metabolic process,
nitrogen fixation, from one that evolves molecular oxygen, photosynthesis with photosystem II
(PS II). Fixed nitrogen is supplied to vegetative cells from heterocysts, and in return, heterocysts
receive a source of carbon and reductant to compensate for their lack of PS II and the Calvin
cycle.

Patterning of heterocysts along filaments can be divided into two discrete stages. Initial, de
novo pattern formation takes place when filaments composed completely of vegetative cells are
transferred to a medium lacking fixed nitrogen and a pattern forms in the absence of any previous
pattern. Maintenance of this pattern occurs thereafter as the vegetative cells grow and divide, and a
vegetative cell midway between two heterocysts differentiates to preserve, or maintain, the initial
pattern. Together, de novo and maintenance patterning ensure an optimal ratio of heterocysts to
vegetative cells over small spatial scale, which provides efficient exchange of metabolites between
the two cell types.

Certain characteristics of the Anabaena system make it an ideal candidate for theoretical studies,
including its one-dimensional characteristics and the potential for directed experimental and
theoretical comparisons. Moreover, pattern formation in living organisms has been the subject of
growing interests, with models proposed for the different levels of complexity. A mathematical
model of this system needs to account for the diffusion of components from one cell to another
associated with the non-homogenous spatial patterning. Reaction–diffusion equations known as
the Turing equations or systems were originally developed by Turing [25] for the case of two
concentration variables. Forms of these reaction diffusion equations have been a cornerstone of
pattern formation studies in mathematical biology. In a series of studies spanning several decades,
Gierer and Meinhardt [15] investigated the role of a short-range activator and a long-range inhibitor
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Journal of Biological Dynamics 623

in the pattern formation process. A pioneering, preliminary effort of modelling pattern formation
in Anabaena followed directly from the use of reaction–diffusion equations in a study done by
Wolk [27]. His early experimental studies suggested that heterocyst formation was mediated by
the diffusion of genetic products and impaired by inhibition. He proposed a model for pattern
initiation based on the reaction–diffusion equations that offered some qualitative agreement with
the available data at that time, which was before any of the regulatory proteins had been identified.
The roles of inhibition and diffusion were further highlighted in a subsequent study by Wilcox
et al. [26], though explicit equations were not provided. Computations of reaction and diffusion
equations associated with the system were presented using an L systems network model by
Barker and Herman [2]. A related mathematical model for pattern maintenance was introduced
by De Koster and Lindenmayer [11]. They assumed the patterns resulted from the diffusion of
a single, unspecified inhibitor. They presented some analytical solutions for the diffusion along
with complementary numerical simulations. Their efforts provide some useful broad insights;
however, their work is not well known or cited by the biology researchers. This may be in part
due to the fact that they did not specify the underlying inhibitor, which was probably due to
limited knowledge of the patterning proteins at the time of their study. Unlike the work by Wolk,
De Koster and Lindenmayer incorporated domain growth into their model in an approximate
manner. Subsequent and more comprehensive work has investigated the role of domain growth
on the reaction–diffusion equations and has reported mode-doubling pattern transitions similar
to those observed in Anabaena may occur [3]. We also note that recent work has examined
initial pattern formation with respect to the role of nitrogen as in the work by Allard et al. [1]
who considered growth and division without patterning proteins. Their biological system is very
different from the wild-type organism we study in this paper.

Refined and extended models have been introduced to account for the unique spatial pattern
characteristics. Meinhardt [19] has suggested that pattern formation in Anabaena may follow from
a novel, non-Turing mechanism in which only an inhibitor diffuses from cell to cell in the presence
of a diffusive activator. Meinhardt has conceptually illustrated this mechanism in conjunction
with the domain growth of the array of cells. Heterocyst formation follows when the inhibitor,
PatS in this case, drops below a threshold level and autocatalysis of the activator is initiated. This
formulation of the maintenance mechanism has been described with figures, but the corresponding
equations and parameters have not been provided. The pattern formation mechanisms suggested
by Meinhardt are intriguing and in part provide motivation for this investigation. Recently, a gene
network model has been introduced using a fixed array of cells arranged cyclically [14]. The gene
circuit consisted of interaction among ntcA, hetR and patS. The model predicts results similar
to experimental observations in terms of the effect of initial nitrogen deprivation and spacing
between heterocysts.

All of these mathematical studies, even with approximate and limited formulations, have given
new insights; however, each supposes the existence of only one diffusible inhibitor. In this study,
we introduce a model that includes two inhibitors, PatS and HetN, which diffuse at significantly
different rates. This novel extension is motivated by experimental studies, which have demon-
strated the presence of the second inhibitor [5,9]. The behaviour of the two inhibitors with an
activator has been examined in the context of reacting chemical systems but only for cases in
which all three components undergo diffusion [13].

The biological motivation for this formulation is fundamental to our study. Thus, it is important
to highlight our selection of the interactions in the system. We first outline the role of HetR. Early
models incorporated the diffusion of HetR; however, there is no evidence for this, and experimen-
tal results are consistent with a lack of diffusion of HetR. In the regulatory network controlling
heterocyst differentiation and patterning, the protein HetR is an activator of differentiation that
seems to have many of the characteristics of activators described in reaction–diffusion systems
capable of producing periodic patterns. HetR is a transcriptional activator protein that positively
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624 M. Zhu et al.

autoregulates its own transcription as well as being necessary for transcription of genes encoding
two inhibitors of differentiation, PatS and HetN [16]. HetR acts as a dimer, thus providing nonlin-
earity to its activity. Without HetR, filaments are incapable of differentiating heterocysts, and with
extra HetR, filaments differentiate even in the presence of ammonium, conditions under which
heterocysts are not normally formed [8]. Thus, extra amounts of HetR can bypass the normal
induction of differentiation by a lack of combined nitrogen.

The inhibitor that has been considered in previous studies is PatS. The patS gene is predicted
to encode a 13 or 17 amino acid protein that is presumably processed to a smaller, active form,
perhaps during export from the cytoplasm to the periplasm of the cell or directly to a neighbouring
cell [29]. Two recent reports have demonstrated that molecules the size of PatS freely diffuse from
cell to cell through a continuous periplasm, the region between the inner and outer membranes of
Gram-negative bacteria, or through intercellular junctions [18,20]. Demonstration of a possible
route for the diffusion of regulatory proteins provides for the formation of concentration gradients
of regulatory proteins, a requirement for a reaction–diffusion-mediated process. The active form
of PatS has yet to be identified, and a presumed gradient of PatS has not been demonstrated.
However, when confined to the cytoplasm of the cell that produced it, PatS is incapable of restoring
a normal pattern of heterocysts to a patS-mutant strain, suggesting that it must diffuse from cell
to cell to function properly in cell patterning [28]. In addition, the expression of patS in only one
or two cells of a filament was recently shown to lower the levels of HetR protein in neighbouring
cells [23]. Fluorescence from a HetR–GFP fusion protein was undetectable in adjacent cells and
increased with distance from cells overexpressing patS, providing the most concrete evidence
that a PatS-dependent signal diffuses from cell to cell. A peptide corresponding to the predicted
C-terminal 5 amino acids of PatS (PatS-5; RGSGR) prevents the DNA-binding activity of HetR
in vitro [16], and its addition to the medium prevents differentiation of heterocysts [29]. The small
size of a functional PatS peptide suggests a fast rate of diffusion. A mutant strain lacking PatS
has reduced spacing between heterocysts, and adjacent cells often differentiate to give multiple
contiguous heterocysts (Mch phenotype; Figure 1(c)). Two transcriptional start points (tsps) have
been identified in the promoter region of patS [30]. One tsp is developmentally regulated to give
increased transcription in developing cells, and the other appears to be active in vegetative cells
and provides a basal level of transcription under all conditions of growth. After differentiation of
an initial patterned group of heterocysts, the expression of patS has been shown to revert back to
the baseline level seen in filaments before the induction of differentiation [29].

The second inhibitor, included here for the first time in a mathematical model, is HetN. HetN
is not necessary for proper de novo pattern formation, but it is instead necessary for stabilization
and maintenance of the pattern as the filament enlarges due to vegetative cell growth and division
[9]. Unlike mutant filaments lacking PatS, which has a disturbed de novo pattern of heterocysts, a
mutant lacking HetN has a delayed Mch phenotype; the pattern is normal at 24 h after induction,
the approximate time from induction to formation of initial heterocyts, but is Mch after 48 h
(Figure 1(d)), approximately twice the time from induction to the formation of an initial pattern
of mature heterocysts [9]. PatS and HetN do not require the other for activity, and in filaments
lacking both PatS and HetN nearly all cells differentiate into heterocysts, suggesting that PatS
and HetN are the two predominant inhibitors of differentiation [7]. When grown with combined
nitrogen, all cells of filaments have a low level of HetN in thylakoid and cytoplasmic membranes,
but upon removal of combined nitrogen to induce differentiation, HetN is degraded [17]. An
increase in hetN mRNA is seen 12 h after the induction of differentiation [4], at about the time
that de novo pattern formation is complete and cells commit to differentiation. After this time,
HetN protein and the expression of hetN are found exclusively in developing heterocysts [9,17].
HetN protein is predicted to be a member of the short-chain alcohol dehydrogenase family [5], but
within the sequence of HetN is the PatS-5 sequence, RGSGR. The mechanism of the inhibition
of differentiation by HetN is still unclear but, as for that of PatS, appears to include blockage of
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the activity of hetR [9,17]. Recent experimental evidence which has shown that HetN, like PatS,
limits the levels of HetR in a concentration-dependent manner and affects the levels of HetR over
different spatial ranges when expressed in source cells [23] highlights the need to include HetN
in the model system of equations describing heterocyst patterning.

2. Model equations

We introduce a set of differential equations to model the process of pattern maintenance over a large
time scale where the interactions of HetR, PatS, and HetN are the main factors in the formation
of new heterocysts between existing heterocysts as the spatial domain enlarges by cell division.
Unlike Meinhardt’s conceptual outline of pattern maintenance with a single inhibitor [19], the
model includes two inhibitors. Figure 2 is a schematic of molecular interactions incorporated in
the model that have been shown experimentally to regulate differentiation of heterocysts.

The maintenance stage occurs when several first-generation heterocysts have formed dur-
ing the initial spatial patterning stage. During this maintenance stage, the following underlying
assumptions are made:

(a) HetR represents the activator, and HetN and PatS represent the inhibitors.
(b) Initially, existing heterocysts produce HetN while PatS is present at a baseline level.
(c) HetR and PatS increase at their respective basal expression rates.
(d) HetR, PatS and HetN decrease at their respective basal degradation rates.
(e) PatS and HetN diffuse freely from cell to cell.
(f) HetR does not diffuse from cell to cell.
(g) The growth of HetR occurs when the level of HetN is low.
(h) HetR promotes the growth of itself and PatS.
(i) PatS inhibits the growth of HetR.
(j) Growth of HetN is triggered at a threshold level of HetR.
(k) Heterocysts do not divide. Vegetative cells do divide.

The model equations consist of three conservation equations that describe the local change
of the concentration of the activator HetR R(x, t) and the two diffusive inhibitors PatS S(x, t)

and HetN N(x, t), respectively. The quantities t and x are the respective temporal and spatial
variables. Descriptions of all parameters are summarized in Table 1.

Conservation equation for R:

dR

dt
= αR − κRR + βRRn

(KS + S)(Kn
R + Rn)

+ μ(Re − R)2(Nc − N − ηS). (1)

The local change of R per unit time is equal to the net change per unit time from constant basal
expression αR, natural degradation κRR, saturated positive feedback βRRn/(KS + S)(Kn

R + Rn)

with Hill coefficient n = 2, and the inhibition by PatS and HetN. More specifically, the quantity

 HeterocystHetR

HetNPatS

Figure 2. Schematic of the molecular interactions regulating heterocyst differentiation and patterning.
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626 M. Zhu et al.

Table 1. Description of parameters.

Parameter Description

αR Basal expression rate of HetR
κR Natural degradation rate of HetR
βR Saturation rate of HetR positive feedback
n Hill coefficient of HetR positive feedback
KR HetR concentration for half-maximal HetR activation
KS PatS coefficient for the inhibition of transcriptional activation by HetR
μ Proportionality constant for activation/inhibition switch
η Relative scalar for inhibitor PatS
αS Basal expression rate of PatS
κS Natural degradation rate of PatS
βS Saturation rate of PatS positive feedback
DS Diffusion coefficient of PatS
κN Natural degradation rate of HetN
βN Saturation rate of HetN positive feedback
DN Diffusion coefficient of HetN
ρ Proportionality constant for the growth of the filament

KS + S in the positive feedback term accounts for inhibition by PatS of transcriptional activation
by HetR hence the higher the value of S, the smaller the positive feedback term. The Hill coefficient
is set at 2 to reflect dimer formation by HetR. The term μ(Re − R)2(Nc − N − ηS) models the
impact of the two inhibitors HetN and PatS on HetR. When the combined inhibitor value is greater
than some critical value Nc, μ(Re − R)2(Nc − N − ηS) < 0, HetN and PatS inhibit the growth
of HetR. When the combined inhibitor value is smaller than Nc, the HetR concentration increases.
The closer R is to Re, the smaller the rate of this increase. No experimental evidence exists for
the diffusion of HetR, and thus we assume the activator does not diffuse in our model.

Conservation equation for S:

∂S

∂t
= αS − κSS + βSR

n

(KS + S)(Kn
R + Rn)

+ DS
∂2S

∂x2
. (2)

The local change of S per unit time is equal to the net change per unit time from constant basal
expression αS, natural degradation κSS, activation by HetR in a saturated form similar to that
in Equation (1) but with a different proportionality coefficient βS, and diffusion of PatS with
diffusion coefficient DS.

Conservation equation for N:

∂N

∂t
= −κNN + βNRn

(KS + S)(Kn
R + Rn)

+ DN
∂2N

∂x2
. (3)

The local change of N per unit time is equal to the net change per unit time from natural degradation
κNN , activation by HetR in a saturated form with proportionality constant βN, and diffusion of
HetN with diffusion coefficient DN. There is no basal expression of HetN to reflect the absence
of HetN in vegetative cells after removal of combined nitrogen.

The growth equation for filament:

dL

dt
= ρL. (4)

As the non-heterocyst cells divide, the field length grows. We assume that the field length L

grows at a rate that is proportional to L. This assumption is consistent with recent models of cell
growth [10]. This proportionality constant is denoted as ρ.
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We use zero-flux (reflective) boundary conditions for PatS and fixed boundary conditions for
HetR and HetN. In this case, we assume that heterocysts are located at the end points and the
concentrations of HetR and HetN remain as constants at the end points, reflecting the observation
that HetR continues to be transcribed at an induced rate in mature heterocysts [6].

3. Non-dimensionalization of the model

We non-dimensionalize the model equations to reduce the number of parameters and to facili-
tate the numerical solution. For simplicity, we retain the notations for the model variables and
independent variables. We non-dimensionalize the model variables: R → R/KR, S → S/KS,
N → N/[N ], t → t/[T ], and x → x/[L], where [N ] = 10N(0, 0). We choose the time scale
[T ] to correspond to the time length (12 h) when a filament doubles its initial length. [L] is
set as the length of a filament with 10 cells (30–40 μm) such that the initial length of the non-
dimensionalized filament is 1, that is, the initial spatial domain is [0, 1]. We select a Hill coefficient
for n = 2 to reflect the experimental observation of dimer formation by HetR.

As the filament grows, the non-dimensional initial domain expands from [0, 1] to [0, L], where
L increases with time. Due to the difficulty in mathematical analysis and numerical simulation
on a changing spatial domain, we map the model equations with the changing domain size [0, L]
to a set of equations with fixed domain size [0, 1] as in previous studies [3,10]. For an analysis of
the results, they are mapped back to the domain of [0, L]. Hence, it follows that Equations (5)–(8)
are non-dimensionalized model equations. L2 in Equations (5)–(7), −ρR in Equation (5), −ρS

in Equation (6), and −ρN in Equation (7) are introduced by mapping the changing domain to the
fixed domain [0, 1]. All parameters in Equations (5)–(8) represent the respective non-dimensional
coefficients. The detailed definition of these parameters is provided in Table 2.

dR

dt
= aR − cRR + bRR2

(1 + S)(1 + R2)
+ u(Re − R)2(Nc − N − vS) − ρR, (5)

∂S

∂t
= aS − cSS + bSR

2

(1 + S)(1 + R2)
+ dS

L2

∂2S

∂x2
− ρS, (6)

∂N

∂t
= −cNN + bNR2

(1 + S)(1 + R2)
+ dN

L2

∂2N

∂x2
− ρN, (7)

dL

dt
= ρL. (8)

Table 2. Definition of non-dimensional parameters.

aR = αR[T ]
KR

cR = κR[T ] bR = βR[T ]
KSKR

u = μKR[N ][T ] Re → Re

KR
Nc → Nc

[N ]
ν = ηKS

[N ] ρ → ρ[T ] aS = αS[T ]
KS

cS = κS[T ] bS = βS[T ]
K2

S

dS = DS[T ]
[L]2

cN = κN[T ] bN = βN[T ]
KSKN

dN = DN[T ]
[L]2
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628 M. Zhu et al.

4. Model results

A finite difference successive over-relaxation (SOR) method is used to solve the model equations
numerically on a uniform grid. The numerical solutions simulate the pattern formation with
the associated formation of a new heterocyst. With increasing time, the cells between the two
heterocysts divide, and the spatial domain increases. The level of the concentration of HetN in the
mid-section decreases. We seek to investigate pattern maintenance and select the initial conditions
assuming some preliminary heterocyst formation. In particular, the patterning follows from the
initial configuration of two heterocysts formed at the ends of the spatial domain.

We note that the experimental values for most of the biological parameters are unavailable and
previous studies [10,15] have used values related to regimes of mathematical interest. However,
estimates for a range of values of the diffusion coefficient for an inhibitor were made in [11]
based on experimental observations and scaling arguments. These provided our initial estimate
of diffusion coefficient of PatS and the upper limit of the potential diffusion coefficient value for
HetN. In addition, we have used the standard linear diffusion-driven instability analysis [21] to
determine the pattern formation conditions and parameters. This includes examining the growth
and decay of each model variables, finding steady states of Equations (5) and (6), linearizing these
equations, and determining the conditions for the diffusion-driven growth of HetR. Numerical
experiments were performed using these conditions as well as estimates of the relative order
magnitude of the other coefficients and parameters through a range of diffusion coefficient values
to find robust regions of pattern formation. For pattern maintenance, the relative difference of the
diffusion of the two inhibitors is of particular interest and we believe that ongoing experiment
efforts will provide more specific values for diffusion parameters.

After the de novo formation of heterocysts, the concentration of HetR is at its positive equilib-
rium at these heterocyst locations and at its baseline level elsewhere. At this stage, heterocysts
do not promote the growth of PatS, and PatS is at its baseline level, consistent with the obser-
vation that the expression of patS after differentiation of an initial pattern of cells is similar to
the baseline level seen in cells prior to the induction of differentiation [29]. The concentration
of HetN is high at the heterocyst locations and it diffuses to the neighbouring cells to inhibit
the growth of HetR. Moreover, for the maintenance case, we assume the initial distribution of
HetN follows a diffusion-mediated ‘bowl-shaped’ curve with higher values near the locations
of heterocysts: N(x, t) ∝ (1/2)−4(x−0.5)2

. The graphs of the initial distributions are shown in
Figure 3(a), where R is the solid curve, N is the dotted curve, and S is the dashed curve. The non-
dimensionalized parameter values are aR = 0.001, cR = 0.4, bR = 2.0, u = 2 × 104, Re = 0.13,
Nc = 0.0125, v = 0.2, ρ = 0.1, aS = 0.01, cS = 1.0, bS = 20.0, dS = 1.5, cN = 1.8, bN = 1.0,
and dN = 0.15. As N decreases below a critical value, the concentration of HetR increases in this
mid-section and such an increase triggers the growth of PatS. Subsequently, PatS diffuses to the
surrounding neighbourhood to inhibit a wide range growth of HetR such that only one hetero-
cyst is generated in the mid-section. The distributions at length L = 1.8 at t = 10.95, L = 1.9 at
t = 11.49, and L = 2 at t = 12 are shown in Figure 3(a)–(d), respectively. The overall shape of R

does not change from L = 1.95 to 2. The formation of the new heterocyst begins when the length
of the filament is close to doubling its initial length with one heterocyst generated. Figure 3(e) is
the contour map of R at L = 2 and t = 12 that shows the gradient of R. Although one heterocyst
will be generated at the centre, the neighbouring cells around it show small amounts of HetR
concentration.

The difference of the two inhibitors’ diffusive rates plays an important role. HetN must diffuse
slower than the growth rate of the length of the filament so that the concentration of HetN in
the middle drops below the critical value to induce the growth of HetR as the length between
the two heterocysts grows to about a 20-cell length. If we choose larger diffusive rates for HetN
(dN = 0.5), the HetN concentration does not drop below the critical value and no heterocyst is
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Journal of Biological Dynamics 629

Figure 3. Distribution curves for the one non-diffusive activator and two-diffusive inhibitor model (5)–(8). The hori-
zontal axis represents the non-dimensionalized spatial variable x. The vertical axis represents the non-dimensionalized
model variables R, S, and N . The spatial distributions of R, S, and N are represented by solid, dashed, and dotted curves,
respectively. (a) The initial distributions of R, S, and N at the length of L = 1 and time t = 0; (b) the distributions at
L = 1.8 and t = 11.60; (c) the distributions at L = 1.9 and t = 11.77; and (d) the distributions at L = 2 and t = 12. As
non-heterocyst cells divide, the field length (L) grows. The inhibitor HetN diffuses slowly, and its concentration level
decreases in the mid-section of the field. As a result, HetR increases in the mid-section right before L = 1.8, and the
growth of HetR triggers the growth of the second inhibitor, PatS. PatS diffuses faster than HetN to maintain the growth
of HetR spatially for inducing the differentiation of one heterocyst. (e) Contour map of HetR concentration in (d).

Figure 4. Distribution curves for the one non-diffusive activator and two-diffusive inhibitor model (5)–(8) at L = 2.
(a) Large diffusive rate of HetN, dN = 0.5, the concentration of HetN in the mid-section remains relatively high. No new
heterocysts are generated. (b) PatS and HetN both have the same low diffusive rate, dN = dS = 0.15. The magnitude of
HetR concentration is relatively low but occurs in multiple cells. (c) When the impact of PatS on HetR is reduced from
v = 0.2 in Figure 3 to v = 0.15, the growth of HetR in the mid-section (c) is twice as wide as that in Figure 3(d). Two
heterocysts can be induced.
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Figure 5. Heterocyst location mapping. (a) One heterocyst is initially located at each end of the filament (L = 1 and
t = 0, corresponding to Figure 3(a)). (b) One heterocyst is generated in the mid-section as the length of the filament
doubles (L = 2, t = 12 and v = 0.2, corresponding to Figure 3(d)). (c) Two heterocysts are generated in the mid-section
when the impact of PatS on HetR is reduced (L = 2, t = 12 and v = 0.15, corresponding to Figure 4(c)).

generated (Figure 4(a)). On the other hand, the diffusive rate of PatS should be larger than that of
HetN. Figure 4(b) shows the simulation result where dN = dS = 0.15. The concentration of PatS
in the middle of the filament is relatively high, that is, the small diffusive rate of PatS causes a
small elevated HetR concentration appearing in multiple cells.

With the model, we can also investigate the effect of each term on pattern formation. For
example, as we reduce the inhibitor effect of PatS on HetR by using smaller value of η (v =
0.15), the profile of the HetR concentration curve in the mid-section becomes wider (Figure 4(c),
solid curve). This simulates the biological situation observed when more than one heterocyst is
generated to give a Mch phenotype when patS is mutated (Figure 1(c)).

Assuming the threshold value of HetR in triggering differentiation into a heterocyst is 50% of
its equilibrium value of HetR in a heterocyst, the spatial patterns corresponding to Figure 3(d) and
Figure 4(c) are given in Figure 5(b) and (c), respectively, where one new heterocyst is formed in
Figure 5(b) and two heterocysts are formed in Figure 5(c) due to the reduction (mutation) of PatS.
The corresponding initial condition is shown in Figure 5(a). Black areas represent the locations
of the heterocysts and grey areas correspond to the vegetative cells.

5. Discussion

Most reaction–diffusion-based models for biological pattern formation have incorporated a dif-
fusive activator together with a diffusive inhibitor. When the inhibitor diffuses faster than the
activator, non-homogeneous spatial patterns can be generated by introducing an initial random
disturbance about the homogeneous steady state of the system. Such models have been successful
in generating spatial patterns that mimic those in nature. There is, however, no evidence for such
diffusion between cells for HetR in Anabaena. In contrast, experimental introduction of extra
copies of the gene encoding HetR or overactive forms of HetR to only some cells of filaments
to create genetic mosaics does not increase the likelihood of differentiation of adjacent cells.
Similarly, genetic mosaic filaments in which only some cells of filaments contain the gene for
HetR translationally fused to that for the green fluorescent protein (GFP) indicate that HetR–GFP
is present only in cells that contain the genetic construct. Both experiments suggest that HetR
does not diffuse from cell to cell.

The new model presented here incorporates two inhibitors. Growing experimental evidence
indicates that PatS diffuses from cell to cell to regulate pattern formation [28]. Although, the
evidence and understanding of the diffusion of HetN is less extensive, all the available experimental
evidence points in this direction. Recent experimental evidence indicates that both PatS and HetN
affect levels of HetR in cells 10–20 away from cells producing PatS or HetN, either as heterocysts
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or cells manipulated to overexpress one of the inhibitors [23]. However, unlike for PatS, it is
unknown whether it is the HetN protein or a product of its putative catalytic activity that is
responsible for its inhibitory activity. Mutation of the PatS-5 sequence in HetN was reported
to have no effect on the activity of HetN [17]. In addition to R132K and R136L substitutions,
the report claims that G134S and S135D substitutions were made and had no effect. This is
puzzling because the HetN sequence is S134 and G135, not G134 and S135 as indicated, so what
substitutions were actually made is unclear. Regardless, the model is relevant and applicable if
HetN itself or a HetN-dependent signal acts as a diffusible inhibitor, or if HetN senses an as-yet
undiscovered inhibitory signal. It is our hope that further experiments in conjunction with further
comparisons to refined models building upon this work will help address these outstanding issues
in the field.

Pattern maintenance is accurately reproduced with numerical solutions of the model. At the
outset of the maintenance stage of patterning, the heterocysts at the ends of the field are the
main source of the inhibitor HetN. The diffusion of HetN results in a bowl-shaped concentration
distribution. Together with PatS, HetN inhibits the growth of HetR. As cells divide, the field
grows such that, combined with the small diffusive rate of HetN, the concentration of HetN in the
mid-section of the field decreases. This fosters a rise in the growth of HetR in the mid-section.
The growth of HetR triggers the growth of PatS. As PatS diffuses to the neighbourhood and
inhibits the growth of HetR in the surrounding neighbourhood, the growth of HetR is limited to
the mid-section where only one new heterocyst is generated.

Our model with one non-diffusive activator and two diffusive inhibitors reproduces mainte-
nance of the pattern of heterocysts observed in Anabaena. The unequal diffusion rates of the two
inhibitors play a role in the maintenance patterning. The PatS concentration grows rapidly, corre-
sponding to the growth of HetR. PatS has a faster diffusive rate than HetN (dS > dN) and diffuses
from the mid-section towards the end points. This eliminates growth of HetR around the mid-
section permitting one heterocyst to differentiate. The slower diffusive rate of HetN (dN < dS)

regulates the spacing (approximate every 10-cell length) for initiating a new heterocyst.
The simplified model of the regulation of maintenance of heterocyst patterning presented here

consists of only three variables: HetR, PatS, and HetN. Although the model does not account for
levels of fixed nitrogen in cells, we believe it is consistent with the maintenance patterning process.
The diffusion of the products of fixed nitrogen from heterocysts is an obvious potential factor
affecting the placement of new heterocysts, but it appears that although fixed nitrogen levels are
involved in the induction of differentiation by a filament, they are not intimately involved in pattern
maintenance. Mutants that lack nitrogenase activity still have a normal pattern of heterocysts,
and when an alternate nitrogenase is active in all vegetative cells and supplies sufficient fixed
nitrogen for robust growth in Anabaena variablilis, initial pattern formation and maintenance are
normal [24].

6. Conclusion

The one-dimensional pattern of only two cell types made by Anabaena is, arguably, one of
the simplest developmental patterns, making it an ideal system for the elucidation of the mini-
mal developmental genetic requirements for the formation of a sustainable pattern of terminally
differentiated cell types in an organism. Despite recent advances in uncovering the molecular
interactions that regulate patterning, complementary mathematical modelling efforts have been
both sparse and limited. We have developed a model, based on updated knowledge of patterning
proteins, consisting of two partial differential equations and two ordinary differential equations.
The equations describe two inhibitors, PatS and HetN, which undergo diffusion; an activator,
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HetR, which does not; and the growth of the spatial domain. The set of equations is solved
numerically for a growing cell domain to investigate the case of pattern maintenance. Under these
conditions, the model predicts the formation of a single, new heterocyst. Analytical analysis of the
equations including a stability analysis should yield further insights, and indeed, this is a topic for
future work. We believe that continued developments in the mathematical modelling of this sys-
tem in conjunction with complementary experimental efforts should enhance our understanding
of periodic patterning in Anabaena and related systems.
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