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Abstract 

The impact of natural hazards on mankind has increased dramatically over the past decades. 

Global urbanization processes and increasing spatial concentrations of exposed elements 

induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires 

detailed knowledge about elements at risk. Considering a high spatio-temporal variability of 

elements at risk, detailed information is costly both in terms of time and economic resources 

and therefore often incomplete, aggregated, or outdated. To alleviate these restrictions, the 

availability of very high resolution satellite images promotes accurate and detailed analysis of 

exposure over various spatial scales with large-area coverage. In the past, valuable approaches 

were proposed, however, the design of information extraction procedures with a high level of 

automatisation remains challenging. In this paper, we uniquely combine remote sensing data 

and Volunteered Geographic Information from the OpenStreetMap project (OSM) (i.e., freely 

accessible geospatial information compiled by volunteers) for a highly automated estimation 

of crucial exposure components (i.e., number of buildings and population) with a high level of 

spatial detail. To this purpose, we first obtain labeled training segments from the OSM data in 
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conjunction with the satellite imagery. This allows for learning a supervised algorithmic 

model (i.e., Rotation Forest) in order to extract relevant thematic classes of land use/land 

cover (LULC) from the satellite imagery. Extracted information is jointly deployed with 

information from the OSM data to estimate the number of buildings with regression 

techniques (i.e., a multi-linear model from ordinary least squares optimization and a non-

linear Support Vector Regression model is considered). Analogously, urban LULC 

information is used in conjunction with OSM data to spatially disaggregate population 

information using areal weighting and dasymetric mapping methods. Experimental results 

were obtained for the city of Valparaíso in Chile. Thereby, we demonstrate the relevance of 

the approaches by estimating number of affected buildings and population referring to a 

historical tsunami event.  

Index Terms: Exposure, Risk, Vulnerability, Remote Sensing, Volunteered Geographic 

Information, Land Use - Land Cover Classification, Object-based image analysis, Rotation 

Forest, Population disaggregation, Tsunami 
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1 Introduction 

Various natural hazards pose major threats on mankind in particular with respect to social and 

economic aspects. To mitigate affiliated perils determines the accurate quantification of 

natural hazard risk. Thereby, natural hazard risk can be characterized based upon three 

distinguishable components: hazard, exposure, and vulnerability (UNDRO 1979). In this 

paper, we focus on the quantification of exposure. In contrast to the fuzzy concept of 

vulnerability (Timmermann 1981; Cutter 2003; Thywissen 2006), exposure can be considered 

as a highly tangible component of risk: It comprises the assets potentially affected by a 

hazardous event comprising people, properties, infrastructure, or economic activities 

(Schneiderbauer and Ehrlich 2004; Geiß and Taubenböck 2013).  

In general, it is very challenging to constantly monitor exposure for highly variable 

urban environments (Taubenböck et al. 2012, Wieland et al. 2012a). Moreover, only exposure 

information with a high level of spatial detail enables the consideration of natural hazards 

within an affiliated risk model on a small scale (Wieland et al. 2012b). Recently, the use of 

remote sensing was identified as a valuable source of information for exposure estimation 

(Taubenböck et al. 2008). Especially latest generation optical sensors enable the detection and 

characterization of objects of built environments within hazard prone areas (Ehrlich and 

Tenerelli 2013). For instance, Ehrlich et al. 2010, 2013 focus on the extraction and 

characterization of the exposed building stock using optical remote sensing data, whereas 

Aubrecht et al. (2013) show the estimation of human exposure on multiple spatial scales 

under the consideration of various earth observation data. 

Nevertheless, the development of procedures for information extraction from remote 

sensing imagery with a high level of automatisation remains a major challenge. To extract 

relevant information from the imagery (e.g., building footprints), the concept of supervised 

classification approaches (Chen and Ho 2008, Camps-Valls et al. 2014) is based on the idea 

to  infer a rule (e.g., a decision function) from limited but properly encoded prior knowledge 

(i.e., labeled samples) to assign a class label to unlabeled instances of the domain under 

analysis. These methods became state-of-art processing techniques due to their favorable 

accuracy and robustness properties. However, the collection of appropriate prior knowledge 

(by e.g., detailed in situ surveys) is reported to be the most time-consuming and expensive 

aspect with respect to data processing. So far, researchers responded in several ways to 

alleviate the burden associated with a proper compilation of prior knowledge. On the one 

hand, approaches were designed that encode some knowledge from the unlabeled data also by 

means of a semi-supervised method to possibly gain viable accuracies with a very limited 

number of labeled samples (Bruzzone et al. 2006). On the other hand, so-called active 

learning strategies were followed recently (Tuia et al. 2009, Tuia et al. 2011). Such methods 

deploy predefined heuristics to rank unlabeled instances in the domain under analysis that can 

be considered the most valuable for improvement of estimation accuracy of a preliminary 

trained learning machine. Latest approaches also include the spatial domain for this task 

(Stumpf et al. 2014, Pasolli et al. 2014), and consider labeling costs emerging from ground 

surveys (Demir et al. 2014). In addition, methods to identify only a limited amount of desired 

(target) classes, disregarding all other existing classes in the domain under analysis, were 

postulated (Marconcini et al. 2014, Mack et al. 2014). Although labeling costs can be reduced 
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compared to simple fully supervised methods, all considered methods determine a 

considerable amount of data collection. 

In parallel, a new mechanism for the user-generated acquisition and compilation of 

geographic information, termed Volunteered Geographic Information (VGI) (Goodchild 

2007), evolved within the past years. Those kind of data comprises mainly vector data such as 

digital maps with further thematic information content but also georeferenced ground-based 

imagery, among others. Those are made publicly available through web-based distribution 

mechanisms. For instance, the OpenStreetMap (OSM) project is one of the most popular 

examples of VGI with a growing perspective as outlined in Jokar Arsanjani et al. (2015a). 

The project was initiated in 2004 and hosted at University College London with the aim to 

create a free digital editable vector map of the world (Hacklay 2010). Thereby, information is 

collected currently by up to 2.2 million participants, compiled within a central database, and 

distributed in multiple digital formats through the World Wide Web as “open data” according 

to the Open Data Commons Open Database License (OSM 2015a). The deployment of VGI 

for data analysis procedures and substitution of traditional data sources was identified as a 

promising application field (Sester et al. 2014). Thereby, new challenges are related to the 

heterogeneity of the data and assurance of data quality (Flanagin and Metzger 2008, Haklay 

2010, Jokar Arsanjani et al. 2015b). Accordingly, recent research focused on the assessment 

of quality properties in order to evaluate suitability for different application fields (Neis and 

Zipf 2012, Hecht et al. 2013, Fan et al. 2014, Jokar Arsanjani et al. 2015c). 

So far, VGI was rarely used in conjunction with remote sensing data to enable advanced 

data processing procedures. Recent attempts deploy OSM data for enhanced mapping and 

characterization of built environments (Klonner at al. 2014, Kunze and Hecht 2015). In 

addition, e.g., Foody and Boyd (2013) and Pesaresi et al. (2013) deploy OSM data for 

validation of information derived from remote sensing imagery. In the context of natural 

hazard risk research, Schnebele and Cervone (2013) and Poser and Dransch (2010) aim to 

extract relevant information with respect to hydrological hazards.  

In contrast to previous approaches that combine remote sensing and VGI, here, we 

uniquely deploy OSM data for supervised extraction of land use/land cover (LULC) 

information from very high resolution (VHR) multispectral imagery. We do so to 

subsequently estimate crucial exposure components (i.e., number of buildings and population) 

with a high spatial detail and high level of automatisation. In particular, first, we compute a 

measure from the OSM metadata to assess the quality of the data. Quality properties of the 

data are subsequently considered for a spatially stratified selection of labeled training 

geometries. In parallel, VHR imagery is subject to image segmentation (Blaschke 2010) and 

OSM geometries are combined with the remote sensing data based on an object-based fusion 

scheme. We characterize the objects in the remote sensing imagery via a high-dimensional 

feature space by exploiting again techniques of object-based image analysis (OBIA). Those 

kinds of approaches were demonstrated to be beneficial compared to per-pixel processing 

techniques for data with a considerable higher spatial resolution than the objects to be 

extracted from the data (Blaschke 2010). Based on the derived information, we identify 

LULC by using advanced machine learning techniques. In particular, a Rotation Forest 

approach (Rodriguez et al. 2006) was deployed to alleviate the computational burden 

frequently associated with the selection of appropriate features for classification (based on 
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e.g., filter or wrapper methods) and to simultaneously ensure favorable accuracy properties. 

The urban LULC information is jointly deployed with OSM data to estimate the number of 

buildings using regression techniques. Analogously, urban LULC information is used in 

conjunction with OSM data to spatially disaggregate population information. Experimental 

results are obtained for the city of Valparaíso in Chile. The city is prone to various natural 

hazards such as earthquakes, tsunamis, and landslides. Consequently, we show the relevance 

of the approach by estimating number of affected buildings and population referring to a 

historical tsunami scenario. 

The remainder of the paper is organized as follows. We provide a brief description of 

the study site and incorporated data in section 2. Section 3 documents the developed and 

deployed methods for information extraction and exposure estimation, whereas section 4 

contains affiliated results and discussion. Conclusions and future perspectives are outlined in 

section 5.  

2 Study site and data 

2.1 Valparaíso 

Valparaíso (33° 2´ S, 71° 37´ W) is located on the Pacific Coast in the Western part of Chile 

(Fig. 1a). It is one of the largest coastal cities of Chile and features approximately more than 

280,000 inhabitants (INE 2015). The city is prone to a number of hazards, whereby it is 

heavily threatened by earthquakes and tsunamis. The Nazca plate plunges beneath the 

continental South American plate. The geographic location of Valparaíso right beside the sea 

and geological characteristics (i.e., seismic amplification due to soft soil) makes the city 

especially prone to them (Fig. 1b). A very destructive earthquake took place in 1906 and hit 

Valparaíso with a magnitude Mw of 8.3. Since then, there were 12 earthquakes affecting 

Valparaíso with an intensity larger than seven (Indirli et al. 2010). Majority of them had their 

epicenter offshore of Valparaíso along the plate boundary. Three of them were also 

tsunamigenic (i.e., the events in 1906, 1918, and 1985). In addition, there is a considerable 

landslide risk especially in case of heavy rainfalls due to soil materials, steep slopes within the 

settlement area, and deep fluvial incisions. Risk of fires is also exigent and worsened by 

windy weather, hill roads, which are hard to access, dominance of wooden houses, and 

sometimes insufficient water pressure in the hydrants. Recent examples are the forest fires 

that occurred in April 2014 which could not be stopped for several days (April 12th - 17th). 

Almost 1,000 hectares were burnt. The fires devastated about 3,000 houses in 12 districts and 

affected 13,000 people (ONEMI 2014). In general, the urban morphology of Valparaíso 

determines two sectors with distinct risk properties (Fig. 1c-d). The harbor area, characterized 

by port facilities and commercial districts, is highly exposed to tsunami hazards and 

destructive effects of earthquakes, whereas the hill quarters, covered by small and squat 

houses, are in particular subject to risks related to landslides and fires. 
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2.2.2 OpenStreetMap 

For the subsequent compilation of training segments, we acquired OSM data for Chile from 

the provider Geofabrik (2014) on 4th of November 2014. Data are compiled according to eight 

feature categories, i.e., “Points of Interest” (POIs), places, roads, railways, waterways, natural, 

land use, and buildings (OSM 2015b). To assess the quality of the acquired data, we 

subsequently use metadata from the OSM-planetfile (OSM 2015c). Such information reveals 

attributes about the history of the individual objects are documented such as a User ID, time 

of last edit, or the number of edits per object (Arsanjani et al. 2015c). Notably, those 

information reveal that most object within our study site were added in April 2014. This is 

congruent with the time interval of the occurrence of the devastating fires mentioned before. 

The vast majority of building footprint geometries of Valparaíso was generated within the 

activity of two Humanitarian OpenStreetMap Team tasks, which aimed to map the areas 

affected by the disaster as they were before the fires in order to support damage assessment 

and humanitarian response activities (OSM Task Manager 2014a, b) in a timely manner. In 

turn, this also documents how specific events trigger the continuation of global VGI but also 

show that large parts of the world feature incomplete VGI with respect to spatial coverage 

(see also section 3.1). 

2.2.3 Census Data 

To spatially disaggregate population numbers, we deploy census data from the National 

Statistics Institute of Chile (INE). A census was conducted approximately every ten years 

since the first census in 1813. The last census was carried out in 2012, however, data were 

retracted due to inaccuracies during acquisition and processing (Bianchini et al. 2013). 

Accordingly, we use data from the 2002 survey, which provides de facto information about 

population at their place of residence. Data are aggregated according to four spatial levels 

(i.e., “comuna” (municipality), “distritos censales” (census districts), “zonas censales” (census 

zones), and “manzanas” (building blocks)), reaching from a coarse aggregation level 

(“comuna”) to a very fine one (“manzanas”).  

3 Methods 

To estimate exposure, we carried out a sequential procedure with four main steps (Fig. 2) 

dedicated to i) proper preprocessing of the data (section 3.1); ii) a highly automated 

supervised classification approach for extraction of (urban) LULC (section 3.2); and 

estimation of exposure (section 3.3) comprising iii) the number of buildings and iv) 

population. 
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bands, image quantization, and scene properties (Stumpf and Kerle 2011). However, an 

increasing scale factor will lead to larger object sizes. In addition, some further free 

parameters of the segmentation algorithm need to be defined. In this manner, we suggest to 

put more emphasize on shape heterogeneity rather than on grey-value heterogeneity. This is 

due to the fact that man-made features such as buildings and other objects of urban 

environments have distinct shape and size properties, unlike natural features. Analogously, 

the weights for heterogeneity of smoothness and compactness can be maintained equal (i.e., 

shape: 0.7, color: 0.5).  

For characterization of the generated segments from the VHR imagery we carried out 

multilevel feature calculation. Features belonging to the group of mathematical morphology 

(Soille 2004) were computed from the panchromatic band (PAN_MM), since it was shown 

that such derivates can encode valuable information for urban LULC classification (e.g., 

Soille and Pesaresi 2002, Tuia et al. 2009, Geiß et al. 2016b). In particular, erosion, dilation, 

opening, closing, opening by top hat, and closing by top hat operations were carried out with 

linear ascending sizes of a square-shaped structuring element (SE) � = {5,10, … ,30} on the 

image pixels. The optical imagery was further deployed to compute measures of central 

tendency (OPT_MCT), i.e., mean and median were computed for the blue, green, red, and nir 

bands in addition to a brightness and maximum difference band (Stumpf and Kerle 2011). 

Analogously, measures of spread (OPT_MS), i.e., standard deviation, variance, minimum, 

maximum, range, and interquartile range were calculated for the four spectral bands. Two 

band ratios (OPT_BR) were further deployed to characterize vegetation activity (i.e., 

normalized differenced vegetation index) and enhance spectral dissimilarities between bands 

(i.e., red/nir) (e.g., Bruzzone and Carlin 2006, Puissant et al. 2014, Leichtle et al. 2017). To 

take advantage of differing shapes of individual urban LULC objects, we calculated features 

related to the geometry of objects. In particular, the extent of objects (GEOM_EXT) was 

characterized considering area, length, ratio of length and width, perimeter, as well as ratio of 

area and perimeter. In addition, the shape of objects (GEOM_SHA) was approximated with 

measures that deploy a comparison with two-dimensional geometrical forms such as square, 

rectangle, or ellipse (i.e., rectangular and elliptic fit, asymmetry, compactness, density, 

roundness, shape and border index) as implemented in the software environment eCognition 

(Trimble 2014, Sun et al. 2015). Lastly, relational features (REL) were computed (Bruzzone 

and Carlin 2006). For instance, the number of objects from a finer segmentation level in 

relation to an object from a coarser level aim to further reflect the spatial alignment and 

composition of image objects. Thereby, we exploit the relation that objects from a coarser 

level containing a high number of objects from a finer segmentation level indicate LULC 

classes with a high level of individual real-world object complexity (e.g., buildings which are 

composed by a variety of architectural components). Overall, each image object of level � − 1 

��
��� is represented by a 270-dimensional feature vector 

����
�−1� = {���_��(��

�−1) ���, ���_���(��
�−1) ��, ���_��(��

�−1) ��,   

                  ���_��(��
�−1) �, ����_���(��

�−1) ��, ����_���(��
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                  ���(��
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property-based method (Adeline et al. 2013), i.e., by means of an empirically determined 

brightness threshold. In addition, some further plausibility rules were introduced to ensure 

validity of training segments. For instance, training segments corresponding to vegetation 

must exceed a domain-specific NDVI-related threshold. In contrast, training segments 

comprising impervious surface materials (i.e., buildings and roads) must fall below that 

NDVI-related threshold simultaneously. 

3.2.3 Learning of Classification Model and Postclassification Processing 

A classifier ensemble method named Rotation Forest (Rodriguez et al. 2006) was used for 

solving the actual LULC classification problem. This recently presented approach for 

classification problems outperformed traditional ensemble methods such as Random Forest, 

or Bagging etc. in terms of classification accuracy (Rodriguez et al. 2006, Kavzoglu and 

Colkesen 2013, Xia et al. 2014). Rotation Forest is a non-parametric supervised classifier 

ensemble which uses decision trees as base classifiers and employs feature extraction (i.e., 

rotation of the feature axes) based on principal component analysis (PCA). This principle is 

followed since decision trees are sensitive to axis rotations and classifiers obtained with 

different rotations of a data set can be highly diverse (Stiglic et al. 2011).  

The Rotation Forest approach employs different configurations of the set of labeled 

training samples. First, the feature set is split into several subsets on which the initial training 

set is projected. Subsequently, a sparse rotation matrix is constructed based on feature 

extraction on the individual subsets. The latter are subject to a bootstrap algorithm to select 

75% of the initial training samples. A classifier is generated from the features projected by the 

rotation matrix and a final class label is obtained according to a confidence criteria computed 

from the labeling results of multiple iteratively learned classifiers (Rodriguez et al. 2006, Xia 

et al. 2015). In the experiments, we used PCA for feature extraction in conjunction with a J48 

classifier from the WEKA library (Hall et al. 2009) as base classifier and determined optimal 

hyperparameters (i.e., size of the ensemble and number of features in a subset) empirically 

with a cross-validation strategy. 

Postclassification processing was carried out to further enhance classification accuracy, 

especially for the LULC class “buildings”, which is of vital importance for the subsequent 

exposure estimation efforts. Errors in the classification result can often be related to small 

regions with arbitrary shapes as produced by image segmentation (Zheng et al. 2014). We 

deployed several unambiguous context-based rules to address this problem, i.e., a singular 

classified segment of a certain class which is completely nested inside segments of a different 

class is assigned to the class of the surrounding segments (e.g., a singular image object 

classified as “road” is reclassified to “buildings” if it is completely surrounded by image 

objects of the class “buildings”). 

3.3 Exposure Estimation 

3.3.1 Number of Buildings 

Complex urban environments prohibit a direct inference of number of buildings based on the 

presented LULC classification. This is due to the fact that extracted segments of the LULC 

class “buildings” do not necessarily correspond to the outline of individual building 
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measures such as the relative number of segments, which represents the ratio of the number of 

segments per grid cell and total number of segments in the study area, are considered. In 

addition, e.g., shape metrics are used to approximate the constructional complexity of 

buildings within a grid cell. Overall, 12 metrics were computed.  

Regarding the actual regression task, we considered a multi-linear ordinary least squares 

(OLS) model and a non-linear Support Vector Regression (SVR) model. The OLS method 

minimizes the sum of squared vertical deviations between the observed values in the data set 

and the values predicted by the linear approximation to describe, as close as possible, the 

original values of the dependent variable (Montgomery et al. 2001). Instead, SVR is able to 

reflect non-linear relationships (Smola and Schölkopf 2004). It is based on Support Vector 

Machines (SVM), which determine a suitable set of parameters that establish a decision 

surface, the so called hyperplane, between the different classes of training samples according 

to their position in an n-dimensional feature space. The optimal separating hyperplane is 

identified as the maximized margin between the different classes and the hyperplane. Detailed 

theoretical background of SVM can be found in Vapnik (1995), Cortes and Vapnik (1995), 

and Burges (1998). 

In the experiments, regression models were learned from 25 grid cells, where the actual 

number of buildings was determined automatically from the OSM data (i.e., number of 

building geometries). We excluded collinear features for the OLS model, and determined 

optimal hyperparameters with respect to minimal root-mean-squared error (RMSE) for the 

SVR approach (i.e., complexity parameter C, and exponent of polynomial kernel) empirically 

with a cross-validation strategy.  

3.3.2 Population Disaggregation 

To provide fine scale population information, we deployed and evaluated four different 

disaggregation approaches based on simple areal weighting and dasymetric mapping methods. 

Disaggregation methods perform a transformation, which involves transforming data from 

one set of coarse spatial units (i.e., source zone) to one set of finer spatial units (i.e., target 

zone) (Wu et al. 2005). As such, we used for all approaches census data from the coarsest 

level (i.e., “comuna”; section 2.2.3) as source zone and deployed the pixels which constitute 

the LULC class “buildings” as target zone, since it was assumed that people solely dwell in 

buildings. The disaggregation approaches are described below.  

 
i) Simple Areal Weighting (SAW) 

 
Our baseline approach was simple areal weighting (SAW). SAW is based on the assumption 

that population is uniformly distributed within the source zone. Therefore, population 

numbers are assigned proportionally to the area of the spatial units in the target zone (linear 

disaggregation): 

���� =
��

∑ ��
∗ ��� (2) 

where �� is the area of the spatial units (i.e., pixels), ∑ �� the sum of areas of all spatial units 

and ��� the population number of the source zone (here “comuna”).  
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ii) SAW under consideration of estimated number of buildings (SAW-NB) 
 
In addition, we used a dasymetric mapping method, which deploys knowledge of local 

characteristics to incorporate zones of different population densities (Mennis and Hultgren 

2006). Here, dasymetric zones were generated by using ancillary information derived from 

the remote sensing data. In particular, the estimated numbers of buildings (section 3.3.1) were 

used. By dividing the population of the source zone by the estimated number of buildings, the 

average number of inhabitants per building can be derived. By means of this information the 

population can be calculated by multiplying the average number of inhabitants per buildings 

with the number of buildings per grid cell. In a second step, the resulting number of 

population per grid cell was disaggregated to pixel level by SAW. Thereby, the idea is to 

improve the SAW approach by constraining the population distribution beforehand based on 

ancillary information. 

 
iii) SAW and SAW-NB under consideration of OSM data 

 
Lastly, we aimed to enhance the population disaggregation by incorporation of OSM 

information. For this purpose, we used land use information other than “residential” from the 

OSM data to possibly identify zones which cannot be considered equally populated although 

they belong to the LULC class “buildings”. OSM data contain so-called “land use objects”, 

which represent polygons with affiliated land use categories. In addition, so-called POIs were 

included, which represent punctual information indicating public, recreational, and cultural 

places. To use this information, the various labels were aggregated according to semantically 

relevant categories such as “industrial”, “gastronomy”, “shopping” etc. Thereby, polygons 

were directly combined with segments from the LULC class “buildings”, whereby punctual 

information was related to corresponding segments according to a neighborhood criterion. 

The resulting information for Valparaíso is depicted in Fig. 8. 
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The corresponding population map of the best performing method (i.e., SAW-NB OSM) is 

depicted in Fig. 11b along with the population numbers of the reference blocks. Most 

noticeable areas of overestimation are located at large sports and health areas in the 

Northwest, and at the airfield in the Southeast of the city, which can be primarily attributed to 

misclassifications. Nevertheless, the overall allocation of population reflects the spatial 

distribution of the reference, especially given the circumstance that the number of population 

was disaggregated from the coarsest level of census data available (i.e., a single number was 

available for the source zone which comprises the whole city of Valparaíso). In this regard, it 

can be noted that especially large shares of the population of the tsunami prone harbor region 

can be reflected properly. Thereby, helpful information could be encoded from the OSM data 

in terms of “land use objects” and POIs for this area (Fig. 8) to improve the mapping results. 

This underlines again the usefulness of incorporation of OSM information.  

4.2.3 Application for Tsunami Scenario 

To demonstrate the relevance of the presented approaches in the context of natural hazard 

risk, we compute the today’s number of affected buildings and people for a historically 

grounded tsunami scenario. In particular, we consider the destructive tsunami event from 

1730. The tsunami was triggered by an earthquake with an approximate magnitude Mw of 9.0 

(Cisternas et al. 2012) and inundated the lower coastal parts of the settlement area of 

Valparaíso. The inundation area from Fig. 12 was obtained with a numeric modeling 

approach under consideration of topographic, bathymetric, and seismic data (SHOA 2012, 

2015). The modeling results can be partly verified by taking into consideration marks at 

historical places (i.e., iglesia de la Matriz, and iglesia de la Merced), which represent 

documented borders of the inundation and confirm the viability of the inundation model. The 

severity of the inundation becomes in particular obvious when compared with the inundation 

line of the 1906 tsunami. According to the number of buildings (Fig. 10) and people (Fig. 11) 

estimated previously, a similar event would affect nowadays approximately 2900 buildings 

and 9300 people (according to their place of residence, i.e., during a nighttime event). 
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analysis (Blaschke 2011). Recent conceptual works explicitly acknowledge temporal aspects 

(Volunteered Geo-Dynamic Information) and describe the potential impact on the field of 

dynamic population distribution modeling to overcome limits of residency-based census data 

(Aubrecht et al. 2016). As just one example, Aubrecht et al. (2011) deploy VGI from a 

location sharing service to characterize the dynamics of population patterns. Moreover, it 

would be interesting to examine to what extent VGI can contribute to the assessment of other 

components of natural hazard risks, such as seismic vulnerability of built environments with 

respect to earthquakes, in conjunction with the application of remote sensing (Geiß et al. 

2014, 2015, 2016a). This could serve as important information for comprehensive risk and 

damage assessments in the context of e.g., earthquakes (Picozzi et al. 2013) or tsunamis 

(Strunz et al. 2011, Wegscheider et al. 2011, Gokon et al. 2015) for prospective multi-hazard 

early warning and response systems.  

Generally, we believe that a combined use of remote sensing, as a powerful earth 

monitoring tool, and VGI, as an exhaustive information source, has the potential to contribute 

substantially to the generation and updating of global risk models – for enhanced disaster 

mitigation and response. 
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