

Identification and Monitoring of Toxic Cyanobacteria

J. Ruber¹, P. Scherer¹, A. Göritz^{2,3}, S. Riedel³, K. Zwirglmaier¹, J. Geist⁴, P. Gege², R. Bamler^{2,3}

¹TUM, Limnologische Station Iffeldorf, Hofmark 1-3, D-82393 Iffeldorf, Germany; ²TUM, Chair of Remote Sensing Technology, Arcisstr. 21, 80333 München; ³DLR, Remote Sensing Technology Institute, Oberpfaffenhofen, D-82234 Wessling, Germany; ⁴TUM, Chair of Aquatic Systems Biology, Mühlenweg 22, D-85354 Freising

Inversion algorithm for remote sensing of cyanobacteria

Spectroscopic experiments

Studies on cyanobacteria and other optical significant water constituents

Counting and sorting cyanobacteria cells which have a autofluorescence with a flow cytometer (upper picture); cells without pigments have to be stained with a DNA dye (SYBR green) (picture below)

Quantification of RNA for toxinsynthesis by quantitaitve reverse transcription PCR (RT-qPCR)

Aims of the project:

Identify factors that induce a toxic cyanobacterial bloom Develop algorithm for identification and monitoring of algae blooms with remote sensing *Investigate the interaction of toxic cyanobacteria with non toxin-producing cyanobacteria in the ecosystem as possible competitor to control the toxic ones

