
Visualizing Modules and Dependencies of
OSGi-based Applications

Doreen Seider, Tobias Marquardt, Marlene Brüggemann, and Andreas Schreiber
German Aerospace Center (DLR), Simulation and Software Technology

Linder Hoehe, 51147 Cologne, Germany
{doreen.seider,tobias.marquardt,andreas.schreiber}@dlr.de

Abstract—The architecture of software it not tangible; but
in different situations it is preferable to have it tangible. For
example, while reviewing it against the intended design, intro-
ducing the software to others, or starting to develop on a new
part. Basic aspects of a software architecture are the modules
the software is constructed of and the dependencies between
them. To comprehend these aspects is important especially for
software using a technology such as OSGi, which key concept is
modularization.

In this paper, we describe interactive visualization tools that
we developed to comprehend OSGi-based applications with their
modules and dependencies. We focus on concepts to treat large
number of modules and dependencies: navigation, filtering, and
selection. We applied our solution for OSGi-based applications
with hundreds of modules containing multiple submodules each.
With the resulting visualizations, we can explore the modular-
ization of the software architecture.

I. INTRODUCTION

Every software has an architecture. The architecture is a
result of the software implementation. The implementation
can be driven by an architecture design which describes the
intended software architecture. Such a design does not guar-
antee that the actual architecture always follows the intended
design. Whereas for small software, it might be derived from
the implementation, of large software the actual architecture
is invisible [1].

Comprehending the actual architecture is important in many
situations in the day-to-day life of software development (see
Section IV-C for examples). For that, the actual software
architecture needs to be visible. Software architecture per se
is an intangible concept [2]. To make it visible metaphors are
used that visualize certain aspects such as the cartographic
metaphor [3].

We present tools to visualize aspects of the architecture
of OSGi-based applications. We focus on a basic aspect of
software architectures, the modules a software is constructed
of, and the dependencies between the modules. Section II
introduces OSGi-based applications and the characteristics
we considered. We describe the extraction of information
regarding modules and their dependencies from OSGi-based
applications in Section III. In Section IV, we present an
interactive browser-based visualization and a virtual-reality-
based tool. Section V concludes the paper and gives ideas for
future work.

II. OSGI-BASED APPLICATIONS

OSGi (Open Services Gateway Initiative) [4] is a spec-
ification that defines a dynamic module system for Java.
Multiple implementations exist such as Apache Felix [5],
Eclipse Equinox [6], or Knopflerfish [7].

A module is a unit of functionality. In Java, different types
of modules exist:

• Class: unit of state and behavior
• Package: set of classes
OSGi adds two additional types of modules:
• Bundle: set of packages
• Service: class instances that are shared between bundles
The concept of OSGi Declarative Services (OSGi DS) [8]

adds another module type:
• Service component: class in a bundle that provides or

consumes services
An OSGi-based application consists of a runtime and a set

of bundles. A bundle can provide services that can be used
by other bundles [4]. When using OSGi Declarative Services,
a bundle can declare service components as the units in the
bundle that provide and use services (Fig. 1).

Bundle

Package

Bundle

Package

Class

imports

Service Service

Service
Component

Service
Component

provides

uses

implements

Fig. 1. OSGi packages and services.

Bundles are designed to hide their implementation from
each other. A bundle defines which packages are allowed
to be used by other bundles; it declares those packages as
exported. A bundle also defines which packages it requires;
it declares them as imported. Usually, it does not care from

which bundle the package is imported. At startup, the OSGi
runtime resolves the package dependencies and wires the
bundles. The same applies for services. A service component
gets required services injected if another service component is
providing a matching one.

The following dependencies in an OSGi-based application
can be derived:

• Package level: bundle ↔ package ↔ class
• Service level: bundle ↔ service component ↔ service
OSGi-based applications are dynamic regarding their mod-

ules: bundles can be installed and uninstalled, services can be
registered and deregistered at any time.

III. EXTRACTING INFORMATION ABOUT MODULES AND
DEPENDENCIES

Information about the modules and dependencies of OSGi-
based applications are distributed among different files. To
visualize modules and dependencies, the information need to
be extracted and aggregated, which requires information about:

1) Imported and exported packages per bundle (purpose:
dependencies between bundles based on imported pack-
ages)

2) Service components (per bundle) and their services
provided and required (purpose: dependencies between
bundles based on service usage)

3) Foreign class usage per class (purpose: dependencies
between packages and classes)

4) Number of packages per bundle, number of classes per
package, LOC of classes (module size)

Extracting information and visualizing them are decoupled
from each other. First, the code base of the OSGi-based
application is analyzed, which results in a generated model
that contains the required information. The model is stored in
a file and passed to the visualization (Fig. 2). The model is
the interface between analysis and visualization. To guarantee
a reliable data interchange, the information in the model is
structured according to a metamodel that we defined.

OSGi Application

Model

.MF

.java

.xml

Visualizations

Analysis

Web

VR

AR

Fig. 2. Decoupled analysis (information extraction) and visualization.

IV. VISUALIZING MODULES AND DEPENDENCIES

Software visualization can be classified by the aspects
it considers: structure, evolution, and behavior [9]. In this
section, we present structural visualizations of modules and

dependencies. It focuses on the modules of OSGi-based ap-
plications on different abstraction levels and the dependencies
between them. It intends to improve the comprehension of an
OSGi-based application for different kind of persons: devel-
opers, project managers, or third-party persons (see Section I).

The amount of information to visualize increases with the
number of bundles and services. Visualizing modules (bundles,
packages, classes, services) and all of their dependencies
at once including metrics (Section II) does not scale for
applications with hundreds of bundles and services. To reduce
the perceived complexity we applied techniques of interac-
tion [10], [11]: navigation, filtering, selection, reconfiguration,
encoding, links, and abstraction/refinement.

A. Browser-based Visualization

The data visualization of the browser-based tool follows
a multi-view concept. Multiple views exist which focus on
certain information each. The views are linked between each
other. When navigating from one view to another selections are
considered and filtering is applied. The graphical user interface
is divided into four parts (Fig. 3):

1) Project information: static information about the OSGi-
based application under consideration (e.g., name and
time the model was generated)

2) Navigation: button-based bar for selecting the type of
module that should be visualized

3) Visualization view: data visualization, depending on the
selected module type

4) Context information and configuration: information
about selected elements and configuration of the view
(e.g., applying metrics)

P r o j e c t i n f o r m a t i o n

V i s u a l i z a t i o n v i e w

N a v i g a t i o n

C o n t e x t i n f o r m a t i o n a n d
c o n f i g u r a t i o n

Fig. 3. Graphical user interface of the browser-based visualization

At start, the visualization view shows all bundles of the
application, each as a filled circle. The dependencies are
hidden and no metrics are applied. It is a neutral entry point
for further exploration.

The configuration part allows to reconfigure the visualiza-
tion. For the bundle visualization, the dependencies can be

A. MAT B. OSEE C. RCE

Fig. 4. Bundles visualized as force-directed graph with hidden edges; lines of code aggregated over the classes of a bundle is mapped to the size of the
circles. Applications from left to right: Memory Analyzer (MAT), Open Systems Engineering Environment (OSEE), Remote Component Environment (RCE)

shown as edges between the circles to get a graph. Metrics
can be applied so that the circles and edges are of different
size and color. The configuration part also provides a filter
option to search for modules.

With the navigation bar, the other views can be reached
which visualize services, packages, and classes as well as the
dependencies between them. They are intended to visualize
snippets of the OSGi-based application on a lower abstraction
level. The snippet is defined by the selection of the bundles
in the first view.

The browser-based visualization is implemented as a single
HTML file which loads JavaScript code for the data visual-
ization; an installation on a Web server is not necessary. The
data visualization is implemented with the JavaScript library
Data-Driven Documents (D3) [12]. It generates interactive
data visualization using the Web standards HTML5, CSS, and
SVG. The concept of a single page application (SPA) does
not require a reloading of the site at any time so that is feels
similar to a desktop application.

B. Virtual-Reality-based Visualization

For very large applications and higher dimensional data, we
explore other types of visualizations such as Virtual Reality
(VR). With VR techniques, one could utilize the three dimen-
sional space to dive into the source code or architecture of a
software (e.g., see the visualization of source code in 3D [18]
or software cities in VR [19]). A cheap and convenient method
to use VR are headsets such as Oculus Rift, Samsung Gear
VR, or Google Cardboard. The availability of these devices
could allow software engineers to use VR visualization on
their desk. We implemented a VR version of the visualization
of key bundles (Fig. 5) for Google Cardboard using the 3D
game engine Unity [20]. The preliminary version allows to fly
through the three dimensional space of bundles, represented
as spheres (Fig. 9). The current interaction methods allows to
select a bundle, which then become translucent. The sphere
contains the packages of the bundle. While moving the head,
users can point with a virtual cursor to any bundle or package,
which then shows dependencies to other bundles.

Fig. 5. Visualizing key bundles: largest ones in term of lines of code as well as
notable number of private packages and incoming dependencies. Application:
Remote Component Environment (RCE)

C. Use Cases for Visualization

To show the feasibility of our tools, we applied the vi-
sualization for three OSGi-based applications: Memory An-
alyzer (MAT) [13], Open Systems Engineering Environ-
ment (OSEE) [14], and Remote Component Environment
(RCE) [15], [16]. MAT is of small size and has about 20
bundles. OSEE and RCE are of similar and larger size with
over hundred of bundles and services.

1) Getting an impression of the dimensions of the ap-
plication. For example, to give a project manager a
clearer understanding of maintenance cost, it is helpful
to give an impression of the size of the application.
The dimension of an application can be described with

Fig. 6. Package structure of a bundle. Classes are assembled to packages by
sharing the same color. The size of a class item is mapped to its lines of code.
Application: Remote Component Environment (RCE)

Fig. 7. Dependencies between two bundles broken down to classes. Only
dependencies across bundles are shown; dependencies between and inside
packages are hidden. Application: Remote Component Environment (RCE)

different parameters. For OSGi-based applications, the
most important are: number of bundles and services as
well as the size of the application and of the bundles
(Fig. 4).

2) Introducing a new member of the development team.
If a new developer joins the team it is helpful to give
an overview of the software to develop. It involves the
dimension of the project, key bundles, and basic struc-
ture that includes the semantic modularization beyond

Fig. 8. Service components (rectangle) and services (circle) and the dependen-
cies between them. Dotted edge if a service component uses the service and
solid edge if a service component provides the service. Service components
and services of one bundle share one color. Application: Remote Component
Environment (RCE)

bundles (Fig. 5 and Fig. 9).
3) Starting to work on a new module. When starting to

work on a new and unknown module, it is helpful to
explore the overall structure in detail beforehand. For
OSGi-based applications, it is of interest to know some
characteristics of the affected bundles such as the size
or the ratio between public and private packages. It is
also good to know some insights of the bundles such as
their package and class structure. To classify the bundles
of the application, the number of dependencies are of
interest including their direction and strength. Also, the
services are noteworthy that are provided and used both
within and in interaction with other bundles (Fig. 6,
Fig. 7, and Fig. 8).

4) Checking for abnormalities. The actual architecture of
a software does not always follow the intended design
for different reasons. It must be continuously reviewed
for abnormalities and adjusted if needed (Fig. 4, Fig. 6,
Fig. 5, and Fig. 7).

V. CONCLUSION AND FUTURE WORK

We presented tools to visualize the modularization of OSGi-
based applications on different abstraction levels. We intro-
duced an interactive, browser-based visualization and a virtual
reality tool for VR headsets. Use cases demonstrated the use-
fulness of the visualization to comprehend the modularization
of OSGi-based applications. The bundle graph with the option
to show a bundle’s package structure as a treemap and the
circular net displaying dependencies on class level suit well.
Compared to that, the benefit of the service graph is limited.
It provides a good impression about the degree of service

Fig. 9. VR version of the OSGi viewer. This preliminary version as available as a test version for Android and Google Cardboard in the Google Play Store:
https://play.google.com/apps/testing/de.dlr.sc.OSGiViewer

usage, but lacks in supporting the comprehension of their
dependencies. An alternative for the force-directed graph that
was chosen should be found.

We already identified topics for future work. The metamodel
could be extended with information on instruction level to
add one more abstraction level in the visualization beyond
classes. The treemap showing the package structure could be
integrated with the dependencies. If a bundle is expanded,
the edges that represents the dependencies would start and
end at the classes in the treemap. Finding abnormalities by
hand is not reliable. An application should be analyzed for
abnormalities automatically and the ones found should be
provided in the visualization. The challenge here is to define
what abnormalities are and that a definition might differ from
project to project.

REFERENCES

[1] M. Petre and E. de Quincey, “A gentle overview of software visual-
isation,” Computer Society of India Communications, pp. 6–11, Aug.
2006.

[2] Y. Ghanam and S. Carpendale, “A survey paper on software architecture
visualization,” University of Calgary, Tech. Rep., Jun. 2008. [Online].
Available: http://hdl.handle.net/1880/46648

[3] N. Hawes, S. Marshall, and C. Anslow, “Codesurveyor: Mapping large-
scale software to aid in code comprehension,” in Software Visualization
(VISSOFT), 2015 IEEE 3rd Working Conference on, Sept 2015, pp. 96–
105.

[4] A. L. Tavares and M. T. Valente, “A gentle introduction to osgi,”
SIGSOFT Softw. Eng. Notes, vol. 33, no. 5, pp. 8:1–8:5, Aug. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1402521.1402526

[5] The Apache Software Foundation, “Apache felix,” 2015. [Online].
Available: https://felix.apache.org

[6] The Eclipse Foundation, “Eclipse equinox,” 2016. [Online]. Available:
http://www.eclipse.org/equinox/

[7] The Knopflerfish Project, “Knopflerfish – open source osgi sdk and run-
time container,” 2015. [Online]. Available: http://www.knopflerfish.org/

[8] OSGi Alliance. Osgi service platform specification. [Online]. Available:
https://www.osgi.org/developer/specifications/

[9] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software, 1st ed. Springer-Verlag Berlin Heidelberg,
2007.

[10] M. O. Ward, G. Grinstein, and D. Keim, Interactive Data Visualization:
Foundations, Techniques, and Applications. A K Peters/CRC Press,
2010.

[11] J. S. Yi, Y. ah Kang, J. Stasko, and J. Jacko, “Toward a
deeper understanding of the role of interaction in information
visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1224–1231, 2007. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70605

[12] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis),
vol. 17, no. 12, pp. 2301–2309, Dec. 2011. [Online]. Available:
http://vis.stanford.edu/papers/d3

[13] Eclipse, “Memory analyzer (mat),” 2015. [Online]. Available: https:
//www.eclipse.org/mat/

[14] “The open system engineering environment.” [Online]. Available:
http://www.eclipse.org/osee/

[15] D. Seider, P. M. Fischer, M. Litz, A. Schreiber, and A. Gerndt, “Open
source software framework for applications in aeronautics and space,”
2012 IEEE Aerospace Conference, pp. 1–11, 2012. [Online]. Available:
http://dx.doi.org/10.1109/AERO.2012.6187340

[16] German Aerospace Center (DLR), “Remote component en-
vironment (RCE),” http://rcenvironment.de/. [Online]. Available:
http://rcenvironment.de/

[17] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.147

[18] A. Marcus, L. Feng, and J. I. Maletic, “3d representations for software
visualization,” in Proceedings of the 2003 ACM Symposium on Software
Visualization, ser. SoftVis ’03. New York, NY, USA: ACM, 2003, pp.
27–ff. [Online]. Available: http://doi.acm.org/10.1145/774833.774837

[19] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities
in virtual reality,” in 2015 Third IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, 2015, pp. 130–134.

[20] Unity Technologies, “Unity,” 2016. [Online]. Available: http://unity3d.
com/

http://hdl.handle.net/1880/46648
http://doi.acm.org/10.1145/1402521.1402526
https://felix.apache.org
http://www.eclipse.org/equinox/
http://www.knopflerfish.org/
https://www.osgi.org/developer/specifications/
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70605
http://vis.stanford.edu/papers/d3
https://www.eclipse.org/mat/
https://www.eclipse.org/mat/
http://www.eclipse.org/osee/
http://dx.doi.org/10.1109/AERO.2012.6187340
http://rcenvironment.de/
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.147
http://doi.acm.org/10.1145/774833.774837
http://unity3d.com/
http://unity3d.com/

	Introduction
	OSGi-based Applications
	Extracting Information about Modules and Dependencies
	Visualizing Modules and Dependencies
	Browser-based Visualization
	Virtual-Reality-based Visualization
	Use Cases for Visualization

	Conclusion and Future Work
	References

