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Abstract 
Decisions on shipment size in freight transport are often seen to represent a whole set of logistics decisions made 

by shippers and recipient. Also, shipment sizes has a large impact on transport mode choice.  
Therefore, they are an important aspect in the modeling of freight transport demand, as they allow to display the 

reactions of various stakeholders on policy measures. In this article, a model for the discrete choice of shipment 
sizes is applied to interregional road freight transport. Preferences of actors are reflected by a total logistics cost 
expression. A Latent Class Analysis approach is applied to identify groups of transport cases with similar logistics 
requirements. The classification reduces significantly heterogeneity in behavior. Reactions of actors on external 
influences such as policy measures could be predicted more accurately.  
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1. Motivation 

The globally growing relevance of freight transport increases the importance of 
adequately assessing policy measures for predicting the changes in freight transport demand 
resulting from external influences. As the logistics activities of involved actors determine to a 
great extent the characteristics of freight transport, the use of behaviorally sensitive freight 
transport models based on rational decisions and covering the main dimensions of logistical 
behavior are becoming more and more necessary.  

Generally, the consideration of logistic choices in the context of freight transport is 
accompanied by a huge variety and diversity of involved actors (shippers, carriers, receiver, 
operators etc.) and an enormous diversity of transported commodities. As a consequence, each 
company’s logistics operations are differently organized and very detailed on the level of single 
actors, so that they cannot be inserted into comprehensive freight transport models directly. 
Instead, simplifications and generalizations have to be found which still allow causes and effects 

to be traced, and which also preserve the variability in logistics behavior in the model.  
A usual practice of finding such simplifications is to model single logistics decisions on a 

high level of aggregation. One of these proxy decisions is the choice of shipment sizes, which 
covers the central aspects of the actor’s logistical calculus and to some extent explains the 
behavioral heterogeneity of the actors. In general, the shipment can be seen as one of the 
simplest links between commodity flows formed from economic interactions on the transport 
demand side and the vehicle movements that take place on the various transport routes. On the 
one hand, the size and other properties of the shipments determine the arrangement of the trade 
relationships between shippers and receivers from which the demand for freight transport results. 
On the other hand, the requests of the potential customers and the restrictions placed by the 
transport system are influencing the offers of the transport companies competing on the transport 
markets. Because of the shipment’s occurrence on all stages of decision, the finding of a 
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shipment size that fulfills the requirements of all involved parties can serve as a model at a high 
aggregation level of the underlying logistics considerations. 

Summarizing the previous aspects, two questions arise in developing a shipment size 
choice model for large-scale freight transport model systems: 

 
1.) Which influences have to be considered as crucial for the explanation of logistical actors’ 

behavior, and how can they be incorporated in an operational transport model? 
2.) How can the omnipresent heterogeneity of actors and decision situations be addressed in a 

manageable yet realistic way? 
 

The purpose of this paper is to suggest answers to these two questions. We propose a 
discrete shipment choice model based on a total logistics cost formulation, as it turned out that 
decisions are oriented on given vehicle and bundle sizes. Additionally, technology-related or 
market-related influencing factors on transport cost functions, such as the number of 
transshipments or the characteristics of the goods, support a certain categorical character 
(Combes et al. (2016)). This orientation results in shipment sizes that fall into a limited number of 
categories. Moreover, a limited set of size categories from which to choose seems to be more 
manageable when it comes to integration of the shipment size component in a comprehensive 
freight transport model. 

Discrete choice models are usually estimated from samples that cover a wide range of 
responses and thus decision situations. Consequently, the estimated model instances reflect the 
behavior of the sample population as a whole and cannot account for the variability of actor 
reactions on external influences. A way to alleviate this is to distinguish segments of freight 
transport demand that exhibit similar behavior. In this case study, we use a novel approach in the 
context of shipment size choice that segments transport cases according to logistics aspects by 
means of a latent class model, which in combination with a rational framework of  total logistics 
cost minimization improves the explanatory power of the shipment size choice behavior. 

For model estimation a dataset was used which was gathered at the beginning of 2013  
within the scope of the research project "‘Development of a model for the calculation of freight 
traffic modal shifting to derive consistent evaluation approaches for German federal infrastructure 
planning (BVWP)” (BVU – Beratergruppe Verkehr + Umwelt, TNS Infratest (2014)). The data 
contains in total an amount of 926 transport cases gained from 474 interviews with shippers and 
receivers. The model in this article has to be restricted to road transports as there are not enough 
observations for modes other than truck available (23 by rail, 9 by inland waterway, 13 by 
intermodal rail and 5 by intermodal inland waterway). Nevertheless, the estimated model provides 
possible links for the comprehensive integration of the mode choice. 

This article is organized as follows: Section 2 contains a brief review of the literature 
dealing with shipment size choice models and the formation of homogeneous groups. Section 3 
covers the conceptual framework, which consists of the theoretical background of shipment size 
choice, the development of a discretized total logistics cost model, and the essentials of 
determining latent classes. The source data and descriptive analysis take center stage in section 
4, whereas section 5 presents the estimation results. Finally a summary and an outlook on 
possible directions for further research will be given in section 6. 

2. Literature review 

Most freight transport models assume that the goods to be transported between shippers 
and recipients do not result from one-off businesses. It is rather assumed that the shipment will 
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be part of a long-established business relationship. From such relationships, a total flow of goods 
per period results, which has to be split up into several shipments. Two cost components 
determine the optimal partition. For every order placed at a transport company, a fixed amount 
has to be payed, regardless of the quantity that is shipped. On the other hand, a small number of 
large shipments will cause high inventory holding costs. A simple mathematical expression for 
this tradeoff is given by the Economic Order Quantity (EOQ) model (Harris (1913)). In the context 
of freight transport, Baumol and Vinod (1970) developed a total logistics cost approach for the 
determination of shipment sizes. Hall (1985) considered the influence of given vehicle sizes when 
taking the lower envelope of the transport cost functions of various transport modes as one of the 
decision criteria. By doing so, the inherently discrete choice of a transport mode was combined 
with the choice of a (continuous) shipment size. A further reason for this joint consideration is that 
shipment sizes depend on total logistics cost, which, in turn, are heavily influenced by the 
physical provision of transport. Thus, most subsequent shipment size models did not consider 
shipment size choice as an isolated factor, but rather combined it with the choices of mode, 
carrier or transport chain. However, Holguin-Veras (2002) pointed out that such combined 
choices are often not taken by the same decision maker, although they are in many cases seen 
as belonging together. 

In large-scale freight transport model systems, econometric models based on the total 
logistics cost as the actor’s rational choice criterion for the determination of shipment sizes 
prevail. Within the group of these models, there are basically three different ways in which the 
problem has been addressed: 
 
1.) Modeling of shipment sizes independently of transport mode choice 

2.) Modeling of continuous shipment sizes and discrete modes of transport  

3.) Modeling of discrete shipment sizes and discrete modes of transport  

In the first group of models, single shipments are considered in order to examine the 
behavior of actors on a microscopic basis. Further decisions that influence total logistics cost are 
either not in the scope of the model or not coupled tightly to the decisions related to shipment 
size. Combes (2009) tried to verify the economic order quantity (EOQ) equation on the basis of 
the French shipment survey ECHO2. He added further dummy variables that indicate the chosen 
mode of transport for the sampled shipment at hand. Given the data from the survey, it was 
shown that the EOQ model is a good approximation for the choice of a continuous lot size, 
regardless of what mode of transport was actually chosen. The most striking result was that all 
transport cases can be dealt with using one set of parameter values, requiring no further 
segmentation of transport demand. Moreover, further variables were added to explain lot size 
formation, such as transport distance and whether the shipment was transported directly or in a 
vehicle tour. As the model was estimated using a comprehensive sample of transport cases of all 
kinds, the theoretical EOQ model can feasibly be inserted in a more comprehensive freight 
transport model. Such an insertion was done by Wisetjindawat et al. (2005). In a commodity-
based model for urban freight transport, the EOQ formula was applied to create shipments that 
were fed into vehicle tours. The model of Kawamura et al. (2010) did not take logistics aspects 
into account when modeling shipment sizes, but rather replicated the distribution of these sizes, 
which was obtained for the relevant commodity type from the US commodity flow survey. 
Although the model of Wisetjindawat et al. (2005) also incorporated a feedback on shipment size 
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decisions from the transport system, parameters on the single model stages were estimated 
separately from the remaining parts of the model. This is different from models listed under 2.) 
and 3.). In these cases, shipment size choice was intertwined with other choices on the level of 
parameter estimation. The influence that multilevel decisions have hereby on the parameter 
estimates depends on the model structure.  

Models from the second group take into account the influence of total logistics cost 
caused by the chosen transport mode on the shipment size. An example for this is given by De 
Jong et al. (2010). Given a flow of goods, several possible delivery frequencies are determined. 
For each frequency corresponding to a shipment of a certain size, the total logistics cost of all 
feasible transport chains are calculated and the cheapest combination of frequency and transport 
chain is chosen. Besides this simulation approach, econometric models prevail in this group.  

In these econometric models, two general problems occur. First, as shipment size often 
enters the mode or vehicle choice submodel as an independent variable, correlation between the 
submodels has to be accounted for. Further, in models with revealed preference data, only such 
data records will exist in which the shipment size is conditional on the chosen mode or vehicle. 
This leads to selectivity bias. Holguín-Veras (2002) and De Jong and Johnson (2009) applied a 
two-stage procedure that starts with estimating the parameters for the continuous shipment size 
model. To avoid selectivity bias and feedback between the submodels, shipment size was 
estimated independently from the chosen mode or vehicle type on regressors that did not occur in 
the discrete choice submodel. The shipment size obtained by the OLS regression was entered 
into the discrete choice model for vehicle type or mode choice. As the shipment size was 
estimated independently, influencing factors of the shipment size choice on the mode choice 
were not directly integrated into the mode choice model and therefore testing for simultaneity bias 
was not possible. Abate and de Jong (2014) also pursued a two-step approach but started with 
transport mode choice according to a MNL model. The choice probabilities obtained served as 
arguments for a correction function that was added to the shipment choice equation. A completely 
different path was taken by Abdelwahab and Sargious (1992), who estimated a switching 
simultaneous equations model for only two modes (rail and truck) with a two-stage least squares 
regression. They compared their results with those obtained from an estimation in one step with a 
maximum likelihood estimator. 

Models of type 3.) assume that shipment sizes can be classified into discrete categories. 
This goes along with the finding of Hall (1985) that certain shipment sizes are unfavorable given 
the vehicles or transport modes to choose from. Moreover, combinations of shipment size 
categories allow the demand for certain transport solutions to be examined. Medium-sized 
shipments combined with rail transport indicate single-wagon traffic, for example. In the models of 
category 3.), random utility models were combined either by nesting (e.g. Windisch et al. (2010), 
De Jong and Ben Akiva (2007)) or by copula functions (e.g. Pourabdollahi et al. (2013)). Along 
with the application of nested discrete choice models goes the task of choosing the appropriate 
nesting structure.  According to Windisch et al. (2010), shipment sizes are better placed in the 
lower level of a nested logit model, indicating that a switch between shipments of various sizes is 
more usual than between transport chains. Pourabdollahi et al. (2013) refrained from nesting 
discrete choices, instead using various copula functions to link multinomial logit choices of 
shipment size and mode choice. By the choice of an appropriate copula function, dependency 
structures between the two decision problems can be modeled with greater flexibility than with the 
hierarchical nested logit model.  

Regardless of the context in which the formation of shipment sizes was modeled, often 
three aspects are determined as important: Shippers’ preferences, transport cost, and the 
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properties of the good to be transported. Especially the latter two aspects result from logistic or 
technical restrictions to which the actors have to adapt.  

In several cases, logistics components have been mirrored by proxy variables such as 
characteristics of shipper and/or recipient (Holguín-Veras (2002), Pourabdollahi et al. (2013), De 
Jong and Johnson (2009)) and the way that a shipment was packaged or handled (De Jong and 
Abate (2014), Abdelwahab and Sargious (1992), Windisch et al. (2010)). Transport logistics 
aspects were addressed by Combes (2009), who added information indicating if the shipment 
was part of a tour or delivered directly. Windisch et al. (2010) added transport logistics via the 
structure of the choice models. Shipment sizes are nested given certain intermodal transport 
chains in which they are transported. 

Often preferences and logistics requirements are distributed very heterogeneously within 
the population of all transport cases at hand. Segmentation of the demand population is a 
possibility to enhance the behavioral foundation of econometric models. In contrast to the findings 
of Combes (2009), demand has thus been segmented in some operational freight transport 
models in order to account for this heterogeneity. De Jong et al. (2010) apply different lot size 
models depending on the considered commodity type. Kawamura et al. (2010) also distinguish 
between commodity types when fitting shipment sizes to observed distributions. In general, 
exogenously prescribed segments, such as the NST 2007 classification of commodity types, are 
likely to contain still a lot of heterogeneity in the context of logistics as they try to integrate 
different dimensions like packaging categories, sector relations and commodity type-related 
properties into the respective segments (Liedtke and Schepperle (2004)). 

Segmentation of demand can also be data-based to a model to varying degrees. One 
way to group decision makers into classes in discrete choice situations is with latent class 
models. In passenger transport, Bhat (1997) endogenously delimited several traveler groups 
according to socioeconomic characteristics and estimated the model with an expectation-
maximization algorithm. Demand segmentation for mode choice in freight transport was done by 
Gopinath (1995), who classified shippers according to attitudes towards various modes of 
transport which in turn were derived from logistics figures such as maximum acceptable delay. 
Arunotayanun (2009) segmented mode choice according to the logistic properties of the 
relationship between shipper and recipient.  

The model proposed in this article combines discrete shipment size choice with latent 
class segmentation. Due to data availability, only shipments transported by road are considered. 
Nevertheless, the general approach of the model allows the investigation of the 
interdependencies between shipment size choice and mode choice in further developments by 
linking up with other state-of-the-art discrete choice models. However, even for a single transport 
mode, the specification of size categories allows demand segments for various transport products 
to be identify, which is preferable to using the prescribed standard categorizations. The logistics 
properties of these demand segments are incorporated in the model via latent class analysis. To 
our knowledge, latent class models have not been applied to shipment size decisions in the 
context of freight transport up to now.   

 

3. Modeling approach 

 

According to basic microeconomic theory, a final consumer with transitive, reflexive and 
complete preferences chooses a bundle of continuous and positive quantities of goods and 
services – while satisfying prevalent constraints - for which he receives the maximum utility. The 
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utility itself is a dependency function of the goods and services which mathematically represents 
the preferences and is, apart from potential order-preserving transformations, unique. Transferred 
to the logistical context, a decision-maker, which is either a shipper or a recipient, chooses the 
shipment size for which he receives the maximum utility (minimum costs). This is represented by 
the optimal distribution of the annual flow of goods in various shipments, leading to an optimal 
shipment size, which minimizes a decision-maker’s logistics cost by balancing the tradeoff 

between inventory cost and fixed transport cost in an optimal way. The total logistics cost 𝐶𝑛 per 
period (in this case: per year) for a decision maker n is dependent on the shipment size and is 

made up of four components (in the respective order): fixed transport cost 𝐶𝑛,𝑓𝑖𝑥, variable 

transport cost 𝐶𝑛,𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, cost for inventory in transit 𝐶𝑛,𝑡𝑟𝑎𝑛𝑠𝑖𝑡 and storage cost 𝐶𝑛,𝑠𝑡𝑜𝑟𝑎𝑔𝑒
3:  

 
 𝐶𝑛 = 𝐶𝑛,𝑓𝑖𝑥 + 𝐶𝑛,𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝐶𝑛,𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + 𝐶𝑛,𝑠𝑡𝑜𝑟𝑎𝑔𝑒.   (1) 

 

Assuming constant and continuous production rate of the shipper and consumption rate of the 
recipient, the cost expression from equation (1) can now be refined: The fixed transport cost is 
assumed to be made up of the frequency of the shipments per year multiplied with the cost per 
shipment 𝐹𝑛 [€/shipment]. Moreover, the frequency of transport is given by the ratio of the constant 

and continuous total flow of transported goods 𝑄𝑛 [ton/year] and shipment size per transport 𝑞𝑛 

[ton/shipment] to satisfy the total demand 𝑄𝑛. The variable transport cost is characterized by the 

function 𝑐𝑛(𝑞𝑛) [€/ton] for the deciding firm 𝑛, which is dependent on the shipment size 𝑞𝑛 

multiplied with the total amount of transported goods 𝑄𝑛. Additionally, the cost for inventory in 
transit represents the cost for the bounded capital – interest rate 𝑟 times value density of the 

transported commodities 𝑣𝑛 [€/ton] – during the transit time 𝑡𝑛 arising for the total amount of the 
transported goods 𝑄𝑛. The last component is given by the storage cost, which made up of two 

parts: warehousing cost 𝑤𝑛 and the capital cost 𝑟𝑣𝑛 which incur for the average stock  
𝑞𝑛

2
. As the 

model is based on cost all parameters are assumed to be positive. Altogether, the parametrized total 
logistics cost in dependency of the shipment size are given by: 

 
 𝐶𝑛(𝑞𝑛) =

𝑄𝑛

𝑞𝑛
𝐹𝑛 + 𝑐𝑛(𝑞𝑛)𝑄𝑛 + 𝑟𝑣𝑛𝑡𝑛𝑄𝑛 +

𝑞𝑛

2
(𝑤𝑛 + 𝑟𝑣𝑛).   (2) 

 

 
The total logistics cost is not a typical utility function in the sense of the microeconomic 
consumption theory, which increases with a higher amount of the consumed good and is marked 
by the consideration of multiple goods or/and services. The continuous cost function, in contrast, 
is one-dimensional with respect to the decision space as well as regarding the image space and 
reaches its optimum for 𝑞𝑛 and has to be in the mathematical left-open and right-closed 

interval ]0; 𝑄𝑛] depending on the values of the parameters representing the cost for transport 
and inventory holding.  

Assuming a linear non-decreasing function representing proportional variable transport 
cost 𝑐𝑛(𝑞𝑛), the minimization of 𝐶𝑛(𝑞𝑛) leads to the optimal shipment size for decision 

maker 𝑛: 

                                                 
3 This total logistics cost formulation assumes an immediate and complete replenishment leading to the absence 

of stock-outs. Extensions, such the availability of a safety stock, damage or deterioration costs or stock-out costs, 
can be integrated (De Jong and Ben-Akiva (2007)). As this gets mathematically complex and data for estimation is 
not available, we disregard such auxiliaries in this model. 
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𝑞𝑛
∗ = √

2𝐹𝑛𝑄𝑛

𝑤𝑛+𝑟𝑣𝑛
.  (3) 

 

Equation (3) reveals the relationship between the optimal shipment size for decision maker 𝑛 and 
its influencing parameters. An increase of the fixed transport cost, such as order, handling and 
set up costs, leads to a higher optimal shipment size and so does an increasing flow of 
goods 𝑄𝑛. As the inventory holding cost increases, the optimal shipment size will decrease due 
to the relatively higher cost for capital commitment and storage. 

 
3.1 Choice sets and applied model 

 

The model presented in this study is based on discrete choice theory using a random 
utility approach. A prevalent discrete space of alternatives changes the conditions of decision 
making: Choosing only one alternative, and therefore not realizing the remaining ones, leads to 
corner solutions and thus to a non-applicable marginal calculus, which necessitates the 
consideration of the utility functions of each alternative directly (Ben-Akiva and Lerman (1985)). 
The decision rule is given by the selection of the alternative which spends the highest utility 
among all reachable alternatives. The utility functions are assumed to be a summation of 
attributes (with their coefficients) describing the alternatives and the characteristics of the 
decision maker. The attributes themselves are weighted with parameters representing the 
influence on the utility functions as linear in parameter specifications. 

The development of the discrete shipment size choice model includes the categorization 
of the continuous shipment size into different shipment size classes. Following the classification 
of general cargo, partial loads and (multiple) full loads on road transports and the realized 
shipments in the RP data, we divided the shipment sizes into three categories: 

 
 

𝑞1  =  {
1,              𝑖𝑓 0𝑡 < 𝑞𝑛

∗  ≤ 3𝑡 𝑎𝑛𝑑 
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 
 

𝑞2  =  {
1,           𝑖𝑓 3𝑡 < 𝑞𝑛

∗  ≤ 12𝑡 𝑎𝑛𝑑 
0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
  

(4) 
 

 
 

𝑞3  =  {
1,                      𝑖𝑓 12𝑡 < 𝑞𝑛

∗  𝑎𝑛𝑑 
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 
This yields to the global choice set 𝑆 = {𝑞1, 𝑞2, 𝑞3} =   𝑆𝑛, ∀𝑛 assuming all alternatives are 

accessible for every decision maker 𝑛. 
The discretized logistics cost 𝐶𝑛(𝑞𝑖) – adapted from equation (2) – for actor 𝑛 choosing 

shipment size class 𝑞𝑖 can be expressed by: 
  
 𝐶𝑛(𝑞𝑖) = (

𝐹𝑛

𝑞𝑖
+ 𝑐𝑛(𝑞𝑖) + 𝑟𝑣𝑛𝑡𝑛) 𝑄𝑛 +

𝑞𝑖

2
(𝑤𝑛 + 𝑟𝑣𝑛).  (5) 
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In general, micro-level data sets in freight transport are all globally very scarce with respect to 
transports. The data set used in this study is lacking in regard to the amount of useable 
observations for other modes than truck transports. For that reason, the model in this case is 
restricted to long-haulage distance road transports which in Germany are predominantly 
conducted by semi-trailers (between 55% and 90% of transports, increasing with the haulage 
distance4). Generally, the main proportion of fixed transportation cost regarding road transports 
falls upon the number of stops and the distance between them during pre-carriage and onward 
carriage. Due to the exclusive consideration of long-haulage distance road transports and the 

predominant use of semi-trailers during the main run, we assume the fixed transport cost 𝐹𝑛 to be 
constant for each shipment size category 𝑞𝑖. This formulation on the one hand covers the 
differing amount of stops caused by collection of piece goods, partial loads and full truck loads 
and, on the other, affords the opportunity to relax the assumption in further enhancements of the 
model, with multiple means of transport or varying fixed cost within each of the modes.  

The warehousing costs mainly depend on the handling of the good (heating, cooling, 
packaging etc.) and the respective space requirement (sizing of warehouses, opportunity costs of 
space consumption etc.) during the storage processes. The handling and the space used strongly 
go along with the characteristics, weight and respective density of the commodity. Due to data 
constraints regarding the density of the transported goods, and as a useful simplification without 
loss of model validity, we suppose the warehousing costs 𝑤 in this model only to vary between 

the different shipment size classes and not between each decision maker 𝑛. As can be seen in 
equation (8), the warehousing cost, for which no data are available in the estimation sample, then 
become a part of the parameter 𝛽𝑞𝑖,2 which is alternative-specific. This leads to the following 

specification:  
 

 𝐶𝑛(𝑞𝑖) = (
𝐹𝑞𝑖

𝑞𝑖
+ 𝑐𝑛(𝑞𝑖) + 𝑟𝑣𝑛𝑡𝑛) 𝑄𝑛 +

𝑞𝑖

2
(𝑤𝑞𝑖

+ 𝑟𝑣𝑛).  (6) 
 

The division of expression (6) by the constant and continuous flow of goods 𝑄𝑛 resulting in the 
total costs per ton represents a model formulation, which on the one hand can be empirically 
estimated, and on the other is properly interpretable with respect to the alternative-specific 
constants: 
 

 𝐶𝑛(𝑞𝑖)

𝑄𝑛
=

𝐹𝑞𝑖

𝑞𝑖
+ 𝑐𝑛(𝑞𝑖) + 𝑟𝑣𝑛𝑡𝑛 +

𝑞𝑖𝑤𝑞𝑖

2
∙

1

𝑄𝑛
+

𝑞𝑖𝑟

2
∙

𝑣𝑛

𝑄𝑛
.  (7) 

 

The variable transport costs 𝑐𝑛(𝑞𝑛) from equation (2) are originally characterized by a positive 
dependency on the haulage distance and on the shipment size (Abate and De Jong (2014)). As 

the shipment size in our model is discretized, the variable transport costs 𝑐𝑛(𝑞𝑖) are dependent 
on the shipment size categories and the haulage distance. For that reason, the variable transport 
costs are approximated by a function of haulage distance, varying for the respective shipment 
size categories. The distance without detailed cost functions then represents the relative 
attractiveness of the respective shipment size categories.   
 Choosing the alternative with maximum utility, which is in our case equivalent to minimum 

costs, requires the formulation of a utility function 𝑈𝑞𝑖,𝑛 of decision maker 𝑛 for the alternatives 

                                                 
4 The shares of semi-trailers regarding laden journeys are estimated based upon data gained from the research 

project ‘Motor traffic in Germany 2010’ (WVI – Prof. Dr. Wermuth Verkehrsforschung und Infrastrukturplanung GmbH 
et al. (2012)).     
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in 𝑆𝑛. Adding an i.i.d. extreme value type I distributed stochastic component 𝜀𝑞𝑖,𝑛, a vector with 

the separately estimated latent classes 𝑳𝑛 and interpreting increasing costs per ton for shipment 

size class 𝑞𝑖 as negative utility results in the following parametrized function: 
 

 

−𝑈𝑞𝑖,𝑛 =
𝐶𝑛(𝑞𝑖)

𝑄𝑛
+ 𝜀𝑞𝑖,𝑛 = 𝛼𝑞𝑖

+ 𝛽𝑞𝑖,1 ∙ 𝑑𝑛 + 𝛽𝑞𝑖,2 ∙
1

𝑄𝑛
+ 𝛽𝑞𝑖,3 ∙

𝑣𝑛

𝑄𝑛
+ 𝜷𝑞𝑖,𝐿 ∙ 𝑳𝑛 + 𝜀𝑞𝑖,𝑛  

      
 
(8) 

 

 
 

 

The inventory in transit (bounded capital times transport time) has been dropped in the 
estimation of the total logistics cost functions as the parameters in initial estimations were 
insignificant. This is also in accordance with theoretical considerations predicting independence 
between the shipment size and the inventory in transit, which is reflected by equation (2). As we 
consider truck transports exclusively, the transport times do not significantly vary between the 
different shipment sizes although transhipments take place. Dealing with different modes, the 
inventory in transit may become a significant influencing factor (Combes and Tavasszy (2016)). 

According to the discrete choice theory, in association with the random utility approach, a 
shipment size class 𝑞𝑖 gets chosen by an individual n if 𝑈𝑞𝑖,𝑛  ≥  𝑈𝑞𝑘,𝑛   ∀𝑘 ∈ 𝑆𝑛, 𝑖 ≠ 𝑘. This 

means that the sum of the observable and unobservable parts of the costs of a chosen alternative 
has to be lower than the costs of all other alternatives in the choice set 𝑆𝑛. 

 
3.2 Theoretical framework of homogeneous segments 

 
In general, the total amount of transported goods per period, which represents the firm’s 

commodity flows, empirically contributes a big portion to the explanatory power of the shipment 
size choice (Abate and de Jong (2014), Combes (2009)). In other words, varying periodic 
demand is the main cause of heterogeneity regarding the shipment size choice. Inherent 
approaches to control for effects not captured by the variables of the estimated total logistics cost 
function are given by the integration of variables describing different characteristics of the 
transport and/or using standard classifications of transported goods. These nominally scaled 
variables are integrated as dummy variables into the utility equation measuring the effect for the 
different characteristics. The standard classification of transported goods in the European Union, 
represented by the NST 2007 taxonomy and primarily used for mode choice or shipment size 
choice models within in the European Union, is made up of 20 different commodity types at the 
highest level of aggregation. On closer examination of the commodity types, they tend to contain 
a lot of heterogeneous actors and transports within the individual categories. Liedtke and 
Schepperle (2004) mention the example of milk, where milk as a liquid bulk good is assigned to 
the same category as palletized milk, despite representing a completely different level of the 
production chain. In addition to the suboptimal classification of commodity types with respect to 
logistical decisions, the multiplicity of variables which capture transport characteristics makes the 
integration of a lot size component difficult, as data are not available for the whole population of 
firms. Due to the above-named aspects, the formation of subgroups with similar characteristics 
offers a possibility to represent the behavioral heterogeneity in a manageable way and therefore 
improves the shipment size choice model. 

To enhance the core of the shipment size choice with homogeneous clusters we applied 
a so-called “exogenous segmentation” approach. According to Sharman and Roorda (2013) an 
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exogenous segmentation is characterized as a procedure which conducts the segmentation and 
the model estimation sequentially with no feedback between the two estimation processes. As 
there is no feedback from segmentation to modeling there is no guarantee of minimizing 
heterogeneity within, and maximizing heterogeneity between, the derived segments. Contrary to 
that, an endogenous segmentation approach simultaneously estimates segments and the 
respective choice model for each segment.  

One method to determine segments exogenously is the application of the Latent Class 
Analysis (LCA). Latent classes are thereby characterized as an unobservable and categorical 
variable which has a nominal level of measurement and is measured by categorical indicators. 
The notation in this paper is associated with the one from Collins and Lanza (2013). The basis of 

the LCA is a contingency table, which contains the response categories 𝑟𝑗  =  1, . . . , 𝑅𝑗 of the 

indicator variables 𝑗 =  1, . . . , 𝐽 and their absolute frequencies. Each cell of the multidimensional 
contingency table represents a specific response pattern 𝒚 =  (𝑟𝑗 , . . . , 𝑟𝐽 ) recording the answer 

to each of the 𝐽 indicator variables. The LCA clusters individuals with similar response patterns 
and is essentially determined by two sets of parameters: the latent class prevalences 𝛾 
describing the proportion of individuals in the respective class and the item-response 
probabilities 𝜌. The item-response probabilities express the relation between each indicator 
variable and the latent classes, thus providing the basis for the interpretation of the latent classes. 
Let 𝒀 be the matrix with all possible response patterns 𝒚 and 𝐿 be the set of all latent 

classes 𝑐 =  1, . . . , 𝐶. The core of the LCA is the given by the probability of a specific response 
pattern 
 

 

𝑃 (𝒀 =  𝒚) =  ∑ 𝛾𝑐 ∏ ∏ 𝜌
𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)

𝑅𝑗

𝑟𝑗=1

𝐽

𝑗=1

𝐶

𝑐=1

  (9) 
 

 

where 𝛾𝑐 is the latent class prevalence of class 𝑐, 𝜌𝑗,𝑟𝑗|𝑐 is the item-response probability for 

responding 𝑟𝑗 to indicator variable 𝑗 conditional on the membership to class 𝑐, and 𝐼(𝑦𝑗  =  𝑟𝑗) 

represents an indicator variable, being one if the response 𝑦𝑗 on variable 𝑗 is given by 𝑟𝑗 and 

zero otherwise. The parameters are estimated by maximizing the log-likelihood function of 
equation (9) via an expectation-maximization algorithm. Based on the results of the LCA, each 
individual is classified into the group for which it reaches the maximum membership probability 
 

 
𝑃 (𝐿 =  𝑐|𝒀 =  𝒚) =  

𝑃 (𝒀 =  𝒚| 𝐿 =  𝑐)𝑃 (𝐿 =  𝑐)

𝑃 (𝒀 =  𝒚)

=
(∏ ∏ 𝜌

𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)𝑅𝑗

𝑟𝑗=1
𝐽
𝑗=1 ) 𝛾𝑐

∑ 𝛾𝑐 ∏ ∏ 𝜌
𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)𝑅𝑗

𝑟𝑗=1
𝐽
𝑗=1

𝐶
𝑐=1

. 
(10) 

 

 
These classes are integrated – as can be seen in equation (8) – by adding supplements 

and deductions to the utility of each alternative, depending on the membership in the respective 

class of each transport and the related decision maker 𝑛. These supplements and deductions 
account for effects which are not captured by the other observed variables of the total logistics 
cost function. Such a formulation assumes that the decision makers choose according to the 
same cost-minimizing pattern and that deviations from this can be captured by the latent classes 
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or disappear in the error term. In the context of shipment size choice, these could be either the 
above-mentioned warehousing costs, which strongly depend on the characteristics of the 
commodities, or the fixed and variable transport costs, which might be affected by factors 
regarding the commodity types or the commodity characteristics. This is formally represented by 

the vector 𝑳𝑛 in this model, which includes the classes with the respectively assigned transports. 
Although exogenously derived clusters neither guarantee the maximization of homogeneity within 
the derived segments nor the maximization of heterogeneity between the segments, they lead in 
our model to an intuitive interpretation of the segments themselves and to a meaningful 
enrichment to the analysis of shipment size decisions. 

The results of the LCA are subsequently integrated into the choice model. Let 𝐿𝑐,𝑛 be a 

binary variable indicating if shipper 𝑛 belongs to the estimated latent classes 𝑐 =  1, . . . , 𝐶 then 

are the different variables 𝐿𝑐,𝑛, 𝑐 =  1, . . . , 𝐶 part of the attribute vector 𝑳𝑛. For each actor 𝑛 

and each class, the vector 𝑳𝑛 therefore contains information about the membership which is 
mathematically expressed by zeros and ones. The above-mentioned supplements and 
deductions to the utility are then added in reference to a specific base class if, and only if, the 

entry in the matrix of shipper 𝑛 is given by one.  

4. Data and descriptive analysis 

Revealed preference (RP) data provide the base frame of both the survey above-
mentioned and the model presented in this paper.5 The chosen enterprises of a quota sample 
were drawn from a German-wide business directory with about 10,000 addresses, whereby 
unsuitable members of the sample were excluded through multi-criteria screening. Respondents 
were classed as unsuitable if one of the following aspects were answered in the negative: 

 
 Does the firm’s scope of decision-making cover the mode choice? 
 Are transports mainly conducted with an interregional scope? (above 100km)  
 Are the shipment sizes mostly above two tons? 
 Are basic alternative modes selectable? 

 
The observations of the dataset used were ascertained via computer-assisted personal interviews 
(CAPI) with responsible logistics employees of shipping and receiving companies from all areas 
of extraction of raw materials, manufacturing, and wholesale.  
 In each interview, two representative transport cases and the corresponding attributes 
were recorded. The attributes contained information about the type, the weight, the value and the 
properties of the commodity. Relevant properties of the transported goods described the handling 
during the transport processes as well as other characteristics of the commodities which 
potentially influenced the execution of the transport. Further, the frequency of the transports and 
the position within the logistic chain were logged. In addition to this, commodity information and 
the duration, distance and costs of each transport for the respective mode were ascertained. 

Restricting the model to road transports with realistic shipment sizes (in this case: 𝑞𝑛 ≤ 48𝑡) 
decreases the amount of observations to 794. 

Table 1 presents the summary statistics of the main variables of interest which are 

initially revealed by the EOQ model. The constant and continuous flow of goods 𝑄𝑛 was not 

                                                 
5 Within this survey stated preference (SP) experiments were also performed based on the information obtained 

from the revealed preference part. The survey used can be accessed via the corresponding report of the research 
project.   
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directly inquired in the datasets. It was instead calculated from the shipment size of the 

representative transports and their frequency of occurrence per year. The value density 𝑣𝑛 was 
calculated by dividing the value of the transported goods by the shipment size. Because of the 
occurrence of missing values, the calculation of the flow of goods per year and the value density 
finally narrowed the data basis to 487 useable observations. Additionally used variables in the 
econometric estimation of the model are the transport distance  𝑑𝑛 and the attributes regarding 
the properties of the transported goods presented in table 1.  

Table 1: Summary statistics of used variables for 487 observations 

Variable Definition Mean/Freq Std. dev. 

q Shipment size (t) 13.47 9.75 
Q Flow of goods (t/year)      1 845.45 2 369.30  
v Value density (€/t) 11 311.84 55 958.44 
1/Q Inverse of Flow of goods 0.0038 0.0076 
v/Q Relation of value density and flow of goods 69.53 414.67 
d Haulage distance (km) 447.81 363.40 
Fragile 1 if commodity is fragile 76  
Valuable 1 if commodity is extremely valuable     175  
Bulky 1 if commodity is bulky (unhandy, voluminous) 150  
Temperature 1 if commodity must be handled in temperature-controlled manner 48  
Food 1 if commodity is a food product 58  
Dangerous 1 if commodity is inflammable, explosive, poisonous, caustic etc. 62  
Bulk cargo 1 if commodity is unpacked bulk cargo 35  
Liquid 1 if commodity is unpacked liquid good 5  
Standard 1 if commodity is transported in standard unit loads 213  
Custom 1 if commodity is a custom-made item 84  
Accumulation 1 if commodity is an accumulation of several articles 170  

Note: Regarding the categorical attributes, no responses as well as multiple responses were possible.  
 

Table 2 contains information about the shipment size classification and the distribution of 
the continuous variables in each of the classes. The positive influence of the total flow of goods 
and the negative impact of the value density revealed by equation (2) tend to become apparent 
by considering the values and the distribution in each shipment size category. While the mean 
and the quantiles of the annual flow of goods  𝑄𝑛 throughout increase with the shipment size 

categories, the mean and the quantiles of the value density 𝑣𝑛 decrease in accordance with the 
EOQ formula. It is obvious that the distributions of the variables in each class are right-skewed. 

On top of that, the variances of 𝑄𝑛 increase with the class width, whereas the statistical scatter 
regarding value density 𝑣𝑛 of the commodities decrease with the shipment size classes. Also, the 

inverse of 𝑄𝑛 and the ratio 𝑣𝑛 𝑄𝑛⁄  show a varying dispersion whereby the relative variance of the 
value density is different to the variance of the annual flow of goods. These insights are also quite 
intuitive, as the growing category widths can cause stochastic dependency of the error terms 
𝜀𝑞𝑖,𝑛 and the variables used, which is associated with the possible violation of a main assumption 

of the logit model: the error terms 𝜀𝑞𝑖,𝑛 are independent and identically Gumbel distributed. 

However, we proceeded by taking the natural logarithm of the variables cushioning the 
distributions nearly to a bell-shaped curve and also approaches the variance between the 
different shipment size classes. Shrinking the variance of the explaining variables affects the 
variance of the entire cost expression, which therefore tends to cushion the variance of the error 
terms. 
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Table 2: Shipment size categories and distribution of variables 

𝑞𝑖      𝑄𝑛     𝑣𝑛     1 𝑄𝑛⁄     𝑣𝑛 𝑄𝑛⁄       ln(1 𝑄𝑛)⁄       ln(𝑣𝑛 𝑄𝑛)⁄        𝑑𝑛 No. obs. 

< 3t 

Min 12 366.7 0.00133 0.815 -6.620 -0.2048 40 

104 

Q1 100 2 250 0.00333 9.944 -5.704 2.2970 200 

Med. 150 5 000 0.00667 33.333 -5.011 3.5066 303 

Mean 238 18 544 0.01045 250.54 -5.055 3.5663 378 

Q3 300 10 000 0.01000 101.04 -4.605 4.6154 500 

Max 750 500 000 0.08333 5 000 -2.485 8.5172 1 480 

3t – 
12t 

Min 30 43.6 0.00033 0.0159 -8.006 -4.1434 5 

154 

Q1 250 1 531 0.00080 2 -7.131 0.6931 205 

Med. 600 3 661 0.00167 5.7060 -6.397 1.7414 398 

Mean 892 14 021 0.00358 42.602 -6.303 1.9492 450 

Q3 1 250 7 500 0.00400 21.276 -5.521 3.0570 550 

Max 3 000 625 000 0.03333 1 562.5 -3.401 7.3540 3 000 

> 12t 

Min 90 3.7 0.00004 0.0005 -10.13 -7.5090 20 

229 

Q1 1 100 500 0.00018 0.1736 -8.613 -1.7509 220 

Med. 2 400 1 250 0.00042 0.6250 -7.783 -0.4700 380 

Mean 3 217 6 206 0.00094 5.4366 -7.648 -0.6090 478 

Q3 5 500 3 000 0.00091 1.8333 -7.003 0.6061 600 

Max 25 000 752 381 0.01111 358.28 -4.500 5.8813 3 000 

 
 

5. Model estimation 

In this section several multinomial logit models based on the specification of equation (8) 
have been estimated. First, models without latent classes, which represent the core of the 
shipment size choice, will be presented; the enhanced models with latent classes are given in the 
second subsection. We used the statistical software “R” with its supplemental packages “mlogit” 
and “poLCA” for the estimation of the models.  

 
5.1 Basic model 

6. Table 3: Shipment size choice model 1 – non-standardized variables. 

 𝑞2: 3𝑡 –  12𝑡 𝑞3: > 12𝑡 

Constant  0.6219* 
(0.2525) 

   1.6698*** 
(0.2765) 

    𝑑𝑛  0.0013* 
(0.0005) 

    0.0020*** 
(0.0006) 

1 𝑄𝑛⁄      -118.47*** 
(25.670) 

   -639.68*** 
(85.497) 

𝑣𝑛 𝑄𝑛⁄   -0.0006 
 (0.0005) 

-0.0090* 
(0.0044) 

Final log-likelihood: -395.26 

McFadden 𝑅2 (𝜌2): 0.2260 

Adj. McFadden 𝑅
2
 (𝜌

2
): 0.2103 

Likelihood ratio test: 𝜒2 = 230.30 (p.value = < 2.22e-16) 

7. Note: Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001; 487 observations; standard errors are 
given in brackets. 
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Table 3 shows the estimation results with  𝑑𝑛, 
1

𝑄𝑛
 and 

𝑣𝑛

𝑄𝑛
 as independent variables. The 

value 0.23 of 𝜌2 indicates – despite the menace of heterogeneity – a well-performing shipment 
size choice model which was estimated in relation to the smallest shipment size class with its 
referencing parameter values equal to zero. Every coefficient has the expected sign respective 
the expected order of magnitude. The ratio of value density and annual flow of goods does not 
have a statistically significant impact, whereas the other estimated coefficients are highly 
significant. As can be seen, the constants have a positive sign and an increasing order regarding 
the shipment size classes, which describe the average influences of non-considered attributes 

such as the transportation fixed costs  
𝐹𝑛

𝑞𝑖
.  

The positive sign and the order of magnitude of the constants show on average 
decreasing costs per unit as shipment size increases. A decreasing annual flow of goods leads to 

an increase of the inverse 
1

𝑄𝑛
, which induces higher costs for higher shipment size categories. 

This goes along with the theoretically positive impact of the annual flow revealed by equation (3). 
The transport distance  𝑑𝑛 as an approximation of the variable transport costs has a positive 
influence on the shipment size choice, which is in accordance with other studies (Abate and de 
Jong (2014), Combes (2009), Jansson and Shneerson (1982)). In general there is some dissent 
on the interpretation of the distance effect. On the one hand, the increasing coefficients in our 
estimation can be interpreted as a concave variable cost function, having a declining slope for 
bigger shipment sizes. Abate and De Jong (2014) explain this effect by less than proportional 
increasing fuel/time cost per shipment for larger vehicles. On the other hand, this effect might be 
caused by cultural properties or safety needs which take the increasing risk of delays 
accompanying longer haulage distances into account. Combes (2009) illustrates the effect with a 
potential decoupling of production location and regional retail center via a regional distribution 
center. If in general the transports have larger shipment sizes from the production location to the 
distribution center and they are dispatched, the positive influence of the transport distance could 
be explained. 

 

Table 4: Shipment size choice model 1 – natural logarithm of 
1

𝑄𝑛
 and 

𝑣𝑛

𝑄𝑛
  . 

 𝑞2: 3𝑡 –  12𝑡 𝑞3: > 12𝑡 

Constant     -4.9081*** 
 (1.2925) 

   -8.4198*** 
(1.6387) 

    𝑑𝑛    0.0015** 
 (0.0005) 

    0.0028*** 
(0.0006) 

ln(1 𝑄𝑛⁄ )      -0.8993*** 
 (0.1887) 

   -1.4232*** 
(0.2347) 

ln(𝑣𝑛 𝑄𝑛⁄ )  -0.1434 
 (0.1092) 

   -0.7027*** 
(0.1413) 

Final log-likelihood: -330.03 

McFadden 𝑅2 (𝜌2): 0.35371 

Adj. McFadden 𝑅
2
 (𝜌

2
): 0.3380 

Likelihood ratio test: 𝜒2 = 361.25 (p.value = < 2.22e-16) 

Note: Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001; 487 observations; standard errors are given in  
 brackets. 

 
As mentioned before, the danger of a misspecification concerning the potential 

heterogeneity is omnipresent. We therefore estimated the model again, transforming the 
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independent variables 
1

𝑄𝑛
 and 

𝑣𝑛

𝑄𝑛
  by taking the natural logarithm. Table 4 contains the results, 

which show an improved performance, although we are moving away from the core of the model 
represented by the total logistics cost per ton. The alternative-specific constants have become 
negative with relatively high values. This is induced by the transformation of the variables, which 
decreases small values ( < 1) strongly to negative values and flattens out the slope with 
increasing values. Again all signs and orders of magnitude of the coefficients are as expected, 

although we also must point out that the coefficient for the 
𝑣𝑛

𝑄𝑛
-relationship regarding the second 

shipment size class has no significant influence. The coefficient of 
𝑣𝑛

𝑄𝑛
 explains the variation of the 

cost per ton not already covered by the reciprocal annual flow of goods. The impact is negative 
but has a relatively weak influence on the decision of the shipment size choice. This result 
supports the conclusion that the costs for capital tied up do not completely pervade the shipment 
size choice.  
 

7.1 Enhancement of the discretized EOQ-model with exogenously derived latent classes of 
shipments’ attributes 

 

The reasonable explanatory power of the discretized EOQ model enables the 
enhancement of the model with further characteristics influencing the shipment size systemically. 
In light of the already acknowledged influences of commodity characteristics, commodity types 
and/or economic activities taking place at the origin or the destination of the transport on the 
shipment size choice behavior the model will be expanded in this section. We therefore use an 
approach which has to our knowledge not been undertaken up to now in the modelling of 
shipment size choice: clustering the realized transports on the basis of similar characteristics, in 
order to model the shipment size choice behavior more accurately, and to reduce the dimensions 
of possible heterogeneity with respect to practicability in large-scale freight transport models.  

To this end, we estimated different specifications of classification criteria including 
commodity characteristics and activities such as storage, transshipment or further processing of 
the goods. The variables describing the position within the logistic chain or the activities at the 
origin and destination of the transports neither improved the explanatory power of the model by 
individual integration nor could be used properly for the grouping of transports6. A distinction of 
receivers’ and shippers’ questionnaires, resulting in different attributes, lead, with respect to an 
algorithmic segmentation, to a bias of separation concerning shippers and receivers instead of 
the respective attributes. This is caused by the nature of the LCA grouping individuals according 
to similar response patterns, which in this case would be different for shipper and receiver, and 
would therefore bias the segmentation result. Furthermore, a merge of shipper and receiver 
attributes is problematic, as they are slightly different in terms of the content which the respective 
items cover. While estimating different specifications for the LCA, it was found that the commodity 
characteristics as a basis for segmentation lead to the best result regarding interpretability, the 
trade-off between estimated parameters and number of observations, and the variance reduction 
in the context of the shipment size choice. Although the economic activity at the origin and 

                                                 
6
 Attributes describing the activity at the origin or the destination on the side of shippers are given, for example, by 

upstream or downstream transhipments and storage at the destination. For instance, receivers were asked if the 
origin of the transport was the manufacturer, wholesaler or a distribution center, and if the good was processed 
immediately (same day) after the stock receipt. The integration of these categorical variables into the shipment size 
choice model did not show up significantly. 
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destination of the transports in this study – also due to the relatively low number of observations 
and the increasing number of parameter estimates with further attributes – was not appropriate 
for segmentation, the effect of an integration of such attributes should not be neglected for 
prospective investigations of segmentation regarding shipment size choice.  

Table 5: Information criteria of LCA’s. 

No. classes log-likelihood BIC 

2 -2 284.309 4 710.949 

3 -2 232.398 4 681.386 

4 -2 191.574 4 673.995 

5 -2 175.075 4 715.257 

6 -2 158.490 4 756.347 

7 -2 146.076 4 805.778 

 
Because of the above-mentioned reasons, we used an LCA based on the characteristics 

of the transported goods to group the individual transports. Due to the propensity of the 
expectation maximization algorithm to get stuck in local optima, we repeated the estimation 1000 
times with randomly chosen initial values for each number of classes. The determination of the 
proper number of classes is not endogenous. We therefore had to decide by reference to the 
values of the Bayes information criterion (BIC) which are displayed in table 5 for several counts of 
classes. We picked the classification with four classes, for which the results of the LCA can be 
obtained in table 6. The conditional probabilities of answering “Yes” to a specific indicator denote 
the probability to answer “Yes” if an individual is assigned to the respective class. High or low 
values – also in comparison to the other classes - are therefore characteristic and affect the 
interpretation of it. We marked in bold notation the conditional probabilities being characteristic for 
the class. This means, first, that they are relatively high compared to other probabilities in the 
same class and, second, quite different regarding the same indicators across the other estimated 
classes. The bold values are therefore used to apply the necessary subjective interpretation of 
each class. 

We called class 1 “(temperature-controlled) food products”, as every individual belonging 
to this class will answer assuredly “Yes” to the “food” item and more than 60% to the 
“temperature” item. Also, the transported goods in this class are never dangerous or bulky and 
are transported with probability 0.555 on standard unit loads. Typical examples for this class are 
palletized flour, milk, meat or miscellaneous frozen food. Class 2 is mainly characterized by the 
items “standard” and “dangerous”; we thus interpreted it as “miscellaneous standard cargo,” 
including dangerous commodities transported in the same. This class also inherits the largest 
proportion of the population, with 36%. Included in the second class are transports containing a 
wide range of goods, such as pharmaceutical and chemical products, machine parts and various 
textiles. The next class has high loads on the items “fragile”, “valuable”, “bulky” and “custom,” 
which we have interpreted as “special goods,” and mostly comprises the mechanical engineering 
and manufactured goods sector. The proportion of this class, about 35%, seems relatively high 
and indicates a general overrepresentation of it in the sample. Exemplary transports of “special 
goods” are machines, cars, furniture, and diverse metal and electronic products. Finally, we 
named class 4 “unpacked bulk goods,” as it has both relatively high probabilities for the “bulk 
cargo” and “liquid” items and also low probabilities of “custom”, “standard”, “accumulation” and 
“fragile”. Representatives of this class are mainly raw materials such as wood, cement, paper, 
chemicals, steel or synthetic materials. 
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Table 6: LCA result with four classes. 

 Class 1 Class 2 Class 3 Class 4 

𝛾𝑐  0.1070 0.3600 0.3475 0.1854 

 
Conditional probability of answering “Yes” 

 

Fragile 0.1727 0.0634 0.3302  0.0000  

Valuable 0.2631 0.2395 0.6373 0.1266 

Bulky 0.0000 0.2376 0.4942 0.2734 

Temperature 0.6331 0.0855 0.0000 0.0000 

Food 1.0000  0.0000 0.0000 0.0651 

Dangerous 0.0000 0.2079 0.0599 0.1707 

Bulk cargo 0.0398 0.0000 0.0000 0.3647 

Liquid 0.0555 0.0000 0.0000 0.1800 

Standard 0.5550 0.8113 0.2308 0.0305 

Custom 0.0384 0.0841 0.3974 0.0000 

Accumulation 0.4781    0.4134 0.3992 0.0557 

Observations: 487 
Parameter estimated:47     

Note: Bold parameters are characteristic for the class with respect to the class itself and across classes. 

 
The assignment of the different transports to the classes is accomplished by calculating 

the membership probability shown in equation (10) and taking the maximum of the probabilities 
as allocation rule. This procedure denotes a probabilistic approach in contrast to a deterministic 
assignment and therefore needs a validation of applicability. One established indicator is the so-
called Odds of Correct Classification (OCC), which sets the average probability of the individuals 
assigned to a class in ratio to the general proportions of each class and has a ratio higher than 
five as threshold (Nagin (2005)). In our classification this is reached for every class, which can be 
seen in table 7. 

Table 7: Key figures of classification. 

Class Mean Variance OCC 

1 0.93 0.02 109.45 

2 0.85  0.02  10.01   

3 0.84 0.02 10.12 

4 0.75 0.04 13.11 

Note: This table includes means and variances of the maximum probabilities from the assigned individuals. 

 
The next step is to integrate the identified classes into the into the discrete choice model 

for shipment size. Table 8 shows the estimation results for the comprehensive model. The 

performance of the enhanced model increased, which can be deducted from the value of 𝜌
2
. 

Also, all coefficients become at least significant with respect to 0.1 level. 
The impacts of the latent classes have all been estimated in comparison to the first class 

of “(temperature-controlled) food products”. As expected, all other classes tend to choose bigger 
shipment sizes, as the warehousing of the goods is more expensive and the perishability does 
not allow high order quantities. At first glance, the order of the coefficients for the classes is 
somehow contradictory. “Miscellaneous standard cargo” has in comparison with the group with 
“special goods” smaller coefficients, which from a superficial point of view is unexpected. But the 
interviews showed that the members of the German mechanical engineering sector need to use 
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higher shipment sizes because of the weight of their products. Also the goods in class 2 are 
mainly transported in standard unit loads, which supports the splitting into smaller shipment sizes, 
in contrast to the goods of class 3. Finally, the “unpacked bulk goods” show the highest effect on 
the largest shipment size class. This behavior is reasonable, as the warehousing costs should be 
relatively low and the production of the goods is performed in big batches. In general, the results 
reveal that the effects of the groups do not vary much with respect to the medium shipment size 
class. Solely the food products are less likely to be sent in medium shipment sizes. 

 
Table 8: Shipment size choice model with latent classes 

 𝑞2: 3𝑡 –  12𝑡 𝑞3: > 12𝑡 

Constant    -5.5253*** 
(1.3670) 

   -10.027*** 
(1.7849) 

 𝑑𝑛  0.0013* 
(0.0005) 

    0.0027*** 
(0.0006) 

ln(1 𝑄𝑛⁄ )     -0.8900*** 
(0.1933) 

   -1.4964*** 
(0.2451) 

ln(𝑣𝑛 𝑄𝑛⁄ )  -0.2239. 
(0.1175) 

   -0.7521*** 
 (0.1516) 

Miscellaneous standard cargo 0.9168. 
(0.4884) 

 1.3603* 
(0.5799) 

Special goods 1.2750* 
(0.5004) 

  1.9700** 
(0.6004) 

Unpacked bulk goods  1.1386* 
(0.5776)  

    2.4094*** 
(0.6741) 

Log-likelihood: -321.15 

McFadden 𝑅2 (𝜌2): 0.3711 

Adj. McFadden 𝑅
2
 (𝜌

2
): 0.3482 

Likelihood ratio test: 𝜒2 = 379 (p.value = < 2.22e-16) 

Note: Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001; 487 observations; standard errors are given in  
 brackets. 

 

8. Conclusion and further research 

In this paper, a discrete shipment size choice model for truck transports on the basis of 
discretized total logistics cost was developed, taking into account the different requirements 
regarding implementation in a large scale freight transport model. It has turned out that the 
shipment sizes are oriented on given vehicle and bundle sizes, which is concomitant with discrete 
technology-related and market-related factors influencing the total logistics cost. The estimation 
of the different models was performed on a database which was collected within the scope of the 
German federal infrastructure planning (BVWP). The framework used also provides possible links 
to other state-of-the-art decision models such the discrete mode choice, which was unfeasible in 
this study due to an insufficient amount of observations with modes other than truck transports. In 
order to reach an appropriate microscopic representation of the choice situations’ heterogeneity, 
the choice behavior was addressed separately for exogenously derived clusters of homogeneous 
transport cases. The conducted transports were classified by using a Latent Class Analysis 
approach on the basis of the commodity characteristics leading to a meaningful and 
comprehensible enrichment of the shipment size choice. Four homogeneous segments were 
identified, which were integrated as an additional component to the systematic framework of the 
total logistics cost formulation.  
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From a transport analyst’s point of view, the interesting results are that the volumes of the 
underlying commodity flows can explain the choice of shipment sizes to a large extent. The 
integration of the latent classes improved the model and provided reasonable signs and orders of 
magnitude for the estimated coefficients. Being estimated on a sample of very heterogeneous 
transport cases, the latent class model qualifies for incorporation in operational large-scale freight 
transport models. Moreover, the latent class part shows that a shipment size model is a way to 
incorporate logistics aspects into freight transport models on the required coarse-grained level of 
detail. It remains to be examined whether the same categorization applies to other decisions 
drawn on the shipments such as transport mode choice. Moreover, the influence of distance hints 
that spatial aspects play a role in the choice of shipment sizes.  

A ubiquitous problem in the context of this model is the heteroscedasticity, which is 
caused by the categorization of the shipment size classes and should be attended to by future 
research in a systematic way, potentially accompanied by a modification of the total logistics cost 
to control for the increasing class widths. Furthermore, the integration of economic activities 
taking place at the origin and the destination of the transports as classification criteria needs to be 
investigated in depth regarding further model developments. Another possible enhancement 
could be given by the usage of an endogenous segmentation approach, or the estimation of 
different models for exogenously derived segments, which lead to variations of the estimated 
parameters across the groups of decision-makers and reveals different influences on the costs for 
different groups. In this study, the central assumption was that the decision makers would, en 
masse, choose the shipment size according to the total logistics cost. Further information reached 
by the segmentation is added to the model via supplements and deductions for the respective 
class membership. Altering this assumption to different models for the segments may cause 
unexpected outcomes, contradicting the rational core which is represented by the total logistics 
cost approach. Therefore, the investigation of various models for different segments has to be 
treated carefully. Nevertheless, both the implementation of different segmentation approaches 
and the usage of further classification attributes need an adequate data base enabling a reliable 
estimation, which was not given in this study. Finally, an additional aspect which should be 
considered is obviously extending the model to different modes of transport and combining 
shipment size choice with mode choice. 
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