A discrete shipment size choice model with latent classes of shipments' attributes

World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016

Raphael Piendl, Gernot Liedtke, Tilman Matteis

Agenda

- Introduction
- Discrete shipment size choice model
- Latent classes of shipment's attributes
- Data and estimation results
- Summary and prospects

Introduction

- Why shipment size choice modeling?
 - High relevance for subsequent decisions (mode choice, transport chains)
 - Proxy for logistical decisions
 - Displays reactions of various stakeholders on policy measures (behaviorally-sensitive)
 - Important aspect in the modeling of freight transport demand

Introduction - Challenges

Huge variety of deciding subjects

Enormous diversity of corresponding objects (transported commodities)

- (Disaggregate) data availability is strongly limited
- Simulation-related analysis is problematic (adequate level of abstraction)

Introduction - Approach

- Two questions arise:
 - 1. How can the shipment size choice be modelled behaviorally-sensitive?
 - 2. How can the heterogeneity be addressed in a managable way?
- Approaches:
 - 1. Discrete shipment size choice model
 - Total logistics cost as rational core
 - Shipment sizes show up empirical dependency on given vehicle and bundle sizes
 - Operationalization in large-scale freight transport model systems
 - 2. Latent Classes of shipments attributes
 - Similar behavior (similar logistical characteristics)
 - Less data requirements

Discrete shipment size choice model – Total logistics cost

■ Total logistics cost (TLC) per year for decision maker *n*:

$$C_n(q_n) = \frac{Q_n}{q_n} F_n + Q_n c_n(q_n) + \frac{q_n}{2} (w_n + rv_n)$$

- Q_n : Constant and continuous flow of goods regarding individual n per period (ton/year)
- q_n : Shipment size per transport of individual n to satisfy Q_n (ton/shipment)
- F_n : Fixed transport costs per shipment for individual n (cost/shipment).
- $c_n(q_n)$: Variable transport costs for individual n dependent on shipment size q_n (\in /ton)
- w_n : Warehousing costs per unit of commodity per year for individual n (\in /ton)
- r: Interest rate valuing the bounded capital in form of inventory holding costs
- v_n : Value density of the transported commodities (\in /ton)

Discrete shipment size choice model

■ A discrete shipment size choice model requires shipment size categories q_i , i = 1, 2, ..., I:

$$C_n(q_i) = \frac{F_n}{q_i}Q_n + c_n(q_i)Q_n + \frac{q_i}{2}(w_n + rv_n)$$

- Warehousing cost w_n mainly depend on handling and space consumption
 - w_n constant regarding each shipment size category
- Restriction to road transports assumptions:
 - Fixed transport cost constant for all decision makers n
 - Variable transport cost only varying between shipment size categories
 - Approximation by piecewise linear function: transport cost t_{q_i} (per tkm) times the haulage distance d_n

$$C_n(q_i) = \frac{q_i w_{q_i}}{2} + \frac{F_{q_i}}{q_i} Q_n + t_{q_i} d_n Q_n + \frac{q_i r}{2} v_n$$

Latent classes of shipment's attributes – Motivation

$$C_n(q_i) = \frac{q_i w_{q_i}}{2} + \frac{F_{q_i}}{q_i} Q_n + t_{q_i} d_n Q_n + \frac{q_i r}{2} v_n$$

- Cost components are affected by logistical attributes of the transport e.g.
 - Fix cost F_{q_i} : loading, unloading, processing of the commodities
 - Value of time v_n : importance of the good in the supply chain (JIT/JIS (time critical) production vs. lubricants and consumables)
- Segmentation approach: Latent Class Analysis
 - Exogenous segmentation
 - Externally visible segments
 - Segments of transports by similar response patterns on the basis of categorical items (logistical attributes)

Latent classes of shipment's attributes – Approaches of integration

- Piendl, Liedtke and Matteis (2015): TLC approach with supplement and deductions to utility function
 - (1) Food products (temperature-controlled)
 - (2) Miscellaneous standard cargo
 - (3) Special goods
 - (4) Unpacked bulk goods
 - Reasonable order of coefficients' magnitudes: (1) < (2) < (3) < (4)
- Now: One discrete choice model per estimated segment $s=1,\dots,S,$ $\varepsilon_{q_{i,}n|s}$ distributed i.i.d. extreme value type I

$$-U_{q_i,n|s} = C_{n|s}(q_i) + \varepsilon_{q_i,n|s}$$

$$-U_{q_{i},n|s} = \alpha_{q_{i}|s} + \beta_{q_{i},1|s} \cdot Q_{n} + \beta_{q_{i},2|s} \cdot Q_{n} d_{n} + \beta_{q_{i},3|s} \cdot v_{n} + \varepsilon_{q_{i},n|s}$$

Data and estimation results

- Survey conducted within the scope of the German federal infrastructure planning 2015 (BVWP)
- Computer Assisted Personal Interviews: 487 usable road transport observations due to calculation of variables, revealed preference (RP) data
- Detailed information about the transport were sampled:
 - Type, weight, value and characteristics of the transported commodity
 - Frequency of the transport
 - Position in the supply chain
 - Duration, costs and distance of the transport
- Classification of shipment sizes
 - Up to 3t: Piece goods
 - 3t 12t: Partial truck loads
 - > 12t: (multiple) Full truck loads

Data and estimation results – Latent Class Analysis

Four latent classes show best segmentation result

No. classes	Log-Likelihood	BIC
2	-2608.16	5371.02
3	-2541.76	5318.68
4	-2496.73	5309.06
5	-2470.68	5337.41
6	-2452.43	5381.36

- Characterization of classes:
 - (1) Miscellaneous Goods (time-sensitive)
 - (2) Special Goods
 - (3) Food products (temperature-controlled)
 - (4) Bulk Goods (time-insensitive)

Data and estimation results – Latent Class Analysis

	Class 1	Class 2	Class 3	Class 4			
γ_s	0.3330	0.2060	0.0918	0.3692			
	Conditional probability of answering "Yes"						
Fragile	0.0862	0.5284	0.2014	0.0000			
Valuable	0.2619	0.8194	0.2320	0.2222			
Bulky	0.3494	0.4746	0.0000	0.2543			
Temperature	0.0549	0.0000	0.7284	0.0364			
Food	0.0000	0.0000	1.0000	0.0740			
Dangerous	0.1947	0.0187	0.0000	0.1588			
Bulk Cargo	0.0173	0.0000	0.0458	0.1677			
Liquid	0.0000	0.0000	0.0549	0.0142			
Standard	0.6500	0.2512	0.6094	0.3068			
Custom	0.1536	0.4032	0.0446	0.0925			
Accumulation	0.6669	0.3674	0.5594	0.0000			
Processing	0.7278	0.2551	0.4597	0.1214			
Observations: 487							
Parameter estimated:51							

Data and estimation results – Logit-Model

	Alternative	Miscellaneous Goods	Special Goods	Food products	Bulk Goods
		(time-sensitive)		(temperature-controlled)	(time-insensitive)
Constant	$q_2: 3t - 12t$	-5.6010.	-2.2337	2.8028	-4.2494
		(3.2884)	(4.2841)	(8.7964)	(3.9363)
	$q_3 :> 12t$	-13.0818 **	-2.7417	0.1431	-9.2072 *
		(4.5164)	(5.3893)	(12.5992)	(4.6503)
Q_n	q_2 : $3t - 12t$	0.0020 .	0.0030	0.0031	0.0017
		(0.0011)	(0.0020)	(0.0030)	(0.0011)
	$q_3 :> 12t$	0.0025 *	0.0036 .	0.0038	0.0019.
		(0.0011)	(0.0021)	(0.0031)	(0.0011)
$\ln(d_n\cdot Q_n)$	q_2 : 3t - 12t	0.6224 *	0.3207	0.4620	0.4449
		(0.2915)	(0.3961)	(0.8456)	(0.3535)
	$q_3 :> 12t$	1.3248 ***	0.6415	1.1608	1.3862 **
		(0.3927)	(0.4842)	(1.2355)	(0.4310)
$\ln v_n$	q_2 : $3t - 12t$	-0.2261	-0.2120	-1.2991 .	-0.1407
		(0.2168)	(0.2597)	(0.7410)	(0.1813)
	$q_3 :> 12t$	-0.5247*	-0.7237 *	-2.3739 *	-1.0163 **
		(0.2565)	(0.3227)	(1.1007)	(0.2831)
Number of observations:		162	92	42	191
Log-Likelihood:		-111.2	-67.1	-24.1	-101.6
McFadden R^2 (ρ^2):		0.3557	0.3228	0.4784	0.4400
Adj. McFadden \overline{R}^2 ($\overline{\rho}^2$):		0.3093	0.2421	0.3050	0.3959
Likelihood ratio test:		$\chi^2 = 122.74$	$\chi^2 = 64.00$	$\chi^2 = 44.15$	$\chi^2 = 159.6$

Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Summary and prospects

- Discrete shipment size choice models for interregional road transports have been developed
- Exogeneously derived latent segments of shipments' attributes account for omnipresent heterogeneity exceeding TLC variables
- Estimated models have reasonable signs and orders of the coefficients' magnitude
- Problematic: low amount of observations in some of the estimated segments
- Incorporation of latent segments into a freight transport model framework needs to be investigated further
 - Sample biased
 - Adequate statistical mapping technique (NST 2007 to estimated segments)

Thank you for your attention!

