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Mission in Research and Education 

Research 
- High performance materials and structures and relevant processes 
- Virtual tools for computational materials engineering and structural design 
- Complete engineering chain - from material to automated production 
 

Transfer 
- Application focused and close to industry 
 

Education 
- Professor chairs and lectures at universities 
- Under-graduate and doctoral students 
 

Consulting 
- Politics and industry 

 

www.DLR.de  •  Chart 3 Interface Challenges in Oxide as well as Non-oxide CMCs for Long-Term Applications> M. Frieß  •  Freiberg, Germany, November 6-11, 
2016 



Outline and Motivation 

- Short review on classical CMC manufacturing methods 
 

- Interfaces (interphases) in oxide and non-oxide fibre-reinforced CMCs 
 

- Monazite fibre coating process in principle 
 

- Variation of coating parameters 
 

- Manufacture of CMCs (SiC/SiCN) using PIP and monazite coating 
 

- Physical and mechanical properties of CMCs (SiC/SiCN) and OXIPOL 
 

- HVOF-test and microstructural characterisation of CMCs (SiC/SiCN) before 
and thereafter 
 

- Summary and outlook 
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Classic methods to manufacture SiC/SiC(N) composites 
CVI 
Chemical Vapour Infiltration 
 
Advantages: 
- comparably low process temperatures  (≈ 1100 ˚C) 
- stoichiometric process is feasible to SiC composites 
- fibre coating can be / is part of CMC manufacture 
 
Disadvantages: 
- high matrix porosity, large voids in gussets 
- release of partly aggressive reaction products 
- time-consuming processing to decrease porosity 
- Difficulty to process thick-walled parts 
 
 

PIP 
Polymer Infiltration & Pyrolysis 
 
Advantages: 
- comparably low process temperatures  (≈ 1100 ˚C) 
- matrix composition can be easily influenced by chosen 

polymer (SiC, SiCN, SiBCN, etc.) 
 

Disadvantages: 
- high porosity by loss of mass and increase of density of 

the matrix during pyrolysis in gussets: in advantage are 
amorphous matrices (e.g.: SiCN and SiBCN) 

- time-consuming processing to decrease porosity 
 

 
 

Jacques Lamon, 2005 Kazuaki Nishiyabu, 2007 

Interface Challenges in Oxide as well as Non-oxide CMCs for Long-Term Applications> M. Frieß  •  Freiberg, Germany, November 6-11, 2016 DLR.de  •  Chart 5 



Liquid Silicon Infiltration Process (LSI) at DLR  
Advantages and requirements for processing 
• feasibility of manufacture of shapes and geometries (no limitation to thickness of parts) 
• no fibre coating necessary for achievement of damage tolerant behaviour 
• intermediate processing (easy machining and substance joining) feasible 
• short processing time 
• “dense” matrix 

 
Requirements for future SiCf/SiC(N) composites 
• (near) no porosity 
• stoichiometric SiC matrix (no excess of C) 
• resistance to corrosion at high temperatures 
• necessity of coatings for fibre protection 
     versus chemical attack by liquid Si ( or metals) 
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Interfaces in Oxide and Non-oxide Fibre-reinforced CMCs 
Interphases based on pyrolytic carbon or boron nitride and dense matrix 

- o.k. for short term applications 
 

Interfaces based on porous matrices with no coating 
- o.k. for low gas flow and low requirement for gas tightness 

 
Interphases based on fugitive coating and dense matrix 

- o.k. for short term applications 
 

All interphases above suffer from: 
- severe attack on matrix and fibre in agressive chemical environment 
- intensive protective coatings necessary (EBC, TBC) 

 
 

 CMCs based on stable interphase and dense matrix are mandatory 
 
 Monazite (lanthanum phosphate, LaPO4) as a model candidate 
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Manufacture of OXIPOL and SiC/SiCN Using PIP-Processing 
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Polymer Infiltration and Pyrolysis 

PyC fibre coating
(via CVI) or LaPO4 (via DC)

infiltration with
polysilazane precursor

via RTM-process

pyrolysis
(polysilazane à SiCN-matrix)

finishing

6 times
to decrease

porosity

SiC-fabric
Tyranno SA3

(0|90° plain weave) 3 µm

SA3-I16: 

Uncoated and desized 

 

 

 

PyC coated SA3-I16 

(~300nm coating) 

 

 

 

20 mm

RTM 

 

 

 

Final CMC 

plate 

(300x90x2mm) 

 

 

 

-1 µm 
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Monazite Fiber Coating Process in Principle 
 

Monazite as oxidation resistant fibre coating for dense CMCs: 
- high melting point: 2073 ˚C 
- low modulus: ≈ 130 GPa 
- thermodynamically stable and chemically inert to many materials 
- low bonding strength to common oxide fibres 

 
Precursor solution made of La(NO3)3, citric (H3Cit) and phosphoric acid (H3PO4) 
 Stabilisation and inhibition of reaction by citric acid via complex formation: 

La(NO3)3 + H3Cit → La-Cit + 3HNO3 

 
The precipitation reaction in the precursor solution only depends on temperature   
and concentration, and therefore, can be controlled: heterogeneous nucleation 

La-Cit + H3PO4 → LaPO4 + H3Cit 
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Coating Methods:  
Dip coating     Foulard Coating 

(classic)     (advanced) 

 

fabric 

Rubber  

roller 

LaPO4 

Rubber  

roller 
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Variation of Coating Parameters (1): 
DC results -The fiber 

-LaPO4 

SEM picture of Nextel610 fibre after 9 loops 

conclusions: - the thicker the fibre diameter, the thicker the coating 
  - the smaller the number of filaments/roving, the thicker the coating 

Fibre 
diameter 

No. of 
filaments 

SA3-I16 7.5 1600 
SA3-F08 10 800 

N610-DF11 12 400 
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Variation of Coating Parameters (2): 
Comparison between DC and FC 

-Black curves: DC 

-Blue curves: FC 

- DC target: 300nm 
- FC target: 100nm 

- DC and FC (needs 2 coating cycles) are very similar w.r.t. coating thickness!!! 
- FC provides a more homogeneous coating than DC! 
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Improved fibre coating processing for fabric types 
Al2O3 (Nextel 610) and SiC (Tyranno SA3) 

− State-of-the-art: dilute solutions in order to achieve homogeneous coatings: 
 disadvantage: many time and cost consuming cycles needed for  
 thick coatings 
 
− Further development at DLR by applying more concentrated solutions via  
 Foulard technique 

 
− This work shows that Foulard technique using almost saturated solutions 
 is feasible and provides promising results as well as potential: 

− homogeneous fibre coatings with very low fibre bridging 
− Thick fibre coating steps achievable by low number of cycles 
− Foulard technique has potential for cost-effective fibre coating 
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Calculated coating evolution from mass gain with 
respect to fabric type (Al2O3) 
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LaPO4 fibre coating on Al2O3 (Nextel 610) I 

• No bridging by fibre coating 
• Single fibre coating 
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LaPO4 fibre coating on Al2O3 (Nextel 610) II 

-Thick homogeneous fibre coatings (628 nm) with six cycles! 
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LaPO4 fibre coating on SiC fabrics (SA3) I 

• No bridging by fibre coating 
• Single fibre coating 
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LaPO4 fibre coating on SiC fabrics (SA3) II 

• Homogeneous fibre coating 
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LaPO4 fibre coating on SiC fabrics (SA3) III 

-Thick homogeneous fibre coatings (478 nm) with six cycles! 
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Properties of OXIPOL (A-D) and SiC/SiCN (E) 
Specimen A B* C D* E** 

Coating type LaPO
4
 LaPO

4
 - fugitive LaPO4 

Coating loops [-] 9 4 0 2 9 

Coating thickness [nm] 300 100 0 <100 300 

Fibre volume content [%] 43 45 42 51 45 

Fabric type (Nextel 610 fibre) 
(Tyranno SA3) 
Aerial weight [g/m²] 

DF11 
- 

373 

DF11 
- 

373 

DF11 
- 

373 

DF19 
- 

654 

- 
F-08 
240 

Density [g/cm³] 2.77 n.d. 2.88 2.76 2.51 

Open porosity [%] 7.0 16.6 6.1 11.7 6.3 

Flexural strength (3-point) before 
exposure [MPa] 

132.4 169.5 87.4 197.9 167*** 

Flexural strength (3-point) after 
exposure (1100˚C, air, 20h) [MPa] 

≥ 98.3 ≥ 73.3 94.3 117.0 129*** 

Failure mode after exposure shear shear tensile tensile tensile 
 *S. Hönig et al.: 36th Int. Conf. on Advanced Ceramics and Composites (ICACC) 2012. 

**E. Klatt: PhD Thesis DLR Stuttgart 2013 (in appraisal and subsequent press) 
***measured according DIN ENV 658-3 (l/d=20)  



www.DLR.de  •  Chart 22 Interface Challenges in Oxide as well as Non-oxide CMCs for Long-Term Applications> M. Frieß  •  Freiberg, Germany, November 6-11, 2016 

5 µm 200 nm 

300 nm 1 µm 

SEM of Polished Surface of OXIPOL with LaPO4 coating 
before Exposure 

 
 
 
 
 
 
 

after Exposure to Air at 1100ºC for 20h 
 
 
 
 
 

→no obvious SiO2 layer has been formed in dense matrix 



EDX-Analysis of Oxidized OXIPOL @ 1100˚C for 20 h in Air 
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- matrix composition w.r.t. EDX:  → „SiO2C“ 

- oxidized matrix composition w.r.t. EDX: → „SiO2“ 



HVOF-Test in combustion environment 

- represents combustion typical conditions like combustion 
chemistry / combustion products, temperature, gas velocity 

- test conditions in a temperature range of 1000 ˚C up to 2050 ˚C 
possible 

- the HVOF-flame was fueled by Kerosene/Oxygen 
 
 

-HVOF-Test 
-(High Velocity Oxygen Fuel) 
 

-by EADS Astrium 
  (ATLLAS II-project) 
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Microstructural Characterisation of uncoated C/C-SiC @ T 

-C/C-SiC, uncoated, untested  -1700 ˚C, 1h -1500 ˚C, 1h 

 both tested samples are very brittle after exposure 

 heavy degradation of the sample tested at 1700 ˚C  
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Visual Characterisation of CVD-SiC coated C/C-SiC @ T 

-C/C-SiC, SiC-coated, untested  -1700 ˚C, 1h -1500 ˚C, 4h 

 the SiC-coated samples stay intact even at 1700 ˚C  

 some degraded spots can be observed 
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Microstructural Characterisation of C/C-SiC @ 1500 ˚C 

-C/C-SiC, SiCCVD coating 

-(untested sample) 

-1500 ˚C, 4h, 

-surface, top view 

-1500 ˚C, 4h, 

-surface, side view 

⇒ Formation of a 5 µm SiO2-scale  

-SiO2 

-SiC 
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Microstructural Characterisation of C/C-SiC @ 1700 ˚C 

-C/C-SiC, SiCCVD coating, 

-(untested sample) 

⇒ Formation of a 10-20 µm SiO2-scale  

-1700 ˚C, 1h, 

-surface, top view 

-1700 ˚C, 1h, 

-surface, side view 

-SiO2 

-SiC 
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Microstructural Characterisation of C/C-SiC @ T 

-C/C-SiC, SiCCVD coating, 

-(untested sample) 

-C/C-SiC, SiCCVD coating, 

-1700 ˚C, 1h 

⇒ C-matrix is not affected 
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Visual Characterisation of SiCpyC/SiCN @ T 
  

-untested  -1300 ˚C, 4h -1500 ˚C, 4h -1700 ˚C, 4h 

 Increased porosity after exposure (independent from test temperature) 

 no spallation of the surface 

 

 

e‘ before exposure [%] 7.04 6.08 6.06 

e‘ after exposure [%] 11.26 11.74 11.31 

∆m/m [%] -2.8 -3.3 -3.3 
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Microstructural Characterisation of SiCpyC/SiCN @ 1300 ˚C 
  

- Center of sample 

 PyC coating also was removed  

 Occurring gaps were starting to get filled by SiO2 

 @ higher T similar microstructure in center of 

composite like on surface 

 

- Close to surface 

 PyC coating was removed due to active oxidation  

 Occurring gaps were completely filled by SiO2 
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Visual Characterisation of SiCLaPO4/SiCN @ T 

-untested  -1300 ˚C, 4h -1500 ˚C, 4h -1700 ˚C, 1.5h 

e‘ before exposure [%] 11.16 12.12 12.24 
e‘ after exposure [%] 13.21 16.97 16.47 

∆m/m [%] -1.8 -2.4 -2.7 

 only slight increase of porosity at 1300 ˚C  

 strong increase of porosities at 1500 ˚C and above  

 1700 ˚C test aborted after 1.5 hours due to spallation of the surface 
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Microstructural Characterisation of SiCLaPO4/SiCN @ 1700 ˚C 

-Shown is sample tested at 1700 ˚C, close to surface 

 

 Close to the surface: degradation of coating 

already can be detected at 1300 ˚C  

 At the center of the samples the coating stayed 

intact at 1700 ˚C (1.5h) 

 Samples tested at lower temperatures (4h) 

showed growth of SiO2 between fiber and 

coating 
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Microstructural Characterisation of SiCLaPO4/SiCN @ 1700 ˚C 

∆ c-SiC 
□ t-SiO2 
■ h-SiO2 
◊ m-LaPO4 
○ m-La2Si2O7 
 
 
 

-  

- Top view on sample with  

  LaPO4-coated fibres 

  dark phase (SiO2)  

  bright phase (La2Si2O7) 

 formation of La2Si2O7 at 1500 ˚C and 1700 ˚C 

detected via XRD on the samples surfaces  

 Necessity for EBC-protection of structure  
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Potential Hydrothermal Decomposition of Monazite 
Although, reaction of LaPO4 with SiO2 is thermodynamically unfavorable 
 
4 LaPO4(s) + 4 SiO2(s) → 2 La2Si2O7(s) + P4O10(g)   ΔG > 0 
 
However, decomposition of LaPO4 at T > 1300˚C in the presence of 
excess water vapor (jet stream) and SiO2 is feasible due to enforced 
decomposition reactions. XRD and SEM/EDX of first test samples and 
thermodynamical calculations reveal: 

 
4 LaPO4(s) +6 H2O(g) + 4 SiO2(s) →2 La2Si2O7(s) + 4 H3PO4(g) ΔG < 0 
4 H3PO4(g) → P4O10(g) +6 H2O(g)     ΔG < 0 
 
in total: 
4 LaPO4(s) + 4 SiO2(s) → <H2O(g)> → 2 La2Si2O7(s) + P4O10(g) ΔG < 0 
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Summary 
Monazite (LaPO4) fibre coatings have been successfully applied for 

- Oxide (OXIPOL) as well as non-oxide CMCs (SiC/SiCN) 
 

Influences of coating parameters have been demonstrated: 
- fibre type and diameter as well as surface roughness 
- Foulard (FC) and dip (DC) coating 
- Further improvement of coating process w.r.t. coating efficiency 
 

CMC behaviour before and after exposure in hot gas environment (HVOF-Test) 
- Potentials and limits of LaPO4-coating were demonstrated 
- SiO2 formation observed on outer and crack surface by SEM 
- Potential of CVD-SiC  as EBC-coating was demonstrated even with 

oxidation sensitive C/C-SiC 
- Hypothesis of potential decomposition of LaPO4 in water vapor and 

presence of SiO2 
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Outlook 
- Further densification of composite (porosity < 5%) may improve composite 

properties such as strength level before and after exposure to oxidation 

- Implementation of fillers serving for „self healing“ properties are in our focus 

- Development of EBC/TBC coatings for both type of composites (OXIPOL and 
SiC/SiCN) are necessary and in development (e.g.Y2SiO5/Y2Si2O7) 

- Mid-term research targets are fibre coatings for CMCs (reaction barrier, low fibre-
matrix bonding) suitable for melt-infiltration („dense matrix“) 

- Development of fibre coatings for LSI-processing based on Y2O3, Si3N4 and 
TiB2 are in progress in collaboration with special partners (Technical University 
of Chemnitz) 

- Development of fibre coatings for LSI-processing based on polymer-derived 
ceramics are in progress in collaboration with special partners (Technical 
University of Darmstadt and University of Stuttgart) 
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