Interface Challenges in Dense Oxide as well as Non-oxide CMCs for Long-Term Applications

Precursor Derived Ceramics and Advanced Hybrid Materials Sino-German Symposium Freiberg, Germany, November 6-11, 2016

Martin Frieß, Bernd Mainzer, Sandrine Hönig, Enrico Klatt, Dietmar Koch

Knowledge for Tomorrow

German Aerospace Center (DLR), Stuttgart, Germany Institute of Structures and Design Department: Ceramic Composites and Structures (KVS)

Contact: martin.friess@dlr.de

www.DLR.de • Chart 2 Interface Challenges in Oxide as well as Non-oxide CMCs for Long-Term Applications> M. Frieß • Freiberg, Germany, November 6-11, 2016

The German Aerospace Center (DLR)

Largest aerospace research facility in Europe

- 7800 employees
- 32 institutes
- 16 sites in Germany
- Offices in Brussels, Paris, Tokio, Washington
- Turn over: 1769 M€
- Space program 971 M€
- Research 798 M€
 - Space 50%
 - Aeronautics 34%
 - Transport 7%
 - Energy 9%

www.DLR.de • Chart 3 Interface Challenges in Oxide as well as Non-oxide CMCs for Long-Term Applications> M. Frieß • Freiberg, Germany, November 6-11, 2016

Mission in Research and Education

Research

- High performance materials and structures and relevant processes
- Virtual tools for computational materials engineering and structural design
- Complete engineering chain from material to automated production

Transfer

- Application focused and close to industry

Education

- Professor chairs and lectures at universities
- Under-graduate and doctoral students

Consulting

- Politics and industry

Outline and Motivation

- Short review on classical CMC manufacturing methods
- Interfaces (interphases) in oxide and non-oxide fibre-reinforced CMCs
- Monazite fibre coating process in principle
- Variation of coating parameters
- Manufacture of CMCs (SiC/SiCN) using PIP and monazite coating
- Physical and mechanical properties of CMCs (SiC/SiCN) and OXIPOL
- HVOF-test and microstructural characterisation of CMCs (SiC/SiCN) before and thereafter
- Summary and outlook

Classic methods to manufacture SiC/SiC(N) composites

CVI

Chemical Vapour Infiltration

Advantages:

- comparably low process temperatures (≈ 1100 °C)
- stoichiometric process is feasible to SiC composites
- fibre coating can be / is part of CMC manufacture

Disadvantages:

- high matrix porosity, large voids in gussets
- release of partly aggressive reaction products
- time-consuming processing to decrease porosity
- Difficulty to process thick-walled parts

Jacques Lamon, 2005

PIP

Polymer Infiltration & Pyrolysis

Advantages:

- comparably low process temperatures (≈ 1100 °C)
- matrix composition can be easily influenced by chosen polymer (SiC, SiCN, SiBCN, etc.)

Disadvantages:

- high porosity by loss of mass and increase of density of the matrix during pyrolysis in gussets: in advantage are amorphous matrices (e.g.: SiCN and SiBCN)
- time-consuming processing to decrease porosity

Kazuaki Nishiyabu, 2007

Liquid Silicon Infiltration Process (LSI) at DLR

Advantages and requirements for processing

feasibility of manufacture of shapes and geometries (no limitation to thickness of parts)

194,8

CP 0/90 10°

- no fibre coating necessary for achievement of damage tolerant behaviour
- intermediate processing (easy machining and substance joining) feasible
- short processing time
- "dense" matrix

Requirements for future SiC_f/SiC(N) composites

- (near) no porosity
- stoichiometric SiC matrix (no excess of C)
- resistance to corrosion at high temperatures
- necessity of coatings for fibre protection versus chemical attack by liquid Si (or metals)
 4PB Strength (MPa) Young's Modulus (GPa)

Interfaces in Oxide and Non-oxide Fibre-reinforced CMCs

Interphases based on pyrolytic carbon or boron nitride and dense matrix

- o.k. for short term applications

Interfaces based on porous matrices with no coating

- o.k. for low gas flow and low requirement for gas tightness

Interphases based on fugitive coating and dense matrix

- o.k. for short term applications

All interphases above suffer from:

- severe attack on matrix and fibre in agressive chemical environment
- intensive protective coatings necessary (EBC, TBC)

CMCs based on stable interphase and dense matrix are mandatory

> Monazite (lanthanum phosphate, LaPO₄) as a model candidate

Manufacture of OXIPOL and SiC/SiCN Using PIP-Processing

Polymer Infiltration and Pyrolysis

SA3-I16:

Monazite Fiber Coating Process in Principle

Monazite as oxidation resistant fibre coating for dense CMCs:

- high melting point: 2073 °C
- low modulus: ≈ 130 GPa
- thermodynamically stable and chemically inert to many materials
- low bonding strength to common oxide fibres

Precursor solution made of $La(NO_3)_{3,}$ citric (H₃Cit) and phosphoric acid (H₃PO₄) Stabilisation and inhibition of reaction by citric acid via complex formation: $La(NO_3)_3 + H_3Cit \rightarrow La-Cit + 3HNO_3$

The precipitation reaction in the precursor solution only depends on temperature and concentration, and therefore, can be controlled: **heterogeneous nucleation** La-Cit + $H_3PO_4 \rightarrow LaPO_4 + H_3Cit$

Coating Methods:

Dip coating (classic)

Foulard Coating (advanced)

conclusions:

- the thicker the fibre diameter, the thicker the coating
- the smaller the number of filaments/roving, the thicker the coating

Variation of Coating Parameters (2): Comparison between DC and FC

- FC target: 100nm

- DC and FC (needs 2 coating cycles) are very similar w.r.t. coating thickness!!!
- FC provides a more homogeneous coating than DC!

Improved fibre coating processing for fabric types Al₂O₃ (Nextel 610) and SiC (Tyranno SA3)

- State-of-the-art: dilute solutions in order to achieve homogeneous coatings: disadvantage: many time and cost consuming cycles needed for thick coatings
- Further development at DLR by applying more concentrated solutions via Foulard technique
- This work shows that Foulard technique using almost saturated solutions is feasible and provides promising results as well as potential:
 - homogeneous fibre coatings with very low fibre bridging
 - Thick fibre coating steps achievable by low number of cycles
 - Foulard technique has potential for cost-effective fibre coating

Calculated coating evolution from mass gain with respect to fabric type (Al₂O₃)

LaPO₄ fibre coating on Al₂O₃ (Nextel 610) I

- No bridging by fibre coating
- Single fibre coating

LaPO₄ fibre coating on Al₂O₃ (Nextel 610) II

-Thick homogeneous fibre coatings (628 nm) with six cycles!

LaPO₄ fibre coating on SiC fabrics (SA3) I

- No bridging by fibre coating
- Single fibre coating

LaPO₄ fibre coating on SiC fabrics (SA3) II

Homogeneous fibre coating

LaPO₄ fibre coating on SiC fabrics (SA3) III

-Thick homogeneous fibre coatings (478 nm) with six cycles!

Properties of OXIPOL (A-D) and SiC/SiCN (E)

Specimen	Α	B *	С	D *	E**
Coating type	LaPO ₄	LaPO ₄	-	fugitive	LaPO ₄
Coating loops [-]	9	4	0	2	9
Coating thickness [nm]	300	100	0	<100	300
Fibre volume content [%]	43	45	42	51	45
Fabric type (Nextel 610 fibre) (Tyranno SA3) Aerial weight [g/m²]	DF11 - 373	DF11 - 373	DF11 - 373	DF19 - 654	- F-08 240
Density [g/cm ³]	2.77	n.d.	2.88	2.76	2.51
Open porosity [%]	7.0	16.6	6.1	11.7	6.3
Flexural strength (3-point) before exposure [MPa]	132.4	169.5	87.4	197.9	167***
Flexural strength (3-point) after exposure (1100°C, air, 20h) [MPa]	≥98.3	≥73.3	94.3	117.0	129***
Failure mode after exposure	shear	shear	tensile	tensile	tensile

*S. Hönig et al.: 36th Int. Conf. on Advanced Ceramics and Composites (ICACC) 2012.

**E. Klatt: PhD Thesis DLR Stuttgart 2013

***measured according DIN ENV 658-3 (l/d=20)

SEM of Polished Surface of OXIPOL with LaPO₄ coating

EDX-Analysis of Oxidized OXIPOL @ 1100°C for 20 h in Air

HVOF-Test in combustion environment

-HVOF-Test -(<u>H</u>igh <u>V</u>elocity <u>O</u>xygen <u>F</u>uel)

-by EADS Astrium (ATLLAS II-project)

- represents combustion typical conditions like combustion chemistry / combustion products, temperature, gas velocity
- test conditions in a temperature range of 1000 °C up to 2050 °C possible
- the HVOF-flame was fueled by Kerosene/Oxygen

Microstructural Characterisation of uncoated C/C-SiC @ T

-C/C-SiC, uncoated, untested

-1500 °C, 1h

-1700 °C, 1h

- both tested samples are very brittle after exposure
- heavy degradation of the sample tested at 1700 °C

Visual Characterisation of CVD-SiC coated C/C-SiC @ T

-C/C-SiC, SiC-coated, untested

-1700 °C, 1h

- the SiC-coated samples stay intact even at 1700 °C
- some degraded spots can be observed

Microstructural Characterisation of C/C-SiC @ 1500 °C

Microstructural Characterisation of C/C-SiC @ 1700 °C

\Rightarrow Formation of a 10-20 μ m SiO₂-scale

Microstructural Characterisation of C/C-SiC @ T

-C/C-SiC, SiC_{CVD} coating, -(untested sample) -C/C-SiC, SiC_{CVD} coating, -1700 °C, 1h

\Rightarrow C-matrix is not affected

Visual Characterisation of SiC_{pyC}/SiCN @ T

	1200 °C. 4b		1700°C Ab
-untested	-1300 C, 411	-1500 C, 411	-1700 C, 411
e' before exposure [%]	7.04	6.08	6.06
e' after exposure [%]	11.26	11.74	11.31
∆m/m [%]	-2.8	-3.3	-3.3

- Increased porosity after exposure (independent from test temperature)
- > no spallation of the surface

Microstructural Characterisation of SiC_{pvC}/SiCN @ 1300 °C

- Close to surface
- > PyC coating was removed due to active oxidation
- Occurring gaps were completely filled by SiO₂

- Center of sample
- > PyC coating also was removed
- Occurring gaps were starting to get filled by SiO₂
- @ higher T similar microstructure in center of composite like on surface

Visual Characterisation of SiC_{LaPO4}/SiCN @ T

- > only slight increase of porosity at 1300 °C
- strong increase of porosities at 1500 °C and above
- > 1700 °C test aborted after 1.5 hours due to spallation of the surface

Microstructural Characterisation of SiC_{LaPO4}/SiCN @ 1700 °C

- -Shown is sample tested at 1700 °C, close to surface
- Close to the surface: degradation of coating already can be detected at 1300 °C

- At the center of the samples the coating stayed intact at 1700 °C (1.5h)
- Samples tested at lower temperatures (4h) showed growth of SiO₂ between fiber and coating

—1700°C —1500°C

—1300°C

Microstructural Characterisation of SiC_{LaPO4}/SiCN @ 1700 °C

- formation of La₂Si₂O₇ at 1500 °C and 1700 °C
 detected via XRD on the samples surfaces
- > Necessity for EBC-protection of structure

- Top view on sample with LaPO₄-coated fibres dark phase (SiO₂) bright phase (La₂Si₂O₇)

Intensity [a.u.]

Potential Hydrothermal Decomposition of Monazite

Although, reaction of LaPO₄ with SiO₂ is thermodynamically unfavorable

$$4 \text{ LaPO}_{4(s)} + 4 \text{ SiO}_{2(s)} \rightarrow 2 \text{ La}_2 \text{Si}_2 \text{O}_{7(s)} + \text{P}_4 \text{O}_{10(g)} \qquad \Delta \text{G} > 0$$

However, decomposition of LaPO₄ at T > 1300°C in the **presence of excess water vapor (jet stream) and SiO₂** is feasible due to enforced decomposition reactions. XRD and SEM/EDX of first test samples and thermodynamical calculations reveal:

$$\begin{array}{ll} 4 \ \text{LaPO}_{4(s)} + 6 \ \text{H}_2\text{O}_{(g)} + 4 \ \text{SiO}_{2(s)} \rightarrow 2 \ \text{La}_2\text{Si}_2\text{O}_{7(s)} + 4 \ \text{H}_3\text{PO}_{4(g)} & \Delta \text{G} < 0 \\ 4 \ \text{H}_3\text{PO}_{4(g)} \rightarrow \text{P}_4\text{O}_{10(g)} + 6 \ \text{H}_2\text{O}_{(g)} & \Delta \text{G} < 0 \end{array}$$

in total:

$$4 \text{ LaPO}_{4(s)} + 4 \text{ SiO}_{2(s)} \rightarrow \langle H_2 O_{(g)} \rangle \rightarrow 2 \text{ La}_2 \text{Si}_2 O_{7(s)} + P_4 O_{10(g)} \qquad \Delta G < 0$$

Summary

Monazite (LaPO₄) fibre coatings have been successfully applied for

- Oxide (OXIPOL) as well as non-oxide CMCs (SiC/SiCN)

Influences of coating parameters have been demonstrated:

- fibre type and diameter as well as surface roughness
- Foulard (FC) and dip (DC) coating
- Further improvement of coating process w.r.t. coating efficiency

CMC behaviour before and after exposure in hot gas environment (HVOF-Test)

- Potentials and limits of LaPO₄-coating were demonstrated
- SiO₂ formation observed on outer and crack surface by SEM
- Potential of CVD-SiC as EBC-coating was demonstrated even with oxidation sensitive C/C-SiC
- Hypothesis of potential decomposition of $\rm LaPO_4$ in water vapor and presence of $\rm SiO_2$

Outlook

- Further densification of composite (porosity < 5%) may improve composite properties such as strength level before and after exposure to oxidation
- Implementation of fillers serving for "self healing" properties are in our focus
- Development of EBC/TBC coatings for both type of composites (OXIPOL and SiC/SiCN) are necessary and in development (e.g.Y₂SiO₅/Y₂Si₂O₇)
- Mid-term research targets are fibre coatings for CMCs (reaction barrier, low fibrematrix bonding) suitable for melt-infiltration ("dense matrix")
 - Development of fibre coatings for LSI-processing based on Y₂O₃, Si₃N₄ and TiB₂ are in progress in collaboration with special partners (Technical University of Chemnitz)
 - Development of fibre coatings for LSI-processing based on polymer-derived ceramics are in progress in collaboration with special partners (Technical University of Darmstadt and University of Stuttgart)

Acknowledgements

- DFG German Science Foundation for Funding SICAFIS-Project in cooperation with Technical University of Chemnitz and last not least in participating this workshop
- German Ministry of Defence (BAAINBw) for general financial support
- EU for Funding ATLLAS II-Project
- JAXA for PostDoc Exchange
- Thanks to the members of Ceramic Composites and Structures

