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Abstract— Common control methods for free-floating robots
assume zero initial linear and angular momenta, for which a
reduced joint dynamics equivalent to that of a fixed-base robot
can be obtained. On the other hand, a disturbance is induced
in the system dynamics when the linear or angular momenta
are not zero, leading to a deviation of the end effector.
In this work the dynamics of the free-floating robot in presence
of momentum is analyzed and a torque feedback control is
proposed. An operational space formulation is considered to
identify the disturbing Coriolis/centrifugal forces and to cancel
them by feedback. A stability proof for the proposed controller
is developed using a time-varying approach.
The effectiveness of the control is shown in simulation for
a seven degrees-of-freedom arm connected to a floating-base
under the effect of linear and angular momenta considering
model parameters uncertainties.

I. INTRODUCTION

Space robots for on-orbit servicing missions involve the
use of a robotic arm connected to a satellite for tasks such as
refueling or de-orbiting of a malfunctioning target satellite.
The aim of a so-called free-floating robot is to perform the
tasks avoiding the use of the satellite actuators. In this way,
nonrenewable fuel can be saved, increasing the life of the
mission. For a free-floating robot, the motion of the satellite
is dynamically coupled with the manipulator motion.
One important consequence of such coupling is the presence
of dynamic singularities ([1], [2]) that are path-dependent,
unlike for the fixed-base case. The presence of dynamic
singularities further complicates the task of the trajectory
planning algorithms [3]. In [4] the kinematic problem for a
free-floating robot was addressed and the generalized Jaco-
bian was presented. This relates the end effector velocities
to the joint velocities, taking into account the conservation
of momentum. Based on this concept, a kinematics-based
control was then presented in [5]. The dynamics problem
was treated in [6], where a transposed Jacobian approach
was used for the end effector regulation and the stability
was proven. The null-space dynamics of a redundant free-
floating robot was first studied in [7], where the redundancy
was resolved at velocity level.

The majority of the works on free-floating space robots
assume zero initial linear and angular momenta of the sys-
tem. Under this assumption, a reduced joint dynamics can be
obtained, which is totally analogous to the one of a fixed-base
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Fig. 1. Scenario and reference frames.

arm. On the other hand, when the initial momentum of the
system is not zero, an additional dynamical term is induced
in the equations in form of a persisting Coriolis/centrifugal
force due to the momentum. During space operations, small
amounts of momentum tend to accumulate, particularly for
those on-orbit servicing scenarios where contacts are in-
volved. Additionally, future missions might consider the use
of an initial momentum to synchronize the motion of the
servicer satellite with that of a tumbling target.

Up to now, a limited number of publications are available
on this topic. The resolution of the redundancy at kinematic
level considering initial momentum was analyzed in [7],
whereas the tasks of base stabilization and end effector path
tracking have been performed for the case of zero initial and
angular momenta. In [8] a restricted workspace has been
defined, where the end effector can remain fixed in space
in presence of angular momentum. The trajectories of the
system for some representative cases have been investigated.
In [9] the same authors proposed a path planning approach
considering initial angular momentum. In [10] an adaptive
version of the Reaction Null-Space control was proposed
at the kinematic level considering small linear and angular
momenta. The work treated the linear and angular momenta
as unknown quantities which are identified by an online
parameter adaptation law. In [11] an impedance control for
a free-floating robot was presented, based on a feedback
linearization approach. In case of zero external force, the
control in [11] reduces to the control of the free-floating
robot in presence of momentum using feedback linearization.
The exact feedback linearization provides the best theoreti-
cal performance. However, for practical implementation on
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torque controlled robots, robustness problems in presence of
uncertain parameters and unmodeled dynamics could arise,
limiting the performance [12].
In this paper, a torque control law for a free-floating robot
in presence of momentum is proposed, that avoids the exact
feedback linearization of the system. A suitable coordinate
transformation is introduced in order to identify and remove
the disturbance on the end effector caused by the momentum,
leaving the inertia of the system unaltered. The proposed
coordinated transformation further allows a stability analysis
of the system. The effectiveness of the proposed control
method has been tested in simulation for a seven degrees
of freedom arm mounted on a mobile base considering
dynamics parameters uncertainties.

In Section II the dynamics of a free-floating robot in
presence of the momentum is analyzed for the case of nonre-
dundant manipulator and the required compensation torque is
derived in Section III. In Section IV the results are extended
to redundant manipulators. In Section V the stability proof
for a redundant manipulator system is presented. Finally,
the applicability of the controller is discussed in VI and the
simulation results are shown in Section VII.

II. FREE-FLOATING ROBOT IN PRESENCE OF MOMENTUM

Let us consider a serial-link space robot composed of
n+ 1 bodies, where n is the number of joints of the robot.
The system is floating in the inertial space with an initial
momentum.
Let us consider the scenario where the robot end effector has
to reach a target frame T attached on the orbit, as represented
in Fig. 1. A base frame B is placed on the satellite CoM
(Center of Mass) and a frame E is placed on the end effector
of the robot.
For the small time scale of the robot maneuver, the orbital
effects can be neglected and the frame T is considered
inertial.

A. Dynamics formulation

In the absence of friction, the forward dynamics of the
space robot is described by the equation [13]:

H(q)v̇ + S(q,v)v = f . (1)

The symbols used here are defined as follows:
H ∈ R(6+n)×(6+n) inertia matrix of the free-floating robot,
S ∈ R(6+n)×(6+n) Coriolis and centrifugal matrix,
q ∈ Rn joint angles,
v ∈ R6+n generalized velocities

[
νTb q̇T

]T
,

νb ∈ R6 base body twist1
[
vTb ωTb

]T
,

q̇ ∈ Rn joint velocities,
f ∈ R6+n generalized forces

[
fTb τT

]T
,

fb ∈ R6 base wrench,
τ ∈ Rn joint torques.

1The components vb ∈ R3 and ωb ∈ R3 are respectively the body
translational and angular velocity of the frame B w.r.t. the inertial frame.
For the definition of the body twists and wrenches see [14].

Henceforth, the functional relation in the equations will be
dropped out, except in the cases where it will be explicitly
needed. Writing the symmetric inertia matrix in block diag-
onal form, it is

H =

[
Hb Hbm

HT
bm Hm

]
, (2)

where Hb ∈ R6×6 is the locked inertia matrix [15] of the
system, Hbm ∈ R6×n is the coupling inertia matrix and
Hm ∈ Rn×n is the inertia matrix of the manipulator.
The end effector body twist νe is given by

νe = J(q)v, (3)

where J =
[
Jb Jm

]
∈ R6×(6+n) is the end effector

Jacobian. The matrices Jb ∈ R6×6 and Jm ∈ R6×n are
respectively the base and manipulator part of J .
The momentum of the whole system, i.e. the sum of the
momenta of each body, around the base reference frame B,
is given by [16]:

hb = Hbνb +Hbmq̇, (4)

being hb ∈ R6 composed of hb =
[
hTbt hTbr

]T
, where

hbt ∈ R3 and hbr ∈ R3 are respectively the linear and
angular parts of the momentum. The momentum can be
projected around the target frame T as

h = A−TJ−Tb hb (5)

where A is the Adjoint matrix [17] from the inertial frame
T to the end effector frame E , defined as

A = A(x̃) =

[
Rt,e [pt,e]

∧Rt,e

03×3 Rt,e

]
, (6)

where x̃ ∈ R6 is a local set of coordinates [14] for the
position pt,e ∈ R3 and the rotation matrix Rt,e ∈ R3×3

of the end effector frame w.r.t. the inertial frame. The
operator [ · ]∧ indicates the skew-symmetric matrix of the
vector argument.
From (4) and (5) the momentum h can be written as a linear
combination of the generalized velocities:

h = L(x̃, q)v = A−T (x̃)L̄(q)v, (7)

where L̄ = J−Tb
[
Hb Hbm

]
. The coupled end effec-

tor/momentum dynamics is derived now using (7) and (3).
A congruent coordinate transformation T ∈ R12×(6+n)

[18] is introduced using the end effector twist νe and the
momentum h: [

νe
h

]
=

[
J
L

]
v = Tv. (8)

In case of nonredundant manipulator and for nonsingular
configurations it is possible to write the inverse transforma-
tion (see Appendix VIII-A):

v = T−1

[
νe
h

]
, (9)



Applying the inverse of (8) on the dynamics in (1) and
multiplying by T−T , is it possible to obtain the transformed
dynamics matrices M ∈ R12×12 and C ∈ R12×12 as:

M = T−THT−1, (10a)

C = T−TST−1 + T−TH
d

dt
T−1. (10b)

The generalized forces f transform as

f = T T
[
fe
fh

]
, (11)

where fe,fh ∈ R6 are the new control inputs. Notice that
fe,fh are dual respectively to νe and h. When the base is
not actuated fb = 0 and (11) reduces to

τ = ĴTmfe, (12)

where Ĵm = Jm − JbH−1
b Hbm is the well-known gener-

alized Jacobian Ĵm of the manipulator [4]. The transformed
dynamics has the form:[

Me Meh

MT
eh Mh

] [
ν̇e
ḣ

]
+

[
Ce Ceh
Che Ch

] [
νe
h

]
=[

fe
−AJbH−1

b JTb fe

]
. (13)

In [19] the joint dynamics was shown to be decoupled
from the momentum in the matrix M , while from (13) it
is possible to see that this result does not hold for the end
effector/momentum dynamics, that is fully coupled.
The force fe is defined as an equivalent end effector force
and it is actually an internal force. However, in (13) it
appears also in the momentum equation. It can be proven
that inserting the first equation of (13) into the second, the
momentum equation results in ḣ = 0. This is in agreement
with the physical fact that the internal force fe can not
cause an increase in the momentum of the total system.

III. MOMENTUM DECOUPLING CONTROL

The first row in (13) provides the end effector dynamics.
Since the momentum is conserved (ḣ = 0) the end effector
equation simplifies to

Me(q)ν̇e+Ce(q,νe,h)νe+Ceh(q, x̃,νe,h)h = fe, (14)

where, with an abuse of notation we indicated Ce(q,νe,h)
with the same symbol after the change of the argument.
The presence of an initial momentum h 6= 0 induces
a disturbance Cehh on the end effector dynamics (14),
differently from the classical case of free-floating with zero
initial momentum. When applying a simple PD control on the
end effector, this term would produce a time varying2 error.
The disturbance could be instead canceled by a control law

fe = Ceh(q, x̃,νe,h)h+ f̄e, (15)

2This point will be further clarified later in SectionVII.

where f̄e is the new control input. The decoupled dynamics
can now be written as

Me(q)ν̇e +Ce(q,νe,h)νe = f̄e. (16)

Note that (16) does not depend on x̃. A controller can be
now designed for the end effector in order to reach a desired
pose in the inertial frame as

f̄e = −JTx̃ν(x̃)Kx̃−Dνe, (17)

where K,D ∈ R6×6 are respectively symmetric positive
definite matrices and Jx̃ν(x̃) ∈ R6×6 is the representation
Jacobian [14] which correlates the error derivative ˙̃x and the
end effector twist νe:

˙̃x = Jx̃ν(x̃)νe. (18)

From (17) and (16), the end effector equation is:

Me(q)ν̇e+Ce(q,νe,h)νe+Dνe+JTx̃ν(x̃)Kx̃ = 0. (19)

As it will be shown in SectionV, the end effector is asymp-
totically stable. In the following section, the approach is
extended to the redundant manipulator case.

IV. REDUNDANT MANIPULATOR CASE

In case of redundant manipulator with r redundant degrees
of freedom, the transformation matrix T in (8) can not be
inverted. A solution is to augment the state [14] with a null-
space velocity vn, in order to get a square transformation
matrix TN ∈ R(n+6)×(n+6):νeh

vn

 =

[
T
N

]
v = TNv, (20)

where N ∈ Rr×(6+n) is a null-space matrix. The matrix N
is defined using a null-space base matrix3 Z ∈ Rr×(6+n),
i.e. satisfying

TZT = 0. (21)

A consequence of the property (21) is that[
Jb Jm

A−TJ−Tb Hb A−TJ−Tb Hbm

] [
ZTb
ZTm

]
= 0⇒ ĴmZ

T
m = 0.

(22)
where the matrices Zb ∈ Rr×6 and Zm ∈ Rr×n are
respectively the base and manipulator submatrices obtained
reordering Z =

[
Zb Zm

]
.

In order to prevent direct coupling of the null-space acceler-
ation in the end effector acceleration and in the momentum
equation, the matrix N must be dynamically consistent, i.e.
it must have the property TH−1NT = 0. One can choose
the null-space matrix [21] as

N =
(
ZHZT

)−1
ZH. (23)

Applying the inverse of (20) on the dynamics in (1) and
multiplying by T−TN , the transformed dynamics matrices

3One possible choice for the matrix Z, as proposed in [20], is: Z =[
−T T

r T−T
s I

]
, where Ts ∈ R12×12 and Tr ∈ R12×r are respectively

the square and redundant submatrices obtained reordering T =
[
Ts Tr

]
.



MN ∈ R(12+n)×(12+n) and CN ∈ R(12+n)×(12+n) can be
obtained as

MN = T−TN HT−1
N , (24a)

CN = T−TN ST−1
N + T−TN H

d

dt
T−1
N . (24b)

The generalized forces f transform as

f = T T

fefh
fn

 , (25)

where fn ∈ Rr is a null-space force force dual to vn. When
the base is not actuated fb = 0 and (25) reduces to

τ = ĴTmfe + N̂Tfn, (26)

where N̂ is the generalized null-space matrix of the free-
floating, defined as

N̂ =
(
ZmĤmZ

T
m

)−1

ZmĤm, (27)

where Ĥm = Hm−HT
bmH

−1
b Hbm is commonly indicated

as “generalized inertia matrix” of the free-floating arm [22].
Notice that, similarly to the case of the transposed general-
ized Jacobian for the end effector force, a transposed gen-
eralized null-space matrix should be used for the null-space
force of a free-floating robot. Considering the properties (21)
and (22), the transformed dynamics can be written in the
formMe Meh 0

MT
eh Mh 0

0 0 Mn

ν̇eḣ
v̇n

+

 Ce Ceh Cen
Che Ch Chn
Cne Cnh Cn

νeh
vn


=

 fe
−AJbH−1

b JTb fe
fn

 . (28)

From (28) it is possible to see that the null-space velocity
vn is inertially decoupled from the rest of the state, as a
consequence of the dynamically consistent null-space matrix
chosen in (23). However, the system is still fully coupled in
the Coriolis/centrifugal matrix CN . In particular, it is again
possible to note a coupling of the momentum h both on
the end effector and the null-space dynamics by means of
the terms Ceh and Cnh. Furthermore, in the redundant case,
an additional term Cen couples the null-space in the end
effector. Similarly to the nonredundant case, inserting the
first equation of (28) into the second one, ḣ = 0 is obtained.
A momentum decoupling law can now be defined such that

fe = Cehh+Cenvn + f̄e, (29a)
fn = Cnhh+Cneνe + f̄n, (29b)

where f̄ and f̄n are the new control inputs. The control law
(29) cancels the effect of the momentum h in the system
and further decouples the reciprocal effect between the end
effector and the null-space motion. A PD control law can

then be chosen in order to regulate a desired end effector
position, while damping out the null-space motion vn:

f̄e = −JTx̃νKx̃−Dνe, (30a)
f̄n = −Dnvn. (30b)

The end effector and null-space equations obtained from
(28), (29) and (30) therefore are

Me(q)ν̇e +Ce(q,χ)νe +Dνe + JTx̃ν(x̃)Kx̃ = 0, (31a)
Mn(q)v̇n +Cn(q,χ)vn +Dnvn = 0, (31b)

where χT = [νTe ,h
T ,vTn ] ∈ R12+r for brevity.

In the following section, the stability proof will be ad-
dressed.

V. STABILITY ANALYSIS

A stability analysis for the redundant system is developed
in the following, where the nonredundant case can be ob-
tained as a subcase removing vn from the proof.
Let us define a region Q which excludes the singularities of
the generalized Jacobian Ĵm:

Q = {q ∈ Rn : σmin

(
Ĵm(q)

)
> σ0 > 0}, (32)

where σmin = infq∈Ω Ĵm(q) is the minimum possible
singular value of Ĵm(q). In the set Q the inverse T−1

N of the
transformation (20) is bounded and the standard properties
of the dynamics matrices H(q) and S(q,v) can be extended
[14] to the transformed matrices MN (q), CN (q,χ).
Considering a robot model with revolute joints, the following
properties are considered [13],[23]:

Property 1. The matrix MN (q) is symmetric and positive
definite for all q ∈ Q.

Property 2. The matrix CN (q,χ) and the time derivative
ṀN(q) for all q ∈ Q, χ ∈ R12+r satisfy

χT [ṀN (q)− 2CN (q,χ)]χ = 0. (33)

Property 3. There exist positive constants λMn,min,
λMn,max, γCn, γCnd1, γCnd2 such that for all q ∈ Q,
χ ∈ R12+r it is

λMn,min ≤ ‖MN (q)‖ ≤ λMn,max, (34a)
‖CN (q,χ)‖ ≤ γCN

‖χ‖, (34b)

‖ĊN (q,χ)‖ ≤ γCNd1‖χ‖+ γCNd2‖χ̇‖. (34c)

Remark 1. The properties 1, 2, 3 hold also for the subma-
trices Me, Mn, Ce, Cn.

Without loss of generality, let us further assume a quater-
nion representation for the error x̃, which leads ∀x̃ ∈ R6,
νe ∈ R6 to

‖Jx̃ν(x̃)‖ ≤ µ1, ‖J̇x̃ν(x̃)‖ ≤ µ2‖νe‖. (35)



with µ1, µ2 > 0.
In order to analyze the asymptotic stability of the system
(31), let us rewrite it as a time-varying system of the form:

Me(t)ν̇e +Ce(t)νe +Dνe +KJTx̃ν(x̃)x̃ = 0, (36a)
Mn(t)v̇n +Cn(t)vn +Dnvn = 0. (36b)

In this form the joints position q has been removed from the
equations and the state is zT =

[
x̃T νTe vTn

]
∈ R12+r

.

Remark 2. For q ∈ Ω the properties 1, 2, 3 hold also for the
time-varying system (36).

In the following, some preliminary properties of the states
of the system (36) are proven in Lemma 1. The Lemma
is reported here without proof, that can be found in Ap-
pendix VIII-B. Then, in Proposition 1 the stability proof is
addressed.

Lemma 1. If q ∈ Q, then there exists a set Ω such that the
states x̃, νe, vn, the accelerations ν̇e, v̇n and the matrices
ṀN (t), ĊN (t) are bounded.

For the proof of the asymptotic stability of the end effector
dynamics some results regarding the stability properties of
time-varying systems are used [24].

Proposition 1. If q ∈ Q, then z = 0 is an asymptotically
stable equilibrium point for the system (36).

Proof. A time-varying function V (t, z) can be defined as

V (t, z) =
1

2
νTeMe(t)νe +

1

2
vTnMn(t)vn +

1

2
x̃TKx̃ (37)

Let us call λB,min and λB,max respectively the minimum
and maximum eigenvalue of a matrix B. For z ∈ Ω, the
function V (t, z) is positive definite and decrescent, since
it is lower and upper bounded respectively by two positive
definite functions Vmin(z) and Vmax(z):

Vmin(z) =
1

2
λMe,minẋ

2
e +

1

2
λMn,minv

2
n +

1

2
λK,minx̃

2

(38)

Vmax(z) =
1

2
λMe,maxẋ

2
e +

1

2
λMn,maxv

2
n +

1

2
λK,maxx̃

2

(39)

The time derivative of V is negative semidefinite. In fact:

V̇ (t, z) = νTe
(
−Ceνe −Dνe − JTx̃νKx̃

)
+

1

2
νTe Ṁeνe+

+ vTn (−Cnvn −Dnvn) +
1

2
vTn Ṁnvn + νTe J

T
x̃νKx̃ =

=
1

2
νTe

(
Ṁe − 2Ce

)
νe +

1

2
vTn

(
Ṁn − 2Cn

)
vn+

− νTe Dνe − vTnDnvn = −νTe Dνe − vTnDnvn ≤ 0.
(40)

where Property 2 has been used. Therefore, the system is
(uniformly) stable.
The convergence can be proven by means of a double
application of the Barbalat’s lemma (see Appendix VIII-B).

To do so, we need to analyze the boundedness of V̈ (t, z).
Applying Lemma 1, it exists a set Ω where νe, ν̇e, vn, v̇n
are bounded and, accordingly:

|V̈ (t, z)| = | − 2νTe Dν̇e − 2vTnDnv̇n|
≤ 2c1c4λD,max + 2c3c5λDn,max, (41)

where c1, c3, c4, c5 > 0 are respectively the bounds of
νe,vn, ν̇e, v̇n, as derived in Appendix VIII-B.
Applying Barbalat’s Lemma on V (t, z) it results V̇ (t, z)→
0 and accordingly νe → 0 and vn → 0, i.e. the end effector
and nullspace velocities converge to zero.
Let us now take in consideration the second order time
derivative ν̈e of the end effector twist, which can be obtained
differentiating (36a):

Ṁeν̇e +Meν̈e + Ċeνe +Ceν̇e +Dν̇e

+KJTx̃νJx̃ννe +KJ̇Tx̃νx̃ = 0, (42)

where (18) has been used. Considering (35) and Lemma 1,
also ν̈e can be proven to be bounded. In fact:

‖ν̈e‖ ≤ ‖M−1
e ‖ (‖Ṁe +Ce +D‖ ‖ν̇e‖+

+ ‖Ċe +KJTx̃νJx̃ν‖ ‖νe‖+ ‖KJ̇x̃ν‖ ‖x̃‖) ≤ c6. (43)

with c6 > 0. Applying Barbalat’s Lemma on νe, it follows
that ν̇e → 0.
The convergence of the end effector error x̃ can be finally
shown doing the limit of equation (36a):

lim
t→∞

[
Me(t)ν̇e +Ce(t)νe +Dνe +KJTx̃ν(x̃)x̃

]
= 0

(44)
Considering (35), it follows x̃ → 0. Then, the system (36)
is asymptotically stable.

VI. CONTROLLER DISCUSSION

Considering the inverse of (20) it is possible to see that,
while the end effector and nullspace velocities go to zero,
the coupled base-joints motion continues to evolve as a
consequence of the constant generalized momentum h:

νb → J−1
b JmĴ

#
mJbH

−1
b JTb A

Th (45a)

q̇ → −Ĵ#
mJbH

−1
b JTb A

Th (45b)

In case of zero initial momentum, the joint and base
velocities converge to zero and the proposed control
coincides with the classical transposed generalized Jacobian
control [6].

A. Limitation of the controller

The convergence of the end effector is guaranteed only
when the singularities of Ĵm(q) are avoided. However, in
presence of initial momentum, the singularities could be
encountered also when the end effector has converged, due
to the highlighted persistent joint motion. Considering for
example the particular case of ht 6= 0, i.e. the system has
a linear momentum, the joints will necessarily reach after a
certain time a singular configuration. This result, observed



also in [8], [11], is a natural consequence of the fact that
it is not possible to control the end effector in the inertial
frame for an indefinite time if the whole system is moving
in space with a translational velocity. On the other hand, in
the case of only angular momentum ht = 0, the problem of
singularity could be less restrictive and singularity-free paths
could be found. In this case, however, the robot will likely
converge to joint limits, due to the continuous rotational joint
motion induced by the angular momentum.
In conclusion, until a singularity is reached, the error will
continuously decrease due to the proven convergence prop-
erties. In this way, the required end effector precision could
be ensured during the time of the gripper closure. Additional
measures need to be taken to avoid entering the singularities,
for example by activating the satellite thrusters.
From a theoretical point of view, the controller has no
assumption on the maximum amount of momentum that can
be handled. However, in practice, for higher momenta, the
smaller time to singularity will limit the applicability of the
control and additional satellite control would be required

B. Practical implementation

The proposed controller is based on the cancellation of
the disturbance term Cehh, Cenvn from the end effector
dynamics. The matrices Ceh, Cen can be evaluated using
an online dynamics implementation and the quantities h, vn
can be calculated using (7), (20) as

h = Lb(x̃, q)νb +Lm(x̃, q)q̇, (46)
vn = Nb(q)νb +Nm(q)q̇. (47)

The base twist νb can estimated using (3):

νb = J−1
b (q)νe − J−1

b (q)Jm(q)q̇. (48)

In this way the estimation of the momentum does not need
any information about the satellite state but only joint q, q̇
and end effector measurements x̃,νe. The latter could be
obtained using a tip mounted camera pointing a target object
in the inertial frame.

VII. SIMULATION RESULTS

A seven degrees-of-freedom free-floating robot in pres-
ence of linear and angular momenta is simulated, in or-
der to verify the proposed control method. The kinemat-
ics and dynamics parameters of the robot are defined
in Tab. I. The initial joints configuration is q(0) =
[0, 60, 0,−60, 0, 30, 0] deg, as schematically depicted in
Fig. 1. The initial linear and angular momenta are re-
spectively hbt = [−0.8,−0.38, 21.6] kg m/s and hbr =
[0.65,−19.63, 0.87] kg m3/s, corresponding to an initial
linear velocity of the base vb = [−2.0, 1.0, 53] mm/s and
to an angular velocity of ωb = [−0.2,−3.3, 0.2] deg/s.
A step input ∆p = [−3.5, 0,−3] cm, ∆φ = [0, 5, 0] deg on
the end effector is commanded to the robot in the case of:

1) End effector PD control using the transposed general-
ized Jacobian [6], i.e.

τ = ĴTm
(
−JTx̃νKx̃−Dνe

)
. (49)

TABLE I
PARAMETERS OF THE FREE-FLOATING ROBOT

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]

Base 1.17 375 165 280 250
Link 1 0.17 5.1 0.03 0.03 0.03
Link 2 1.3 18.8 1.65 0.64 1.65
Link 3 0.17 8.9 0.15 0.03 0.14
Link 4 1.3 12.0 0.25 0.03 0.25
Link 5 0.17 11.7 0.26 0.03 0.26
Link 6 0.1 5.5 0.02 0.02 0.03
Link 7 0 4.7 0.02 0.01 0.01

2) Proposed momentum compensation control (Eq (26),
(29), (30)).

The stiffness and damping values used are respectively
Kt = 165 N/m and Dt = 175 Ns/m for the translation,
Kr = 20 N/rad and Dr = 20 Ns/rad for the rotation.

The norm of end effector position error is shown in
Fig. 2 for both controllers. The joint angles and base
attitude are shown for the proposed control respectively in
Fig. 3 and Fig. 4.
The results show that for the proposed control the end
effector converges to the desired position. On the other
hand, a deviation on the end effector is induced in case that
the momentum compensation is not used.
In general, this deviation is time-varying and its magnitude
depends on both the initial momentum and on the particular
maneuver commanded to the robot, since Ceh = Ceh(q(t)).
In fact, from Fig. 3 and Fig. 4 it is possible to notice that
the joints and base motion continues to evolve while the
end effector remains fixed, as a consequence of the presence
of momentum. This explains the time-variability of the
disturbance.

Finally, the convergence of the nullspace velocity vn is
represented in Fig. 5, showing the effectiveness of the
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Fig. 2. Norm of the end effector position error for the PD control and for
the proposed control.
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Fig. 3. Joint angles with the proposed control.
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Fig. 4. Attitude of the base.

nullspace control.
Since the proposed control is based on the online dynamic

model of the space robot, uncertainties in the dynamics
parameters are introduced, in order to test the robustness. The
proposed controller has been tested with 20 randomly gen-
erated models, considering for each body 10% uncertainty
in the mass and 40% uncertainty in the inertias and in the
CoMs. Fig. 6 shows an envelope of norm of the step response
of the proposed controller with the uncertain models. The re-
sults show that the controller is robust considering dynamics
parameters uncertainties and a worst-case deviation of 3.5
mm from the nominal behavior is obtained.

VIII. CONCLUSIONS AND FUTURE WORKS

In this work, the dynamics of a free-floating system in
presence of linear and angular momenta has been investi-
gated. It has been shown that the presence of the momentum
introduces a drift on the end effector and a torque control
law has been proposed in order to compensate that distur-
bance without exactly feedback linearizing the system. For
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Fig. 5. Nullspace velocity with the proposed control.
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Fig. 6. Envelope of step response (norm) of the end effector for the
proposed controller for 20 uncertain models.

the proposed controller a stability proof was given under
the hypothesis of non-singularity of the space robot. The
effectiveness of the control has been tested in simulation
considering model uncertainties. Further investigations could
focus on the study of the trajectories of a free-floating system
under the effect of momentum in order to clarify whether is
possible to find singularity-free paths where the controller
behavior is well defined.

APPENDIX

A. Inversion of the transformation TN

The inverse transformation can be obtained [14] as T−1
N =[

T# ZT
]
, calculating the weighted pseudoinverse T# =

H−1T T
(
TH−1T T

)−1
in explicit form:

T# =

[
−H−1

b HbmĴ
#
m J−1

b JmĴ
#
mJbH

−1
b JTb A

T

Ĵ#
m −Ĵ#

mJbH
−1
b JTb A

T

]
,

(50)
being Ĵ#

m = Ĥ−1
m ĴTm(ĴmĤ

−1
m ĴTm)−1 the weighted pseudo-

inverse of the generalized Jacobian Ĵm with a weight matrix



Ĥm. Notice that for nonredundant robot Ĵ#
m = Ĵ−1

m and
T# = T−1.

B. Lemmas

Lemma 1. If q ∈ Q, then there exists a set Ω such that the
states x̃, νe, vn, the accelerations ν̇e, v̇n and the matrices
ṀN (t), ĊN (t) are bounded.

Proof. Let us consider the positive definite function V (t, z)
defined in (37). Choosing a constant V0 > 0, let us a define
a set Ω =

{
z ∈ R12+r : V (z) ≤ V0

}
.

Considering that V̇ (t, z) ≤ 0, it follows that there exist
c1, c2, c3 > 0 such that ∀z ∈ Ω it is

‖νe‖ ≤ c1, ‖x̃‖ ≤ c2, ‖vn‖ ≤ c3. (51)

Using (34), (35) and (51), the bounding limits for the end
effector and nullspace accelerations ν̇e and v̇n are:

‖ν̇e‖ = ‖ −M−1
e Ceνe −M−1

e Dνe −M−1
e JTx̃νKx̃‖

≤ γCe(c1 + c3 + h) + λD,max
λMe,min

c1 +
λK,maxµ1

λMe,min
c2 = c4,

(52a)

‖v̇n‖ = ‖ −M−1
n Cnvn −M−1

n Dnvn‖

≤ γCn(c1 + c3 + h) + λDn,max
λMn,min

c3 = c5, (52b)

with c4, c5 > 0. The bounding limit for Ṁe is obtained from
(33) as

‖Ṁe‖ = ‖Ce +CT
e ‖ ≤ 2γCe‖χ‖ ≤ 2γCe(c1 + c3 + h).

(53)
The bounding limit for Ċe is obtained considering (51), (52):

‖Ċe‖ ≤ γCed1‖χ‖+ γCed2‖χ̇‖
≤ γCed1(c1 + c3 + h) + γCed2(c4 + c5). (54)

The Barbalat’s Lemma is reported here from [24] in form
of corollary.

Barbalat’s Lemma. If a differentiable function f(t) has a
finite limit as t → ∞, and is such that f̈ exists and is
bounded, then ḟ(t)→ 0 as t→ 0.
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