
Publications of the DLR elibelibelib

This is the author’s copy of the publication as archived with the DLR’s electronic library at http://elib.dlr.de. Please
consult the original publication for citation.

Software Architecture and Design of the Kontur-2 Mission
Martin Stelzer; Peter Birkenkampf; Bernhard Brunner; Bernhard-Michael Steinmetz; Jörg Vogel;
Stefan Kühne

Copyright Notice
c 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Citation Notice
@ARTICLE{mypaper,

author = {Martin Stelzer and Peter Birkenkampf and Bernhard Brunner and Bernhard-Michael Steinmetz and J\"org Vogel and Stefan K\"uhne},

title = {Software Architecture and Design of the Kontur-2 Mission}

}

[1] Martin Stelzer, Peter Birkenkampf, Bernhard Brunner, Bernhard-Michael Steinmetz, Jörg Vogel, and Stefan Kühne.
Software architecture and design of the kontur-2 mission.

Software Architecture and Design of the Kontur-2
Mission

Martin Stelzer
German Aerospace Center (DLR)
Robotics and Mechatronics Center

Weßling, Germany
+49 8153 28 2153

Martin.Stelzer@dlr.de

Peter Birkenkampf
German Aerospace Center (DLR)
Robotics and Mechatronics Center

Wessling, Germany
+49 8153 28 1879

Peter.Birkenkampf@dlr.de

Bernhard Brunner
German Aerospace Center (DLR)
Robotics and Mechatronics Center

Wessling, Germany
+49 8153 28 1791

Bernhard.Brunner@dlr.de
Bernhard-Michael Steinmetz

German Aerospace Center (DLR)
Robotics and Mechatronics Center

Wessling, Germany
+49 8153 28 2488

Michael.Steinmetz@dlr.de

Jörg Vogel
German Aerospace Center (DLR)
Robotics and Mechatronics Center

Wessling, Germany
+49 8153 28 1049

Jörg.Vogel@dlr.de

Stefan Kühne
German Aerospace Center (DLR)
Robotics and Mechatronics Center

Wessling, Germany
+49 8153 28 2400

Stefan.Kuehne@dlr.de

Abstract—This paper describes the software architecture and
design of the space segment, communication and ground seg-
ment software of the Kontur-2 project, which contributed to the
realization of telepresent planetary exploration. The main re-
search objectives in Kontur-2 were the development and in-flight
verification of a space qualified two degree of freedom (DoF)
force-feedback joystick (RJo) inside the Zvezda Service Module
of the International Space Station (ISS), the implementation of
telepresence technologies and the study of human performance
when controlling a force feedback joystick in microgravity. The
project was conducted from 2012 to 2015 by a consortium
consisting of the German Aerospace Center (DLR), the Russian
Federal Space Agency (ROSCOSMOS), The Russian State Sci-
entific Center for Robotics and Technical Cybernetics (RTC),
S. P. Korolev Rocket and Space Corporation Energia (RSC
”Energia”) and the Yuri A. Gagarin State Scientific Research-
and-Testing Cosmonaut Training Center (GCTC). The DLR
conducted two sets of experiments in which a cosmonaut on
ISS used RJo to perform different tasks with robots located
on-ground. The first set was conducted with a two DoF robot
equipped with a camera system, a task board and torque sensors
that allowed the cosmonaut to perceive forces caused by contacts
with the environment. For the second set of experiments we
used a humanoid robot to perform a tele-handshake and a
cooperative task between the cosmonaut on ISS and colleagues
at RTC in St. Petersburg.

To realize these experiments, the consortium developed on-
board and on-ground software which will be described in this
paper. The space segment software consists of the control
software for RJo and user interfaces on a laptop to guide the
cosmonaut efficiently through the experiments. We designed a
state machine for these user interfaces to capture state changes
during the experiment execution. This way we provided only
relevant contextual information to the cosmonaut. On RJo,
we deployed a component framework combining a data-centric
architecture with a CCSDS Space Packet interface. Additionally,
we designed the communication software for supporting a direct
multi-channel connection between ground control and ISS using
our own S-band radio equipment. During contact to ISS, the
ground operators used the ground segment software at DLR for
experiment support, supervision, maintenance and data logging.
The visual feedback from the camera system required by the
cosmonaut to perform the experiments was provided by a low-
latency video stream through a communication channel with
very restricted bandwidth.

During 23 experiment sessions in 2015, the Kontur-2 software
formed the basis of the successful completion of the experiments.
Their results contributed to the fields of telepresence technolo-
gies and human factors.

978-1-5090-1613-6/17/31.00 c©2017 IEEE

TABLE OF CONTENTS

1. INTRODUCTION . 2
2. RELATED WORK . 2
3. SOFTWARE REQUIREMENTS . 3
4. SYSTEM SETUP . 3
5. SPACE SEGMENT SOFTWARE . 5
6. COMMUNICATION SOFTWARE . 8
7. GROUND SEGMENT SOFTWARE 10
8. MISSION OPERATIONS . 14
9. CONCLUSIONS . 14
REFERENCES . 15
BIOGRAPHY . 16

Figure 1. Cosmonaut O. Kononenko with RJo on-board
the ISS (Source: ROSCOSMOS)

1

Figure 2. KONTUR-2 scenario as supported by DLR

1. INTRODUCTION
For decades humans have been exploring our solar system not
only to satisfy their curiosity, but also to gather knowledge
about where we live now and where we may live in future.
To coordinate these efforts in space exploration between
space agencies around the world, the International Space
Exploration Coordination Group (ISECG) has set up the
Global Exploration Roadmap (GER) in 2011 and updated it in
2013 [1]. The GER recognizes that human robot partnership
has potential to increase benefits in the exploration of moon
or mars. It also mentions the concept of telepresence [2]. In
this concept an astronaut situated e.g. in a spacecraft orbiting
a planet or moon teleoperates a robot on the surface with
low latency. Tasks that require fast decision making or high
dexterity could benefit from this concept in terms of increased
scientific return or an increased number of achievable scientific
objectives. However, two main challenges arise during
teleoperation of a robot from an orbiting spacecraft. First,
despite the time delay a stable and realistic haptic feedback is
required [3]. Second, the operators‘ control precision degrades
in microgravity [4].

The GER also encourages the space agencies to utilize the
International Space Station (ISS) for research activities and
technology demonstrations. In alignment with this roadmap
a consortium consisting of the German Aerospace Center
(DLR), the Russian Federal Space Agency (ROSCOSMOS),
The Russian State Scientific Center for Robotics and Tech-
nical Cybernetics (RTC), S. P. Korolev Rocket and Space
Corporation Energia (RSC ”Energia”) and the Yuri A. Gagarin
State Scientific Research-and-Testing Cosmonaut Training
Center (GCTC) conducted the Kontur-2 project from 2012
to 2015. DLR’s main research objectives in the Kontur-2
project were the development and in-flight verification of a
space qualified two degree of freedom (DoF) force-feedback
joystick (RJo) inside the Zvezda Service Module of the ISS,
the implementation of telepresence technologies that can cope
with time delay and the study of human performance when
controlling a force feedback joystick in microgravity [5]. For
this, DLR and RTC implemented two sets of experiments in
which a cosmonaut on ISS (see Figure 1) used RJo to perform
different tasks with remotely controlled robots located on-
ground at DLR (cf. Figure 2).

The first set of experiments was conducted with a two DoF
robot equipped with a camera system, a task board and torque
sensors that allowed the cosmonaut to perceive forces caused
by contacts with the environment.
For the second set of experiments we used DLR’s humanoid
robot to perform interactive tasks between the cosmonaut on
ISS and a coworker on-ground: A tele-handshake (DLR) and
a cooperative object manipulation (DLR and RTC).

RTC in St. Petersburg performed similar experiments with
their own robots on-ground: A stationary, kinematical redun-
dant snake-like robot surrounded by its own workspace and
a small wheeled mobile robot which was used for remotely
controlled exploration of a different workspace [6]. However,
as this paper focuses on DLR’s contribution to Kontur-2, a
more detailed explanation of RTC’s scientific goals, their
own experiments and their software architecture is beyond
the scope of this paper.

In general the Kontur-2 setup relies on equipment of its
precursor missions ROKVISS (Robot Component Verification
on ISS) [7] and Kontur [8], such as the whole radio-based
communication infrastructure and the small two DoF robot.
The main goals of the ROKVISS experiment were the ver-
ification of light-weight robotic components under realistic
mission conditions in free space, as well as the verification of
direct telemanipulation of this robot using a force feedback
joystick as haptic input device on-ground. In the Kontur
project the teleoperation of the robot on ISS was conducted
from St. Petersburg via public Internet. In simple terms, the
ROKVISS and Kontur setups were mirrored in Kontur-2. Of
course the reuse had a great potential of saving costs. However,
it also imposed challenging boundary conditions that will be
discussed later.

The architecture and design of the on-board and on-ground
software developed to realize the Kontur-2 experiments will
be described in this paper. To the knowledge of the authors,
this is this first time the software architecture of such a
telerobotic system is described in detail. The outline is as
follows: Work related to this paper is sketched in Section 2.
Section 3 details the requirements for the Kontur-2 software.
After that, a brief overview of the mission setup is given in
Section 4. The static architecture of the software is detailed
in Section 5 for the space segment, in Section 6 for the
communication part and in Section 7 for the ground segment.
Section 8 gives an introduction to the mission operations
of Kontur-2 to emphasize specific aspects of the software’s
dynamic architecture. Finally, Section 9 concludes the paper
with a brief description of the mission results and an outlook
to upcoming missions related to Kontur-2.

2. RELATED WORK
Besides the Kontur-2 consortium the European Space Agency
(ESA) is another stakeholder for telerobotics on space. The
aim of their Multi-purpose End-To-End Robotic Operations
Network (METERON) is the control of robotic systems from
a planetary orbiter with different human-robot interfaces
[9]. Within the frame of METERON, the first haptic master
device with one DoF was launched to ISS in 2014 during the
Haptics-1 mission [10]. Three astronauts performed force-
feedback and human perceptual motor performance tests with
this device to study the influences of microgravity on psycho-
motor performance metrics. The same haptic input device
was used in Haptics-2 to teleoperate a one DoF slave device
on-ground [11]. The communication was performed via

2

packet header haptic data video data

haptic data video data

Available bandwidth: 256 kbit/s

Kontur-2

haptic data video data
ROKVISS

packet header

Figure 3. Bandwidth allocation in ROKVISS and
Kontur-2

geostationary relay satellites resulting in a round trip time
of about 0.8 seconds. In INTERACT the slave device on-
ground was replaced by the Interact Centaur robot to perform
a sequence of remotely operated tasks [12]. The Supvis-Justin
Experiment is currently slated for 2017 and will use high level
commands entered via a user interface on a tablet PC instead
of haptic feedback to control a service robot on-ground [13].
The aim of this experiment is to investigate the viability of
supervised autonomy in telerobotic tasks.

3. SOFTWARE REQUIREMENTS
This section focuses on the software requirements of the
Kontur-2 mission since requirements regarding the electrical
and mechanical parts of RJo have already been introduced by
Riecke et al. [5].

To conduct the experiments according to the scientific program
we had to implement two different kinds of setups (with two
different robots), which will be described in detail in Section 4.
Furthermore, a video stream to ISS was required to give the
cosmonaut an adequate overview of the task board. During
the mission we even had to supplement this video stream by a
bidirectional audio and video connection to enable interactive
sessions with the cosmonaut. Besides that, a LED board had to
be built and controlled according to the task sequence. Finally,
several user interfaces were required that are able to guide the
cosmonaut through the experiments.

In practice, the provision of bandwidth for data transmission is
strongly limited not only by technical reasons but also by
the requirement to reuse already installed communication
resources whenever possible. It was already mentioned
in the introduction that the Kontur-2 project relies on the
communication infrastructure of ROKVISS [7]. Therefore,
the data transfer concept of the project Kontur-2 was designed
for exclusive reuse of this already existing Russian / German
owned serial S-Band link between the Russian Zvezda Service
Module at ISS and DLR’s ground control at Oberpfaffenhofen,
Germany (via DLR’s tracking station at Weilheim, Germany).
This link supports some substantial features:

• It has a strong asymmetric data transmission characteristic
(256 kbit/s uplink rate to ISS and 4 Mbit/s downlink rate from
ISS). The reason for this asymmetric bandwidth allocation was
that in ROKVISS a stereo video had to be transmitted from
the space segment to the ground segment only. This allocation
could not be changed without deploying new communication
hardware on ISS.
• In ROKVISS the data packages used a standard protocol
defined by the Consultative Committee for Space Data Sys-
tems (CCSDS) featuring a bandwidth for application data of
128 kbit/s in the uplink and 3.8 Mbit/s in the downlink. As
per definition the haptic data for telepresence would always
consume 50% of the uplink bandwidth for the application data,
we did not have confidence in the feasibility of transferring a
video in sufficient quality with the remaining 64 kbit/s. During
the project Kontur-2 we were able to reduce the CCSDS

protocol overhead in the uplink which lead to a bandwidth
of 192 kbit/s for application data that is equivalent to a
50% increase of application data bandwidth in the uplink (cf.
Figure 3). Nevertheless, it was still challenging to implement
a smooth video stream with only 96 kbit/s available. Section 7
will illustrate our solution.
• The internal bidirectional transfer rate is 1.0 kHz resulting in
a data package size of 32 bytes including protocol information
and application data.
• An internal three-level concept supports a prioritized data
transfer over the serial radio link.
• Multiple virtual data channels are available for quasi si-
multaneous data transfer via clocked time-multiplex of the
underlying serial radio link.

In principle, radio contact is possible for four consecutive
ISS orbits per day, but each contact is affected - to a greater
or lesser extent - by different overlapping of the transmitter
lobe, shadowing effects or specular / diffuse reflections of the
radio signal at protruding ISS components. An unfavorable
flight attitude of ISS intensifies or alleviates those problems.
Typically such effects deteriorate the quality of the received
signal and can cause an undesirable temporary loss of signal
(LOS) in the worst case at any time. For that reason all
communication links had to be equipped with a fast but
unbuffered auto-resume capability.
Moreover, two interface computers called On-Ground Com-
puter (OGC) and On-Board Computer (OBC) were an essen-
tial part of the ROKVISS infrastructure. They were utilized to
encode and decode the application data for transmission via
the radio link. Their further use for the Kontur-2 infrastructure
was mandatory. But the software running on these computers
had to be adjusted for the Kontur-2 mission for two reasons:

• providing external interfaces to the three internal priority
levels of the serial communication channel, i.e. real-time data
for telepresence, telemetry/telecommand data, and low priority
data for video streaming and maintenance.
• increasing the internal bandwidth for application data by
using a minimized CCSDS protocol overhead.

The inevitable remote exchange of essential communication
software on a multiple CPU hardware already in space is really
an extremely mission critical process which must not cause
any dead-lock by incompatible software versions even in case
of update faults. This requirement has an dramatic impact on
the design of the new software and the upload procedure.

An additional requirement regarding fault tolerance was to
have more than one storage for RJo’s software to tolerate
hardware faults and allow for a fail-safe software update
mechanism.

Finally, due to the scientific character of the Kontur-2 ex-
periment, it was a mandatory requirement to record all the
available experimental data.

As a matter of fact such practical limitations are quite
challenging for proving new concepts (e.g. for control) under
realistic constraints. Nevertheless, the resulting experimental
setup relies on proven technology as it could be used for real
applications later on.

4. SYSTEM SETUP
Before we explain how these requirements were implemented,
this section gives a more detailed overview of the Kontur-2
system setup.

3

Figure 4. Kontur-2 system setup

Space segment overview

The upper part in Figure 4 symbolizes the hardware on ISS
comprising the following elements:

• External Memory Unit (EMU)
• Portable Control Computer (PCC)
• Force-feedback joystick (RJo)
• On-Board Computer (OBC)
• Communication Unit for Payloads (CUP)

These elements can be grouped into two primary systems, i.e.
the cosmonaut’s workstation and the communication gateway.
The workstation consists of the PCC for user I/O (including
video and audio), the EMU which contains the operating
system and user interface software, and RJo. DLR designed
and built RJo as a haptic input device for the cosmonaut. It
contains an ARM Cortex A8 micro controller with a microSD
card interface, an on-board NAND-Flash, two EEPROMs and
two motor modules with EtherCAT interfaces. The exclusive
communication gateway on-board is a reused part of the
ISS infrastructure and consists of the OBC for data handling
and the CUP for real-time radio transmission. It allows an
exclusive real-time data exchange with its counterpart on-
ground in basically mirrored configuration.

Ground segment overview

The lower part in Figure 4 shows the mirrored configuration
of the communication gateway, which mostly consists of a
tracking station, the On-Ground Computer (OGC), and the
various setups that have been established for Kontur-2 on-
ground, i.e. the experiment setups of DLR and RTC, as well
as the cosmonaut training setup at GCTC.

Experiment setup of DLR—The setup focuses on standardized
experiments in order to investigate human hand-eye coordina-
tion, skillfulness and force-feedback in mircogravity. For that
a small fix mounted two DoF robot (ROKVISS robot) is used

with its specific task board which offers an environment for
experiments with and without mechanical contact. A stylus
on top of the robot’s last link serves as pointing device for
experiments without environment contact (light spot aiming,
moving light spot pursuit tracking) or as touch device for
experiments with environment contact (contour following, line
tracing, spring pulling, free telepresence) [4]. The robot itself
is equipped with a stereo camera system and torque sensors
that allow the cosmonaut to sense the relative motion and the
contact forces between stylus and environment. An additional
fixed camera aligned with the task board allows a global view
for aiming and pursuit tracking tasks. Throughout the paper,
we will refer to this setup as the task board setup. Within
this setup, the cosmonaut had to perform free motion tasks
without physical interaction in order to investigate positional
accuracy, as well as contact tasks in order to explore force
regulation. In principle, the sequence of a task was as follows:
An operator on-ground selected the desired task to perform,
as soon as both uplink and downlink to the space station had
been established. Upon this, the task and its description was
displayed at the cosmonaut’s user interface, the robot moved to
the corresponding position of the task board and an appropriate
camera was selected (robot or static camera) to provide the
video stream. Next, the cosmonaut had to move the joystick
handle to a predefined, task-specific starting position to create
reproducible conditions over all the sessions of this task. Once
this position was reached and held for a few seconds the
cosmonaut had to press the deadman button. This enabled
the telepresent control of the robot, so that the cosmonaut
could conduct the task. The procedure was repeated until the
signal to the space station was lost.

In extension to the previous experiment scenario DLR’s
humanoid robot SpaceJustin, which is a modified version of
DLR’s humanoid two-arm system Justin [14], was remotely
controlled by the cosmonaut in order to interact with persons or
objects on-ground in place of himself. In order to enhance the
immersion, those activities were supported by a bidirectional
live audio and video transmission. For those tasks the right
arm of SpaceJustin was linked to the RJo on ISS and the left
arm to an RJo at RTC in St. Petersburg. This setup will be
referred to as SpaceJustin setup in the remainder. During both
tasks the cosmonaut used SpaceJustin as a robotic avatar for
shaking hands with an operator on-ground and for grasping
and moving of a ball in cooperation with colleagues at RTC.

Experiment setup of RTC—In this setup RTC uses its own
kinematical redundant snake-like robot irremovable placed
inside a structured workspace. It is also used to study human
skillfulness and sensitivity to force-feedback. Alternatively a
small vehicle is available for a remotely controlled exploration
of its own workspace.

Cosmonaut training setup at GCTC—The third application
on-ground labeled with GCTC in Figure 4 emulates the
Kontur-2 workstation of a cosmonaut on ISS and allows
gaining experience with all control elements in preparation of
the real mission. This setup is used for the cosmonaut training
which, therefore, can be performed completely without the
space segment.

Communication overview

The overall data exchange inside both the space and the
ground segment is based on Ethernet with one exception:
The communication gateways between space segment and
ground segment use a different protocol defined by the CCSDS.
However, the CCSDS usage is limited to a very low level
subset of the standard in order to reduce the protocol overhead

4

and its service complexity to an absolute minimum. Ethernet
packages from the ground and/or the space segment tunnel
the radio link via CCSDS data containers as needed. Specific
protocol requirements concerning integrity and reliability of
the data transfer have to be considered at the Ethernet level.

An intentional add-on of this communication link is the
spatial separation on-ground between DLR’s radio tracking
station in Weilheim and the OGC at DLR in Oberpfaffenhofen.
This spatial distance is bridged by an additional tethered
landline which in practice allows a wider range of applications
for remote control of machinery or robot systems (e.g. in
underground) than a pure radio link approach. In the context
of Kontur-2, this dedicated landline acts as a simple extension
of the ”pure radio link” via cable for the transmitted data
frames. This direct point to point connection ensures that as
little artificial signal delay as possible will be added to the data
transmission. The generation, processing and coding of data
frames for radio transmission is the exclusive task of OGC
and OBC. From a networking point of view both space and
ground segment are pooled together to a common local area
network ignoring all their spatial distances. For that reason the
encapsulated radio link between space and ground segment
can be easily replaced by a cable or by a fully functional radio
link simulation.
Due to the low ISS orbit, any radio contact is limited to a
maximum of 10.0 minutes whereof maximal 8.0 minutes
can be used for the experiment supposing best conditions.
The difference of approximately 2.0 minutes is owed to an
’Acquisition of Signal’ (AOS) phase whose expenditure of
time depends on the quality of the predicted ISS overpass and
the used presettings of the radio antenna on-ground derived
from the ISS path prediction. This AOS procedure requires at
least one minute in order to conduct a frequency adjustment
for compensating Doppler effects under manual control and an
auto-negotiation between OGC and OBC in order to initiate
the monitored cyclic data exchange. At the expected end of
radio contact (referred to as ’Loss of Signal’ - LOS) the radio
signal simply fades away. This phase is affected by increasing
drop outs of the signal and takes also round about one minute.

In general all applications on-ground are connected with the
space segment via a common communication gateway. But
while the ground system at DLR is directly connected to
the communication gateway due to its close vicinity to the
radio transmitter, the connection to the ground system at RTC
requires in addition the public Internet in order to bridge
the enormous spatial distance between Oberpfaffenhofen in
Germany, and St. Petersburg in Russia. The Kontur-2 space
segment mockup at GCTC is connected to the ground systems
of RTC and DLR via public Internet, too. However, the major
drawback of using a public Internet connection or something
equivalent is the artificial but inevitable reduction of deter-
minism, the disproportional magnification and uncontrollable
fluctuation of the signal propagation time by which the total
system performance is directly affected. It is an acceptable
choice for rapid prototyping but does not meet long-term
demands of high fidelity control applications. The evident
objective of a data distribution concept has to be the elimina-
tion or minimization of any artificial source of degradation
within a control system. But such an intensive customization
is beyond the capabilities of pure public Internet.

Summary

In conclusion, the Kontur-2 setup is a distributed telerobotic
system with space and ground segment interconnected by a
radio link that was prone to communication blackouts and that
featured a maximum of ten minutes of visibility.

Kontur-2 control
panel (K2CP)

on board
communication

gateway
(CommGW)

joystick
application

audiovisual
services

DLR mission
control panel
(DLR_MCP_TP)

«interface» Video Stream

«flow»

«interface» K2ACI
«flow»

«interface» Audio Stream,
«interface» Video Stream

«flow»

«interface»
TM/TC

«flow»

«interface»
TM/TC,

«interface»
Telepresence

«flow»

Figure 5. Space segment software overview

FTP server Telnet server

MicroControllerDriver RT-OS

supervisor

IP-Comm

TM/TC Telepresence

bilateral controller
(Master)

Telepresence

OBCMonitor FunctionalTest

AppLoader

RJoMonitor EventLib

NANDFlashDriver

kernel space

user space

«use»

Figure 6. Software components of the joystick
application

5. SPACE SEGMENT SOFTWARE
The static view of the components that are part of the
space segment software is depicted in Figure 5. The on-
board communication gateway (CommGW) is used for the
communication with the ground segment. As it is part of
the communication software it is shown in the figure only to
get a better understanding of the overall software structure.
Details about it will be given in Section 6. The joystick
application is a generic term for all the software components
that are deployed on RJo to implement its functionality.
These components can be monitored and controlled via their
telemetry/telecommand (TM/TC) interface either from ground
or from the Kontur-2 control panel (K2CP). This panel
provides an interface for the cosmonaut to RJo in order to
trigger basic actions such as calibration, functional testing
or starting the actual experiment. The DLR mission control
panel (DLR MCP TP) implements an user interface to guide
the cosmonaut through DLR’s scientific experiments. It is
attached to the K2CP via the proprietary Kontur-2 application
control interface (K2ACI) for communication with RJo and
the ground segment. Additionally, it displays the video stream
received from ground to show the task environment. For the

5

AppLoader
started

Load desired
mode (prime

or backup)

Booted from
SD card or
NAND-Flash?

Is software via FTP
server available?

Check
integrity
of prime

and
backup
storage

Consider 1st
partition as

prime; 2nd as
backup

Consider 1st
FTP folder is

prime; 2nd as
backup

Consider
NAND-Flash
as prime; no

backup

Is there a valid
storage?

Booted from
NAND-Flash?

Reboot from
NAND-Flash

Are
both
error
free?

Assign root according
to desired mode;

Assign desired mode
to backup;

Assign root and
desired mode to error

free storage

RJo software stopped;
Ready for power off

Software malfunction
detected?

Stop and unload
drivers

Wait until
application
software
performed
shutdown

Assign desired
mode to current

mode

Start drivers and
application

software from
root

Stop running software; consider current
storage as erroneous

Yes

No

Yes

No

No

Yes

NAND-
Flash

SD
card

Yes No

Yes

No

Figure 7. Activities of the AppLoader

experiments in the SpaceJustin setup we used the audiovisual
(AV) services to have bidirectional audio and video streams
for an improved interaction with the cosmonaut compared to
the chat interface provided by K2CP. In the following, these
components mentioned before will be further detailed.

Joystick application

Figure 6 shows the components that belong to the joystick
application. We chose a real-time operating system (OS) with
priority based scheduling to enable a deterministic behavior of
the control algorithms. This OS segregates its virtual memory
in a kernel space for system services and drivers, and a user
space for the application software. Among the system services
the File Transfer Protocol (FTP) and the Telnet server can be
used to upload software updates. Moreover, drivers for the
micro controller board, its attached on-board flash and a fail-
safe application loader (AppLoader) are executed in kernel
space.

Bootloader—As RJo is exposed to radiation on ISS there is a
small chance of hardware malfunction or memory corruption.
But as there has been no requirement to deal with this thread,
the hardware was designed in a non-redundant way for cost
reasons. Nevertheless, we tried to implement different stages
of software redundancy to maintain the functionality of RJo in
case of malfunctions. When RJo is switched on, the 1st stage
bootloader of RJo’s ARM CPU is trying to fetch the 2nd stage
bootloader from one of the configured booting devices. On
RJo we are using microSD card and on-board flash as booting
devices. The microSD card is searched first. We enhanced the
2nd stage bootloader so that it is able to verify the integrity of
the OS kernel using the cyclic redundancy check (CRC) and
stores the checksums in EEPROM. Hence, if the bootloader on
the microSD card detects a checksum mismatch it will reboot
the system from the on-board flash. This way, RJo is able to
boot the OS even in case of loss or corruption of one of its
booting devices. The only remaining problem is the case of a
corrupted 1st or 2nd stage bootloader. In this case corrupted
code would probably be executed and that in turn results in
undefined behavior. However, we were not able to implement
any countermeasures on this level without additional hardware
so we accepted the risk of loosing the system in this unlikely
case.

AppLoader—Once the OS is loaded by the procedure men-
tioned earlier, it immediately runs the AppLoader. The idea
behind this loader is to prolong the validation concept of
the 2nd stage bootloader to the phase of starting drivers and
application software. Altogether, we provide three different

storage locations for the software: A microSD card is our
main memory we planned to work with. It has two partitions
where each contains a full copy of all software artifacts such as
binaries, libraries and configuration files. In case the hardware
of the microSD card gets corrupted we still want to have the
possibility for software updates. For this reason, an FTP server
is running on PCC which provides two more copies of those
files. Finally, the on-board flash has a single read-only copy
as last resort.
The AppLoader implements the concept shown in Figure 7
to integrate all of these storage locations. Upon start, the
AppLoader reads the desired mode from the EEPROM. This
mode defines which software copy to choose if there are more
than one available at the current storage location. The modes
are named prime and backup. The motivation behind these
two modes is to have a working software copy even when a
software update fails. Thus, we perform such updates on the
prime location first. If the update is successful, this software is
used the next time RJo is switched on and the backup location
can be updated some time later. If not, the backup location is
used for the next experiment, and the operators on-ground are
be able to fix or undo the software update.
The storage location to be used for starting the software
is selected based on the booting device that has been used
initially to load the OS kernel. In case of microSD card,
the first partition is considered as the prime storage and the
second partition is regarded as the backup storage. If the OS
was loaded from on-board flash, the AppLoader will check
if the software is available via FTP. If so, one FTP folder is
considered as prime, the other folder as backup. If not, the
software located in on-board flash is treated as prime without
a backup being present.
Once the AppLoader has determined the booting device, all
software copies on it are verified by means of the Simple
File Verification (SFV). For this purpose a file contains CRC
checksums for all relevant files. The AppLoader verifies all
of these checksums and marks the storage location as invalid
if a mismatch is found. This procedure is skipped for the
on-board flash, because the artifacts have been linked to the
kernel image for this type of storage. Hence, the 2nd stage
bootloader already performed the verification of kernel and
software during the boot process.
After the verification the AppLoader calculates the number
of valid storage locations. If all are marked invalid and the
system has started from microSD card, it will be rebooted
from on-board flash. In case both FTP folders are invalid, the
read-only copy that resides in the on-board flash will be used.
As next step the AppLoader selects the actual storage location
(denoted as root in the figure) the software will be started
from. If both the prime and backup location are available,

6

the location is selected according to the desired mode loaded
at the beginning and the remaining location is set to the new
desired mode in EEPROM. Hence, in case a system reboot is
triggered for some reason, e.g. a software failure, before the
software has been stopped by user’s command, the alternative
storage location is used after the reboot hopefully avoiding
the same situation. If there is only one storage available, this
one is selected as the storage location to use and as the new
desired mode.
Next, drivers and application software are started. If the
AppLoader is able to detect a software malfunction during
software start up, it will try to shut down the software, mark
the used software copy as erroneous and restart the selection
of a storage location. Otherwise, it is waiting for a graceful
shut down of the application software from user side to
subsequently stop the drivers. Finally, the new desired mode
in EEPROM is reset to the mode currently in use.

NANDFlashDriver—The NANDFlashDriver implements a
background task that cyclically repeats the verification of
the on-board flash and provides the results to the application
software for monitoring purposes.

MicroControllerDriver—Access to the hardware peripherals
such as the motor controllers, LEDs, buttons and temperature
sensors is provided by the MicroControllerDriver. Further-
more, it is also responsible for the limitation of the force
at the joystick handle, supervises the temperature sensors
and implements a deadman button functionality. Lastly, the
MicroControllerDriver facilitates an algorithm to calibrate the
handle’s position after power-on, a position controller to move
the handle autonomously and an alive check for its routines.

FTP server—The FTP server provides access to both partitions
of RJo’s microSD card so we are able to upload new versions
of the software. Additionally, log files created by RJo can be
retrieved via this service.

Telnet server—Usually, the software is uploaded only to the
prime partition because of the limited bandwidth in the uplink.
If the updated software is working without problems, we
establish a Telnet session to copy the new content from the
prime partition to the backup partition so both partitions are in
sync again.

User space software— We use the component framework
HIROSCO (HIgh-level RObotic Spacecraft COntroller) [15] to
implement the application software running in user space. This
framework has a service-oriented architecture, which means it
provides services specified in the Packet Utilization Standard
(PUS) of the European Cooperation for Space Standardization
(ECSS) for the interaction of components implemented with it.
In order not to burden the component developer with details
of the PUS, HIROSCO promotes a data-centric approach.
Data of a component just needs to be registered in a so-
called dictionary. Using an XML-file the framework can
be configured to provide this data to other components or
to ground via the PUS interface, e.g. for housekeeping.
Besides the framework, HIROSCO provides a component
named supervisor that manages the components attached to
it and their interaction. For example, it is responsible to start
and stop them, to monitor their real-time behavior and to
react on events. Mission specific events are handled by a
library dynamically loaded at startup (denoted as EventLib in
Figure 6). These events were required mainly to implement a
temperature control system so that RJo does not overheat and
to shutdown the force-feedback in case of internal anomalies.
Finally, the HIROSCO framework comes with a component

1

2

3

4

Figure 8. K2CP cosmonaut user interface

that runs a TCP/IP server to which external clients such as
user interfaces can connect for monitoring and control.

The application software itself consists of several compo-
nents that are described next. The RJoMonitor collects the
monitoring information provided by the drivers mentioned
before and generates events in case of off-nominal situations.
Additionally, it provides this data as housekeeping parameters
for monitoring on-ground and on-board. The OBCMonitor
fetches status information from the CommGW to provide them
as housekeeping data to the K2CP. This proxy service was
introduced to avoid an additional communication relationship
between CommGW and K2CP and instead favor the already
existing ones. We used the FunctionalTest for qualification
and acceptance tests, as well as for the commissioning phase
of RJo on ISS. Therefore, we implemented a friction test, a
workspace test, a virtual spring to test the force feedback, and
tests for the buttons and LEDs of RJo. Finally, the bilateral
controller realizes the master side of the telepresence control
system. For details about the design and performance of this
controller, please refer to the description by Artigas et al. [3].

Kontur-2 control panel

The Kontur-2 control panel is a program running on PCC.
The K2CP provides basic experiment control functionality
on-board for the following three tasks:

(1) Provide a cosmonaut user interface—A small user inter-
face informs the cosmonaut about the current joystick and
experiment state (see encircled annotations in Figure 8).

• Joystick state display and related commands 1©
• Space, ground and communication system states 2©
• Experiment state display and start/stop functionality 3©
• A chat window to communicate with ground control 4©

7

Figure 9. Mission control panel

(2) Command and display joystick state—K2CP continuously
tries to connect to the on-board joystick and displays its
current state. Joystick state is categorized into a set of
states, which are: Normal States (init, standby, calibrated,
halted), Error States (calibration error, recoverable error, fatal
error) and Application States (German or Russian experiment,
joystick test application). A very restricted set of commands
is available to allow the cosmonaut to drive the joystick along
these states.

(3) Operate as a communication relay to ground segment—
Under the hood K2CP acts as the central communication
and control relay between joystick, experiment applications,
ground communications and ground mission control. There-
fore, it manages slow rate TM/TC data from and to the
joystick and ground link. It is also responsible to distribute
high rate position/torque/button data from the joystick on-
board, to synchronize the joystick application module and
their related application user interface and to provide com-
munication means for them. Finally, it tunnels the protocol
used for experiment data (K2ACI) through the PUS based
communication system.

Mission control panel for telepresence

The mission control panel is equipped with three UDP-
interfaces to

• receive the video stream from the telepresence setup
• obtain position data from the joystick
• establish a communication channel with ground control

We designed the panel (see Figure 9) to present only the
minimal amount of information necessary to control the
experiments. Therefore, we used stacked widgets to minimize
the number of items on the panel. The display inside each
widget is controlled by a state machine so there is no need to
provide graphical control elements such as a tool bar. The four
widgets on the left part of the mission control panel display

• a list of all available tasks (highlighting the current task)
• a short description of the current task
• the current status of the task or specific instructions
• the optimal joystick start position together with the current
joystick position

The right part of the mission control panel shows the video
stream. Depending on the task it is possible to superimpose

a small widget to provide additional graphical information
about the state of the task.

The central component of the mission control panel is a state
machine where all possible states and state changes of the
experiments are predefined. State changes can be triggered
either by the cosmonaut pressing a joystick button or by signals
from ground control. Information about state changes inside
the mission control panel are immediately sent to ground
control. Each state change triggers a consistent display of
textual and graphical information inside the widgets of the
panel.

Audiovisual (AV) services

For the task board setup experiments, only a video stream
of the robot or static camera had to be displayed to the
cosmonaut. This was done by the DLR MCP TP. For the
SpaceJustin experiments, the space segment software was
extended by the AV services to provide bidirectional audio and
video transmission. This module consists of three components
using the GStreamer multimedia framework [16] VideoOut,
AudioOut, and AudioIn.

VideoOut is responsible for capturing ISS on-board video
of the experiment and sending it to earth via a restricted
communication channel. For this, we use an already existing
Sony Z7E camera on-board of the ISS which can be connected
to the IEEE 1394 (4-pin) socket of the PCC. The video
(640x480px @ 30fps) is captured using DirectShow and
compressed using the H264 encoder [17] with low-latency
configuration and a maximum bitrate of 512 kbit/s. The
resulting data is streamed to earth using RTP protocol via
UDP.

AudioOut realizes the audio downlink from ISS to earth. Due
to the low quality of the on-board microphone of the PCC, we
use the microphone of a headset which can be connected
to the phone-connectors of the PCC. The audio signal is
captured using DirectShow [18] and compressed using the
Opus encoder in ’voice’ configuration [19] and a maximum
bitrate of 64 kbit/s. Like the downlink video, the data is
streamed using RTP and UDP.

AudioIn receives the audio stream of the experiment partner
on earth and provides it to the cosmonaut. Therefore, the
RTP-UDP data stream is received, decoded (Opus) and finally
played back by the cosmonauts headset using DirectSound
[20].

6. COMMUNICATION SOFTWARE
From the application point of view communication between
ISS and ground control is a mandatory service, but should
be as transparent as possible. Although its data transfer
characteristics influence the results of the experiments directly,
it is independent from the application and non-controllable
by the application itself. The effectively used communication
method can be easily replaced due to its black-box character,
using standard socket interfaces for any external access.
This decouples the system development process from mutual
dependencies between application and communication. The
communication module can be implemented and tested with-
out its final application environment for reaching maximum
continuous throughput as close as possible to the limiting
constraints caused by physics and equipment.

8

Customization of serial data link for control applications

A serial line is the most practical way to realize a bidirectional
straight connection of at least two different components (a
control unit and an execution unit) over a substantial distance
with minimal use of hardware. But this approach makes it
difficult to handle data of different quality especially under
real-time constraints. It is obvious that an application specific
data transfer structure is necessary in order to obtain a quasi-
parallel data transfer behavior over a common serial byte
stream with sufficient reliability.

In case of Kontur-2, a multi-channel concept was selected in
order to meet the different needs of different data streams:

• Realtime channel for cyclic transfer of commands to control
of the remote device.
• Realtime channel for cyclic transfer of telemetry from the
remote device.
• Live video stream with application specific resolution (if
necessary even bidirectional).
• Live audio or chat channel for direct information exchange
with the cosmonaut.
• Request channel for both cyclic and acyclic intervention on
the remote system (activity trigger, manual commands like
parameter update, etc).
• Return channel for both cyclic and acyclic replies from the
remote system (telemetry, acknowledgement).
• An autonomous closed loop channel for automatic services
(e.g. file transfer).

It is mandatory for the intended data distribution to ensure the
following major aspects:

• Specific properties of the used communication concept must
not dominate the overall system behavior (e.g. huge artificial
signal delay, transfer rate or extensive jitter).
• The transfer of cyclic data has to be carried out uniformly
and continuously within a predefined response time. Its
transmission is performed fast with just low level error
detection but no correction. The quality of transmission
depends directly on the hardware reliability, atmospheric and
astronomic impacts. The continuity of the data flow must
not be distorted by any kind of data buffering or transmission
bursts, but an occasional loss of cyclic generated data packages
is acceptable.
This statement relies on a simple rule of thumb well known
from basic control theory: In principle the risk for a drastic sys-
tem impact caused by losing isolated data packages randomly
out of a cyclic compiled data package stream is indirectly
proportional to the product of the dominating system time
constant and the applied data package transfer frequency.
• The transfer of acyclic data is essentially the opposite of
handling cyclic data. Not the timing of transmission is in the
main focus but rather its integrity and reliability. Nevertheless
an acyclic data transfer must not violate an application specific
maximum time slot. In practice more than one individual
acyclic data channel will be opened at the same time. In
general the loss of acyclic data packages is a severe problem
but it can be minimized by using a safe data protocol for the
data transmission. If required, acyclic data channels in up-
and downlink can be linked together forming a closed loop
in order to process autonomous services between ground and
space segment.
• The separate transmission of different types of data with
an internal interrelationship should be performed quasi-
simultaneously or at least with an imperceptible difference in
time in order to avoid divergent sensory impressions on the
operator side (e.g. real-time motion data and video camera

signal).
• The ongoing data transfer has to be monitored permanently
and should be resumed automatically in minimum time
after a breakdown. The transfer of telemetry is pressed
ahead whenever possible even in case of partial jamming or
malfunction of the link.
• In case of partial failure of the communication link (no up-
or downlink) the system always tries to transfer a maximum
of information. This means that even commanding can be
exceptionally performed without acknowledgement. In this
situation the recipient is responsible for making the most of
the obtained data.

Kontur-2 data link design

The main feature of the data link design is the mapping from
three supported virtual data links with different transmission
characteristics to the internal uniform serial data stream of
the radio link. Figure 10 visualizes the methodology for data
transmission from ground control to ISS and vice versa.

The bidirectional link structure is a symmetrical design which
does not differentiate between up- and downlink. Just the
parametrization is different. The access of applications to the
data exchange mechanism is exclusively coordinated by OBC
on ISS and OGC at ground control. Both devices work as data
gateway to the encapsulated internal radio link between the
tracking station (TS) on-ground and the transceiver (CUP) on
ISS. Due to the bidirectional nature of the transmission both
gateways support a sender block for data forwarding and a
receiver block for data reception which work in parallel. Each
gateway relies on a two-CPU architecture:

• Main-CPU, which is used as application interface and
• Com-CPU, which keeps on running the clocked serial bit
stream over the radio link.

Local data exchange at each gateway is managed by a full
duplex backplane connection. This technique supports both
a low level memory-mapped message queueing for fast data
exchange and a more sophisticated backplane driver for slower
IP based networking.

Main-CPU— It acts as an event-driven prioritized multi-
port application interface, which is directly addressable by
IP networking from outside. Its graded output data are
buffered for a cyclic but not synchronized collection and
processing by the Com-CPU, whose principal task is to
maintain a predefined steady bit-stream towards the radio
transmitter. Due to the concurrent bidirectional nature of
transmission, the Main-CPU supports a sender- and a receiver-
block without any mutual dependencies. Within the sender-
block, the contents of incoming IP-based data channels will
be classified into different priority levels by the Main-CPU in
order to guarantee a data type dependent forwarding within the
transmission block by the Com-CPU. User data is handed over
to the Com-CPU via hierarchical priority queues what allows
additionally a compensation for temporary data-jams within
the transmission-block. Normally these queues are working
as FIFO buffers except for the real-time link which always
uses the most recent data packages only. At the receiver-block,
incoming data at the dispatch queues of the Main-CPU triggers
the event-driven pre-emptive routing of that prioritized data
towards the corresponding outgoing IP data channel.
With minimal modifications it is possible to connect on-ground
application data channels with their on-board counterparts
directly bypassing the original OBC / OGC connection,
because all application interfaces are consequently designed
for IP-based networking.

9

Figure 10. Block diagram for uplink direction of the bidirectional link design

For safety reasons a permanent supervision service on the
Main-CPU both monitors and tests autonomously the state of
all application links and the connection to the remote Com-
CPU for correct operation. In case of idleness or breakdown
existing links will be immediately reset or replaced by new
connections for the same purpose.

Com-CPU—It conducts the necessary subsequent processing
of incoming data streams from both Main-CPU and the radio
link. It encodes or decodes the application data in accordance
with the CCSDS protocol regulations and manages their
further dispatch.
Similar to Main-CPU, the Com-CPU supports also a sender-
and a receiver-block without any mutual dependencies for
concurrent bidirectional data transmission. Within the sender-
block, all data available from several Main-CPU priority
queues is packed up sequentially - starting with the highest
priority - in a common transport frame up to reaching its
capacity limit. This data packing is triggered by cyclic
clocked polling of the Com-CPU only and does not wait for
additional synchronization-events from Main-CPU. It strictly
pays attention to transmission specific data properties (e.g.
priority, repetition rate etc.) and concurrently assures that
the outgoing bit stream is compliant with the maximum
admissible radio link bit rate. The transmission of not available
or not intended or capacity exceeding data for the current
transport frame is postponed to the next transfer cycle. This
management of dynamic transport frames is mandatory for
obtaining a maximally uniform and continuous user data flow
over the radio link without violating the supported maximum
radio link bit rate. The drawback of the dynamic transport
frame management is the reduction of the user data rate due
to the inevitable usage of additional transfer protocol layers
defined by CCSDS and a slight jitter due to the unsynchronized
data exchange between Main- and Com-CPU.
Once a transport frame is created and ready for dispatch, it is
finally serialized for transmission over the radio link.
At the receiver-block, both CCSDS protocol information and
user data are extracted out of the received serial bit stream.
After classification in the transmission-block, user data is
mapped to their corresponding Main-CPU dispatch queues in
accordance with their priority.
Because the radio transmission is a major source of bit errors,

this transfer level is monitored by CRC in order to filter out
destroyed data frames as soon as possible. Securing data
integrity and reliability over the complete OBC / OGC data
link is a higher-level feature exclusively under control of
application specific data protocols.

A critical phase of operation is the communication startup at
the beginning of a radio contact (the so-called auto-negotiation
between OGC and OBC). First it is necessary to verify the
correct local interaction between Main- and Com-CPU on
both sides (OGC and OBC) independently. In a second
step each side of the radio link waits for the reception of
data frames which are interpreted as alive-indicator from the
remote side. Finally the link master – in this case located
on-ground – checks and configures the link slave state of the
opposite side. Error cases are detected by reception timeouts
or behavioral anomalies during both the bilateral master-slave
startup sequence and the operational data transfer later on. The
final approval of the total data link for usage is bound to the
correct mutual reception of the first application data.
In case of error, both master and slave try to recover the
affected data connection autonomously. If this does not work
the current software version is marked as defective and will
be replaced with the last executable software version from
top of the backup stack. This stack contains a version history
with several entries. It ends up in an elementary version of
the communication software which allows at least remote
service access to the link slave on ISS from master on-ground.
It is not possible to compensate a hardware breakdown by
software as the data link hardware does not include any kind
of redundancy.

7. GROUND SEGMENT SOFTWARE
The ground segment software for both experiment setups
is depicted in Figure 11. One can easily see that many
software components are identical in both setups. Despite
of the same name, the robot applications are different for
each setup and so are the robots they control. The on-ground
communication gateway was already detailed in Section 6.
The Kontur-2 supervisor (K2SV) allows the operators on-
ground to monitor the housekeeping data provided by the

10

on ground
communication

gateway
(CommGW)

audiovisual
services

robot
application

TOP-UI

HIROSCO-UI

Kontur-2
supervisor

(K2SV)

maintenance
software

DLR gateway
application K2ACI-Adapter

«interface»
Telepresence

«flow»

«interface» Video Stream
«flow»

«interface» TM/TC
«flow»

«interface» TOP_CMD,
«interface» TOP_STATUS

«flow»

«interface»
Maintenance

«flow»

«interface» Telepresence
«flow»

«interface» TOP_CMD,
«interface» TOP_STATUS

«flow»

«interface» K2ACI

«flow»

«interface»
TM/TC

«flow»

«interface»
TM/TC

«flow»

(a) Task board setup

on ground
communication

gateway
(CommGW)

audiovisual
services

robot
application

Kontur-2
supervisor

(K2SV)

maintenance
software

DLR gateway
application

«interface» Telepresence
«flow»

«interface» Audio Stream,
«interface» Video Stream

«flow»

«interface»
TM/TC

«flow»

«interface» Telepresence
«flow»

«interface» Audio Stream,
«interface» Video Stream

«flow»

«interface»
Telepresence

«flow»

«interface»
Maintenance

«flow»

«interface» TM/TC
«flow»

(b) SpaceJustin setup

Figure 11. Ground segment software overview

space segment software. Moreover, we use the maintenance
software to perform software updates in the space segment
and to supervise the on-ground software execution. To com-
municate with our colleagues from RTC in St. Petersburg via
Internet, we established a gateway application that provides
the corresponding network address translation (NAT) rules for
this purpose. For RTC’s task board setup, the data is directly
routed between the space segment and St. Petersburg. For
the SpaceJustin setup, we route the data between RTC and
the robot application to enable them to control the left arm.
The audiovisual (AV) services are responsible for audio and
video streaming to and from the space segment. While in
the task board setup only a video stream is uplinked to the
DLR MCP TP we established bidirectional audio and video
streams to the space segment and to St. Petersburg in the
SpaceJustin setup. In the task board setup we have additional
software components that control the task execution. The user
interfaces display the task execution and robot status to the
operator. He can also trigger the initialization of a new task
with it. The actual start of the task is initiated by the cosmonaut.
Therefore, the robot application is connected to the K2SV via
K2ACI through an adapter for protocol conversion. The K2SV
in turn is routing the data via the CommGWs and K2CP to
the mission control panel. In the remaining section these
components will be further discussed.

Robot application for the task board setup

The robot application software for our experiments with the
task board setup (cf. Figure 12) uses the same OS as RJo
and, therefore, also has the same partitioning into kernel and
user space. No sophisticated application loader is present as
the robot is located in our lab so there is no risk of memory
corruption by radiation. Hence, only a Sercos master runs in
kernel space to provide an interface to the Sercos field bus of
the ROKVISS robot.

Similar to the joystick application of the space segment
software we use the HIROSCO component framework to build
up the actual application in user space. Again, supervisor
and the IP-Comm component for TCP/IP connections are
taken from the framework. Besides that, the robot controller
is responsible for the control of the ROKVISS robot at a
sampling rate of 500 Hz either in joint position, in joint torque
or in joint impedance control mode. The bilateral controller

bilateral controller
(Slave)

Telepresence

IP-Comm

TM/TC

robot controller

supervisor

TOP_CMD

TOP kernel

TOP_CMDTOP_STATUS

LED interface

Sercos master

user space

kernel space

RT-OS

Figure 12. Software components of the robot application

implements the slave side of the telerobotic control system and,
therefore, acts as the counter part to the bilateral controller as
part of the space segment software. It uses the robot controller
in joint torque mode to perform joint movements. For more
details, please refer to the explanation of Artigas et al. [3].
Before a cosmonaut can start the execution of the desired tasks
the robot has to move to a specific starting position, e.g. in the
middle of the LED screen. This movement is accomplished
by a high-level command sent from the mission control panel
(cf. Figure 6) once the cosmonaut confirms readiness. This
command is processed by the task-oriented programming
(TOP) component [21]. This component is able to move the
robot to arbitrary positions within its workspace by means of a
variety of interpolators that access the joint position interface
of the robot controller. This way, the robot is commanded
to the predefined starting position for the currently selected
task. Additionally, the TOP component uses the LED interface
to draw the LED patterns required for the task. This LED
interface is deployed on another machine as the remaining
application because this machine has the required hardware
interface to the LED panel. Thus the LED interface is not
realized with HIROSCO, but attached via UDP messages.

11

Robot application for the SpaceJustin setup

SpaceJustin is a very sophisticated humanoid robot and the
description of the complete robot application is beyond the
scope of this paper. The interested reader can find a good
introduction into this topic by referring to the publication
of Borst et al. [14]. From the Kontur-2 point of view, we
managed to integrate the same bilateral controller as for the
task board setup. Hence, we do not have to modify the space
segment when switching between the two setups.

Task-oriented programming and execution

Having in mind that for each experiment session a time slot
of not more than eight minutes is available, the efficiency of
the experiment handling had a great impact on the design of
the commanding scheme, both on-board and on-ground. First,
the cosmonaut on-board must have the tools to perform the
desired operations without a deep knowledge about the internal
structure of the robot system on-ground. Second, the robot
operator on-ground must be able to control the robot system by
an easy-to-use graphical user interface. The backbone of such
a high-level commanding scheme is a hierarchical command
description based on the TOP approach [21].

Looking at the default experiment sequence (cf. Section 8), the
operator on-ground only has to select and activate the desired
task. In the following step the cosmonaut will confirm this
selection, calibrate the joystick and start the robot task. This
robot task performed on-ground will autonomously guide the
cosmonaut step by step through the experiment. To achieve
this ”autonomous guidance”, the robot task is described by a
sequence of elemental operations (Elemop), whose respective
end conditions are continuously checked by the task execution
software on-ground. Namely, two subtasks (operations)
are necessary to perform an experiment run: start<Task>,
activated and executed on-ground, and exec<Task>, activated
on-board and performed also on the ground robot equipment.
The on-ground software for the task board application uses
an XML schema to describe these subtasks in a hierarchical
way. To give an idea of this concept, we simply describe
the start and exec subtask for the aiming task, i.e. the task,
in which the cosmonaut has to move the robot to a desired
pose, highlighted by an illuminated LED. The startAiming task
prepares the robot environment with the right controller, moves
the end-effector into the start position, selects the correct
camera view, switches on the first LED and starts the data
logging mechanism:

<Operation name=”startAiming”>
<Elemop ref=”powerOff ”/>
<Elemop ref=”positionControl ”/>
<Elemop ref=”powerOn ”/>
<Elemop ref=”selectCamTcp ”/>
<Elemop ref=”highlightLed0 ”/>
<Elemop ref=”homePosition ”/>
<Elemop ref=”startLogging ”/>

</Operation>

After execution of this subtask, the on-ground system will send
the task name to the on-board system to tell the cosmonaut
what the next experiment is. Simultaneously, it is ready for
the activation of the telepresence performance task, triggered
by the cosmonaut’s command, e.g. execAiming. For that the
robot controller will be switched from the position control
mode into the telepresence control mode. In the following all
the desired steps (highlight the desired LED and check the
cosmonaut’s motion commands for achieving this pose) will
be performed.

<Operation name=”execAiming”>
<Elemop ref=”powerOff ”/>
<Elemop ref=”telePresenceControl ”/>
<Elemop ref=”powerOn ”/>
<Elemop ref=”highlightLed7 ”/>
<Elemop ref=”checkPos7 ”/>
<Elemop ref=”highlightLed0 ”/>
<Elemop ref=”checkPos0 ”/>
<Elemop ref=”highlightLed5 ”/>
<Elemop ref=”checkPos5 ”/>
<Elemop ref=”highlightLed0 ”/>
<Elemop ref=”checkPos0 ”/>
<Elemop ref=”stopLogging ”/>
<Elemop ref=”powerOff ”/>

</Operation>

The execution of such subtasks is supervised by the TOP
kernel (cf. Figure 12), i.e. a state machine, decoupled from the
robot controller of the robot application. The state machine
is separated from the robot controller to avoid a blocking
behavior. It is sufficient, due to the asynchronous command
mode (incoming exec command from space), that this state
machine is running at 10 Hz.

Kontur-2 supervisor (K2SV)

The Kontur-2 supervisor (K2SV) links the space communi-
cation system to all other ground systems. At the same time
it provides a detailed state view of all connected systems to
the supervisor and experimenter on-ground. The following
components report their state to K2SV:

• Space segment: RJo and K2CP
• Communication system: OBC, OGC and CUP
• Ground segment: German and Russian experiment

To serve this task K2SV relays and converts packets within
a variety of data links and protocols such as the space link
for TM/TC (PUS protocol), the experiment data link (K2ACI
and RTC command protocol) and the routing of chat messages
(K2ACI protocol).

Audiovisual (AV) services

The AV services provide different modules for bidirectional
audio and video streams between earth and ISS. For the task
board setup, only the video stream of the ROKVISS robot or
of the static camera is sent to the DLR MCP TP. The modules
for real bidirectional communication have been added for the
SpaceJustin setup.

Uplink video stream—The ROKVISS robot is equipped with a
pair of cameras for stereo vision. These were used during the
original ROKVISS experiments. Due to the lack of 3D video
playback devices on-board the ISS and the limited bandwidth
of the uplink channel, it was not feasible to use 3D video in
Kontur-2. Only using the video of the left or right camera
had the drawback of a lot of occlusion due to the stylus of the
ROKVISS robot. This occlusion would have made it difficult
to achieve good results in the pointing tasks of the experiment.
As the task board, contour and robot stylus had the same
distance to the cameras of the robot, we finally decided to
merge the stereo images of the video using the left part of
the left camera and the right part of the right camera. The
width of the image parts was chosen so the tip of the stylus
was completely visible in the resulting image (cf. Figure 9).
For the Kontur-2 mission, the ROKVISS robot was upgraded
with an external camera showing the task board. The video
output of all cameras was captured and recorded on-ground
for experiment evaluation.
During an experiment, the robot application selects which

12

camera to use. For this, a TOP command is sent to a selector
process which forwarded the corresponding video stream to
a shared memory for further processing. By this separation
of the video capture and the sending to the communication
partners, we realized a system which is very robust to failures
of individual components. It also allows us to easily add new
communication endpoints or implement new processing steps.
The bandwidth of application data in the uplink channel to the
ISS has been limited to 96 kbit/s for video streaming. Due to
this restriction, we had to highly compress the video stream
while keeping a low latency to allow telerobotics experiments.
We use the H264 encoder in low-latency configuration with
a maximum bitrate of 90 kbit/s (85 kbit/s for the SpaceJustin
setup) to compress the incoming video stream. The resulting
data stream is sent to the ISS via UDP using the RTP protocol.
We also display the video at the ground control to allow the
system operators to follow the experiment and observe the
performance of the video stream.
For the SpaceJustin setup, we extended the selector process
to also handle the video of the SpaceJustin head camera. In
addition, we extended our software to forward the resulting
video stream to our colleagues at RTC using the same
processing pipeline we used for the ISS video stream but
with an increased bitrate.

Downlink video stream—The sending processes of the down-
link video stream were described in Section 5. The resulting
video stream is received on-ground and forwarded to a shared
memory for further processing and recording. From there, the
video is forwarded to the experiment room to allow visual
communication of the experimenter and the cosmonaut. In
addition, the video is forwarded and displayed at the ground
control to allow the system operators to keep track of the
experiment. Using the same processing pipeline as for the
uplink video, we also forward the downlink video stream to
our colleagues at RTC.
To allow easy and intuitive communication between the
partners during the experiment, we implemented an additional
video stream from RTC to DLR. The processing is similar to
the ISS downlink video stream described earlier.

Uplink audio stream—For the SpaceJustin setup, a voice loop
between the cosmonaut and the experimenter on earth was
required. The implementation of the audio uplink has been
challenging because it shared the limited 96 kbit/s uplink
channel with the video stream. We solved the problem using
the Opus codec which provides good sound quality at short
latency and low bitrates. We use the encoder in speech mode
with a maximum bitrate of 8 kbit/s. The processing pipeline
of the audio stream is similar to the processing of the video
data: The signal is captured and stored in a shared memory.
From there it is distributed to the ISS (via RTP UDP), RTC,
and the ground control.

Downlink and RTC audio streams—Section 5 described the
sending processes of the downlink audio stream. Similar to
the video streams, the downlink and RTC audio streams are
received on-ground and stored in a shared memory each. They
are then forwarded to the experiment room and the ground
control. The downlink audio stream is also forwarded to RTC.

Using the AV services, we realized a system fully capable of
bidirectional communication between the cosmonaut on-board
the ISS and the experimenter on earth.

Maintenance software

Although the operation and interaction of the ground segment
and the space segment is dominated by automatic processes,

their work flow is additionally monitored by an operator.
For this purpose the ground segment (via OGC) and the
space segment (via OBC) permit extensive remote access in
parallel to the ongoing experiment support. Under nominal
conditions the operator limits himself to acquire and archive
status data and event statistics. He prepares the ground
segment for an upcoming radio contact, monitors the correct
operation of all necessary processes and services, checks the
software versions in use and their compatibility, supervises the
available link bandwidth, and informs the experimenter if the
experiment environment degrades or indicates a malfunction.
Special attention is emphasized on the ”Acquisition of Signal”
(AOS) phase at the beginning of the radio contact, possible
degradation of the radio signal due to shadowing effects
during the experiment execution and the notification of the
upcoming end of the radio contact (LOS). In addition, the
operator is responsible for performing software updates in both
the ground and the space segment. Opposite to the already
mentioned activities, an update process cannot be conducted
concurrently to an experiment execution and requires an
always unambiguous and fail-safe procedure.
In order to handle all these responsibilities efficiently, the
operator uses a set of different software tools:

• An interactive script-based command-line tool, which sup-
ports arbitrary line access for spontaneous modifications of
predefined command sequences. (For safety reason each
command has to be confirmed by the operator separately).
• A scalable process control and monitoring tool, which
allows a centralized access to a distributed system architecture.
• Standard IP services for remote access (Telnet), file transfer
(FTP), and an interactive real-time operating system shell,
which allows an open manual remote access to components
of the space and ground segment in parallel to the ongoing
experiment support as soon as the data exchange is online.
• Several discrete realtime displays for textual progress indica-
tors, trend analysis, and milestone completion confirmations.
• A full data logging option, which stores all sent and received
information.

Data logging and evaluation

As mentioned in Section 3, it was a mandatory requirement
to record all the available experimental data. One of the main
challenges was to save the data coming from a lot of various
sources in a coherent way. In particular, it was necessary to
associate the cyclic telepresence data transferred via the real-
time channels (cf. Section 6) with the trigger commands and
acknowledgments transferred in the acyclic request and return
channels or generated by the robotic system on-ground during
the task execution. To achieve a continuous and coherent
logging of all these accruing data, we established one and only
one recording instance as data sink of all sources on-ground.

The logging component is connected to all the components
providing experiment data by means of our internal data
communication system links and nodes (LN), which is a
framework for easy creation and maintenance of distributed
computing networks. The communication is based on a
publisher-subscriber model, which provides a real-time, low-
latency, fixed sized signal publishing. So each data gener-
ation/collection component on-ground has an LN publisher
plugin connected with the logging process, which serves as
the subscriber. The logging process will be started or stopped
by the respective step within start<Task> or exec<Task>.
We have chosen the Matlab data format as data format for the
recording sets, to facilitate the evaluation and analysis with a
common and widely used tool.

13

ground segment space segment

audiovisual
services

K2CP

mission control
panel cosmonautTOP-UI

systems operator

K2SV

maintenance
software

HIROSCO-UI

experimenter

supervisor

joystick (RJo)

Figure 13. Roles and responsibilities during a Kontur-2
experiment

For more details on the evaluation, analysis and interpretation
of the data sets acquired during the task board experiments
refer to the explanations of Weber et al. [4].

8. MISSION OPERATIONS
So far, Sections 5, 6 and 7 explained the static architecture of
the Kontur-2 software. This section will focus on the dynamic
architecture of the software and its interaction with the humans
involved.

For mission operations we defined three roles for the mission
operations team in the ground segment, namely the supervisor,
the experimenter and the systems operator. They are shown in
Figure 13. The supervisor continuously monitors the K2SV
screen to search for anomalies in the housekeeping data of
the joystick application and the communication gateways.
Additionally, he is connected via phone to the ground station in
Weilheim to hear about events such as acquisition and loss of
signal to ISS. The experimenter has a detailed plan which tasks
should be performed during the experiment session. He selects
the tasks one after the other via the TOP-UI and monitors their
progress of execution. Using the HIROSCO-UI he supervises
the housekeeping data of the robot application and is able
to reset error conditions of the robot. During an experiment
session the systems operator checks the status of the ground
software. During maintenance sessions e.g. for software
upload he is responsible for actually deploying the software
on the equipment in space using the maintenance software. In
the ISS there is only the cosmonaut interacting with the space
segment software and hardware.

Figure 14 shows the sequence of interactions during the
execution of a task which was already described in an abstract
manner in Section 4. The experimenter uses the TOP user
interface to select the task that should be performed by the
cosmonaut. This interface brings the robot application to
perform the initialization sequence for this task: The robot
moves to the initial position for the task, a suitable camera
is selected for the uplink stream by the AV services, LEDs
are enabled if required for the task and, finally, the mission
control panel is notified about the selected task. Once the panel
receives this notification, it displays information about the task
to the cosmonaut and asks him to put the joystick handle to a
predefined position. Upon completion of this calibration the
panel triggers the robot application to start the task. The robot
application enables the robot and its telepresent control after
reception of this request and monitors the end conditions of
the task. During that time, the TOP user interface shows the

experimenter

TOP-UI robot
application

mission
control panel

cosmonaut

audiovisual
services

Select Task
InitTask moveToInitialPosition

selectCamera

[LEDs are required]:enableLEDs

sendCurrentTask displayTaskInfo

startCalibration

startTask

enableTP

checkEndCondition

taskFinished
resetTaskInfo

Figure 14. Task execution sequence

progress of task execution (not depicted in the figure) to the
experimenter. As soon as the robot application detects that the
task is accomplished by the cosmonaut, it notifies the mission
control panel. This panel in turn informs the cosmonaut that
the task has been completed and asks him to wait for the next
task.

9. CONCLUSIONS
During 23 experiment sessions in 2015, the Kontur-2 soft-
ware formed the basis of the successful completion of our
experiments. All software components described in this paper
worked reliably so that every ISS orbit allocated for DLR
could be used to conduct our experiments. Cosmonauts Oleg
Kononenko and Sergey Volkov reported that the experiment
tasks were easy to perform with the provided hard- and
software. Regarding the requirements, we were able to
successfully integrate the ROKVISS infrastructure into the
Kontur-2 mission. Thanks to an elaborated video streaming
implementation the bandwidth of 96 kbit/s for uplink user data
was sufficient to provide a video stream the cosmonauts were
able to work with. During the whole mission RJo’s microSD
card as main memory storage did not show any errors so the
fail-safe application loader was not challenged on this regard.
However, an update of RJo’s software was performed where
the concept of multiple software storage locations worked out
as expected.

From the scientific point of view the Kontur-2 mission
contributed to the fields of telepresence technologies and
human factors. On the one hand we proved that stable and
realistic haptic teleoperation between an operator in an orbiter
and a robot on a planetary surface is possible using the time
domain passivity approach [3]. On the other hand we found
evidence that the performance losses caused by a degraded
proprioception of the cosmonaut in micro-gravity can partially
be compensated with adjusted mechanical properties of the
input device (e.g. higher damping) [4].

In 2016 we will conduct further experiments using the
Kontur-2 software and hardware infrastructure. During a
local simulation study on-board the ISS, the spring stiff-
ness, damping and virtual inertia of RJo will be varied
systematically while the cosmonaut’s control precision will

14

be determined during basic movement tasks like tracking and
aiming. As result of this study, we are able to describe the
relationship between physical joystick parameters and the
human performance in 1G and 0G conditions. Besides that,
our colleagues from RTC will continue their experiments with
their mobile robotic platform. Finally, there are already plans
to control additional robotic systems from ISS such as DLR’s
lightweight rover unit [22] using a geostationary satellite for
the communication to extend the experiment duration from a
maximum of eight minutes to 45 minutes and more.

REFERENCES
[1] R. Martinez, K. Goodliff, and R. Whitley, “ISECG global

exploration roadmap: A stepwise approach to deep space
exploration,” in AIAA SPACE 2013 Conference and
Exposition, vol. 5504, 2013.

[2] K. C. Laurini, B. Hufenbach, J.-C. Piedboeuf, D. H.
Kuninaka, N. Sato, and D. J. Hill, “The ISECG global
exploration roadmap strengthening exploration through
increased human robotic partnership,” in 64th Interna-
tional Astronautical Congress, Beijing, China, 2013.

[3] J. Artigas, R. Balachandran, C. Riecke, M. Stelzer,
B. Weber, J.-H. Ryu, and A. Albu-Schäffer, “Kontur-2 -
force-feedback teleoperation from the international space
station,” in IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, 2016, pp. 1166–
1173.

[4] B. Weber, S. Schätzle, C. Riecke, B. Brunner,
S. Tarassenko, J. Artigas, R. Balachandran, and A. Albu-
Schäffer, “Weight and weightlessness effects on sen-
sorimotor performance during manual tracking,” in
International Conference on Human Haptic Sensing
and Touch Enabled Computer Applications, Eurohaptics.
London: Springer, 2016, pp. 111–121.

[5] C. Riecke, J. Artigas, R. Balachandran, R. Bayer,
A. Beyer, H. Buchner, T. Gumpert, R. Gruber, F. Hacker,
K. Landzettel, G. Plank, S. Schätzle, H.-J. Sedlmayr,
N. Seitz, B.-M. Steinmetz, M. Stelzer, J. Vogel, B. Weber,
B. Willberg, and A. Albu-Schäffer, “Kontur-2 mission:
the DLR force feedback joystick for space telemanipula-
tion from the ISS,” in The International Symposium on
Artificial Intelligence, Robotics and Automation in Space
(i-SAIRAS), Beijing, 2016.

[6] J. Artigas, C. Riecke, B. Weber, M. Stelzer, R. Bal-
achandran, S. Schätzle, R. Bayer, M. Steinmetz,
J. Vogel, B. Brunner, A. Albu-Schaeffer, M. Guk,
V. Zaborovskyi, A. Kondratiev, V. Muliukha, A. Sili-
nenko, and O. Shmakov, “Force-feedback teleoperation
of on-ground robots from the international space station
in the frame of the ”kontur-2” experiment,” in Proceed-
ings of ”International Extreme Robotics Conference”,
St.Petersburg, Russia, 2016 (accepted for publication).

[7] G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche,
A. Albu-Schäffer, B. Rebele, and M. Turk, “Rokviss -
robotics component verification on ISS,” in Proc. of the
8th Int. Symposium on Artifical Intelligence, Robotics
and Automation in Space, iSAIRAS, Munich, Germany,
2005.

[8] K. Landzettel, V. Zaborovskyi, E.Babkin, M. Belyaev,
A. Kondratiev, and A. Silinenko, ““kontur” experiment
on russian segment of the iss,” Scientific Readings in
Memory of K.E. Tsiolkovsky, 2009. [Online]. Available:
http://readings.gmik.ru/lecture/2009-EKSPERIMENT-

KONTUR-NA-ROSSIYSKOM-SEGMENTE-MKS
[9] A. Schiele, “Meteron - validating orbit-to-ground teler-

obotics operations technologies.” in 11th Symposium
on Advanced Space Technologies for Robotics and
Automation (ASTRA), 2011.

[10] A. Schiele, M. Aiple, T. Krueger, F. van der Hulst,
S. Kimmer, J. Smisek, and E. den Exter, “Haptics-1:
Preliminary results from the first stiffness jnd identifica-
tion experiment in space,” in International Conference
on Human Haptic Sensing and Touch Enabled Computer
Applications, Eurohaptics. London: Springer, 2016, pp.
13–22.

[11] T. Krueger and A. Schiele, “Preparations for the haptics-
2 space experiment on-board the international space
station,” in 13th Symposium on Advanced Space Tech-
nologies for Robotics and Automation (ASTRA), 2015.

[12] A. Schiele, “Towards the interact space experiment: Con-
trolling an outdoor robot on earth’s surface from space,”
in 13th Symposium on Advanced Space Technologies for
Robotics and Automation (ASTRA), 2015.

[13] N. Y. Lii, D. Leidner, A. Schiele, P. Birkenkampf,
B. Pleintinger, and R. Bayer, “Command robots from
orbit with supervised autonomy: An introduction to the
meteron supvis-justin experiment,” in Proceedings of the
Tenth Annual ACM/IEEE International Conference on
Human-Robot Interaction Extended Abstracts. ACM,
2015, pp. 53–54.

[14] C. Borst, C. Ott, T. Wimböck, B. Brunner, F. Zacharias,
B. Bäuml, U. Hillenbrand, S. Haddadin, A. Albu-
Schäffer, and G. Hirzinger, “A humanoid upper body
system for two-handed manipulation,” in Proceedings
IEEE International Conference on Robotics and Automa-
tion, Roma, Italy, 2007, pp. 2766–2767.

[15] M. Stelzer, B. Brunner, K. Landzettel, B.-M. Steinmetz,
J. Vogel, and G. Hirzinger, “HIROSCO - a high-level
robotic spacecraft controller,” in The 10th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space, Sapporo, Japan, August 2010.
[Online]. Available: http://elib.dlr.de/67308/

[16] S. D. Burks and J. M. Doe, “Gstreamer as a framework
for image processing applications in image fusion,” in
Proc. SPIE Multisensor, Multisource Information Fusion:
Architectures, Algorithms, and Applications, vol. 8064,
2011, pp. 80 640M–80 640M–7.

[17] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra, “Overview of the h.264/avc video coding
standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[18] Microsoft Developer Network, “Directshow documen-
tation,” https://msdn.microsoft.com/dd375454.aspx, ac-
cessed: 2016-10-15.

[19] K. Vos, K. V. Sørensen, S. S. Jensen, and J.-M. Valin,
“Voice coding with opus,” in Audio Engineering Society
Convention 135, Oct 2013.

[20] Microsoft Developer Network, “Directsound documen-
tation,” https://msdn.microsoft.com/ee416960.aspx, ac-
cessed: 2016-10-15.

[21] K. Landzettel, B. Brunner, G. Hirzinger, R. Lampariello,
G. Schreiber, and B.-M. Steinmetz, “A unified control
and programming methodology for space robotics ap-
plications,” in International Symposium on Robotics,
Montreal, Canada, May 2000.

[22] A. Wedler, B. Rebele, J. Reill, M. Suppa,

15

H. Hirschmüller, C. Brand, M. Schuster, B. Vodermayer,
H. Gmeiner, A. Maier et al., “LRU-lightweight rover
unit,” in Proc. of the 13th Symposium on Advanced
Space Technologies in Robotics and Automation
(ASTRA), Noordwijk, The Netherlands, 2015.

BIOGRAPHY[

Martin Stelzer studied computer sci-
ence at FH Ingolstadt and the Uni-
versity of Hagen and received his M.
Sc. Degree in 2012. Since 2007
he has been working at the German
Aerospace Center in the field of on-
board software frameworks and was in-
volved in the space projects ROKVISS
and Kontur-2.

Peter Birkenkampf received his M.Sc.
Degree in ”Robotics, Cognition, Intel-
ligence” from Technical University of
Munich in 2013. He joined the German
Aerospace Center Institute of Robotics
and Mechatronics in 2011 and was in-
volved in the space robotics projects
Kontur-2 and Meteron Supvis Justin. His
main interests lie in Human-Robot Inter-
action and Supervised Autonomy.

Bernhard Brunner graduated in Com-
puter Science from the TU Munich in
1989 and joined the DLR Institute of
Robotics and Mechatronics in the same
year. He was involved in all of the In-
stitute’s space robotics projects, starting
with ROTEX 1993, where he provided the
predictive graphical environment. In the
last decade, he focused his research work
on a high-level task-oriented program-

ming system, which was used in most of the DLR’s space
and service robotics applications (e.g. ETS-VII, ROKVISS,
Robutler, Justin, Kontur-2). He has a long-term experience
in software engineering, developing distributed applications,
and in real-time programming.

Bernhard-Michael Steinmetz received
his diploma in Electrical Engineering
from Technical University of Munich
(TUM, Germany) in 1989. He joined
the DLR Institute of Robotics and Mecha-
tronics in 1989 as a project and research
engineer. Over the course of years he
was responsible for system design and
operation, hard real-time process control,
robotics, communication (short and long

distance), navigation and image processing in both national
and international projects (e.g. ROTEX, ETS-VII, PSPE,
ROKVISS, Kontur-1..2).

Jörg Vogel studied computer science
at TU München. Since 1995 he is
working at German Aerospace Cen-
ter as a software developer, clean
code campaigner and Java evange-
list.

Stefan Kühne studied mathematics at
the RWTH Aachen and received his
diploma in 2005. Since 2014 he has been
working at the German Aerospace Center
as an external software developer. His
main interests lie in GUI development,
distributed computing and network pro-
gramming.

16

