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ABSTRACT

This contribution describes the application of tomographic shadowgraphy to measure instantaneous veloc-

ities of droplets undergoing airblast-atomization in the non-reactive flow of a generic aero engine burner

model at Weber numbers of Weaero = 360 − 770, air pressures of pa = 4 − 7 bar and air temperatures of

Ta = 440− 570 K. The burner employs air-blast atomization of a single jet in cross-flow in the main stage. The

measurement setup is described in detail and the depth-of-field with respect to droplet size is estimated. The

latter was calculated on the basis of Mie simulations and calibration data of the point-spread function. At a

given volume size of 16× 13× 10 mm3 it turned out that the minimum resolvable droplet diameter reduces

down to d = 10 µm within the focus and increases up to d = 10− 20 µm towards the volume edges. Veloci-

ties of droplets above the resolution limit were retrieved by 3D correlation of two volumetric reconstructions

recorded at consecutive time-steps. Extracted slices of the instantaneous axial velocity indicate strong motion

and fluctuations of the spray tail with increasing temperature and Weber number. Validation against PDA

data revealed good agreement at size classes d = 10 µm, 15 µm. Slight deviations occur in regions with strong

velocity gradients probably due to the presence of reconstruction ambiguities (ghost particles).

1. Introduction

The optimization of aero engine combustors requires a detailed knowledge of the fuel atomization

process including fuel placement, breakup length scales, spray penetration depth, droplet sizes and

velocities. Providing relevant experimental data on swirled air-blast atomization on the other hand

raises some serious challenges such as deployment of realistic operating conditions and sufficient op-

tical access. Another obstacle is that the dispersion of liquid kerosine by swirling air-blast atomizers

is driven by a highly three-dimensional flow. Liquid jet breakup itself is unsteady due to turbulence

of the surrounding gas respectively of the liquid. Therefore, a better insight into the phenomenon can

be provided by diagnostic methods capable of mapping the instantaneous three-dimensional velocity

and placement of atomized fuel within the combustion volume both spatially and temporally.

One possible spray imaging technique could be tomographic shadowgraphy which is capable of

reconstructing the three dimensional instantaneous spray distributions and droplet velocities within

a given volume. The method is based on a multiple view imaging setup with inline illumination
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provided by current-pulsed LEDs allowing the droplet shadows to be projected onto multiple sensor

planes. This technique has previously only been applied with good optical accessibility to hollow

cone and flat fan sprays at ambient conditions [11]. This contribution describes a feasibility study on

the application of tomo shadowgraphy under rough operating conditions in a non-reacting kerosine

spray in a high pressure environment and with preheated airflow.

The contribution describes various aspects of the adaption of the tomographic setup to the facility.

The depth of field of the measurement setup is estimated from shadow imaging models provided

in the literature combined with calibration data of the point-spread function with the latter charac-

terizing the resolution capabilities of the multiple view setup. After tomographic reconstruction of

the volumetric intensity distribution, droplet velocities are obtained by 3D correlation of small inter-

rogation volumes at two consecutive time steps as known from conventional tomographic particle

image velocimetry [5]. In comparison to tomographic PIV which assumes an even distribution of

particles within the volume, sprays generally exhibit pronounced local variations of droplet number

density and size. Of particular interest to spray investigation is the near field where the fragments

of the kerosine jet leave the annular gap of the burner plate. The present application of tomographic

shadowgraphy intends to provide insight into the instantaneous spray tail trajectory and extension.

2. Test facility and operation conditions

Measurements are performed in a non-reactive kerosine-air flow in the optical swirling spray injector

test rig (OSSI) at the DLR Center in Cologne [6]. Fig. 1 shows a longitudinal section of the test rig.

The spray chamber has a length of 200 mm and a square cross-section of internal width of 102 mm.

The burner is supplied with preheated and pressurized air through an upstream plenum and baffle.

The kerosine supply line passes through the preheated air flow and thus kerosine is preheated prior

to injection to temperatures provided in Table 1. An exchangeable critical nozzle downstream of the

spray chamber provides mass flow control at different pressure levels. Pressure windows of 35 mm

thickness and liner windows of 7 mm thickness provide optical access to the test-section from four

sides. Cooling air is blown through the gap between pressure and liner window to protect the glass

from thermal loading and to keep the external pressure casing at ambient temperature levels. The

test rig design and the generic burner model geometry are described in detail in [6].

The generic burner employs air-blast atomization of a single jet in cross-flow in the main stage. Kero-

sine is injected through a single bore of 0.88 mm length and a diameter of 0.29 mm (L/D=3). The

injector is located in a conical main module which is placed between two co-rotating swirl genera-

tors. A liquid jet of kerosine is injected orthogonal to the conical surface. Downstream, the liquid jet
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Fig. 1 Schematic of the optical swirling spray injector rig (left) and generic burner with swirl genera-
tors (right)(c.f. [6])

Fig. 2 Orientation of the measurement volume; left side view with annular passage and injector; right
axial view; PDA measurements were performed along the dashed line

fragments propagate in swirl direction and leave the burner plate through an annular passage at a

axial distance of 6 mm from the injector (c.f. Fig. 2,left).

During the experiments described herein the pressure inside the spray chamber was varied between

4 and 7 bar and the burner air flow was preheated in a range between 440 K and 570 K. The liquid-

to-air momentum flux ratio is kept constant while the aerodynamic Weber number ranges from 360

at base line conditions to 770. Table 1 summarizes the operation conditions.

Estimations of the Weber number base on slightly cooler kerosine temperatures measured about

5 mm upstream of the injection port and therefore might be slightly underestimated due to an over-

estimation of kerosine surface tension.
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Fig. 3 Test section of the optical swirling spray injector rig; Left Camera orientation and volume of
interest (red box); Right generic burner with a transparent main module (used for spray visu-
alization) and injector bore

3. Measurement techniques

Tomographic shadowgraphy [11] has been applied to a measurement volume of 16× 13× 10 mm3

which is located in the vicinity of the burner plate 6 mm downstream of the injection bore (c.f. Fig. 2).

The experimental setup for tomographic shadowgraphy outlined in Fig. 3 and Fig. 4 involves four

synchronized double frame cameras (ILA.sCMOS) angled with −45◦ , −20◦ , 25◦ and 45◦ acquiring

double-images at a frame rate of 20 Hz. All cameras are equipped with macro lenses (Nikkor Micro)

at magnifications of approximately M=0.86 or 7.6 µm/pixel at image sizes of 2560× 2160 pixel. The

two outer cameras use lenses of f = 105 mm focal length and 35 mm close-up extension rings. Due

to the oblique view through liner and pressure windows of the 42 mm thickness, droplet images of

the inner cameras exhibit astigmatism or elliptic distortions. Therefore additional compensator win-

dows of similar thickness are mounted in front of the inner cameras to minimize these distortions

(see Fig. 4, right). These compensator windows generate similar elliptical droplet image distortions

which are rotated around the optical axis by 90◦ compared to image distortions from pressure win-

Table 1 Operation conditions of single jet in cross-flow atomization

No. pa [bar] Ta [K] Uauv [m/s] Tk [K] ṁk [g/s] quv Weaero

1 4 440 86 348 0.8 8 360
2 4 570 92 422 0.7 8 438
3 7 440 86 347 1.0 8 625
4 7 570 98 396 1.0 8 770
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Fig. 4 Optical swirling spray injector test rig and imaging setup; Left Camera arrangement; Right
detail with calibration equipment

dows which leads to a near cancelation of droplet image ellipticity. The two inner cameras are both

equipped with f = 200 mm lenses in order to accommodate the additional compensator plates in the

optical path.

With the aid of Scheimpflug (tilt) camera mounts, the focal planes of the cameras are aligned with

the calibration target positioned at the center of the imaged volume. This ensures that all cameras

share a similar depth of field. All apertures are stopped down to f# = 22 to maintain a depth of field

of approximately 10 mm. Estimations of droplet visibility along volume depth are reported in the

following section.

Inline illumination is provided for each camera by a current-pulsed, high power green LED (Lumi-

nus, SST-90, green) whose light is collimated with an aspheric condenser lens of f = 30 mm [25].

Peak currents of If,max = 27 A at τp = 400 ns were found sufficient to provide bright-field intensity

levels at 5% of the camera dynamic range (16bit) at lens apertures f# = 22 and a magnification close

to 1. The pulse separation was ∆t = 1.7 µs to achieve droplet image displacements in the order of

10 pixel.

Volume calibration is achieved with lithographic photomasks of checkerboard patterns on soda-lime

glass that are backlit with a display LED for homogenous illumination. Opaque regions consist of

a 100 nm thick layer of chromium oxide and have a lateral dimensional tolerance of ±300 nm. The

traversal of the calibration target along z-axis by a motorized translation stage (Newport Agilis)

allows the sequential recording of 3-D points in space at a manufacturer specified an absolute posi-

tioning accuracy of better than 100 µm. Each calibration set consists of seven z positions each with

22× 21 corners at a 0.75 mm spacing.
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Reference measurements of droplet velocity and size were performed with a Dantec 2D-PDA System

and a P80 processor. The PDA setup and evaluation parameters are similar to those published in [7].

4. Droplet image contrast and depth of field

Tomographic shadowgraphy relies on shadow images or shadowgraphs of a spray field using poly-

chromatic inline illumination with pulsed LED light. The term ’shadow image’ does not fully ad-

dress the involved processes because the absorption coefficient of kerosine for visible light is rather

low (5.0E− 07 at 20◦C and 1.7E− 6 at 280◦C [16]). Most of the photons impacting on the droplet are

deflected by reflection, refraction and diffraction and images of small droplets appear as dark spots

on a bright background because a major part of the deflected light is not captured by the imaging

lens (see Fig. 5).

This raises the question on how the optical resolution and the further image processing influence

the shadow image contrast and how the depth of field affects droplet visibility. PDA measurements

10 mm downstream of the burner plate revealed kerosine droplet diameter ranging from 5− 80 µm

for the base line case. However it is not obvious which part of this size fraction can be captured by

tomographic shadowgraphy.

In the following the visibility of droplet shadows as a function of droplet size and volume position

z are estimated for the previously described multiple view setup. The underlying spray imaging

model bases on a paper by Blaisot and Yon [3] who established the model to enable measurements of

droplet sizes within diesel sprays using shadow images obtained from a single camera.

In the imaging model of Blaisot and Yon, the radial intensity distribution of a droplet shadow is

modeled by the convolution of a slightly transmitting disc and the point spread function (PSF), with

the latter describing the resolving capability of the imaging system. The point spread function is
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Fig. 5 Light refraction inside a sphere (left) and Mie scattering of non-polarized polychromatic LED
light (λ = 460− 600 nm) upon spherical kerosine droplets in air (right)
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considered as a Gaussian and can be calibrated as a function of zTS:

s(r, zTS) = s0 exp
(
− 2r2

χ2(zTS)

)
, (1)

where s0 represents a normalization factor, r is the radial droplet image coordinate and χ is the half-

width.

The convolution of the slightly transmitting disc and the Gaussian PSF leads to:

in(r̃) = 1− 2 (1− τ) exp(−r̃2)
∫ ã

0
exp(−ρ2) I0 (2r̃ρ) dρ , (2)

where r̃ is the non-dimensional radial image coordinate r̃ =
√

2r/χ and ã is the non-dimensional

droplet image radius ã =
√

2a/χ both with regard to the half with of the PSF; I0 is the Bessel func-

tion of the first kind and zero order and τ is the contrast coefficient. The latter refers to the disc

transmission or Mie scattering within the bounds of the lens aperture. The estimation of the smallest

visible droplets requires assumptions concerning the contrast coefficient τ which is gained from Mie

simulations using MiePlot 4.5 [13].
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Fig. 6 Forward-scattered intensity (left) versus scattering angle of non-polarized and polychromatic
light (λ = 460− 600 nm) upon spherical kerosine droplets in air (Tk = 450K,Ta = 473K) and
droplet transmission (right) versus lens aperture

Fig. 6, left shows the simulated forward-scattered intensity as a function of scattering angle for poly-

chromatic LED light (λ = 0.46− 0.60 µm) of random polarization upon spherical kerosine droplets

at temperatures of Tk = 450K and air temperatures of Ta = 473K. The scattered intensity is ex-

pressed in terms of the so-called phase function which integrated over all scattering directions yields

unity. While scattering by small droplets of d = 10 µm does not show a strong angle-dependency,

larger droplets of d = 50 µm exhibit pronounced forward-scattering with a five times higher on-axis

intensity and an additional intensity minimum at a scattering angle of 15.5 mrad. If absorption is
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Fig. 7 Left: Simulated shadow image profiles of kerosine droplets of different sizes at a PSF half-
width of χ = 10 µm, M = 1, f# = 22. Right: Minimum intensity of droplet image profiles
versus droplet size at different PSF half-widths at M = 1, f# = 22.

neglected, integration of the phase function over the solid angle of the camera aperture yields the

droplet transmission versus lens aperture angle which is plotted in Fig. 6 (right). All four lenses were

stopped down to f# = 22 which gives an aperture angle of 11 mrad at a magnification of M = 1.

At this numerical aperture, droplets of a diameter of d = 10 µm or d = 50 µm would have contrast

coefficients of 0.05 respectively 0.40, so droplet transmission within the lens aperture has a strong

droplet size dependency. Once the transmission coefficient is known, the image intensity profile of

kerosine droplets of different sizes can be calculated. For example, Fig. 7 (left) shows image profiles

at a width of the point spread function of χ = 10 µm and a magnification of M = 1. Fig. 7 (right)

shows the change of the intensity minimum of the image profile with droplet size for different PSF

widths.

The remaining unknown is the width of the point spread function which was calibrated on the ba-

sis of intensity profiles across sharp edges (c.f. [10]). Therefore, chessboard calibration images were

recorded at 13 zTS positions with 0.75 mm spacing within the spray chamber. The images are flat-

field corrected and back-projected into the volume to enable an estimation of the width of the overall

point spread function in voxel-space which includes possible smoothing effects during reconstruc-

tion due to the finite voxel size and image interpolation. Fig. 8 (left) shows the intensity profile across

chessboard edges (edge spread function) obtained from back projected calibration images of camera

no. 1. The line spread function is obtained by numerical differentiation of the edge spread function

[4]. The half-width of the line spread function is equal to the width of the PSF in x-direction and is

obtained by matching the derived intensity profile with a Gaussian fit [18].

Fig. 9 (left) shows the half-width of the point spread functions for all views at a voxel sizes of 12 µm

(approx. 1.5 voxel/pixel). The image sharpness of the inner views no. 2 and 3 decreases stronger
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Fig. 8 Quantification of edge response of the system along x direction at a voxel size of 8 µm obtained
from chessboard images of view no. 1; edge spread (left) and line spread function plus Gaussian
fit (right) in focus at z = 0 mm (top) and near the volume edge at z = −4.5 mm (bottom)

towards the volume edges due to the longer focal length lenses ( f = 200 mm instead of f = 100 mm)

which leads to a decreased depth of focus. Only minor improvements can be achieved by decreasing

the voxel size to 8 µm (approx. 1.0 voxel/pixel) because the resolution is limited by the optical

arrangement.

On the basis of PSF calibrations and Mie simulations of the contrast coefficient the minimum intensity

of the droplet image profiles can be calculated by the following equation (c.f. [3]):

ĩ(0) = imin = 1− (1− τ)(1− exp(−ã2). (3)

The minimum intensities of the droplets within the size range of d = 5...80 µm are then compared to

the smallest detectable intensity depletion of the spray background illumination in order to decide

whether a droplet would be visible or not. This threshold of visibility is estimated from intensity

fluctuations in 200 images recorded with LED light without spray. After image normalization, all

pixel intensities have a mean of ĩ = 1 ± σ and the threshold of visibility was set to a values of

ĩ = 1− 2σ. The threshold estimations for view no. 1,2,3 and 4 yield the values 0.980, 0.988, 0.988 and

0.980. Fig. 9 (right) shows the estimated smallest visible droplet sizes in each view for a voxel size of

12 µm. If one of the views can not detect a droplet because of low contrast it would not be visible in

the reconstructed volume. Therefore, the maximum of the size limits of all cameras gives the limit
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Fig. 9 Calibration of the PSF of each camera (left) and smallest visible droplet diameter of the tomo
shadow setup (right)

of the multiple view setup (red line in Fig. 9. The droplet visibility is only slightly improved if the

voxel size is reduced to 8 µm (approx. 1 voxel/pixel) so a voxel size of 12 µm was chosen to reduce

the computational time of volume processing as much as possible.

5. Shadow image processing and volume reconstruction

After dark image subtraction, shadowgraphs are median filtered within the 3× 3 neighborhood to

reduce pixel artifacts of the sCMOS camera sensor. The images are then flat-field corrected and

normalized by division by a bright field image without spray. Prior to reconstruction the image in-

tensities are inverted and a constant offset of 2σ is subtracted to clip intensities close to pixel noise

(preprocessing A). The remaining unstructured background between droplet shadows (see Fig. 10,

middle) seems to originate from small vaporized kerosine droplets with sizes below the smallest vis-

ible droplet size or from droplets which are out-of-focus. The remaining background around droplet

images is partially removed by subtracting the local minimum in a 20× 20 pixel kernel followed by

clipping of a constant threshold (preprocessing B). The removal of unstructured background between

droplet images is not complete because further increase of the threshold would clip droplet images of

low contrast (see Fig. 10 bottom). Preprocessing A without sliding minimum subtraction and thresh-

olding is applied prior reconstructions which are used to gain information about the placement of

liquid phase in the spray (’volume fraction’). Preprocessing B is optimized to enhance gradients near

the droplet shadow border and to improve the correlation signal for droplet velocity estimation.

The reconstructed volume size is 16× 13× 10 mm3 which corresponds to 1312× 1088× 864 voxel

each having a size of 12 µm. The observed intensities from each voxel are reconstructed according

to its line-of-sight intersection with each image plane. These positions are calculated from higher
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order mappings obtained from camera calibration as described in [20, 12]. Sub-pixel intensities are

bilinearly interpolated between the 4-connected pixels. The observed intensities from each view are

combined by a maximum entropy approach (MENT) [14, 2].

State-of-the-art cross-correlation processing is used for droplet displacement recovery in the volume

[17, 23]. A multi-grid algorithm employ a resolution pyramid that starts at a rather coarse grid

and stepwise increases resolution while continually updating a predictor field [19, 22]. To increase

processing speed, factor N volume down-sampling is applied by summing N3 neighboring voxels.

At a given resolution level integer-based sample offsetting is applied in a symmetric fashion using

the estimate from the previous resolution step. Intermediate validation is based on normalized me-

dian filtering as proposed by Westerweel & Scarano [24]. Once the desired final spatial resolution is

reached image or volume deformation based on third-order B-splines [21] is applied at least twice

to further improve the match between volumes and thereby improving the displacement estimates.

The final vector spacing is 0.38 × 0.19 × 0.19 mm ( 32 × 16 × 16 voxel) at a interrogation volume

size of 0.77× 0.38× 0.38 mm ( 64× 32× 32 voxel). The processing for volume reconstruction and

correlation is highly parallelized using OpenMP [15] to achieve optimal data throughput.

Fig. 10 Sample spray image obtained from view no. 1 at pA = 4 bar, TA = 440 K, quv = 8, Weaero =

360. Right: Magnified region of 410× 80 pixel (≈ 3.11× 0.61 mm ) obtained from the red
box. Top: raw image; Middle: after contrast enhancement (processing A); Bottom: after local
minimum subtraction (20× 20 neighborhood) and thresholding (processing B).

6. Results and discussion

The shadowgraph in Fig. 10 confirms that the spray is at a late state of air-blast atomization when

it leaves the annular gap. There are some ligaments but most of the liquid is already dispersed into

droplets. The droplet distribution is not homogeneous and wavy streaks of larger droplets appear in
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Fig. 11 Average (left) and RMS (right) of 150 spray reconstructions at pA = 4 bar, TA = 440 K, quv = 8,
Weaero = 360

the jet. The dominant breakup mechanism of the kerosine jet should be surface breakup because the

Weber number is close to the critical Weber number (Wecrit ' 10(3.1−log(q))/0.81=388 [26, 1]). During

surface breakup ligaments and drops are continuously sheared-off of the jet surface mainly from the

lateral sides of the jet. Below the critical Weber number column breakup is dominant where the liquid

jet body breaks into larger irregular-shaped fragments and ligaments (c.f. [26, 9]).

Fig. 11 shows the intensity distribution within a spray volume at pA = 4 bar, TA = 440 K, quv = 8,

Weaero = 360 at equidistant slices obtained from images after preprocessing A. Intensities are aver-

aged over 150 samples to reduce the granularity from single droplet reconstructions. The average

intensity distribution shows a u-shaped structure at (x = 1− 5 mm) which indicates regions where

droplets appear frequently. These regions seem to arise from the jet shear layer, where ligaments and

drops are shed during surface breakup. Further downstream the windward leg of the u-shaped struc-

ture disintegrates faster possibly due to stronger interaction with the swirled flow. Reconstruction

ambiguities (’ghost particles’ [5]) lead to a slight elongation of the u-shaped structure along volume

depth near the burner plate due to high droplet image densities. These ambiguities were also ob-

served during earlier tomographic spray experiments with a similar camera setup [11]. Ambiguities

could be partially suppressed by using additional cameras or advanced reconstruction algorithms

which are subject of ongoing research.

Interaction of the hot, pressurized air flow with the spray can be studied by single shot velocity fields

obtained from 3D correlation of double volumes. Fig. 12 (top) shows equidistant slices of the velocity

field obtained from single shot results at increasing Weber number. Correlation values below 10%

are blanked. The contour shape (axial velocity) can also be seen as a region, where droplets above
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Fig. 12 Snap shots of droplet velocities obtained from correlation of single shots. Vectors show the
in-plane v, w components.

the resolution limit of d = 10 µm appear in coherent motion. The contour size and position can be

used to track the spray trajectory and extension in space at fixed time.

The size of the contoured area clearly decreases with rising air and fuel temperature which indicates

a significant droplet size reduction which is also evident from PDA measurements of liquid jet in

cross flow atomization at elevated temperature (c.f. [8]).

Averaged spray velocities are shown in Fig. 13 and reveal slightly higher axial spray velocities on the

windward side of the spray. There is a clear difference of the sizes of contoured areas (correlation

coefficient above 10%) between instantaneous and time-averaged results at which indicates wide

fluctuations of the spray tail position and extension. These differences are more pronounced at T =

570 K.

Near the burner plate both, instantaneous and time-averaged measurements show lower axial veloci-

ties inside the spray tail in comparison to outer regions. This might be due to the higher aerodynamic

13



18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics · LISBON | PORTUGAL · JULY 4 -7, 2016

Fig. 13 Droplet velocities obtained from (Vectors: in-plane v, w components)

drag which the incoming air has to overcome until it reaches inner spray fragments, ligaments and

droplets (c.f. [27]).

At x = 10 mm distance to the burner plate average velocities obtained from tomographic shadowgra-

phy are compared to 2D PDA measurements acquired along the dashed line in Fig. 2. Fig. 14 shows

axial and tangential velocity profiles of different size classes in comparison with profiles obtained

from 3d correlation of two reconstructed volumes. Axial velocities are in agreement with velocities

obtained from the d = 10 µm and d = 15 µm size classes except in regions with strong gradients

(e.g. y = 7 mm). Velocities obtained from 3D correlation drop off near the edges, probably due to

spatial averaging within the interrogation volume. Differences in tangential velocity are also present

in regions with larger velocity gradients. There are two possible explanations for that: Either veloci-

ties are smoothed due to the correlation of varying droplet sizes within one interrogation volume or

there is an additional bias due to reconstruction ambiguities (’ghost particles’).
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Fig. 14 Comparison of PDA and TS velocity profiles obtained at x = 10 mm along the dashed line in
Fig. 2 (vpda runs parallel to the dashed line), pA = 4 bar, TA = 440 K, quv = 8, Weaero = 360

7. Conclusions and outlook

Tomographic shadowgraphy was successfully applied in a non-reactive kerosine spray in a pres-

surized environment with preheated swirled airflow. Measurements rely on the tomographic re-

construction of four views simultaneously imaging a volume of 16 × 13 × 10 mm3 at a magni-

fication close to unity using pulsed inline illumination. Estimations of the droplet shadow im-

age contrast on the basis of PSF calibrations revealed that the depth of field strongly depends on

droplet diameter. The minimum resolvable droplet diameter of the multiple view setup goes down

to d = 10 µm within −2 mm < zTS < 2 mm and than increases to d = 10− 20 µm within the range

2 mm < |zTS| < 5 mm.

Velocities of droplets above the resolution limit were retrieved by 3D correlation of small interroga-

tion volumes of 0.77× 0.38× 0.38 mm at vector spacing of 0.38× 0.19× 0.19 mm. Three-dimensional

instantaneous and time averaged spray velocities of jet-in-cross-flow atomization are measured at

Weber numbers of Weaero = 360 − 770, air pressures of pA = 4 − 7bar and air temperatures of

TA = 440− 570 K. Extracted slices of the instantaneous axial velocity indicate strong motion (un-

dulations) and fluctuations of the spray tail with increasing temperature. This shows clearly the

advantage of instantaneous volumetric versus time averaged planar measurements which allow to

visualize the trajectory of the spray tail in space at a fixed time. This could also be used to improve

the estimates of time averaged kerosine volume fraction or dissipation rates by taking into account

the temporal fluctuations of the spray placement.
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To gain time resolved droplet velocities remains a challenging task because it would require acqui-

sition rates in the order of 1/∆t = 0.6 MHz accompanying with a significant reduction of the image

resolution from 5 Mpixel down to 30k Kpixel according to the state-of-the-art of imaging technology.
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8. Nomenclature

a, ã droplet radius, normalized radius (=
√

2a/χ)

d droplet diameter

D diameter of injection bore

f focal length

f# f-number

ĩ normalized image intensity

If,max maximum continuous forward current

M magnification

p pressure

PDA phase doppler anemometry

PSF point spread function

q liquid-to-air momentum flux ratio (= ρkU2
k /(ρaU2

a )

r, r̃ radial droplet image coordinate, normalized radial coordinate(=
√

2r/χ)

∆t delay between two illumination pulses

T temperature

TS tomographic shadowgraphy

U velocity magnitude

u,v,w velocity components along x,y,z

We Weber number = ρU2D/σ

λ wavelength of light

ν kinematic viscosity

ρ mass density or integration argument within the bounds 0 ≤ ρ ≤ ã
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σ standard deviation or surface tension

τ droplet transmission in the bounds of lens aperture or contrast coefficient

τp pulse duration

χ half-width of the point-spread function

ϕ camera yaw angle (around x axis)

Subscripts

a air condition

k kerosine condition

aero computed with air flow properties

pda basis for 2D-PDA vector space

ts basis for TS vector space

uv based on axial and tangential velocity components
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