Multi-PIV Measurements of an Adverse Pressure Gradient Turbulent Boundary Layer

- C. Kähler, S. Scharnowski, R. Hain Institut für Fluidmechanik u. Aerodynamik, Uni.BW München
- C. Willert, J. Klinner DLR Institut für Antriebstechnik, Köln
- A. Schröder, J. Agocs, R. Geisler, A. Röse DLR Institut für Aerodynamik und Strömungstechnik, Göttingen
- J. Soria, C. Atkinson, O. Amili Monash University, Melbourne
- M. Stanislas, J.M. Foucaut, C. Cuvier, S. Srinath, J.P. Laval Laboratoire de Mécanique de Lille, CNRS

Knowledge for Tomorrow

ÉUHIT

Project Motivation and Aims

• Adverse pressure gradient boundary layer very common in aerodynamics

Figure from Yvan Maciel, Laval Univ., Quebec

Project Motivation and Aims

- Large scale turbulent flow structures are primarily found in the log-law region of turbulent boundary layers
- Coherent structures are associated with the outer peak in the stream-wise velocity fluctuations

Project Motivation and Aims

- large scale turbulent flow structures are primarily found in the log-law region of turbulent boundary layers
- coherent structures are associated with the outer peak in the stream-wise velocity fluctuations
- Q1: Are the large scale structures a high Reynolds number effect or just not resolvable at low Reynolds numbers?
- Q2: How do these structures behave in cases with pressure gradients?
- Q3: Shape and dynamics of the large scale turbulent flow structures?
- Q4: Significance of the structures for aerodynamic flows around airfoils?
- Fundamental project aim is to resolve and characterize these structures in an APG boundary layer flow
- Significance of structures for the statistical properties of the flow can be resolved for the first time within the project

Large Scale Structure under Adverse Pressure Gradient Facility: LML Boundary Layer Wind Tunnel (LML), France

Partners

- LML-Lille
- UniBW-München
- DLR (Gö/KP)
- Monash University

ÉUHIT

PIV Measurement methods utilized

- 2C 2D PIV to capture entire APG region (3.5m) using 16 cameras
- 3C 2D PIV (Stereo) of selected spanwise positions in APG (and upstream)
- **High-speed 2C 2D PIV** to measure near wall characteristics (wall shear stress) at selected positions
- 2D wall shear measurements based on shear film
- Long-range microscopy to measure wall shear stress

2C-2D Measurement of APG Region

Large Field PIV using 16 sCMOS cameras covering 3.5m
→ image size of about 35,000 x 2500 pixels (87 MPixel)

VDLR

Light sheet generation

- 2x 200mJ @ 532nm
- laser at 10m distance
- 7500mm spherical lens
- -250mm cylinder lens

2C-2D Measurement of APG Region

Boundary layer parameters for $U_{\infty} = 9$ m/s

Two-point correlations of streamwise velocity u'for C = 0.15 and U_{∞} = 9 m/s

boundary layer thickness δ

velocity U_{e}

Long-range microscopy and high-speed PIV

 \rightarrow wall-shear stress and near wall statistics

~ 1m working distance

(Zeiss ApoTessar 300mm/2.8 lens)

 \rightarrow m = 0.44 (~25 µm/Pixel) \rightarrow (> 1y⁺ / Pixel)

Camera: PCO Dimax-S4, 36GB

 \rightarrow up 503,000 images per run (178x288 pixels)

Position 0 – Upstream of model, $U_{\infty} = 5$ m/s

6.7 kHz acquisition rate ($\Delta t = 150 \mu s$) 125,000 images (~19 s)

200px (5mm)

1008 pixel (25mm)

Single snapshots of time resolved profile data

Mean velocity profiles upstream of model

Reynolds Stresses upstream of model

PDF of Wall-Shear Stress

Evidence of rare back-flow events (ZPG Turb-BL)

Time-trace of wall-normal profile of streamwise velocity U (5000 samples of 126,000 samples @ 6.7kHz)

Evidence of rare back-flow events

Good agreement with DNS reported in:

Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P., Örlü, R. (2012): Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids **24**, 035110

Events ~5-10x more frequent in APG region (detailed investigation pending)

Summary

- Large data base of a turbulent boundary layer with adverse pressure gradient has been acquired with high spatial resolution
 - raw data >25TByte
 - Re_θ up to 20,000
 - spatial resolution 1x1mm²
 - time-resolved velocity near-wall profiles with resolution O(y⁺)
- Initial PIV processing completed
- Data to be archived on / provided by CINECA servers (Italy)
- Ongoing analysis:
 - two-point correlations $R(u_{T}, u'_{i})$
 - joint PDFs of velocity components

• ...

• Funding provided through EuHIT – European High performance Infrastructures in Turbulence

Thank you for your attention

