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Outline

Cost reduction of the PEM electrolyzer stack

MEA tests in a 20 kW, PEM electrolyzer system

Protocol of measurements

Benchmark MEA with Ir-black catalyst

Electrochmical analysis of deagradation mechanisms

Post mortem analysis of the MEAs and water resin

Summary




Cost breakdown of PEM electrolyzer system and stack
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Study on development of water electrolysis in the EU.

Final Report. E4tech Fuel Cells and Hydrogen Joint
Undertaking; 2014

How to reduce the stack cost?

B Stack assembling
B Small parts
B MEA manufacturing
W Catalyst cathode
(l Catalystanode ) Catalyst

B Membranes

B Current collectors cathode
I Current collectors anode

(l Bipolarplates) Coatings
End plates

¥ Pressure plates

» Substitute titanium based components (bipolar plates, current collectors, PTLs, GDLS) by

coated stainless stee, steel, copper or aluminium.

» Use thin hydrocarbon based membranes and highly conductivenon precious metal

coatings. Reduce ohmic losses.

» Develop more effcient anode and cathode catalysts with low loading and improved
stability. Use ceramic supports or increase activity surface area ratio

e Operate at high current densities. Extend operation range from 2 (nominal) to 4 A cm-2.
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Project on degradation phenomena in PEM electrolyzer
systems operating at high current densities

Testing of MEAs with different catalysts in a 12 kW, PEM electrolyzer system

Deutsches Zentrum

DLR fiir Luft- und Raumfahrt e\’ = Assessment of results and post-mortem analysis
in der Helmholtz-Gemeinschaft
HYDROGENICS ™ Construction a 12 kW, PEM_eIectronzer system
SHIFT POWER | ENERGIZE YOLUR WORLD = Stack assembly and evaluation of the degradation tests
Individual potentials
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Rainbow stack with
different MEA
configuration

8 Cell - 120 cm? — 20 kW,

12 kW, PEM electrolyzer
PEM electrolyzer stack

Goal of the project: Gain knowledge about degradation mechanism of PEM electrolyzer MEAs
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Protocol of measurements

Stack 1: Different catalyst loadings
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Stack 2: MEAs from different providers
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e There is an urgent need for accelerated
stress test (AST) protocols for PEM
electrolyzers

» Degradation caused by operation time,

current densities, voltage, temperature,
water quality, etc. is not well understood
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Benchmark PEM electrolyzer anode

» Half cell measurements: OER activity of Ir-black
(Umicore) is 3x higher than thermally treated
IrO, (at 1.48V, 25 °C)

* MEAs with IrO, (thermally treated) show lower
performance compared to those with Ir-black

» Half cell and single cell measurements correlates
well with the PEM electrolyzer results

* Ir-black can be considered as benchmark anode
in PEM electrolyzers

Wuhan WUT N115
IRD 2.3 N115 0.5
FuelCellsEtc 3 N115 3
E500 (Ir-black) 1 N115 0.9
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Electrochemical impedance spectroscopy (EIS)

» EIS was performed before and after 500
h (T1) at 2 Acmz, and before and after 0%
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el through the time and current density

Evolution of E
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Determination of ohmic losses from EIS

» Temperature of the stack was stricktly

controlled at 29 + 0.5 °C by shutting off N cell ,
completely the H,-generator. An external pump N ox N Act
with low flow rates was used. N ohm ’ ]
» The EIS were simulated using an equivalent ” Rox Rac
circut — R, Py L
» The EIS spectra at a given current density NN AN
changed over time and when the current was CPE,, CPE,
increased
 The cell resistance (ngn,) and kinetics (R ) ol o 0025 Ao —
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Degradation mechanism from EIS analysis

e The degradation was a) b)
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Degradation analysis and XPS on DI water resin

 Nafion degradation: “ Fresh Used
_ _ [wt%] [wt%]
1. Presence of F in the DI water resin — fe |

. C . . 10.9 21.4
 Degradation of intrinsic properties: 00 .
1. Significant decrease of exchange current 72;6 5:9
density during time of measurement. s | > 09
Deactivation of the anode s | 0.0 3.3

2. Presence of Ir in the DI water resin v I 13

— J,/ 10°A mg, 2

Ir-Black (Umicore)

(Half Cell, kinetic analysis)
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Post mortem analysis of the MEAS

* No decrease of membrane thickness was observed
from cross-section SEM images.

* Release and diffusion of Ir catalyst into the
membrane.

. After operation, the gonductive area _of the anode ) BB
increased by approximately 50% while the
conductive area of the cathode remained the same.

» Surface conductivity of the catalyst layer changed
due to ionomer loss.

Current

Cathode

1.0 pm Current 1.0 ym

Conductive area (%) | Average Thickness / um

Current

unused  Cell 8 (used) unused Cell 8 (used)
304 45+ 5 5104 43+0.6
3712 395 16.1 £ 0.6 16.7+1

121.5+1.5 137.4+2.9




Summary

* Investment cost can be reduced by operating the PEM electrolyzer at high
current densities

* The lowest Ir catalyst loading (1 mg cm?) showed the lowest E_, at any
current density.

 Aging of the PEM electrolyzer MEAs depends on current density and
operation time, but the associated degradation mechanisms are different in
each case.

* EIS shows a progressive decrease in the specific exchange current, while
the ohmic resistance decreases when doubling the nominal current density.

* Post mortem analysis of the MEAs (SEM and AFM) and water resin (XPS)
revealed a current dependent loss of ionomer and catalyst material in the
anode, which resulted in an unexpected enhancement of cell performance at
high current densities.

- Afirst step towards developing an acelereted stress test protocol (AST) for
PEM electrolyzers has been given
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