

Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities

<u>P. Lettenmeier^a</u>, R. Wang^b, R. Abouatallah^b, A. S. Gago^a, K. A. Friedrich^a

^aInstitute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart 70569, Germany

^bHydrogenics Corporation, 220 Admiral Boulevard, Mississauga, ON L5T 2N6 Canada

Outline

- Cost reduction of the PEM electrolyzer stack
- MEA tests in a 20 kW_{el} PEM electrolyzer system
- Protocol of measurements
- Benchmark MEA with Ir-black catalyst
- Electrochmical analysis of deagradation mechanisms
- Post mortem analysis of the MEAs and water resin
- Summary

Cost breakdown of PEM electrolyzer system and stack

How to reduce the stack cost?

- Substitute titanium based components (bipolar plates, current collectors, PTLs, GDLs) by coated stainless stee, steel, copper or aluminium.
- Use thin hydrocarbon based membranes and highly conductivenon precious metal coatings. Reduce ohmic losses.
- Develop more effcient anode and cathode catalysts with low loading and improved stability. Use ceramic supports or increase activity surface area ratio
- Operate at high current densities. Extend operation range from 2 (nominal) to 4 A cm⁻².

Project on degradation phenomena in PEM electrolyzer systems operating at high current densities

Partner	Tasks in the project		
Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft	 Testing of MEAs with different catalysts in a 12 kW_{el} PEM electrolyzer system Assessment of results and post-mortem analysis 		
HYDROG(E)NICS SHIFT POWER ENERGIZE YOUR WORLD	 Construction a 12 kW_{el} PEM electrolyzer system Stack assembly and evaluation of the degradation tests 		

8 Cell - 120 cm² – 20 kW_{el} PEM electrolyzer stack

12 kW_{el} PEM electrolyzer

Goal of the project: Gain knowledge about degradation mechanism of PEM electrolyzer MEAs

Protocol of measurements

Stack 1: Different catalyst loadings

Stack 2: MEAs from different providers

- There is an urgent need for accelerated stress test (AST) protocols for PEM electrolyzers
- Degradation caused by operation time, current densities, voltage, temperature, water quality, etc. is not well understood

Benchmark PEM electrolyzer anode

- Half cell measurements: OER activity of Ir-black (Umicore) is 3x higher than thermally treated IrO₂ (at 1.48V, 25 °C)
- MEAs with IrO₂ (thermally treated) show lower performance compared to those with Ir-black
- Half cell and single cell measurements correlates well with the PEM electrolyzer results
- Ir-black can be considered as benchmark anode in PEM electrolyzers

Company	Anode (mg cm ⁻²)	Membrane	Cathode (mg cm ⁻²)
Wuhan WUT	2	N115	0.8
IRD	2.3	N115	0.5
FuelCellsEtc	3	N115	3
E500 (Ir-black)	1	N115	0.9

 $\boldsymbol{E}_{\text{Cell}}/V$

i/Acm⁻²

Electrochemical impedance spectroscopy (EIS)

- EIS was performed before and after 500 h (T1) at 2 A cm², and before and after 250 h (T2) at 4 A cm²
- MEA with Ir-black (1 mg cm⁻²) showed the lowest activation and ohmic resistances
- EIS results correlate well with E_{cell} j characteristics
- At high current densities the ohmic resistance has the largest impact
- No mass transport was observed

Electrochimica Acta, 2016, in press

Evolution of E_{cell} through the time and current density

 Difficult analysis of degradation rate because of temperature fluctuation.

At $j = 2 \text{ A cm}^{-2}$, $\Delta T = \pm 1.5 ^{\circ}C$ caused by the addition of fresh water into the stack.

At j = 4 A cm⁻² $\Delta T = \pm 4$ °C caused by the periodic turn on-off of the fan that cools down the entire system enclosure

- No increase in Ecell after 4 A cm⁻² test for all cells
- No increase of E_{cell} over time for all cells

Electrochimica Acta, 2016, in press

Determination of ohmic losses from EIS

- Temperature of the stack was stricktly controlled at 29 ± 0.5 °C by shutting off completely the H₂-generator. An external pump with low flow rates was used.
- The EIS were simulated using an equivalent circut
- The EIS spectra at a given current density changed over time and when the current was increased
- The cell resistance (η_{Ohm}) and kinetics (R_{act}) were analysed

Electrochimica Acta, 2016, in press

Degradation mechanism from EIS analysis

- The degradation was analyzed through changes in ohmic loses and potential over time.
- The kinetic resistance (R_{act}) increased over time
- The ohmic resistance (η_{Ohm}) decreased at high current densities

Potential	Change at 0.33 A cm ⁻²
E _{cell}	↑ +10μV/h
η_{ohm}	↓ -2μV/h
η_{Ox}	\rightarrow
η_{Act}	个 +13μV/h

Electrochimica Acta, 2016, in press

Degradation analysis and XPS on DI water resin

- Nafion degradation:
 - 1. Presence of F in the DI water resin
- Degradation of intrinsic properties:
 - Significant decrease of exchange current density during time of measurement.
 Deactivation of the anode
 - 2. Presence of Ir in the DI water resin

Elem.	Fresh [wt%]	Used [wt%]
Fe	0.0	2.6
F	0.0	2.9
0	10.9	21.4
Ti	0.0	2.7
N	2.4	3
С	79.6	52.9
S	7.2	9.9
Si	0.0	3.3
lr	0.0	1.3

	T/°C	β /mV dec ⁻¹	j _o / 10 ⁻⁹ A mg _{lr} ⁻¹
Ir-Black (Umicore)	25	43.1	2.5
(Half Cell, kinetic analysis)	30	43.1	3
	40	43.2	5.8
	50	43.6	12.0
	60	43.9	22.8
	70	44.6	46.2
Before 2A/cm²	30	44.3	18.1
After 2A/cm²	30	41.1	3.5
After 4A/cm²	30	41.1	2.8

 ΔFM

Post mortem analysis of the MEAs

- No decrease of membrane thickness was observed from cross-section SEM images.
- Release and diffusion of Ir catalyst into the membrane.
- After operation, the conductive area of the anode increased by approximately 50% while the conductive area of the cathode remained the same.
- Surface conductivity of the catalyst layer changed due to ionomer loss.

SEM

	/ \1 1V1			
	Initial	Cell 8		
a) Anode	Current 1.0 µm	Current 1.0 µm		
Cathode (p	Current 1.0 μm	Current 1.0 µm		

	Conducti	ve area <mark>(%)</mark>	Average Thickness / μm	
	unused	Cell 8 (used)	unused	Cell 8 (used)
Anode	30 ± 4	45 ± 5	5 ± 0.4	4.3 ± 0.6
Cathode	37 ± 2	39 ± 5	16.1 ± 0.6	16.7 ± 1
Membrane			121.5 ± 1.5	137.4 ± 2.9

Summary

- Investment cost can be reduced by operating the PEM electrolyzer at high current densities
- The lowest Ir catalyst loading (1 mg cm⁻²) showed the lowest E_{cell} at any current density.
- Aging of the PEM electrolyzer MEAs depends on current density and operation time, but the associated degradation mechanisms are different in each case.
- EIS shows a progressive decrease in the specific exchange current, while the ohmic resistance decreases when doubling the nominal current density.
- Post mortem analysis of the MEAs (SEM and AFM) and water resin (XPS) revealed a current dependent loss of ionomer and catalyst material in the anode, which resulted in an unexpected enhancement of cell performance at high current densities.
- A first step towards developing an acelereted stress test protocol (AST) for PEM electrolyzers has been given

Acknowledgements

Josef Kallo
Fabian Burggraf
Pawel Gazdzicki
Stefan Helmly
Svenja Kolb

Tobias Morawietz Michael Handl Renate Hiesgen

Hochschule Esslingen
University of Applied Sciences

Project No. 0325440A.

Grand Challenges in Energy Conversion and Storage 2 <u>Tuesday, 31 May 2016: 11:30 a.m.</u> Aqua Salon F (Hilton San Diego Bayfront)

Novel Components for PEM Electrolysis: Status and Challenges

A. S. Gago, P. Lettenmeier, L. Wang, S. Kolb, F. Burggraf, and K. A. Friedrich

Thank you for your attention

Contact: <u>aldo.gago@dlr.de</u>

