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A new approach for the Azimuthal Mode Analysis (AMA) of over- and subsampled
sound fields in flow ducts of turbomachines using circumferential sensor arrays is pre-
sented which is based on Compressed Sensing. Compressed Sensing is a framework to
solve underdetermined systems of linear equations under the assumption that the solution
vector is sparse. In the context of AMA, such sparse mode spectra often occur in the
analysis of tonal sound field components generated by rotor-stator interaction. Important
features such as stability and accuracy are investigated by analysis of a wide range of sim-
ulated and measured pressure data and comparison with commonly applied methods. Also
two different optimisation approaches for the design of circumferential sensor arrays are
introduced which allows a reduction of the number of sensors for large modal ranges if only
a limited number of modes are dominant. Furthermore, the remaining mode amplitudes
are estimated exploiting the deconvolution property of the applied Compressed Sensing
algorithm.

I. Introduction

The experimental investigation of in-duct sound fields in turbomachinery test rigs presents manifold chal-
lenges towards the design of the experiment. The decomposition of the azimuthal pressure distribution

into azimuthal mode constituents requires measurements at several locations around the circumference1. For
a subsequent breakdown into radial modes the measurements have to be extended to several radial resp.
axial positions2. The choice of the number and positioning of the sensors in an array plays a critical role.
The usual task is to ensure a sufficient spatial resolution and a low side lobe level (SLL) for a given number
of sensors. Therefore, it is of interest to investigate methods that allow the reduction of the required number
of sensors for a given modal range. There are several approaches to find the best compromise between the
spatial resolution, the analysis accuracy and the number of sensors resulting in different guidelines for the
design of optimal sensor arrays.

In this paper a new approach to Azimuthal Mode Analysis (AMA) based on Compressed Sensing (CS)
is presented and the improvements compared to the conventional methods3,4 are discussed. Compressed
Sensing is predestined for solving underdetermined systems of linear equations in the case of a sparse mode
spectrum and offers a large potential to detect the dominant mode amplitudes with a limited number of
sensors. The approach is similar to the one described by Huang5 who performed a numerical study using
randomised array designs, except for the choice of the CS algorithm. Additionally, a deconvolution step is
introduced to enable the determination of the amplitudes of the entire mode spectrum under consideration.
In order to exploit the full potential of the proposed method an optimisation criterion for the design of the
sensor array is described Two different approaches to find the optimal array design are introduced. Results
are shown for simulated test cases as well as measured data sensed by an optimised array. To the authors’
knowledge, there are very few cases in literature that describe the use of Compressed Sensing in in-duct
sound measurements to date. For instance, Lengani et al.6 used a Compressed-Sensing based approach
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to determine a sparse approximation of the azimuthal mode spectrum from measurements with wall flush-
mounted microphones on a 24◦ circumference and gave an empirical error estimation.

The paper is divided into four sections. Beginning with the introduction of the related equations for
AMA, the conventional methods are described and the new approach for Compressed Sensing based AMA is
presented along with the introduction of the deconvolution step. Following, the optimisation of array designs
for the application in the context of CS is discussed. The methods are applied to simulated and measured
data and the features of the new approach are investigated.

II. Methods for the Azimuthal Mode Analysis

The Azimuthal Mode Analysis can be derived from the general solution in modal terms of the convective
Helmholtz equation in cylindrical coordinates4:

p(x, r, ϕ) =

+∞∑
m=−∞

+∞∑
n=0

(
A+
mn · eik

+
mnx +A−mn · eik

−
mnx

)
· fmn(r) · eimϕ (1)

for time-harmonic waves. In Eq. (1), k+
mn and k−mn are the axial wave numbers, A+

mn and A−mn the com-
plex amplitudes of the radial modes with azimuthal mode order m and radial mode order n propagating
downstream and upstream, respectively. The term fmn(r) denotes the radial mode shape factor which is
determined by the flow parameters and the duct geometry.

Denoting the value of the sum over all radial mode orders n for fixed azimuthal mode order m as the
complex azimuthal mode amplitude Am, the decomposition of the sound field in azimuthal modes yields:

p(x, ϕ) =

+∞∑
m=−∞

Am(x) · eimϕ. (2)

The radial dependency is neglected under the assumption that the decomposition is based on measurements
with wall flush-mounted sensors. At a fixed axial position x̂ the azimuthal mode spectrum is determined by
the Fourier transform of the sound pressure with respect to the azimuthal coordinate:

Am =
1

2π

∫ 2π

0

p(x̂, ϕ) · e−imϕ dϕ. (3)

In an experimental context sparse arrays are applied, so that the integral in Eq. (3) is replaced by a sum
over the sensor positions ϕk yielding the expression for the Discrete Fourier Transform (DFT):

Am =
1

K

K∑
k=1

p(x̂, ϕk) · e−imϕk . (4)

The relation between the complex sound pressure values p measured at K sensor positions and the underlying
azimuthal mode spectrum a, where M propagating modes are considered, can be formulated as a system of
linear equations:

p = Wa (5)

where W is a matrix of size KxM with the mode functions evaluated for the mth mode order at the kth
sensor position as entries (see Eq. (4)). In this study the modal range is always symmetrical w.r.t. m = 0,
i.e. m ∈ {−mmax, · · · , 0, · · · ,mmax} with a total number of modes M = 2 ·mmax+ 1. The Azimuthal Mode
Analysis is performed by solving the system of linear equations in Eq. (5).

II.A. Conventional Methods

There exist a number of methods to determine the azimuthal mode spectrum, i.e. to solve Eq. (5)1,8,3,9,10,
but the most commonly applied methods are a least-squares fit (LSF) and the Discrete Fourier Transform
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(a) Uniform array (b) Non-uniform array

Figure 1. Illustration of the Azimuthal Mode Analysis using a uniform resp. a non-uniform array consisting of 100
sensors at the wall of a flow duct with a simulated sound field. Black dots indicate sensor positions. The non-uniform
array design is implemented in the CMD arrays7 of the UFFA test rig of AneCom Aerotest, Germany.

(DFT). Applying LSF to Eq. (5) yields in matrix-vector notation:

a =
[
WHW

]−1

WHp, (6)

where the superscript H denotes the adjoint matrix. The term
[
WHW

]−1

WH is called the pseudo-inverse

of matrix W . Applying the pseudo-inverse to the sound pressure vector p results in a mode amplitude vector
which minimises the l2-norm of the residuum according to the cost function J = ‖e‖2 = ‖Wa− p‖2.
In matrix-vector notation the DFT takes the form:

a =
1

K
WHp. (7)

Both methods, LSF and DFT, perform well in cases where the number of sensors K is larger than the
number of propagating modes M and the sensors are equally spaced along the circumference. In the de-
scribed case of oversampling, the system of linear equations in Eq. (5) is overdetermined and the approaches
in Eq. (6) and (7) yield the exact solution vector of the mode spectrum.

However, if the sound field is undersampled, then typically aliasing effects occur, which can hamper the
interpretation of the mode spectrum. The aliasing effects can be avoided by arranging the sensors with
non-uniform spacing, but with drawback of the occurrence of side lobes even for oversampled sound fields.
Rademaker et al.3 proposed a cost function which can be used in an optimisation of non-uniform arrays,
which minimises the mean square of the side lobe amplitudes for the analysis of a number of modes M larger
than the number of sensors K. Illustrations of a uniform resp. a non-uniform array applied in the context
of AMA are shown in figure 1.

II.B. Compressed Sensing based Azimuthal Mode Analysis

Compressed Sensing is an approach for solving underdetermined systems of linear equations under the as-
sumption that the solution vector is sparse, i.e. the azimuthal mode spectrum consists only of a few dominant
modes. The analysis of the interaction tones of a rotor-stator stage in a turbomachine is an example, where
sparse azimuthal mode spectra with dominant modes, also called Tyler-Sofrin modes11, occur. In practice,
the microphone signals are influenced by superposed noise components due to e.g. turbulent flow noise and
thus, the mode spectra show additional modes aside from the Tyler-Sofrin modes. Typically, the Tyler-
Sofrin modes have significantly higher levels than the noise related components of the mode spectrum. In
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such cases, it is assumed that the mode spectrum is compressible, i.e. the sound pressure pattern at the
microphones is well-approximated by the contribution of the dominant modes12.

Given the sparsity of the mode amplitude vector the correct solution can be found by minimising the
l1-norm of the solution vector13,14. In terms of AMA with an assumed noise energy ε this can be formulated
mathematically as follows:

a = argmin
a∈CM

‖a‖1 subject to ‖p−Wa‖2 < ε. (8)

The minimisation problem can be solved in various ways. In the present study a so-called Greedy Algo-
rithm12 is applied. This class of algorithms contains iterative algorithms which update the mode amplitude
vector regarding the best sparse approximation of the solution vector of Eq. (5) at each iteration. Particularly,
the utilised Orthogonal Matching Pursuit algorithm (OMP), which was first proposed to be applied in the
context of Compressed Sensing by Tropp and Gilbert15, searches for the modes with th highest amplitudes
until a convergence or stop criterion is met. Thus, after s iterations the strongest s modes are determined in
the mode amplitude vector a(s). The superscript s stands for the iteration count and also indicates the num-
ber of determined modes. An interesting aspect of the iterative procedure of OMP is, that the contribution
of each newly determined mode is deconvolved from the sound pressure vector at each iteration. This fea-
ture of the OMP-algorithm is exploited in the next section in order to estimate the remaining mode spectrum.

Eldar and Kutyniok12 mention that sparse recovery by minimisation of the l1-norm is successful, if the
column vectors of the system matrix W are incoherent. The mutual coherence µ of the matrix W is defined
as:

µ(W ) = max
1≤i<j≤M

|〈wi,wj〉|
‖wi‖2‖wj‖2

(9)

where wi denotes the ith column vector of W . Since the system matrix W only depends on the modal
range and the positions of the sensors in the microphone array, the mutual coherence can be regarded as a
property of the sensor array. For a configuration with K microphones and M modes, the mutual coherence

lies within the range µ(W ) ∈
[√

M−K
K(M−1) , 1

]
. The lower bound is called Welch bound and depends only

on the size of matrix W . A small value of the mutual coherence indicates that any pair of column vectors
has a small value of the normalised inner product and therefore, the respective column vectors are close to
orthogonal. The error between the exact solution and the calculated mode spectrum is smaller the lower
the mutual coherence of an array. This is true, if the number of determined mode amplitudes s fulfills the
inequality s < 1

µ(W ) . Furthermore, the mutual coherence is directly linked to the side lobe level (SLL)16,

which is a common parameter in the theory of sensor arrays, according to following equation:

SLL = 20 log10

(
1

µ(W )

)
. (10)

The ability of Compressed Sensing to solve underdetermined systems of linear equations provides potential
to reduce the number of sensors in a circumferential sensor array. Figure 2 shows the number of dominant
modes which are detectable depending on the modal range and the number of sensors. The results are given
for optimal arrays which achieve the Welch bound. In the coloured region the sound field is subsampled and
it holds that K < M . The white region indicates the configurations for which the sound field is oversampled
and all mode amplitudes within the modal range can be determined accurately as shown in section IV. As
an example the required numbers of sensors for the detection of 5 resp. 20 dominant modes are indicated by
black lines. It can be observed, that if few dominant modes are of interest the potential to reduce the number
of sensors becomes large. For instance, if s = 5 the required number of sensors increases very slowly with
larger modal ranges and asymptotically approaches the value of 24 sensors for modal ranges up to M = 400,
i.e. the ratio of modes per sensor yields γ = M/K ≈ 16.7.

II.C. Estimation of the remaining mode spectrum by deconvolution with the sparse mode
spectrum

As described above, the Azimuthal Mode Analysis based on Compressed Sensing allows the determination
of a number of dominant modes depending on the mutual coherence of the applied sensor array. During the
iterative procedure of the OMP-algorithm the sound pressure vector is successively deconvolved with the
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Figure 2. Number of detectable, dominant modes s by use of Compressed Sensing depending on the number of modes
M and number of sensors K.

determined mode amplitudes. After the termination of the OMP-algorithm an additional calculation step
using the deconvolved sound pressure vector ps leads to a good estimation of the remaining mode spectrum.
This method is called Enhanced OMP (EOMP) within the scope of this study. The additional calculation
step consists of solving the following equation:

p(s) = Wa(M−s) (11)

by use of the LSF- or DFT-method. Hereby, the choice between LSF and DFT depends on the ratio of the
number of modes and the number of microphones γ. If γ < 1 the system of linear equations in Eq. (5) is
overdetermined and LSF can be applied provided that the condition number of W is small. If the condition
number of the system matrix reaches high values, small errors in the measurement vector, i.e. the vector p
on the left-hand side in Eq. (5), are amplified and corrupt the resulting mode amplitude vector a. Thus, in
order to ensure a stable behaviour of the EOMP-method the DFT-method is applied for the deconvolution
step. For γ > 1 the problem is underdetermined and DFT is the appropriate choice. Results using the
described deconvolution procedure are shown and discussed in section IV. Finally, the two determined mode
amplitude vectors are summed to form the total mode amplitude vector:

atotal = a(s) + a(M−s). (12)

III. Design of optimal arrays for application of the Compressed Sensing
algorithm

The application of CS in an experimental setup raises the need for guidelines for the design of optimal
arrays. Often randomised arrays are used in the context of Compressed Sensing. In this study two approaches
for the design of optimal arrays are introduced. The first approach is deterministic and is based on the
definition of the mutual coherence of matrix W . Inserting the entries of the column vectors wi,j and
evaluating the inner products in Eq. (9) yields following equation:

F := minµ(W ) (13)

= min max
∆m∈{1,...,M−1}

∣∣∣∑K
k=1 exp(i∆mϕk)

∣∣∣
K

. (14)
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By minimisation of Eq. (14) with respect to the sensor positions ϕk of all K sensors an optimal array can be
determined. It turns out, that the optimisation procedure of Rademaker et al3 results in array geometries
that yield similar values of the mutual coherence for large arrays. Furthermore, the functional in Eq. (14)
becomes equal to the Rademaker functional, if the maximum operator is replaced by the mean square. Due
to the connection of the mutual coherence and the side lobe level (see Eq. (10)) the proposed functional min-
imises the maximum side lobe amplitude. An array which was designed following the method of Rademaker
et al. is installed in the UFFA rig of AneCom AeroTest, Germany7.

The second approach follows the postulation of Xia et al.17, who proposed that so-called Welch bound
arrays with K sensors are subsets of a uniform array with Keq = M . The optimisation approach comprises
the random selection of subsets from a large uniform array. This approach is efficient for small K and M ,
but becomes tedious for large array sizes and mode ranges commonly considered in practical applications. It
should be noted at this point, that due to the choice of subsets from a uniform array, a strict limit regarding
the applicable modal range exists. If the applied modal range exceeds the modal range for which the array is
optimised, the mutual coherence achieves values of 1 due to aliasing and the reconstruction of the azimuthal
mode spectrum is impaired.

The resulting mutual coherence of a particular array can be visualised by plotting the normalised inner
products according to Eq. (9). Due to the structure of the column vectors of matrix W the mutual coher-
ence needs only to be plotted over the first M inner products. In figure 3 the coherences of each pair of
modes of an optimised array according to Eq. (14) and a randomised array are shown. The optimised array
yields approximately equal values for the normalised inner products from Eq. (9), which also implies that
the measurement error is similar for each analysed mode. On the contrary, the normalised inner products
for the random array show a relatively large deviation and peaks for certain pairs of analysed modes. Thus,
a reconstructed mode spectrum would have a varying analysis error depending on the coherence between
each possible pair of modes and the input mode spectrum.

(a) Optimal (b) Random

Figure 3. Comparison of the normalised inner products of the column vectors of the system matrix W of the optimised
CMD array at the UFFA test rig (see figure 1b) and a random array (K = 100, M = 159).

In addition to the described optimisation approaches, a Monte Carlo study was conducted to investigate
the properties of arbitrary arrays (Type I) and arrays, which are subsets of a large uniform array with
K = M sensors (Type II). The study was performed for arrays with K = 100 sensors, a modal range with
M = 159 and 10,000 trials. The histogram in figure 4 shows the distributions of the relative frequency of
the mutual coherence for both types of arrays. It can be seen, that with high probability arrays of Type II
have a lower mutual coherence and thus, choosing arrays of Type II as a starting point for the optimisation
procedure according to Eq. (14) yields better results. The Welch bound is indicated by the blue vertical
line. None of the considered arrays achieves the Welch bound, but more than 90% of the Type II arrays
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perform better than the arbitrary arrays and achieve a mutual coherence close to the Welch bound. Further-
more, this empirical study supports the general idea of the stochastic optimisation approach described above.

Figure 4. Relative frequency of the mutual coherence of arbitrary arrays and subset arrays of a large uniform array
(K = 100, M = 159).

IV. Comparison of analysis methods

In the following section, the properties of the presented method are studied by application to simulated
and measurement data. Two cases, oversampled (K > M) and subsampled (K < M) test setups, are inves-
tigated. The focus of the present study is put on the differences between Compressed Sensing based AMA
and the conventional methods, LSF and DFT. At first, important characteristics of the presented method
are determined by analysis of mode spectra with arbitrary resp. specific phase relations. Subsequently, this
information is applied to evaluate the quality of the analysis of experimental data.

IV.A. Application to simulated data

The procedure for the following analyses of simulated data has been developed with the aim to simulate
data from practical measurements appropriately. A number of dominant modes is given and the orders of
the respective modes are assigned randomly. Subsequently, modes with random phase and signal-to-noise
ratio (SNR) of about 30 dB are added to the input mode spectrum. The study presents results for two
configurations, where the first configuration is overdetermined with K = 100 and M = 99 and the second
configuration is underdetermined with K = 100 and M = 159. For each setup the design of the CMD
array is used, which is illustrated in figure 1b and implemented in the UFFA test rig of AneCom AeroTest,
Germany. The UFFA test rig is depicted in figure 5.

IV.A.1. Reconstruction of mode spectra with arbitrary phase relations

In figures 6 and 7 results of LSF, DFT and Compressed Sensing based AMA with and without the additional
deconvolution step are shown for a simulated measurement with a non-uniform array of 100 sensors. In the
original spectrum 11 dominant modes of random mode orders are present. The average sound pressure level
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Figure 5. Test setup for the measurements of azimuthal mode spectra using a non-uniform array (CMD 3) in the
downstream by-pass duct of the UFFA test rig of AneCom AeroTest, Germany.

SPLavg is calculated based on the sound pressure level of the azimuthal modes SPLm using

SPLavg = 10 · log10

(
1

M

mmax∑
m=−mmax

10SPLm/10

)
(15)

and indicated by the red horizontal lines. For both cases the average sound pressure level is about 17 dB
below the amplitude of the most dominant mode.

Figure 6. Results of different azimuthal mode analysis methods applied to a simulated pressure data set. The underlying
mode spectrum has arbitrary phase relations. For each analysis of the sound field consisting of M = 99 azimuthal modes
the same sensor array consisting of K = 100 unequally spaced sensors was used.

In the case of oversampling the sound field, all methods give approximately the correct average sound
pressure level. However, only the LSF algorithm reconstructs the mode spectrum perfectly. The Compressed
Sensing based methods, OMP and EOMP, determine all dominant modes correctly. Also EOMP is able to
estimate the mode amplitudes below the average sound pressure level with great precision. The amplitudes
of the dominant modes are determined well by the DFT-method, but it fails to reconstruct the entire input
mode spectrum, resulting in reduced dynamics.

Subsampled data imposes more difficulties to each of the considered methods. The conventional methods,
LSF and DFT, result in reduced dynamics of the respective mode spectra, where LSF generally underesti-
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Figure 7. Results of different azimuthal mode analysis methods applied to a simulated pressure data set. The underlying
mode spectrum has arbitrary phase relations. For each analysis of the sound field consisting of M = 159 azimuthal modes
the same sensor array consisting of K = 100 unequally spaced sensors was used.

mates the amplitudes of the dominant modes while preserving a relatively low noise floor and DFT gives the
correct amplitude of the most dominant mode while the amplitudes of the other modes deviate significantly
from the original mode spectrum. Applying Compressed Sensing yields the correct mode amplitudes for the
dominant modes and deploying an additional deconvolution step also the noise-related mode amplitudes are
estimated well. In this case Compressed Sensing and particularly the EOMP-method allow the analysis of
significantly subsampled sound fields and estimation of the complete mode amplitude vector. Furthermore,
Compressed Sensing based AMA is not affected by side lobes which will be discussed further in the following
section.

IV.A.2. Reconstruction of mode spectra with specific phase relations

The considered methods for AMA are affected by the coherence between modes, i.e. modes with particular
phase relations, in different ways. Figures 8 and 9 present analysis results of mode spectra with specific
phase relations for a subsampled and oversampled configuration, respectively, using the previously applied
CMD-array with non-uniformly spaced sensors. The input spectra are designed such that the side lobe
patterns of the two dominant modes interfere destructively resp. constructively. For reasons of clarity the
results for the OMP-algorithm without the additional deconvolution step are omitted.

As in the previous section, the LSF-method yields the exact mode amplitudes in the case of oversampling
and proves to be unaffected by the phase relations of the dominant modes. Also the Compressed Sensing
based AMA performs well showing only small deviations for the amplitudes of the noise-related modes. Thus,
both methods can be considered as generally applicable to wide range of mode spectra if the sound field is
oversampled. The DFT-method suffers from the occurrence of side lobes and amplitudes of the noise-related
modes vary up to 25 dB.

Subsampling the sound field, the LSF- and the DFT-method show the described characteristics of the
occurrence of side lobes and the decreased amplitudes of the dominant modes in case of the LSF-method.
Interestingly, both methods are affected by particular phase relation between dominant modes and show
comparable deviations. The determined amplitudes of individual modes can fluctuate by more than 30 dB.
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Figure 8. Results of different azimuthal mode analysis methods applied to a simulated pressure data set. The specific
phase relation between the dominant modes results in destructive (blue bars) resp. constructive (red bars) interference
of the side lobe patterns of both modes. For each analysis of the sound field consisting of M = 99 azimuthal modes the
same sensor array consisting of K = 100 unequally spaced sensors was used.

Figure 9. Results of different azimuthal mode analysis methods applied to a simulated pressure data set. The specific
phase relation between the dominant modes results in destructive (blue bars) resp. constructive (red bars) interference
of the side lobe patterns of both modes. For each analysis of the sound field consisting of M = 159 azimuthal modes the
same sensor array consisting of K = 100 unequally spaced sensors was used.
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In contrast, the results of the Enhanced OMP-method do not differ for both cases and show again a good
agreement with the original mode spectrum.

The fact that the presented approach can be applied to the analysis of mode spectra with arbitrary or
specific phase relations is based on the deconvolution property of the Enhanced OMP-method. Thereby the
side lobe patterns of the determined modes are removed from the mode spectrum successively.

IV.B. Application to measured data

The presented method has been applied to measurement data, which was acquired at the UFFA test rig
of AneCom AeroTest in Wildau, Germany. The array was situated in the downstream by-pass duct of a
scaled Fan stage as depicted in figure 5. The circumferential sensor array consisted of K = 100 microphones
at non-equidistant positions. For the comparison of the presented method with the conventional methods
analyses have been performed for three different tonal components with modal ranges leading to oversampled
(see figures 10 and 11) as well as subsampled measurements (see figure 12). The focus of the following study
is on the analysis of the results by incorporating the observations from the analyses of simulated data.

Figure 10. Results of different azimuthal mode analysis methods applied to a measured pressure data set. For each
analysis of the sound field the same sensor array consisting of K = 100 unequally spaced sensors was used. The maximum
azimuthal mode order of propagating modes is |mmax| = 20. The blue bars indicate the mode amplitudes underlying
the measured pressure data. Analysis results of a simulated sound field consisting of the 13 strongest modes are given
by the red bars.

Figure 10 shows the analysis results of the measured data and of simulated data consisting of the 13
strongest modes which are identified in the measurement data using OMP. The measurement results are
conform with the observations from the analyses of the simulated data in the way, that the LSF- and
EOMP-method yield the same results and it can be assumed that the reconstructed mode spectra are free of
any artefacts caused by the algorithms. Note, that the LSF-method is applied to perform the deconvolution
step in the EOMP-method, because the sound field is oversampled. In contrast to this, the results of the
DFT-method differ significantly from the other results due to the occurring side lobes. The superposed
side lobe patterns of the 13 strongest modes are depicted by the red bars. It can be seen, that at certain
mode orders the amplitudes of the side lobes have a similar magnitude as the respective mode constituents.
In table 1 the effect of the interference between the modes and the side lobes is investigated for specific
mode orders. Therefore, the complex amplitude of the resulting side lobe due to the considered modes is
denoted as Am,SL for mode order m. For the case shown in figure 10 the mode-side lobe interference is
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investigated for mode orders m = {−2,−1, 2}. The phase differences between the three considered modes
and the respective side lobes ∠(Am,SL, Am,EOMP ) reveal destructive interference which results in the level
differences ∆SPL(Am,SL, Am,EOMP ) defined by:

SPL(Am,SL, Am,EOMP ) = 10 · log10

(
|Am,EOMP +Am,SL|

|Am,EOMP |

)
. (16)

However, the level differences due to the mode-side lobe interference do not exactly match the total level
differences ∆SPL(Am,DFT , Am,EOMP ) = SPLm,DFT−SPL(Am,EOMP . Taking an even wider range of strong
modes into consideration for the analysis of the resulting side lobe pattern may improve the match of the
level differences as can be seen for the following analyses.

Table 1. Effect of the interference between particular modes and the side lobes present in the analysis of pressure data
using the DFT-method on a non-uniform circumferential sensor array.

Figure Mode order m ∆SPL(Am,DFT , Am,EOMP ) ∠(Am,SL, Am,EOMP ) ∆SPL(Am,SL, Am,EOMP )

[] [dB] [◦] [dB]

10 -2 -12.0 -187.2 -17.4

10 -1 -8.9 214.1 -4.0

10 2 -9.4 186.0 -7.2

11 -9 9.9 -39.6 9.9

11 -5 18.5 -228.6 18.5

12 0 -6.9 153.1 -6.9

Figure 11. Results of different azimuthal mode analysis methods applied to a measured pressure data set. For each
analysis of the sound field the same sensor array consisting of K = 100 unequally spaced sensors was used. The maximum
azimuthal mode order of propagating modes is |mmax| = 42. The blue bars indicate the mode amplitudes underlying
the measured pressure data. Analysis results of a simulated sound field consisting of the 13 strongest modes are given
by the red bars.

For the second analysis, a modal range with M = 83 modes is considered and the sound field is oversam-
pled. However, the LSF-method yields largely increased mode amplitudes for lower azimuthal mode orders.
This behavior is caused by the bad condition of the system matrix W which occurs for the used array as the
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number of modes M approaches the number of sensors K. The results of the DFT-method are corrupted
by artifacts of the algorithm, i.e. the occurring side lobes and the interference of the side lobe patterns of
the strongest modes as can be seen from the exemplary analysis for mode orders m = {−9,−5} in table 1.
In contrast to the previous analysis, constructive interference of the respective modes and side lobes yields
level differences ∆SPL(Am,DFT , Am,EOMP ) up to 18.5 dB. Interestingly, taking the 13 strongest modes into
consideration for the analysis of the mode-side lobe interference yields the matching level differences, so that
the difference between mode amplitudes determined by the DFT- and EOMP-methods is fully explained in
this case. Based on these and the previous observations Compressed Sensing based AMA can be regarded
as stable, even if the system matrix is badly conditioned, and not significantly corrupted by the occurrence
of side lobes. Note, that the stability of EOMP was ensured by deploying the DFT-method for the decon-
volution step due to the bad condition of the system matrix.

Figure 12. Results of different azimuthal mode analysis methods applied to a measured pressure data set. For each
analysis of the sound field the same sensor array consisting of K = 100 unequally spaced sensors was used. The maximum
azimuthal mode order of propagating modes is |mmax| = 64. The blue bars indicate the mode amplitudes underlying
the measured pressure data. Analysis results of a simulated sound field consisting of the 13 strongest modes are given
by the red bars.

Finally, a configuration, where the sound field is subsampled, is analysed and the results are shown
in figure 12. The modal range consists of M = 129 modes. The reconstructed mode spectra contain a
dominant mode at m = 18 and modes with levels about 25 dB below the dominant mode. The previous
observations regarding the increased mode amplitudes for the DFT-method and the offset of the dominant
mode amplitude for the LSF-method are noticeable in the analysis results. Compressed Sensing based AMA
reconstructs the dominant mode amplitude with the same level as the DFT-method. The analysis of mode-
side lobe interference is performed for mode order m = 0. The phase difference given in table 1 indicates
that the respective mode interferes destructively with the resulting side lobe of the 13 strongest modes. Also
in this case the level difference between the results of the DFT- and EOMP-method can be explained by
occurring mode-side lobe interference. However, due to the fact that the sound field is subsampled, the
DFT-method is applied for the deconvolution step in the EOMP-method. Generally it can be stated, that
with larger modal ranges the impact of side lobes occurring at the deconvolution step of the EOMP-method
increases and the accuracy of the resulting mode spectra may be reduced.
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V. Conclusion

The present study introduces a new approach for the Azimuthal Mode Analysis based on Compressed
Sensing. It is shown that the method gives very accurate results for a wide range of input mode spectra
and is very versatile regarding the analysis of over- and subsampled sound fields. By incorporation of a
deconvolution step in the Compressed Sensing approach it is possible to reconstruct the entire mode spec-
trum under consideration. Furthermore, two approaches for the optimisation of array designs in the context
of Compressed Sensing are introduced. Deploying the presented optimisation strategies the application of
Compressed Sensing based AMA provides the possibility to use smaller sensor arrays or to analyse at higher
frequencies without loss of analysis precision compared to the conventional methods least-square fit and Dis-
crete Fourier Transform. The analyses of different, simulated resp. measured pressure data sets show that
the Compressed Sensing based AMA is a robust method and not significantly corrupted by the occurrence
of side lobes in contrast to the Discrete Fourier-Transform. The experimental data was measured using a
circumferential sensor array with non-uniform sensor spacing at a large-scale fan test rig and consists of the
tonal components of the sound field of a rotor-stator stage measured in the downstream by-pass duct.
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