Modeling Secondary Zinc-Air Batteries with Advanced Aqueous Electrolytes

<u>Simon Clark^{1,2}</u>, Birger Horstmann^{1,2}, Arnulf Latz^{1,2,3}

HIU Helmholtz Institute Ulm Electrochemical Energy Storage

¹ German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany. ² Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 12, 89081 Ulm, Germany. ³ University of Ulm, Institute of Electrochemistry, Albert-Einstein-Allee 47, 89081 Ulm, Germany.

Motivation

- Primary zinc-air battery commercially available
 - High specific energy, low cost, high operational safety
 - Hearing aid battery, e.g., VARTA PowerOne PR44
- Development of rechargeable zinc-air battery
- Zinc dendrites, electrolyte carbonation, oxygen redox chemistry, anode passivation

Model: Neutral Electrolyte

- $NH_4Cl + ZnCl_2$ electrolyte
 - No carbonation effects, improved cycling stability
- Zinc forms complexes with chlorine, ammonia, and hydroxide
 - Dominant aqueous species shifts with pH and composition

- Stationary energy storage
- Electrolytes: aqueous alkaline, aqueous near-neutral

Model: Alkaline Electrolyte

- 1D continuum model of alkaline zinc-air battery
 - Chemical reactions:
 - $Zn + 4OH^{-} \rightleftharpoons Zn(OH)_{4}^{2-} + 2e^{-}$
 - $Zn(OH)_4^{2-} \rightleftharpoons ZnO + 2OH^- + H_2O$ II.
 - $0_2^g \rightleftharpoons 0_2^e$ III.
 - IV. $\frac{1}{2}O_2^e + H_2O + 2e^- \rightleftharpoons 2OH^-$
- ZnO 🧧
- Consistent transport: diffusion, migration, and convection

 $\partial_t \left(\epsilon_{\rm e}^{\beta} c_i \right) = \vec{\nabla} \cdot \left(\epsilon_{\rm e}^{\beta} D_i \vec{\nabla} c_i \right) + \vec{\nabla} \cdot \left(\epsilon_{\rm e}^{\beta} \frac{t_i}{z_i F} \vec{J} \right) + \vec{\nabla} \cdot \left(\epsilon_{\rm e}^{\beta} c_i \vec{v}_{\rm e} \right) + S_i$

Coexisting gas, liquid, and solid phases

System modelled with quasi-particles of conserved quantities:

- Chemical reactions:
 - $Zn \rightleftharpoons \widetilde{Zn}^{2+} + 2e^{-}$
 - $5\widetilde{Zn}^{2+} + 8\widetilde{NH}_3 + 2\widetilde{Cl}^- + H_2O \rightleftharpoons Zn_5(OH)_8Cl_2 \cdot H_2O + 8\widetilde{NH}_4^+$
 - $0_2^g \rightleftharpoons 0_2^e$ III.
 - IV. $\frac{1}{2}O_2^e + 2\widetilde{NH}_4^+ + 2e^- \rightleftharpoons H_2O + 2\widetilde{NH}_3$
- Final discharge product determined by electrolyte composition and pH:

pH / -

- Cathode: hydrophobic gas diffusion electrode (GDE)
- Anode: spherical zinc particles, passivating ZnO shell
- Electrolyte: aqueous KOH solution

Simulations: Alkaline Electrolyte

- Galvanostatic operation of prismatic zinc-air cell
 - Thick anode (10 mm), large energy capacity
 - Long reactant transport path and pore blockage with ZnO
 - Cell performance limited by mass transport

Simulations: Neutral Electrolyte

- Galvanostatic discharge at 5 mA · cm⁻²
- Initial potential drop due to reduction of MnO₂ catalyst
- Thick separator (30 mm)
 - Long transport path causes gradient in pH
 - Dominant aqueous species shifts across the cell

Conclusions

Zinc-air: promising technology with long history

(2012).

40 23 23 40

him 32, 38,

- ZnO precipitates first at the separator
 - Non-reactive zone creates barrier for KOH transport
 - Zinc electrode shape change during cycling

- Challenges:
 - Carbonation of alkaline electrolyte
 - Efficient and reversible oxygen reaction
 - Stable and reversible zinc deposition
 - Efficient electrolyte transport
- Development
 - Neutral chloride aqueous electrolyte
 - Cell architecture optimization

rometallurgy rometallurgy hem. Soc. **16** Ele Vazque; Limpo, Limpo, Goh, et

simon.clark@dlr.de

ılm

