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Turbulent boundary layers on a flat plate configuration are simulated using syn-
thetic turbulence generated by the Fast Random Particle-Mesh Method. The averaged
turbulence statistics needed for the stochastic realization is provided by a Reynolds av-
eraged Navier-Stokes calculation. Wall pressure fluctuations are obtained by calculating
a Poisson equation including both the mean-shear turbulence interaction source term
and the turbulence-turbulence interaction source term. The Poisson equation is solved
by means of Hockney’s method. Wall pressure fluctuations for zero and adverse pres-
sure gradient boundary layers are calculated. The adverse pressure gradient is realized
by placing an airfoil above the flat plate. Simulated one-point spectra and two-point
statistics are analyzed. The results are compared to the experimental results, which
were measured in the Acoustic Windtunnel Braunschweig for the same configurations.
Good agreement with the experimental results is obtained.

I. Introduction

Investigation of wall pressure fluctuations beneath a turbulent boundary layer is a fundamental topic.
The major concern is the flow-induced vibration and the resulting sound generation, which for example
play an essential role for aircraft cabin noise. In general, not only the excitation power but also the spatial
and temporal properties of the wall pressure fluctuations are relevant for the resulting vibration. The
correlation decay in longitudinal and lateral direction and the convective velocity of the surface fluctuating
pressure pattern are the most relevant features for representing its spatial and temporal properties. A
comprehensive overview on the subject of wall pressure fluctuations, the structural response and the
induced sound radiation was given in the monograph of Blake.1 Many empirical spectral models were
proposed. One of the most frequently cited model is from the work of Goody,2 which was derived
from experimental results for zero pressure gradient (ZPG) turbulent boundary layers. To represent the
spatial and temporal properties of the fluctuating pressure field, Corcos3 proposed exponential functions
by means of empirical coherence decay parameters of both longitudinal and lateral directions and the
phase velocities. Several fundamental experiments have been carried out to measure the characteristics of
the wall pressure fluctuations, e.g. refer to the work of Willmarth & Wooldridge, Bull, Blake and Farabee
& Casarella.4–7 However, a precise and extensive measurement of the fluctuating pressure field relevant
for structural excitation is difficult, e.g. due to a finite sensor size and the limitation of the experimental
facilities. In more recent studies, Arguillat et al.8 and Ehrenfried & Koop9 measured the wavenumber-
frequency spectra by using array technology. Although in their measurements the convective ridge and
the acoustic part were well identified, the obtained results e.g. the spectra in the low wavenumber domain
were still not conclusive due to the experimental difficulties indicated above.

Due to the development of supercomputers, a numerical study of the fluctuating pressure field has
become possible. Work of direct numerical simulation and large eddy simulation to this topic has been
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published by many authors.10–14 However, due to the extremely expensive computational resources,
applications are generally restricted to generic studies at low Reynolds number.

Hu et al.15 investigated a high Reynolds number generic boundary layer with an effective numerical
procedure. The fluctuating pressure was calculated by solving a Poisson equation. The synthetic source
terms on the right-hand side of the Poisson equation was generated by the Fast Random Particle-Mesh
Method (FRPM). Both mean-shear turbulence and turbulence-turbulence terms were considered. The
equation was solved by using a free-space Green function and solving the convolution with a spatial fast
Fourier transform utilizing Hockney’s method.16 The features of the wall pressure fluctuations including
the wavenumber-frequency spectra were analyzed in detail. Good agreement with the existing results
from literature was achieved.

In the present work, ZPG boundary layers with two different velocities and an adverse pressure
gradient (APG) boundary layer are calculated using the same numerical procedure as in Hu et al..15
The results of one-point spectra, cross spectra and convective velocities for the wall pressure fluctuations
are analyzed and compared to the experimental results from Hu and Herr.17 Firstly, the method is
briefly described in section II. Secondly, the numerical setups and the flow conditions for the calculated
cases are presented in section III. Finally, the results are discussed and compared to the experimental
results in section IV.

II. Numerical approach

II.A. Poisson equation

Pressure fluctuations in an incompressible turbulent boundary layer are governed by a Poisson equation.
For a turbulent boundary layer along a wall located at x2 = 0 refer to Fig. 1, the Poisson equation
resulting from a mean-flow in positive x1-direction, becomes

∆p = −ρ0
(

2
∂U1

∂x2

∂u2
∂x1

+
∂2

∂xi∂xj
(uiuj − uiuj)

)
. (1)

Here, U1 denotes the mean-flow velocity component in x1-direction and ui indicates velocity fluctuations;
ρ0 is the mean air density and p is the fluctuating pressure. The source term on the right-hand side of
Eq. (1) comprises two parts. The first part is the mean-shear turbulence interaction term and the second
part is the turbulence-turbulence interaction term. If the boundary is a rigid flat surface, the fluctuating
pressure can be calculated from the convolution of the free-space Green function of the Poisson equation
with the right-hand side source term, i.e.,

p(x, t) = −
∫
Vs+V′

s

ρ0

(
2
∂U1

∂x2

∂u2(y, t)

∂x1
+

∂2

∂xi∂xj
(uiuj − uiuj)(y, t)

)
· g(x− y) d3y. (2)

In Eq. (2) the integration is carried out over the original source area Vs plus a source area V′s that
represents an image of Vs mirrored at the solid wall in order to realize the appropriate wall boundary
condition (∂p/∂n)x2=0 = 0 of the pressure fluctuations.1

If we let f(y, t) represents the source terms, the convolution integral Eq. (2) can be expressed as∫
Vs+V′

s

f(y, t) · g(x− y) d3y = (f ∗ g)(x, t). (3)

The equation is solved in wavenumber domain by using the convolution theorem:

F {f ∗ g} (x, t) = F {f (x, t)} · F {g (x)} = f̂ (k, t) · ĝ (k) . (4)

Here f̂ (k, t) = F {f (x, t)} denotes the three-dimensional spatial Fourier transform from the consecutive
application of the one-dimensional spatial Fourier transform for all spatial coordinates xi. Consequently,
a solution to the Poisson problem for pressure is obtained at a given time level by multiplying the spatial
Fourier transform of the time-dependent source term with the Fourier transform of the free-space Green
function and subsequently transforming back the result into physical space:

p (x, t) = F−1
{
f̂ (k, t) · ĝ (k)

}
. (5)

For an accurate numerical solution with this approach, a good approximation to the free-space Green
function is required despite the artificial truncation and periodicity of the Green function represented on a
finite computational domain. To circumvent this problem, a modification as introduced by Hockney and
Eastwood16 is applied, which provides an exact realization of the free-space Green function in conjunction
with a Fourier transform method on the finite domain. A detailed description of the Hockney’s method
applied to the Poisson problem is found in Hu et al..15
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II.B. FRPM

To calculate the fluctuating pressure an appropriate fluctuating velocity field within the turbulent bound-
ary layer is needed. We use the Fast Random Particle-Mesh Method (FRPM)18 to generate synthetic
turbulent velocity fluctuations to prescribe the right-hand side source term of Eq. (1). FRPM uses aver-
aged turbulence statistics to synthesize the turbulent velocity fluctuations. One and two-point statistics
are realized. The basic idea is to generate a fluctuating vector potential ψi with three components from
a convolution of spatial white noise Ui with a spatial Gaussian filter kernel G,

ψi(x, t) =

∫
Vs

Â(x)G(x− x′)Ui(x′, t) d3x′, (6)

with
G(x− x′) = exp

(
−π

2

|x− x′|
l2s

)
, (7)

where Â denotes an amplitude function whose appropriate scaling yields the desired variance of ψi, x
defines field coordinates of the vector potential and x′ defines white noise field coordinates. Furthermore,
ls is an integral turbulent length scale determined from Reynolds averaged Navier-Stokes (RANS).

The fluctuating velocities can be obtained by taking the curl of the fluctuating potential field ψψψ,

u = ∇×ψψψ, (8)

or using tensor notation,

ui = εijk
∂ψk
∂xj

. (9)

For sufficiently slow spatially changing length scale ls and amplitude Â the derivatives of ψi can be
expressed through analytical derivatives of the Gaussian filter kernel,

ui(x, t) =

∫
Vs

Â(x)εijk
∂G(x− x′)

∂xj
Uk(x′, t) d3x′. (10)

The white noise field Ui is defined in a Lagrangian frame moving at local flow velocity U. Altogether,
the properties of white noise are defined in a fixed Eulerian frame by

< Ui(x′, t) > = 0, (11)
< Ui(x′, t)Uj(x′ + r, t+ τ) > = δ(r−Uτ)δij . (12)

where the bracket means an ensemble average, δij is the Kronecker symbol and δ(r−Uτ) describes a
frozen turbulence flow moving with the flow velocity U. Additional temporal turbulence decay can be
modeled by a Langevin equation, which introduces the de-correlation in the two-points statistics.18 In
the Eulerian frame a modification of the cross-correlation is given by

< Ui(x′, t)Uj(x′ + r, t+ τ) >= δ(r−Uτ) exp

(
−|τ |
τs

)
δij . (13)

In this expression exp(−|τ |/τs) describes the turbulence decay, i.e. the spatially white noise is correlated
in time with time-scale τs. The local time scale is determined from RANS.

More details about the implementation in computational domain of FRPM and the one-point and
two-point properties of the generated synthetic turbulence refer to the work.18,19

III. Computational setups and mean flow conditions

Mean flow statistics for the flat plate boundary layers are obtained from 2.5D RANS calculations,
which are achieved by DLR’s in-house CFD solver TAU with the Reynolds stress model.20 Both ZPG
and APG flows are calculated. Fig. 1 shows a sketch of the computational domain. The length of the
whole plate is 1370 mm with a leading edge length of 120 mm. A 12◦ beveled trailing edge on the
underside of the plate is constructed to develop a ZPG boundary layer on the topside in the rear area.
For the APG case, a NACA-0012 airfoil with a chord length of 400 mm is placed above the flat plate.
The rotation axis is at 41% of the chord length. Identical geometries of the flat plate and the NACA
airfoil to the experiment from Hu and Herr17 is used.

The wall fluctuating pressure beneath the boundary layer is calculated in a three-dimensional rect-
angular FRPM domain with its center located at x1 = 1170 mm, see Fig. 1. The dimension of the
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Mean flow
FRPM domain

x1

x2

x3

1170 mm

1370 mm

ZPG:

APG:

FRPM domain

Figure 1: Sketch of the computational domain for the ZPG flow (top) and the side view for the APG
flow (down).

FRPM domain is L1 = 127 mm, L2 = 21 mm and L3 = 63 mm. Since the Hockney method demands
a grid with 2N mesh points in each direction, a cartesian grid with 128 × 64 × 64 points is used in the
calculation. The corresponding mesh size is ∆x1,∆x3 = 1 mm and ∆x2 = 1/3 mm. The calculated
boundary layers share similar boundary layer thicknesses, therefore a same sized FRPM domain is used
for all the calculation cases. The calculation time step is ∆t = 1.67e-5 s, i.e. the sampling rate is 60 kHz.
Calculations for each case were carried on 4 CPUs and the computation time was about two weeks for
calculating 1.5s time series data.

Table 1: Comparison of the boundary layer parameters between the results from RANS and the experi-
ment.

U0 δ δ∗ θ H Reθ = U0θ/ν

(m/s) (mm) (mm) (mm)
ZPG for two different velocities, x1 = 1210 mm

RANS 30.1 20.0 3.34 2.42 1.38 4737
Experiment 30.2 19.7 3.51 2.49 1.41 4889

RANS 58.8 17.9 2.90 2.15 1.35 8230
Experiment 58.7 18.5 3.13 2.28 1.37 8685

APG, x1 = 1128 mm
RANS 32.9 15.6 3.32 2.09 1.59 4464

Experiment 32.0 23.0 5.09 3.12 1.63 6492
APG, x1 = 1210 mm

RANS 30.4 19.7 5.05 2.93 1.72 5772
Experiment 30.4 28.7 7.68 4.39 1.75 8670

To generate the synthetic turbulence and the source terms for the Poisson equation, FRPM needs the
mean flow statistics of the mean velocity profile u, kinetic energy k, length scale ls and the time scale
τs. The mean velocity profiles were measured at x1 = 1210 mm for ZPG and APG boundary layers and
an additional point at x1 = 1128 mm for the APG boundary layer from Hu and Herr.17 The calculated
mean flow velocity profiles from RANS are compared to the measured profiles, shown in Fig. 2. Results
from RANS show good agreement to the measured results. Boundary layer parameters obtained from
both RANS and the experiment are listed in table 1. Note that the boundary layer thickness for the
APG boundary layer does not match the experimental results. The calculated boundary layer thickness
is much thinner than the measured one. This is probably because the present RANS calculations do
not take the open jet environment into account, which seems to be important for the APG case due
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(b)

0.0 0.2 0.4 0.6 0.8 1.0
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0.0
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0.4

0.6

0.8

1.0

u
/U

0

RANS, x1 = 1128 mm

Experiment, x1 = 1128 mm

RANS, x1 = 1210 mm

Experiment, x1 = 1210 mm

(c)

Figure 2: Comparison of the mean velocity profile between RANS and the experimental results; (a) ZPG
for 30.1 m/s at x1 = 1210 mm; (b) ZPG for 58.8 m/s at x1 = 1210 mm; (c) APG at x1 = 1128 mm and
1210 mm.

to the additional NACA airfoil. For the APG calculation case some changes to the airfoil position are
made in order to obtain a similar boundary layer development between 1128 < x1 < 1210 mm. In the
calculation the airfoil is located 150 mm (chord rotation axis position) above the flat plate while in the
measurement 120 mm. The geometric angle of attack of the airfoil is 9◦ in the calculation while 10◦ in
the measurement.

Comparisons of the kinetic energy between RANS and measurement results at x1 = 1210 mm are
shown in Fig. 3. For the APG case the kinetic energy was only measured at x1 = 1210 mm in the
experiment. In general, the results from RANS show good agreement to the measured data. However, a
more rapid decrease trend in the outer region x2 > 0.5δ is shown. One reason to explain the trend could
be the nearly zero turbulence intensity outside the boundary layer in the calculation domain. This forces
the kinetic energy to approach zero at the boundary layer edge while in the measurement the freesteam
flow has a larger turbulence intensity. The position of the maximum kinetic energy for the APG boundary
layer is well predicted from RANS, however the level is larger compared to the measurement. This may
be caused by the thinner boundary layer obtained from RANS.

The length scale ls and the time scale τs required by FRPM are determined from RANS, defined by

l∗s =
cl
Cµ

√
k∗

ω∗
, (14)

τ∗s = τf
l∗s√
k∗

. (15)

where k∗ = k/U2
ref is the turbulent kinetic energy and ω∗ = ω ·lref/Uref is the specific rate of dissipation.

The expression ∗ denotes non-dimensional parameters. The reference quantities are set to Uref = 343 m/s
and lref = 1 m. The constant Cµ = 0.09 and cl is estimated to be 0.54,21 so the pre-factor cl/Cµ ' 6.0.
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Figure 3: Comparison of the kinetic energy between RANS and experimental results at x1 = 1210 mm;
(a) ZPG for 30.1 m/s; (b) ZPG for 58.8 m/s; (c) APG.

The pre-factor of time scale τf is considered to be of order one. In this computation τf = 0.7 is used
based on a good agreement of the longitudinal turbulence decay with the measured results.

IV. Results

IV.A. Turbulence velocity fluctuations realization

Turbulence velocity fluctuations realized by FRPM are used to prescribe the fluctuating source terms of
the Poisson equation (1) to derive unsteady surface pressure fluctuations. To verify a proper realization
of fluctuating velocity from FRPM, Fig. 4 shows the reconstructed turbulent kinetic energy and the
reconstructed variance of the velocity fluctuations in comparison to the target kinetic energy within the
boundary layer. Through the isotropic turbulence approach the variance of the velocity fluctuations are
nearly equally well realized for each component. In the outer region > 0.3δ a very good reconstruction
of the kinetic energy is visible for all calculated cases. A lack of kinetic energy level is evident in the
region < 0.3δ, especially for < 0.1δ. The reconstructed kinetic energy drops dramatically in the region
< 0.1δ, which is not the case in RANS. The reason for the loss in reconstructed energy is considered
as follows. Firstly, in the inner region the kinetic energy and the length scale change fast which is not
the optimal condition for FRPM kinetic energy realization, which assumes slowly changing turbulent
intensities. Secondly, the grid resolution is not fine enough to resolve the small turbulence structures.

FRPM uses a spatial Gaussian filter to generate the fluctuating turbulence velocities, thus a Gaussian
turbulence velocity spectrum is realized. The one-dimensional wavenumber spectra Φii(k1) realized by
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Figure 4: Reconstruction of the kinetic energy from FPRM in comparison to the target kinetic energy
obtained from RANS; (a) ZPG for 30.1 m/s; (b) ZPG for 58.8 m/s; (c) APG.

FRPM can be expressed as15

Φ11(k1) =
u21ls
π

exp

(
−k21l2s
π

)
, (16)

Φ22(k1) = Φ33(k1) =
u22,3ls

2π2
exp

(
−k21l2s
π

)
(2k21l

2
s + π). (17)

Thus, the velocity spectra Φii(ω) can be obtained using the following relationship between the wavenum-
ber spectra and the velocity spectra,

Φii(ω) =

∞∫
−∞

Φii(k1)φm(ω − k1Uc) dk1, (18)

where φm(ω − Uck1) is the so-called moving-axis spectrum. The result for the velocity spectra de-
pends on whether turbulence decay (finite decay time-scale τs) is considered or if the assumption of
frozen turbulence (Taylor’s hypothesis) is applied by choosing τs → ∞. Thus, for a frozen turbulence
φm(ω−Uck1) = δ(ω−Uck1). Practically, considering an uniform mean flow in x1-direction, the frequency
spectrum of frozen turbulence is obtained by replacing wavenumber k1 by ω/Uc, where Uc is the convec-
tion velocity in x1-direction. For a non-frozen turbulence FRPM introduces a decay factor exp(−|τ |/τs)
in Eq. (13) to describe the turbulence decay. The resulting φm(ω − Uck1) can be analytically derived,
follows15

φm(ω − Uck1) =
τs

π(1 + (ω − Uck1)2τ2s )
. (19)

For the wall pressure fluctuations, Φ22(ω) is the most important velocity spectra. The realized spectra
for ZPG at velocity of 30.1 m/s in comparison to the analytical frozen and non-frozen spectra based on
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the kinetic energy from RANS are shown in Fig. 5. An attenuation of the realized spectra is evident
in the inner region, see Fig. 5(a). Especially for x2 = 0.03δ the level of the realized spectra is more
than 10 dB less than the analytical Gaussian spectra. Besides the attenuation in level the roll-off of the
realized spectrum for x2 = 0.03δ occurs at much lower frequencies compared to the analytical spectra.
This is probably because the applied grid resolution is too rough to resolve the fine turbulence structure.
In the outer region a very good agreement is obtained between the realized spectra and the analytical
non-frozen spectra. Note that a less steep roll-off at higher frequencies for non-frozen turbulence is
presented compared to frozen turbulence. The reason for this is that the introduced turbulence decay
changes the form of the moving-axis spectrum φm(ω − Uck1) from δ(ω − Uck1) to a broadband form
expressed in Eq. (19). As a consequence of an exchange of the δ-function by a flattened distribution
in the convolution integral Eq. (18), the energy of the frozen turbulence spectrum is spread out into
adjacent frequency bands, in this case, from the lower frequencies into the higher frequencies. It is worth
mentioning that the spectral contribution from turbulence decay depends on the form of φm.
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(b)

Figure 5: Realization of the velocity fluctuation spectra Φ22 for ZPG at velocity of 30.1 m/s in comparison
to the analytical frozen and non-frozen spectra based on the kinetic energy from RANS; (a) the inner
region x2 = 0.03δ and 0.1δ; (b) the outer region x2 = 0.3δ and 0.6δ.

IV.B. One-point spectra

The source term of the Poisson equation (1) comprises two contributions, the mean-shear turbulence
interaction term and the turbulence-turbulence interaction term. Since the Poisson equation is linear,
the solution of pressure fluctuations can be separately solved,

pms(x, t) = −2ρ0

∫
Vs+V′

s

∂U1

∂x2

∂u2(y, t)

∂x1
· g(x− y) d3y, (20)

ptt(x, t) = −ρ0
∫
Vs+V′

s

∂2

∂xi∂xj
(uiuj − uiuj)(y, t) · g(x− y) d3y, (21)

where pms denotes the pressure fluctuations for the mean-shear term and ptt for the turbulence-turbulence
term. Realized variance is used as input values for uiuj by i = j, and set uiuj = 0 by i 6= j, since the
flow is realized as an isotropic turbulence flow. The integrals of Eq. (20-21) can be performed by different
approaches. This issue was discussed in the work of Hu et al..15 It was found that the approach taking
integration by parts for both source terms gives the best numerical solution. Thus, the expression for
the total pressure fluctuations ptotal summed by both parts is given by

ptotal(x, t) = pms(x, t) + ptt(x, t)

= ρo

∫
Vs+V′

s

{
2
∂U1

∂x2
u2(y, t) · ∂g(x− y)

∂x1
+

∂

∂xi
(uiuj − uiuj)(y, t) ·

∂g(x− y)

∂xj

}
d3y. (22)

Figure 6 shows the simulated one-point spectra of pms, ptt and ptotal. The results clearly show the
dominance of pms for the wall pressure fluctuations. The level of pms is larger than ptt over the whole
frequency range for all calculated cases. In contrast to pms which has a maximum at mid frequencies,
ptt shows a low-pass behaviour with a maximum plateau at low frequencies. The maximum difference
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Figure 6: One-point spectra of pms, ptt and ptotal; (a) ZPG for 30.1 m/s; (b) ZPG for 58.8 m/s; (c) APG
x1 = 1128 mm; (d) APG x1 = 1210 mm.

between pms and ptt is about 10 dB at mid frequencies where pms has the maximum level. At lower
frequencies the difference becomes smaller, e.g. only about 2 dB at 100 Hz for ZPG velocity of 58.8 m/s.

The simulated spectra of ptotal are compared to the experimental results, shown in Fig. 7. The
low frequency trend and the maximum level of the simulated spectra are consistent with the measured
spectra. However, the simulated spectra drop too fast at high frequencies. This is primarily due to
the lack of the reconstructed kinetic energy in the near wall region < 0.1δ, which contributes mostly
to high frequencies. Note that the boundary layer thickness for the simulated APG boundary layer is
much thinner than the measured case, this causes a spectral shift to higher frequencies. In any case,
the development of the APG spectra which shift to lower frequencies in downstream direction is well
represented.

Alternatively, the wall pressure spectrum of pms defined by Φppms(ω) can be analytically solved for
statistically stationary turbulence using the mean flow one-point statistics together with the two-point
cross-correlation model that underlies the synthetic turbulence generation. The solution of Eq. (20)
follows1

Φppms(ω) = 4ρ20

δ∫
0

∞∫
−∞

∞∫
−∞

k21
k2

exp(−2kx2)u22(x2)
∂U2

1 (x2)

∂x2
Λ2(x2)

Φ22(k1, k3, x2)φm(ω − k1Uc(x2)) dk1 dk3 dx2. (23)

where ki is wavenumber component in each direction and k2 = k21 + k23. The quantity of u22(x2) is
the turbulence variance in wall-normal direction, U1(x2) is the local flow velocity, and Uc(x2) is the
local flow convective velocity. For the present problem with convection in x1-direction and assumed
statistical stationarity in x1, Uc(x2) can be calculated from the maximum of the cross-correlation function
Ruu(∆x1, 0, τ). The convective velocity follows from Uc = ∆x1/τ(∆x1), where τ is the time shift for
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Figure 7: Comparison of the one-point spectra; (a) ZPG for 30.1 m/s; (b) ZPG for 58.5 m/s; (c) APG,
simulated spectra; (d) APG, measured spectra.

the velocity fluctuations at which Ruu is maximal, and ∆x1 indicates the two-point separation in x1-
direction. The local convective velocity Uc(x2) is obtained using the simulation data. The results
indicate Uc(x2) = U1(x2) across the boundary layer. The same results were reported by Wooldridge and
Willmarth22 through measurements of correlation between the velocity fluctuations and the wall pressure
fluctuations. Λ2(x2) is the double-sided correlation length in wall-normal direction, i.e. Λ2(x2) = 2ls(x2),
where ls is the integral length scale used in FRPM. The function φm(ω − k1Uc(x2)) is the moving axis
spectrum which is introduced in FRPM through the turbulence decay term exp(−|τ |/τs), refer to Eq. (19).
The velocity wavenumber spectrum of the vertical fluctuating velocity Φ22(k1, k3) can be obtained by∫

Φ22(k1, k2, k3) dk2 and is given for the realized Gaussian spectra as15

Φ22(k1, k3) =
l4s(k

2
1 + k23) exp(−l2s(k21 + k23)/π)

π3
. (24)

Fig. 8 shows a very good agreement between the theoretical prediction for the non-frozen turbulence
and the simulated spectrum for ZPG of 30.1 m/s. The discrepancy at high frequencies is probably
caused by the attenuation of the realized turbulence due to the numerical grid resolution. Eq. (23)
provides the wall-pressure spectrum as an integral over all decks of the boundary layer. The theoretical
contributions to the wall pressure fluctuations from different wall-normal positions are also presented in
Fig. 8. It shows that positions closer to the wall are responsible for the higher frequencies while both
the inner and the outer region contribute to the lower frequencies. However, the position far away from
the wall e.g. x2 = 0.6δ shows only little relevance to the wall pressure fluctuations. Due to the term
k21/k

2 exp(−2kx2) in Eq. (23) the contribution of different wall-normal positions to the wall pressure
spectra vanishes especially at lower and higher frequencies. For example the maximum contribution of
the wall-normal position x2 = 0.1δ is located between 1-2 kHz. It is found that the frequency range of
the maximum occurs in the plateau region of the velocity fluctuation spectra Φ22, see Fig. 5(a). This
indicates that the energy-containing range of the spectra dominates the contribution to the wall pressure
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fluctuations, and the inertial subrange, which can not be well represented by the realized Gauss spectra
due to the rapid roll-off at higher frequencies, may only play a minor role.

Furthermore, the contributions of different wall-normal positions for non-frozen turbulence show
larger level at lower and higher frequencies compared to frozen turbulence. This is due to the turbulence
decay, which spreads the energy out into the neighborhood bands. Consequently, the ω2 behavior for the
wall pressure spectra at low frequencies, based on an assumption of frozen turbulence, disappears. Also
the importance of the near wall region to the wall pressure fluctuations at lower frequencies increases.
Note that the level of the realized velocity fluctuation spectra Φ22 at x2 = 0.03δ is more than 10 dB
smaller than the analytical spectra calculated by using the kinetic energy from RANS, see Fig. 5(a). This
attenuation in the realized velocity fluctuation spectra in the near wall region takes direct responsibility
for the attenuation of the simulated wall pressure spectra at high frequencies shown in Fig. 7.
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Figure 8: Spectra of pms and the contributions to pms from different wall-normal positions at x2 = 0.03δ,
0.1δ, 0.3δ and 0.6δ for ZPG of 30.1 m/s; (-), numerical result; (-), theoretical results for non-frozen
turbulence; (- -), theoretical results for frozen turbulence.

IV.C. Cross spectra and convective features

The spatial and temporal features of the wall pressure fluctuations can be studied from the two-point
statistics. The time-space correlation of the pressure fluctuations is defined by

Rpp(x, r, τ) =< p(x, t)p(x + r, t+ τ) > . (25)

For a slowly growing boundary layer, e.g. the calculated domain of the ZPG boundary layers, the flow field
can be treated as a homogeneous field. Thus, Rpp(x, r, τ) ' Rpp(r, τ). Cross spectra can be calculated
by taking Fourier transform of τ for the time-space correlation Rpp(r, τ), as follows

Φpp(r, ω) =
1

2π

∞∫
−∞

Rpp(r, τ) exp(−iωτ) dτ. (26)

If r = 0, we obtain the one-point spectrum Φpp(ω). The coherence spectrum is defined by

Γ(r, ω) =
|Φpp(r, ω)|√

Φpp(0, ω)
√

Φpp(r, ω)
. (27)

The coherence spectra from different separations in longitudinal, r = r1 · e1, and the lateral coherence,
r = r3 · e3, of the wall pressure fluctuations collapse at mid and high frequencies. At low frequencies the
similarity behaviour loses and the coherence drops. Corcos3 used exponential functions to characterise
the features of the cross spectra by taking advantage of the similarity of the turbulence decay, reads

|Γ(r1, r3, ω)| = exp(−αωr1/Uc) exp(−βωr3/Uc), (28)

where Uc is the convective phase velocity, α and β are empirical constants which are in charge of
prescribing the turbulence decay in longitudinal and lateral direction, respectively. A larger value of the
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Figure 9: Comparison of the longitudinal coherence, (-), simulation; (- -), experiment; (a) ZPG for
30.1 m/s, 0.6δ∗ < r1 < 12.6δ∗; (- -), exp(−0.15ωr1/Uc); (b) ZPG for 58.5 m/s, 0.7δ∗ < r1 < 14.5δ∗;
(- -), exp(−0.125ωr1/Uc); (c) APG, 0.4δ∗ < r1 < 3.0δ∗; (- -), exp(−0.23ωr1/Uc).

constants indicates a more rapid decay of the cross spectra for the wall pressure fluctuations. Hu and
Herr17 measured α = 0.15 and 0.125 for the ZPG boundary layers at velocities of 30.2 m/s and 58.7 m/s,
respectively. Generally, the value of α depends on Reynolds number and a larger Reynolds number
results in a smaller value. A value of β = 0.72 was measured for both velocities. For the APG boundary
layer the coherence spectra can not be well characterised with a single exponential curve. However, as
convenience for the comparison an exponential function for both longitudinal and lateral direction is
drawn from the experimental results. The obtained value of the constants follows α = 0.23 and β = 0.55.

Figs. 9-10 show the longitudinal and lateral coherence of ptotal as a function of ωr1,3/Uc. The
convective phase velocity Uc is defined by Uc(r1, ω) = r1ω/θ(r1, ω), where θ(r1, ω) is the phase difference
of Γ(r1, 0, ω). To present the coherence with a separation of r1 in longitudinal direction, a phase velocity
Uc(r1, ω) obtained at the same longitudinal separation is used. The phase velocity does not depend on the
lateral separations. A single phase velocity Uc(ω) obtained by the closest virtual microphones r1 = 2 mm
is used for plotting the lateral coherence. The obtained exponential curves from the experiment for
prescribing the coherence are also plotted for comparison.

The simulated longitudinal coherence shows very good agreement with the experimental results, see
Fig. 9. The decay of the coherence is much stronger for the APG boundary layer than the ZPG boundary
layers. Furthermore, a slightly slower decay for the higher velocity of the ZPG boundary layers is also
presented in the simulation.

A less good agreement between the simulation and experimental results for the lateral coherence is
shown in Fig. 10. The measured curves show much stronger decays than the simulated lateral coherence.
This is probably due to the applied isotropic turbulence in FRPM while in real boundary layer flow the
turbulence is stretched in longitudinal direction. Thus, the lateral correlation in the simulation extends
over a longer distance and consequently results a slower decay in coherence.

Fig. 11 shows the comparison of the convective phase velocity for ZPG at velocity of 30.1 m/s.
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Figure 10: Comparison of the lateral coherence, (-), simulation; (- -), experiment; (a) ZPG for
30.1 m/s, 0.6δ∗ < r3 < 2.7δ∗; (- -), exp(−0.72ωr3/Uc); (b) ZPG for 58.5 m/s, 0.7δ∗ < r3 < 3.1δ∗;
(- -), exp(−0.72ωr3/Uc); (c) APG, 0.4δ∗ < r3 < 1.8δ∗; (- -), exp(−0.55ωr3/Uc).

The simulated velocity of ptotal increases at low frequencies, after reaching the maximum it decreases
gradually with increasing frequencies. The maximum velocity is about 0.8U0 and located between 0.2−
0.3ωδ/U0. The frequency behaviour and the obtained maximum of the simulated phase velocity show
good agreement with the measured results. However, the measured results present an increasing velocity
with a larger longitudinal distance. The reason is that the eddies closer to the wall move with a slower
velocity and die out over a shorter distance. They contribute to the wall pressure fluctuations not only
at high frequencies but also at low frequencies. Thus, a slower velocity over a broadband frequency range
was measured at a closer distance. However, this is not or only poorly presented in the simulation results
because of the lack of the realized kinetic energy from FRPM in the near wall region.

Fig. 12 shows the comparison of the mean convective velocity Uc, which is obtained by using the
time shift τ of the maximum time-space correlation Rpp(r1, τ) for a fixed longitudinal separation r1,
U c(r1) = r1/τ(r1). Results for the maximum correlation smaller than 0.03 are not considered. Curves
presenting the experimental results are drawn by best fit of the measured data. Simulated mean velocities
of ptotal show similar trends to the measured results. The velocity increases at larger distances and is
larger for the ZPG boundary layers than the APG. However, the measured velocities at closer distances
are smaller than the simulated results. This is due to the lack of the realized kinetic energy from FRPM
in the computation as discussed before.

V. Conclusion

Wall pressure fluctuations beneath ZPG and APG turbulent boundary layers are simulated with an
effective numerical procedure. A Poisson equation is solved in the wavenumber domain using Hockney’s
method. The source terms including the mean-shear term and the turbulence-turbulence term on the
right-hand side of the equation are realized using synthetic turbulence generated by FRPM. The turbu-
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Figure 11: Comparison of the convective phase velocity for ZPG at velocity of 30.1 m/s; (a) simulation
results, 0.6δ∗ < r1 < 18.0δ∗; (b) experimental results, 0.6δ∗ < r1 < 23.4δ∗.
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Figure 12: Comparison of the mean convective velocity. ZPG for 30.1 m/s: •, simulation, (-), experiment;
ZPG for 58.8 m/s: H, simulation, (- -), experiment; APG: �, simulation, (-.-), experiment.

lence velocity fluctuations are well realized except for the near wall region, especially for < 0.1δ, where
a lack of reconstructed kinetic energy is evident compared to the kinetic energy provided by RANS
computations.

The resulting one-point spectra, cross spectra and the convective velocities of the wall pressure
fluctuations are compared to the experimental results. The levels and the trends at lower frequencies
of the one-point spectra are well predicted. An attenuation at higher frequencies is presented which is
primarily due to the lack of the realized kinetic energy in the near wall region. This also causes a larger
convective velocity at closer longitudinal distances because of the loss of the contributions of eddies closer
to the wall, which move slower and die out faster. The simulated one-point spectrum contributed from
the mean-shear part is compared to the theoretical prediction based on the flow parameters provided
by FRPM. A very good agreement between both results is obtained. Furthermore, effects of turbulence
decay on the one-point spectra is illustrated. The ω2 spectral behavior at low frequencies disappears when
a non-frozen turbulence flow is considered. The major features of the cross spectra and the convective
velocities are well determined and consistent with the measured results. A smaller coherence decay in
lateral direction is presented probably due to the applied isotropic turbulence.
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