
www.DLR.de • Chart 1 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Performance Engineering for Sparse Eigensolvers on
Heterogenous Clusters

Jonas Thies Melven Röhrig-Zöllner Moritz Kreutzer
Achim Basermann Georg Hager Gerhard Wellein

German Aerospace Center
Simulation and Software Technology

and University of Erlangen

project ESSEX

www.DLR.de • Chart 2 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Motivation

Mathematical problem
• Find 20− 50 eigenpairs

Axi = λixi

of a large, sparse matrix A

• interior or extreme λi
• symmetric or general A

Memory gap
• small memory bandwidth vs.

high peak flop rate

→ increase the compute intensity

Roofline performance model

(2x 12 core Haswell EP)

1

4

16

64

256

1024

1/4 1 4 16 64

Pea
k

bandwidth

Peak Flop/s

BLAS1 (ddot)

D
P

G
F

lo
p

/s

Compute intensity [Flop / DP element]

www.DLR.de • Chart 3 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Block JDQR Method

Block Jacobi-Davidson correction equation

• nb current approximations: Aṽi − λ̃i ṽi = ri , i = 1, . . . , nb
• previously converged Schur vectors

(
q1, . . . , qk

)
= Q

• solve approximately (with Q̃ =
(
Q ṽ1 . . . ṽnb

)
):

(I − Q̃Q̃T)(A− λ̃i I)(I − Q̃Q̃T)xi = −ri i = 1, . . . , nb

• use some steps of a block(ed) iterative solver

• orthogonalize new directions x1, . . . , xnb (outer subspace iteration)

Properties (compared to single-vector method)

• usually needs more operations → shunned in practice

• more cache-friendly, fewer global operations

www.DLR.de • Chart 4 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Numerical Behavior

Block size 2

1

1.5

2

2.5

3

3.5

5 10 20 30 40 50

re
la

ti
ve

ov
er

h
ea

d
(#

sp
M

V
M

)

eigenvalues found

Andrews
cfd1

finan512
torsion1

ck656
cry10000

dw8192
rdb3200l

Block size 4

1

1.5

2

2.5

3

3.5

5 10 20 30 40 50

re
la

ti
ve

ov
er

h
ea

d
(#

sp
M

V
M

)

eigenvalues found

from: Röhrig-Zöllner et al. SISC 2015

www.DLR.de • Chart 5 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Software I:

(General Hybrid and Optimized Sparse Toolkit) provides

• intelligent resource management for heterogenous systems
• automatic pinning of threads to cores
• asynchronous execution of (larger) tasks

• some fully optimized kernels for sparse matrix methods
• sparse matrix-(multi)vector multiplication (spM(M)VM)
• ‘tall and skinny’ matrices in row or column major ordering

• target platforms right now: Intel CPUs, Xeon Phi and Nvidia GPUs

• programming model: ‘MPI+X’,
with X=SIMD intrinsics, OpenMP and CUDA

www.DLR.de • Chart 6 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured

www.DLR.de • Chart 6 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured

www.DLR.de • Chart 6 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured

www.DLR.de • Chart 6 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured

www.DLR.de • Chart 6 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured

www.DLR.de • Chart 6 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured

www.DLR.de • Chart 7 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

What is NOT

• a DSL for programming heterogenous hardware

• easily portable to platforms other than Intel and Nvidia

• easy to integrate in existing code

• a mature library

=⇒ For implementing iterative solvers we use an interface layer (up next)

www.DLR.de • Chart 8 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Software II: PHIST

a Pipelined Hybrid-parallel Iterative Solver Toolkit

• facilitate algorithm development using

• holistic performance engineering

• portability and interoperability

application vertical integration

algorithms

preconditionerspreconditioners

computational corecomputational core

«abstraction»

eigenproblem

setup/apply

sparseMat mVec sdMat

solver templates

FT strategies

algo core

«interface»
kernel interface ho

lis
ti

c
pe

rf
or

m
an

ce
en

gi
ne

er
in

g

C wrapper

adapter

www.DLR.de • Chart 9 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Useful abstraction: kernel interface

Choose from several ‘backends’ at compile time, to

• easily use PHIST in existing applications

• perform the same run with different kernel libraries

• compare numerical accuracy and performance

• exploit unique features of a kernel library (e.g. preconditioners)

www.DLR.de • Chart 10 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Cool features of PHIST

Task macros
out-of-order execution of code blocks

• overlap comm. and comp.

• asynchronous checkpointing

• ...

Consistent random vectors
make PHIST runs comparable

• across platforms (CPU, GPU...)

• across kernel libraries

• independent of #procs, #threads

PerfCheck:
print achieved roofline performance of
kernels after complete run to reveal

• deficiencies of kernel lib

• implemntation issues of algorithm
(strided data access etc.)

Special-purpose operations
• fused kernels, e.g. compute
Y = αAX + βY and Y TX

• highly accurate core functions, e.g.
block orthogonalization in simulated
quad precision

www.DLR.de • Chart 11 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Sparse matrix-vector multiplication (in a Chebyshev solver)

1 64 256 10244 16
Number of heterogeneous nodes

0.1

1

10

100

P
er

fo
rm

an
ce

 i
n

 T
fl

o
p

/s

100% Parallel Efficiency

Square, Weak Scaling

Bar, Weak Scaling

Square, Strong Scaling

Weak and strong scaling
(on Piz Daint @ CSCS Lugano)

from: Kreutzer et al. IPDPS’15
SELL-C-σ sparse matrix storage format for heterogenous systems

www.DLR.de • Chart 12 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

‘Tall & skinny’ kernel performance (V ∈ R10M×40,W ∈ R10M×4)

0

20

40

60

80

100

120

SVQB project shrink

%
of

ro
ofl

in
e

p
er

fo
rm

an
ce

10 core Intel(R) IvyBridge
Nvidia(R) Tesla K20m

C4×4 =W TW

W =W ·C4×4 C40×4 =V TW

W =W −V ·C40×4

V:,1:20 =V ·C40×20

⇒ some fallback kernels needed on GPU, further experiments postponed

www.DLR.de • Chart 13 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Strong scaling performance

Setup
• non-symmetric matrix from

7-point 3D PDE discretization
(n ≈ 1.3 · 108, nnz ≈ 9.4 · 108)

• find 20 eigenvalues

• Ivy Bridge Cluster

Results
• nb = 2: significantly faster

• nb = 4: no further improvement 0

1000

2000

3000

4000

5000

8 16 32 64 128

nodes

nb=1
nb=2
nb=4

www.DLR.de • Chart 14 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Block method faster for various matrices

Setup
• different large matrices from

• Quantum physics
• PDE discretization

• find 20 outmost eigenvalues
using (block) Jacobi-Davidson

• block size nb = 2 (similar for 4)

Results
• typically faster by a factor 1.2

• less synchronization but larger
messages during spMMVM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64 128

sp
ee

d
u

p
th

ro
u

gh
b

lo
ck

in
g

nodes

SpinSZ[28]
tV[28]

Hubbard[16]
BosHub[22]

MATPDE[16k]
MATPDE3D[512]

www.DLR.de • Chart 15 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Further information

and PHIST are developed within the DFG (SPPEXA) funded
project ESSEX (Equipping Sparse Solvers for the EXa-scale).

• project website incl. list of publications:
http://blogs.fau.de/essex/

• source code: https://bitbucket.org/essex/[ghost|phist]

We are happy to collaborate on
building blocks, algorithms and applications
and support ‘friendly users’ !

Contact: Jonas.Thies@DLR.de

http://blogs.fau.de/essex/
https://bitbucket.org/essex/[ghost|phist]

	Introduction
	Block Jacobi-Davidson
	Block JDQR method
	Numerical behavior

	GHOST
	PHIST
	Some Results
	Performance of the complete algorithm

	Summary and Outlook

