
www.DLR.de • Chart 1 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Performance Engineering for Sparse Eigensolvers on
Heterogenous Clusters
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Motivation

Mathematical problem
• Find 20− 50 eigenpairs

Axi = λixi

of a large, sparse matrix A

• interior or extreme λi
• symmetric or general A

Memory gap
• small memory bandwidth vs.

high peak flop rate

→ increase the compute intensity

Roofline performance model

(2x 12 core Haswell EP)
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Block JDQR Method

Block Jacobi-Davidson correction equation

• nb current approximations: Aṽi − λ̃i ṽi = ri , i = 1, . . . , nb
• previously converged Schur vectors

(
q1, . . . , qk

)
= Q

• solve approximately (with Q̃ =
(
Q ṽ1 . . . ṽnb

)
):

(I − Q̃Q̃T )(A− λ̃i I )(I − Q̃Q̃T )xi = −ri i = 1, . . . , nb

• use some steps of a block(ed) iterative solver

• orthogonalize new directions x1, . . . , xnb (outer subspace iteration)

Properties (compared to single-vector method)

• usually needs more operations → shunned in practice

• more cache-friendly, fewer global operations
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Numerical Behavior

Block size 2
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Block size 4
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from: Röhrig-Zöllner et al. SISC 2015
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Software I:

(General Hybrid and Optimized Sparse Toolkit) provides

• intelligent resource management for heterogenous systems
• automatic pinning of threads to cores
• asynchronous execution of (larger) tasks

• some fully optimized kernels for sparse matrix methods
• sparse matrix-(multi)vector multiplication (spM(M)VM)
• ‘tall and skinny’ matrices in row or column major ordering

• target platforms right now: Intel CPUs, Xeon Phi and Nvidia GPUs

• programming model: ‘MPI+X’,
with X=SIMD intrinsics, OpenMP and CUDA
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MPI+X with

• System with multiple CPUs
(NUMA domains) and GPUs

• -np 1: use entire CPU

• -np 2: use CPU and first GPU

• -np 3: use CPU and both GPUs

• -np 4: use one process per socket
and one for each GPU

Option: distribute problem according
to memory bandwidth measured
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What is NOT

• a DSL for programming heterogenous hardware

• easily portable to platforms other than Intel and Nvidia

• easy to integrate in existing code

• a mature library

=⇒ For implementing iterative solvers we use an interface layer (up next)
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Software II: PHIST

a Pipelined Hybrid-parallel Iterative Solver Toolkit

• facilitate algorithm development using

• holistic performance engineering

• portability and interoperability

application vertical integration
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Useful abstraction: kernel interface

Choose from several ‘backends’ at compile time, to

• easily use PHIST in existing applications

• perform the same run with different kernel libraries

• compare numerical accuracy and performance

• exploit unique features of a kernel library (e.g. preconditioners)



www.DLR.de • Chart 10 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

Cool features of PHIST

Task macros
out-of-order execution of code blocks

• overlap comm. and comp.

• asynchronous checkpointing

• ...

Consistent random vectors
make PHIST runs comparable

• across platforms (CPU, GPU...)

• across kernel libraries

• independent of #procs, #threads

PerfCheck:
print achieved roofline performance of
kernels after complete run to reveal

• deficiencies of kernel lib

• implemntation issues of algorithm
(strided data access etc.)

Special-purpose operations
• fused kernels, e.g. compute
Y = αAX + βY and Y TX

• highly accurate core functions, e.g.
block orthogonalization in simulated
quad precision
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Sparse matrix-vector multiplication (in a Chebyshev solver)
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SELL-C-σ sparse matrix storage format for heterogenous systems



www.DLR.de • Chart 12 > SIAM PP’16 > J. Thies et al. • Performance Engineering > 2016-04-12

‘Tall & skinny’ kernel performance (V ∈ R10M×40,W ∈ R10M×4)
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⇒ some fallback kernels needed on GPU, further experiments postponed
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Strong scaling performance

Setup
• non-symmetric matrix from

7-point 3D PDE discretization
(n ≈ 1.3 · 108, nnz ≈ 9.4 · 108)

• find 20 eigenvalues

• Ivy Bridge Cluster

Results
• nb = 2: significantly faster

• nb = 4: no further improvement 0
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Block method faster for various matrices

Setup
• different large matrices from

• Quantum physics
• PDE discretization

• find 20 outmost eigenvalues
using (block) Jacobi-Davidson

• block size nb = 2 (similar for 4)

Results
• typically faster by a factor 1.2

• less synchronization but larger
messages during spMMVM
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Further information

and PHIST are developed within the DFG (SPPEXA) funded
project ESSEX (Equipping Sparse Solvers for the EXa-scale).

• project website incl. list of publications:
http://blogs.fau.de/essex/

• source code: https://bitbucket.org/essex/[ghost|phist]

We are happy to collaborate on
building blocks, algorithms and applications
and support ‘friendly users’ !

Contact: Jonas.Thies@DLR.de

http://blogs.fau.de/essex/
https://bitbucket.org/essex/[ghost|phist]
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