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Abstract. The modeling of two-phase flows in computational fluid dynamics is still an area
of active research. One popular method is the coupling of level-set and volume-of-fluid (CLSVOF),
which benefits from the advantages of both approaches and results in improved mass conservation
while retaining the straightforward computation of the curvature and the surface normal. Despite
its popularity, details on the involved complex computational algorithms are hard to find and if
found, they are mostly fragmented and inaccurate. In this article, we present all details on the
CLSVOF method, which is fast and conserves mass excellently even on coarse grids. All in all, this
article can be used as a comprehensive guide for an implementation of CLSVOF into existing level-set
Navier-Stokes solvers on Cartesian grids in three-dimensions.
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1. Introduction. The simulation of two-phase fluid flow requires the consid-
eration of two immiscible fluids and the treatment of the free surface in between.
A popular method for implicitly capturing free surface motion is the level-set (LS)
method introduced by Osher and Sethian [25], where a smooth scalar field φ is ad-
vected with the flow, and the zero level-set of this field represents the interface Γf .
Furthermore, φ > 0 in the liquid and φ < 0 in the gas. In our setting surface tension
effects are included via the CSF method [1].

On the whole domain Ω the one-fluid continuum formulation of the two-phase
Navier-Stokes equations can be written as

ρ(φ) (∂tu+ (u · ∇u)) +∇p = ∇ · (µ(φ)S)− σκ(φ)δ(φ)∇φ+ ρ(φ)g

∇ · u = 0 (1.1)

φt + u · ∇φ = 0

with time t ∈ [0, T ], fluid velocity u = (u, v, w)T, pressure p, stress tensor S =

∇u + (∇u)
T
, surface tension σ and a volume force g. In this equation, κ = ∇ · n is

the curvature with the outward normal n = ∇φ/|∇φ|, where |·| denotes the Euclidean
norm and φ is the level-set function. Furthermore, µ(φ) is the viscosity and ρ(φ) the
density, and they are both defined in dependence of φ as in [7]. The Dirac delta
functional is denoted by δ(φ) as used in [1]; see also [7, 10, 17] for details and for
appropriate boundary conditions for the velocity, pressure and level-set function.

The LS method suffers from several drawbacks. Topological changes simulated
with the LS method are often under-resolved. Then, these changes only occur due
to the diffusion introduced by the LS method and not because of physical necessities.
Additionally, the LS function should remain a signed distance function at all times,
but the LS advection distorts the interface. Therefore, a so-called reinitialization step
must be performed, where the LS function is replaced by a smoother, less distorted
function which has the same zero level-set. Although there are several techniques
for the reinitialization of the LS function, simple reinitialization techniques introduce
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numerical diffusion to the solution. This leads to difficulties with volume conserva-
tion [6]. Therefore, several modified reinitialization methods have been developed to
improve mass conservation [27, 31, 36] such as the local volume correction method
by Sussman and Fatemi [35] or the global volume correction as in [7]. Unfortunately,
these methods can in turn become a source of numerical errors and introduce unde-
sirable oscillations in the curvature [11, 15, 17].

A further way to improve on the mass conservation of the LS function is the use of
hybrid methods. In [8] the LS method is coupled with a Lagrangian particle approach,
where the marker particles are used to rebuild the level-set in regions which are under-
resolved. Another hybrid approach is the coupling of the LS with the volume-of fluid
(VOF) method, which results in the coupled level-set and volume-of-fluid (CLSVOF)
method described in this article. Note that for realistic simulations such as plunging
breaking waves or jet atomization, the CLSVOF method shows more realistic and
reasonable results than the PLS method [40, 23].

A further development of the CLSVOF method is the recent coupled level-set and
moment-of-fluid (CLSMOF) method, which uses next to the LS and the VOF function
also a reference centroid in order to produce a slope and an intercept for the local re-
construction of the interface. Jemison et al. [14] claim similar accuracy of the CLSMOF

and the CLSVOF method for many test problems and a better preserved interface with
the CLSMOF method for three-dimensional (3D) problems with deforming, stretching
or disintegrating interfaces. In parts, the CLSMOF implementation is based on the
CLSVOF method, which we describe extensively in this article. Therefore, our descrip-
tion also offers a natural access to the CLSMOF method, which, additionally, requires
the consideration of the centers of mass in each computational cell.

Although the idea of coupling LS with VOF methods is not new and there are many
articles devoted to this topic, e.g. [22, 23, 33, 32, 36, 34, 37, 39], the vast majority of
them skips the details of the involved complex computational algorithms or focuses on
single parts of them only, which makes a fast and straightforward implementation of
the CLSVOF method impossible. Especially, the reinitialization of the level-set function
has been rather neglected in the standard literature: This quite tricky part of the
method is scarcely dealt with in [36, 34]. In contrast, Son’s reinitialization strategy [32]
is well described but requires the back and forth rotation of the interface cells and
depends on the different possibilities of how the interface cuts the 3D numerical grid
cell. The implementation of a simple reinitialization strategy proposed by Wang et
al. [39] fails in three dimensions [17].

The contribution of this article is as follows: We present an implementation of the
complex CLSVOF method within our two-phase Navier-Stokes solver NaSt3DGPF [9, 24],
which is developed at the Institute for Numerical Simulation at the University of Bonn.
This implementation is faster than the conventional level-set method and conserves
mass excellently even on coarse grids. In our description of the CLSVOF method,
we include all details of the implementation. Therefore, this article can be used as
a comprehensive guide for an implementation into existing level-set Navier-Stokes
solvers, which has not been available so far. Additionally, we present an effective new
technique for the reinitialization of the level-set function within the CLSVOF method.
Furthermore, we also address the details of parallelization, which is neglected in the
standard literature.

In summary, this article describes the necessary additions to a flow solver which
already employs a LS method but lacks the VOF function. In Section 2, we summa-
rize the discretization of the two-phase Navier-Stokes equations. In the subsequent
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Fig. 2.1: On the staggered grid, the
LS function φ and the VOF func-
tion F are discretized at the cell cen-
ters while the velocity components
are discretized at the face centers of
the grid.

Sections 3 to 7, we focus on the details of the implementation of the CLSVOF method.
In Section 8, our method is evaluated by two standard test cases in two and three
dimensions. We give some concluding remarks in Section 9.

2. Space-time discretization of the two-phase Navier-Stokes equations.

In this section, we summarize our discretization of the level-set based two-phase
Navier-Stokes equations to which the CLSVOF method is later implemented as an
add-on.

We employ time stepping tn+1 = tn +∆t, n = 0, 1, . . . , N where the choice of ∆t
ensures the stability of our discretization [7]. Specifically, we use an explicit second-
order Adams-Bashforth time integration scheme. The solution process is based on
the well-known projection method due to Chorin [3]: First, for each time-step n,
an intermediate velocity field u∗, which may not be divergence free, is advanced
by the Adams-Bashforth time scheme; second, we compute a correction ∇pn+1 of
the intermediate velocity field by the pressure Poisson equation which leads to a
divergence free velocity field un+1. Thus, we treat the pressure implicitly and solve
the Poisson equation by a Jacobi-preconditioned conjugate gradient method.

In space, we employ a Cartesian staggered grid with grid cells

[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2], (2.1)

and we define the discrete computational domain Ωh as a union of these cells. For
{i, j, k} ∈ Z we use the notation δxi := xi+1/2 − xi−1/2, and δyj as well as δzk are
defined analogously. In the following, we write δx := δxi, δy := δyj and δz := δzk
for the sake of shortness. Furthermore, ‘ghost cells’ or ‘boundary cells’ are needed
in up to three additional strips of cells attached to Ωh, which are necessary for the
discretization of large finite difference stencils and boundary conditions.

The Navier-Stokes equations (1.1) are resolved on Ωh by a finite difference dis-
cretization. On the staggered grid the pressure p and the LS function φ are discretized
at the center of the cells, while the velocities u, v and w are discretized at the center
of the cell faces; see Fig. 2.1. The diffusion term in (1.1) is computed by second-
order central differences. A fifth-order weighted essentially non-oscillatory (WENO)
scheme is used for the discretization of the convective terms in the Navier-Stokes
equations. This WENO scheme is also employed for the level-set method, namely for
the discretization of the transport equation’s convective part in (1.1) as well as for a
Hamilton-Jacobi type equation used for the purpose of reinitialization. Surface ten-
sion is evaluated using a smoothed delta function and third order interpolation. The
parallelization of the code is based on conventional domain decomposition techniques
using Message Passing Interface (MPI). The discretization and the solver are described
in more detail in [6, 7, 17].

In what follows, we complement our LS function φ by the VOF function F which
results in the CLSVOF method. Like φ, the function F tracks the interface and is
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transported by

Ft + u · ∇F = 0. (2.2)

Then, as already described in the introduction, both φ and F contribute to a geo-
metrical reconstruction of the interface: The smooth φ is used to compute the surface
normal while the mass-conservative F is used to correct the mass enclosed by the zero
level-set of φ.

Our description of the CLSVOF method is structured as follows: In Section 3,
we discuss the space-time discretization of the transport equation (3.4) for which we
use an operator splitting (or fractional step) method. This discussion will indicate
the two main requirements for our CLSVOF method, namely the need for a geometric
reconstruction of the interface (Sec. 4) to compute the VOF fluxes (Sec. 5), as well
as the need for a correction of said interface to become mass conservative, which we
discuss in Section 4. Furthermore, Section 6 deals with the reinitialization of the LS

function. We conclude the description of the CLSVOF method with our parallelization
strategy in Section 7.

3. The transport equation and its discretization. Within the level-set
method the interface between the two fluids is given by the zero level-set of φ as
Γf (t) = {x : φ(x, t) = 0} for all times t ∈ [0, T ] and x ∈ R3, and the continuous φ is
advected by the pure transport equation (1.1). For the CLSVOF method, we have to
transport the discontinuous VOF function F . To this end, let W ⊂ Ω be an arbitrary
small fluid volume. For φ > 0 in the liquid and φ < 0 in the gas, we define F as

F (W ) :=
1

|W |

∫

W

H(φ(x, y, z)) dx dy dz (3.1)

with the Heaviside function

H(φ) :=





0 if φ < 0
1
2 if φ = 0
1 if φ > 0.

(3.2)

Within this integral formulation, the transport equation (2.2) becomes well-defined
in a weak sense. With partial integration we obtain

∂

∂t

∫

W

H(φ(x, y, z)) dx+

∫

∂W

H(φ(x, y, z))u · n ds = 0, (3.3)

where n denotes the outward normal on ∂W . Thus, the change of liquid volume con-
tained inW equals the volume flux across the boundary ofW , which formally describes
volume conservation and is the basis of all VOF methods [10]. After discretization,
we employ (3.1) in each grid cell (2.1), so that F becomes the discontinuous liquid
volume fraction on the whole domain Ωh. Then, F = 1 in a cell full of liquid, F = 0
in a cell full of gas and 0 < F < 1 in cells which contain the interface.

In the following, we write the transport equations (1.1) and (2.2) with ξ = F or
ξ = φ as

∂ξ

∂t
+ u · ∇ξ = 0 ⇔

∂ξ

∂t
+∇ · uξ = ξ(∇ · u). (3.4)
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3.1. Discretization in time: Operator splitting. For the advection of the
LS function φ and the liquid volume fraction F we use an operator splitting algorithm,
i.e. we solve the transport equation (3.4) for one direction at a time. This splitting
can be done in different ways and we opt for the algorithm by Son [32]. The transport
equation (3.4) is discretized as

ξ∗ − ξn

δt
+

∂unξn

∂x
= ξ∗

∂un

∂x
(3.5)

ξ∗∗ − ξ∗

δt
+

∂vnξ∗

∂y
= ξ∗

∂vn

∂y
(3.6)

ξn+1 − ξ∗∗

δt
+

∂wnξ∗∗

∂z
= ξ∗

∂wn

∂z
. (3.7)

Here, ξ∗ and ξ∗∗ are functions of intermediate time in between time steps n and n+1.
The operator splitting is of second order in time if we alternate the starting sweep
direction in every time step, i.e. if we permute the sweep order by x, y, z - y, z, x -
z, x, y. In the following, all our descriptions focus on the sweep order x, y, z since the
use of the other two simply corresponds to a permutation of the coordinate directions.

3.2. Discretization in space. Both the LS function φ and the VOF function F
are discretized at the center of the grid cells as depicted in Figure 2.1. Integration of
the equations (3.5)–(3.7) over the computational cell (i, j, k) yields

ξ∗i,j,k =
ξni,j,k −

δt
δx

(
Gi+1/2,j,k −Gi−1/2,j,k

)

1− δt
δx

(
ui+1/2,j,k − ui−1/2,j,k

)

ξ∗∗i,j,k = ξ∗i,j,k

(
1 +

δt

δy

(
vi,j+1/2,k − vi,j−1/2,k

))
−

δt

δy

(
G∗i,j+1/2,k −G∗i,j−1/2,k

)
(3.8)

ξn+1
i,j,k = ξ∗∗i,j,k + ξ∗i,j,k

δt

δz

(
wi,j,k+1/2 − wi,j,k−1/2

)
−

δt

δz

(
G∗∗i,j,k+1/2 −G∗∗i,j,k−1/2

)
,

whereGi+1/2,j,k := ξi+1/2,j,kui+1/2,j,k. This is the flux of ξ across the face (i+ 1/2, j, k)
of the (i, j, k)-th computational cell. Similarly, we writeG∗i,j+1/2,k := ξ∗i,j+1/2,kvi,j+1/2,k

and G∗∗i,j,k+1/2 := ξ∗∗i,j,k+1/2wi,j,k+1/2. In the same way, Gi−1/2,j,k, G∗i,j−1/2,k and

G∗∗i,j,k−1/2 are defined as the fluxes across the face (i− 1/2, j, k), (i, j − 1/2, k) and

(i, j, k − 1/2) of the (i, j, k)-th computational cell.
For the solution of these equations we have to determine ξi± 1

2
,j,k, ξi,j± 1

2
,k and

ξi,j,k± 1
2
. To this end, we have to distinguish between the case that ξ denotes the LS

fluxes or the VOF fluxes. Since the LS function is continuous, the respective fluxes
can be computed by interpolation from nearby cells. This, however, is not possible
for the discontinuous VOF function, where the flux computation requires a geometric
reconstruction of the interface.

In the following, we focus on ξi+ 1
2
,j,k, ξi,j+ 1

2
,k and ξi,j,k+ 1

2
only since the compu-

tation of the fluxes across the downward cell faces works in an equivalent fashion.

3.2.1. Computation of the LS fluxes ξ = φ. Since the LS function φ is
smooth, φi+1/2,j,k, φi,j+1/2,k and φi,j,k+1/2 are obtained by extrapolation of φ in
space and time [22, 36]:

φn
i+1/2,j,k = φn

i,j,k +
δx

2

{(
1− ui+1/2,j,k

δt
δx

) φn
i+1,j,k−φ

n
i−1,j,k

2δx if ui+1/2,j,k > 0(
1 + ui+1/2,j,k

δt
δx

) φn
i+2,j,k−φ

n
i,j,k

2δx if ui+1/2,j,k < 0
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(a) ui+1/2,j,k > 0 (b) ui+1/2,j,k < 0

Fig. 3.1: If ui+1/2,j,k > 0, there is flux from cell (i, j, k) to (i+ 1, j, k). If ui+1/2,j,k < 0,
there is flux from cell (i+ 1, j, k) to (i, j, k).

φ∗i,j+1/2,k = φ∗i,j,k +
δy

2





(
1− vi,j+1/2,k

δt
δy

)
φ∗

i,j+1,k−φ
∗

i,j−1,k

2δy if vi,j+1/2,k > 0(
1 + vi,j+1/2,k

δt
δy

)
φ∗

i,j+2,k−φ
∗

i,j,k

2δy if vi,j+1/2,k < 0

φ∗∗i,j,k+1/2 = φ∗∗i,j,k +
δz

2

{(
1− wi,j,k+1/2

δt
δz

) φ∗∗

i,j,k+1−φ
∗∗

i,j,k−1

2δz if wi,j,k+1/2 > 0
(
1 + wi,j,k+1/2

δt
δz

) φ∗∗

i,j,k+2−φ
∗∗

i,j,k

2δz if wi,j,k+1/2 < 0.

Note here, however, that our solution φn+1
i,j,k from (3.8) is not mass-conservative.

Therefore, one of the main tasks of our CLSVOF method is a correction of the interface
by the volume fractions for a better conservation of mass.

3.2.2. Computation of the VOF fluxes ξ = F . Since F is not distributed
smoothly, arithmetic interpolations from neighbor cells (as done for φ) are not fea-
sible. Instead, the volume fluxes Fi+1/2,j,k, Fi,j+1/2,k and Fi,j,k+1/2 are computed
geometrically as the liquid volume fraction that is advected across a given cell face
during a certain time step. This geometric computation is exemplified in Figure 3.1(a).
Here, since ui+1/2,j,k > 0, volume from cell (i, j, k) (the donor cell) is transported to
cell (i+ 1, j, k). Then, we define Fn

i+1/2,j,k as the liquid volume fraction

Fn
i+1/2,j,k :=

(δVF )
n,→
i+1/2,j,k

|u|i+1/2,j,kδtδyδz
,

i.e. as the liquid volume (δVF )
n,→
i+1/2,j,k in relation to the total volume |u|i+1/2,j,kδtδyδz,

which is advected in the x-direction during the time step δt. Furthermore, the liquid
volume is defined as

(δVF )
n,→
i+1/2,j,k :=

∫ xi+1/2

xi+1/2−|u|i+1/2,j,kδt

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

H
(
φR,n
i,j,k(x, y, z)

)
dx dy dz,

(3.9)

where φR,n
i,j,k denotes the piecewise linear reconstruction of the interface at time tn =

n ·δt and H is the Heaviside function (3.2). This, however, requires the reconstruction

of the interface φR,n
i,j,k in the first place, which is explained in Section 4.

In the equation above and in the following, the superscript arrows ⇆ of (δVF )
indicate the donor cell. If the velocity is positive, there is flux from the donor cell
(i, j, k) to (i+ 1, j, k), which we depict by the arrow from left to right, because of the
flux direction (i, j, k)→ (i+ 1, j, k). On the other hand, if the velocity is negative we



7

have flux from the donor cell (i+ 1, j, k) to (i, j, k), which we indicate by the arrow
from right to left, because of the flux direction (i, j, k)← (i+ 1, j, k). Both situations
are depicted in Figure 3.1.

For the sake of shortness we write u = ui+1/2,j,k, v = vi,j+1/2,k, w = wi,j,k+1/2.
For the solution of (3.5)–(3.7), we compute the required volume fractions as

Fn
i+1/2,j,k =

1

|u|δtδyδz

{
(δVF )

n,→
i+1/2,j,k if u > 0

(δVF )
n,←
i+1/2,j,k if u < 0

F ∗i,j+1/2,k =
1

|v| δtδxδz

{
(δVF )

∗,→
i,j+1/2,k if v > 0

(δVF )
∗,←
i,j+1/2,k if v < 0

(3.10)

F ∗∗i,j,k+1/2 =
1

|w| δtδxδy

{
(δVF )

∗∗,→
i,j,k+1/2 if w > 0

(δVF )
∗∗,←
i,j,k+1/2 if w < 0

.

The computation of the advected liquid volumes such as (δVF )
⇆

i+1/2,j,k with the help

of the reconstructed interface is explained in Section 5.

3.3. Summary and further tasks. We have seen that the basic idea of the
CLSVOF method is the construction of a new interface φR, which will be done with the
help of both the VOF function F and the LS function φ: We want to find a piecewise
linear reconstruction of the interface which is as close as possible to φ. For the sake of
mass conservation, we then shift the interface in such a way that the area beneath the
linear reconstruction equals the given volume fraction. This interface construction is
performed in each operator splitting step and is then employed for the evaluation of
the advected liquid volumes on the one hand and, finally, for the reinitialization of
the LS function on the other hand.

For the reconstruction and advection of the interface we use the following proce-
dure by Son [32] exemplified for the sweep direction x-y-z:

1. Use Fn and φn to reconstruct the interface in (i, j, k) for the computation of the
volume flux (δVF )

n
i± 1

2
,j,k

. Solve equation (3.5) with ξn = Fn and ξn = φn for F ∗

and φ∗.
2. Use F ∗ and φ∗ to reconstruct the interface in (i, j, k) for the computation of the

volume flux (δVF )
∗
i,j± 1

2
,k
. Solve equation (3.6) with ξ∗ = F ∗ and ξ∗ = φ∗ for F ∗∗

and φ∗∗.
3. Use F ∗∗ and φ∗∗ to reconstruct the interface in (i, j, k) for the computation of the

volume flux (δVF )
∗∗
i,j,k± 1

2

. Solve equation (3.7) with ξ∗∗ = F ∗∗ and ξ∗∗ = φ∗∗ for

Fn+1 and φn+1.
4. Truncate the volume fractions by equation (6.1).
5. Reconstruct the interface from Fn+1 and φn+1 to reinitialize φn+1, i.e. the LS

function is set to be the exact signed normal distance to the reconstructed interface.

All in all, this procedure requires three basic steps, which will be considered in more
detail in the following sections:

• Reconstruction of an interface from a given VOF and LS function (Section 4).
• Computation of the advected liquid volume fractions Fi± 1

2
,j,k, Fi,j± 1

2
,k and Fi,j,k± 1

2

with the reconstructed interface (Section 5).
• Reinitialization of the LS function with the help of the reconstructed interface and
truncation of the volume fractions (Section 6).
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4. Reconstruction of the interface. The main parts of our interface recon-
struction algorithm are as follows:

• Check in which computational cells the interface needs to be reconstructed.
• In each of these computational cells, construct a linear function φR

ijk which is
as close as possible to the real zero LS function φijk.

• Shift the interface so that the area beneath the plane equals the volume
fraction Fijk in that cell.

Since the reconstruction of the interface is of linear type, we first introduce the
definition of a plane in three dimensions. Let (x, y, z) ∈ R3 and a, b, c, d ∈ R. A plane
is defined by

ax+ by + cz + d = 0 (4.1)

with its normal (a, b, c) and the plane’s Euclidean distance d from the origin. We can
normalize this equation by dividing with

√
1/(a2 + b2 + c2). Then,

n :=



nx

ny

nz


 =



a/

√
(a2 + b2 + c2)

b/
√

(a2 + b2 + c2)

c/
√

(a2 + b2 + c2)




is the unit normal of the plane.

4.1. Where to reconstruct the interface. In order to check in which cells
we want to reconstruct the interface, we apply a procedure similar to [22, 36, 34]:

• For all computational cells (i, j, k): Check if 0 < Fi,j,k < 1.
• If additionally, φi,j,k ·φi′,j′,k′ < 0 or φi,j,k = 0 for some |i− i′| ≤ 1, |j−j′| ≤ 1

and |k−k′| ≤ 1 with (i−i′)(j−j′)(k−k′) ≤ 1, reconstruct the linear interface
φR
i,j,k in cell (i, j, k).

Thereby, we look at cells where the level-set function changes its sign and specifically
reconstruct the interface only in those cells which contain the interface; see [17] for
details.

4.2. How to reconstruct the interface. For the geometric reconstruction of
the interface, we opt for ‘piecewise linear interface calculation’ (PLIC) [12], where
the interface is approximated by straight planes perpendicular to the surface nor-
mal vector of the interface in each cell. To this end, we compute a piecewise linear
reconstructed LS function

φR
ijk(x, y, z) := ai,j,k(x− xi) + bi,j,k(y − yj) + ci,j,k(z − zk) + di,j,k. (4.2)

Here, ai,j,k, bi,j,k, ci,j,k are the coordinates of the vector which is normal to the plane
given by

ai,j,k(x− xi) + bi,j,k(y − yj) + ci,j,k(z − zk) + di,j,k = 0, (4.3)

and the intercept di,j,k is the distance of the interface to the cell center (xi, yj , zk).
Now, the coefficients ai,j,k, bi,j,k, ci,j,k and di,j,k are determined so that the re-

construction φR
ijk is as close as possible to the real zero LS function φ [22, 36, 23].

Thus, they minimize the error functional

Ei,j,k :=

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

∫ z
k+1

2

z
k−

1
2

H ′(φi,j,k)

(φi,j,k − ai,j,k(x− xi)− bi,j,k(y − yj)− ci,j,k(z − zk)− di,j,k)
2 dx dy dz.
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with H ′ the derivative of the Heaviside function.
In order to determine a, b, c and d we minimize the discretized error

Eδ
i,j,k =

i+1∑

i′=i−1

j+1∑

j′=j−1

k+1∑

k′=k−1

[wi′−i,j′−j,k′−kH
′
ε(φi′,j′,k′)

(φi′,j′,k′ − ai,j,k(xi′ − xi)− bi,j,k(yj′ − yj)− ci,j,k(zk′ − zk)− di,j,k)
2
]
,

with the weights wi′−i,j′−j,k′−k = 52 for i = i′, j = j′, k = k′, and wi′−i,j′−j,k′−k = 1
otherwise. Thereby, the cell center has twice more influence than its 26 surrounding
neighbors together. H ′ε corresponds to the smoothed delta function with thickness ε
as defined in [7]. Minimization of the above error functional leads to the conditions

∂Eδ
i,j,k

∂ai,j,k
=

∂Eδ
i,j,k

∂bi,j,k
=

∂Eδ
i,j,k

∂ci,j,k
= 0.

With a notation similar to [23], we write

∑
:=

i+1∑

i′=i−1

j+1∑

j′=j−1

k+1∑

k′=k−1

, wh := wi′−i,j′−j,k′−kH
′
ε(φi′,j′,k′)

φ := φi′,j′,k′ , X := (xi′ − xi), Y := (yj′ − yj), Z := (zk′ − zk)

and the resulting system of equations




∑
whX2

∑
whXY

∑
whXZ

∑
whX∑

whXY
∑

whY 2
∑

whY Z
∑

whY∑
whXZ

∑
whY Z

∑
whZ2

∑
whZ∑

whX
∑

whY
∑

whZ
∑

wh







ai,j,k
bi,j,k
ci,j,k
di,j,k


 =




∑
whφX∑
whφY∑
whφZ∑
whφ


 . (4.4)

In order to reduce the solution process to the application of two triangular systems
of equations, we employ a simple Cholesky decomposition [28]. If the matrix on the
left hand side of (4.4) is not positive definite (which can be the result of roundoff
errors), we compute a, b, c by the central differences

ai,j,k =
φi+1,j,k − φi−1,j,k

1
2 (δxi−1 + δxi+1) + δxi

bi,j,k =
φi,j+1,k − φi,j−1,k

1
2 (δyj−1 + δyj+1) + δyj

ci,j,k =
φi,j,k+1 − φi,j,k−1

1
2 (δzk−1 + δzk+1) + δzk

and di,j,k = φi,j,k.

At the boundary, one-sided differences are employed. Note that this simpler compu-
tation of the normal is less accurate in numerical tests than the solution of (4.4) [36].

After we have determined ai,j,k, bi,j,k, ci,j,k and di,j,k, we normalize the interface

equation (4.3) by multiplication with 1/
√

a2i,j,k + b2i,j,k + c2i,j,k. In the following, we

write nx, ny, nz, d instead of ai,j,k, bi,j,k, ci,j,k, di,j,k, if the components are already
normalized and if there is no confusion concerning the indices.

For the above reconstruction we have used the LS function φ only. In the next
step, we use the VOF function F for the correction of the intercept d. For the sake
of mass conservation, we correct d in such a way that the plane represented by (4.3)
cuts out the same volume in the cell (i, j, k) as specified by Fi,j,k.
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Fig. 4.1: Computing the reflected line and choosing the origin of the computational cell in
2D. The gas volume is surrounded by red solid lines and the liquid volume by thick black
lines. In the first step, we reflect the line (i.e. the interface between gas and liquid) in such
a way that all components of the normal vector become negative. In the above case, only
nx > 0 and we compute the reflection across the dashed vertical line. In the second step, we
shift the origin from the cell center (distance d) to the lower left hand cell edge (distance s),
which then lies in the liquid region and as far from the interface as possible.

4.3. Shifting the interface for mass conservation. Since we want to shift
the interface in such a way that the area beneath the plane equals the given volume
fraction, we have to formulate an algorithm which determines the distance from the
plane to the origin from given F = Fi,j,k and n = (nx, ny, nz)

T in each grid cell. Here,
the main difficulty lies in the vast number of interface configurations which are possible
in both two and three dimensions. Therefore, many authors [23, 32, 33, 36] first reduce
the number of the considered interface configurations as follows [33, p. 530]:

The interface location is determined effectively by introducing s which
denotes the distance from the interface to the corner of an interface
cell [20]. The corner is chosen to be inside the liquid region and the
farthest from the interface.

Here, s denotes the distance from the interface to the corner of an interface cell. Note
that the source given by [20] is ‘M. Sussman, personal communication, 2001’. Further
details can be found in Ménard’s thesis [22] and his subsequent article [23]. Since the
reduction of the number of interface configurations is a crucial part of the CLSVOF

algorithm, the following subsection is merely devoted to a rigorous explanation of the
above quotation.

4.3.1. Reduction of the number of interface configurations. In order to
reduce the number of possible interface configurations, we make the following two
transformations, which are illustrated in Figure 4.1 for the 2D case:

1. We reflect the plane in such a way that all components of its unit normal
n = (nx, ny, nz)

T become negative.
2. We shift the plane’s origin in our computational cell from the cell center to

the lower left hand corner of the cell. This corner will lie in the liquid region
and will be farthest away from the interface.

Our original plane as written in equation (4.3) is given by

nx(x− xi) + ny(y − yj) + nz(z − zk) + d = 0, (4.5)
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where d is the distance to the cell center (xi, yj , zk). In the following, we simply
substitute x̄ := x− xi, ȳ := y − yj and z̄ := z − zk and obtain

nxx̄+ ny ȳ + nz z̄ + d = 0 (4.6)

In the first step, we reflect the plane in our computational cell in such a way that
all components of the unit normal become negative (see Fig. 4.1). This requires the
construction of a reflection Ref := (Refx,Refy,Refz) with the following properties:

Refx(x̄) =

{
−x̄ if nx > 0

x̄ else
, Refy(ȳ) =

{
−ȳ if ny > 0

ȳ else
, Refz(z̄) =

{
−z̄ if nz > 0

z̄ else.
(4.7)

In general, a reflection across the hyperplane which lies in the origin (so far the cell
center) and is orthogonal to an arbitrary vector e is given by

Refe(x̄) := x̄− 2
x̄ · e

e · e
e.

We choose the hyperplane in such a way that

e1 =

{
(1, 0, 0)T if nx > 0

(0, 0, 0)T else,
e2 =

{
(0, 1, 0)T if ny > 0

(0, 0, 0)T else,
e3 =

{
(0, 0, 1)T if nz > 0

(0, 0, 0)T else.

The successive computation of Ref
e
3(Ref

e
2(Ref

e
1(x̄))) yields the desired result (4.7).

Then, the reflected plane can be written as

nxRef
x(x̄) + nyRef

y(ȳ) + nzRef
y(ȳ) + d = 0, (4.8)

which is equal to

− |nx| x̄− |ny| ȳ − |nz| z̄ + d = 0, (4.9)

since e.g. for the x-component nxRef
x(x̄) = − |nx| x̄ for all nx.

In the second step, we place the origin in the lower left hand corner of the com-
putational cell (see Fig. 4.1), which ensures that the plane’s origin lies in the liquid
region. For instance, this step would be crucial if the liquid and gas phase in Fig. 4.1
were switched. After the reflection, the origin of d would not lie in the liquid region
but the origin of s will. To this end, we introduce the new coordinates ¯̄x := x̄+0.5δx,
¯̄y := ȳ + 0.5δy and ¯̄z := z̄ + 0.5δz. This shift is illustrated in Figure 4.2 for the
two-dimensional case.

Substituted in (4.9), we have

− |nx| (¯̄x− 0.5δx)− |ny| (¯̄y − 0.5δx)− |nz| (¯̄z − 0.5δz) + d = 0

⇔ −|nx| ¯̄x− |ny| ¯̄y − |nz| ¯̄z+ |nx| 0.5δx+ |ny| 0.5δx+ |nz| 0.5δz + d︸ ︷︷ ︸
=:s

= 0,

so that our plane in the new coordinate system is given by

− |nx| ¯̄x− |ny| ¯̄y − |nz| ¯̄z + s = 0, (4.10)

and the distance s is measured from the plane to the lower left hand corner of the
computational cell.
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Fig. 4.2: Translation of the co-
ordinate system exemplified in 2D:
The origin is placed from the middle
(xi, yj) to the lower left hand corner
(xi− 1

2
, yj− 1

2
) of the computational cell

with indices i, j, k. This corresponds
to a translation where the new coordi-
nates are expressed as ¯̄x := x̄+0.5δxi

and ¯̄y := ȳ + 0.5δyj .

To summarize, we first employ a reflection to ensure that all components of the
plane’s unit normal become negative, i.e. the unit normal points towards the lower
left hand corner of the cell. Second, we shift the origin from the center of the cell to
said lower left hand corner. These two steps ensure that the origin is in the liquid
region and as far from the interface as possible (cf. Fig. 4.1).

All in all, we now can always consider |nx|, |ny|, |nz| instead of the signed compo-
nents, which simplifies the computation of the liquid volumes considerably. In 2D, for
example, only four configurations have to be considered for the computation of the
liquid volume as demonstrated in Figure 4.3.

4.3.2. Computation of distance from given normal and volume fraction.

We now describe the shift of the interface, which ensures that the liquid volume
enclosed by the interface equals the given volume fraction. Due to the reduction of
interface configurations, we are able to formulate an algorithm which determines the
distance s of the interface from given n and F , i.e. we are able to determine how to
shift the plane along its normal n to achieve a certain volume fraction F .

Before we describe the three-dimensional case, let us look the simpler two-dimensional
problem as described in [32]. Let δx0 and δy0 denote the x- and y-intercept of the
interface; see Figure 4.3. Then, in 2D the liquid volume for all possible interface
configurations can be expressed by

Fi,j,kδxδy︸ ︷︷ ︸
fluid volume
in the cell

=
1

2
δx0δy0

︸ ︷︷ ︸
area of
triangle

−
1

2

δy0
δx0
〈δx0 − δx〉

2

︸ ︷︷ ︸
overlap of triangle

in x-direction

−
1

2

δx0

δy0
〈δy0 − δy〉

2

︸ ︷︷ ︸
overlap of triangle

in y-direction

(4.11)

which is a summation over all triangles depicted in Figure 4.3. Here, 〈·〉 := max(·, 0).
Similarly, the volume of the gas phase can be written as a sum of triangles. Then,

the main idea is to find a unified formula for the computation of the minimum volume,
be it liquid or gas. If we compute the smaller of the liquid and gas volume, only two
of the four interface configurations in Figure 4.3 are of relevance. For instance, the
interface configuration on the left hand side for the computation of the liquid volume is
equal to the interface configuration on the right hand side for the gas volume. In three
dimensions, where there are many more possible configurations, these considerations
are of great help.

Let us now describe the 3D case. In the following, we suppose that all coordi-
nate transformations of Subsection 4.3.1 have already taken place. Thus, we always
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Fig. 4.3: Four cases of possible interface configurations in 2D as given in [32]. The gas
volume is surrounded by red solid lines and the liquid volume by thick black lines. The line
s = |nx|x + |ny|y has the distance s to the origin, while the dashed line sm = δx1 + δx2 =
|nx|x+ |ny|y has the distance sm to the origin. The volume is computed in such a way that
in the last case the gas volume would be computed (with distance sm − s to the origin).
δx0 and δy0 mark the x- and y-intercepts of the line. δx and δy are the widths of the cell.
Overlapping parts of the triangles are shaded gray.

use (4.10) to describe our plane, which we write as

|nx|x+ |ny| y + |nz| z = s (4.12)

for better readability.
A main requirement of the algorithm is the condition δx1 := |nx|δx ≥ δy1 :=

|ny|δy ≥ δz1 := |nz|δz for which we do not really rotate the cell, but rename the
coordinate axes if necessary. Furthermore, we define sm := δx1 + δx2 + δz2, sc :=
min(s, sm − s) and Fc := min(Fi,j,k, 1 − Fi,j,k). Then, the unified formula for the
computation of the liquid or vapor volume Fc in 3D is

6Fcδx1δy1δz1 = s3c−〈sc − δz1〉
3
−〈sc − δy1〉

3
−〈sc − δx1〉

3
+〈sc − δy1 − δz1〉

3
(4.13)

with 〈·〉 := max(·, 0) [32]. For details we refer to [32] and to [17] for further explana-
tions. This formula gives us the opportunity to compute s from given F and n on
the one hand or to compute the volume fractions F from given n and s on the other
hand. The latter is used in the next section for the computation of the advected liquid
volume fractions.

In [32] the solution of (4.13) for s yields the following algorithm:
Input: F , nx, ny, nz, δx, δy, δz. Output: s.

1. Set Fc = min(F, 1− F ) and rotate the interface cell so that δx1 ≥ δy1 ≥ δz1.

2. Set sc = (6Fcδx1δy1δz1)
1
3 . Ifsc < δz1 go to step 6.

3. Set sc = 0.5δz1 +
√
2Fcδx1δy1 − δz21/12. If sc < δy1 go to step 6.

4. If δx1 ≥ δy1 + δz1, then sc = Fcδx1 +
δy1+δz1

2 . If sc ≥ δy1 + δz1 go to step 6.
5. With the initial value sc set by one of the above steps, solve the following

equation iteratively using the Newton iteration method:

6Fcδx1δy1δz1 − s3c + (sc − δz1)
3
+ (sc − δy1)

3
+ 〈sc − δx1〉

3
= 0.

Since 〈sc − δx1〉
3
= max(sc − δx1, 0)

3, we distinguish in our implementation
between the following cases:
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• δx1 ≤ sc: Solve

6Fcδx1δy1δz1 − s3c + (sc − δz1)
3
+ (sc − δy1)

3
+ (sc − δx1)

3
= 0

iteratively and go to step 6.
• δx1 > sc: Solve

6Fcδx1δy1δz1 − s3c + (sc − δz1)
3
+ (sc − δy1)

3
= 0

iteratively and go to step 6.
6. If Fi,j,k ≤ 0.5 set s = sc else set s = sm − sc.

This algorithm concludes the geometric reconstruction of the interface. In summary,
we have used the LS function φ to obtain a linear reconstruction which is very close to
the real zero level-set of φ, and we have used the VOF function F for a better conser-
vation of mass by shifting the interface. With the help of the reconstructed interface,
we are now able to compute the advected liquid volume fractions in equation (3.10)
since (4.13) allows us to evaluate the advected liquid volume (δVF ) geometrically as
explained in the next section.

5. Computation of the advected liquid volume fractions from the re-

constructed interface. In addition to the computation of the distance from normal
and volume fractions, relation (4.13) also allows us to compute the volume fraction
Fi,j,k from the position of the interface in each cell. In addition, we are now able to
compute the advected volume fractions Fi+1/2,j,k, Fi,j+1/2,k and Fi,j,k+1/2 in (3.10).

To this end, we define the liquid volume

δ̃VF i,j,k(n, s, δx̃, δỹ, δz̃) :=

∫ δx̃

0

∫ δỹ

0

∫ δz̃

0

H
(
φR
i,j,k(x, y, z)

)
dx dy dz, (5.1)

which is the liquid volume in the subdomain δx̃ × δỹ × δz̃ of the cell (i, j, k) with
0 ≤ δx̃ ≤ δx, 0 ≤ δỹ ≤ δy and 0 ≤ δz̃ ≤ δz. Again, we omit the index (i, j, k)

for better readability. In contrast to (δVF )
⇄ in (3.9), the liquid volume δ̃VF always

contains the origin of s, which is the main requirement for our algorithm to work. If
this is the case, we can simply replace δx, δy and δz with δx̃, δỹ and δz̃ in (4.13) and
obtain the following algorithm as described in [32]:

Input: nx, ny, nz, s, δx̃, δỹ, δz̃. Output: δ̃VF .
1. Rename the axes so that δx̃1 := |nx|δx̃ ≥ δỹ1 := |ny|δỹ ≥ δz̃1 := |nz|δz̃.
2. Set s̃m =: δx̃1 + δỹ1 + δz̃1 and s̃c := min(s, s̃m − s).
3. If s̃m ≤ s, the whole subregion is filled with liquid and we set Fc = 1. If s < 0,

set Fc = 0.
4. We obtain the fluid volume fraction in the subregion by the following distinc-

tions:
(a) If sc < δz̃1, Fc =

s3c
6δx̃1δỹ1δz̃1

.

(b) If δz̃1 ≤ sc < δỹ1, Fc =
s2c−δz̃1sc+δz̃2

1/3
2δx̃1δỹ1

, which is the solution of

6Fcδx̃1δỹ1δz̃1 = s3c − (sc − δz̃1)
3
.

(c) If δỹ1 + δz̃1 ≤ sc ≤ δx̃1, Fc = 2sc−δỹ1−δz̃1
2δx̃1

, which is the solution of

6Fcδx̃1δỹ1δz̃1 = s3c − (sc − δz̃1)
3
− (sc − δỹ1)

3
+ (sc − δỹ1 − δz̃1)

3
.

(d) Otherwise, Fc =
s3c−(sc−δz̃1)

3−(sc−δỹ1)
3−〈sc−δx̃1〉

3

6δx̃1δỹ1δz̃1
.

5. If s ≤ 0.5s̃m, set δ̃VF = Fcδx̃δỹδz̃. Otherwise, set δ̃VF = (1− Fc)δx̃δỹδz̃.
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Note that for a single-phase cell where F = 0 or 1, we simply set δ̃VF = Fδx̃δỹδz̃
in (5.2).

This algorithm enables us to compute the liquid volume in an arbitrary rectan-
gular part of the computational cell (i, j, k), as long as this part contains the origin of
s. Note that this algorithm is also intended for the initialization of F at t = 0. Since
the LS values are given by an analytic distance function or by an initial reinitializa-
tion step over all grid cells, we can use these distance values to compute the volume
fractions. Then, in the above algorithm, δx̃ = δx, δỹ = δy and δz̃ = δz. In the same
way, this algorithm can be used for the computation of boundary values for the VOF

function if a boundary cell contains a reconstructed interface.
Furthermore, we are now able to compute the advected liquid volumes as follows:

(δVF )
→
i+1/2,j,k =

{
δ̃VF (n, s, |u| δt, δy, δz) if nxu ≥ 0

Fδxδyδz − δ̃VF (n, s, δx− |u|δt, δy, δz) if nxu < 0

}
in (i, j, k)

(δVF )
←
i+1/2,j,k =

{
δ̃VF (n, s, |u| δt, δy, δz) if nxu ≥ 0

Fδxδyδz − δ̃VF (n, s, δx− |u|δt, δy, δz) if nxu < 0

}
in (i+ 1, j, k)

(δVF )
→
i,j+1/2,k =

{
δ̃VF (n, s, δx, |v|δt, δz) if nyv ≥ 0

Fδxδyδz − δ̃VF (n, s, δx, δy − |v|δt, δz) if nyv < 0

}
in (i, j, k)

(δVF )
←
i,j+1/2,k =

{
δ̃VF (n, s, δx, |v|δt, δz) if nyv ≥ 0

Fδxδyδz − δ̃VF (n, s, δx, δy − |v|δt, δz) if nyv < 0

}
in (i, j + 1, k)

(δVF )
→
i,j,k+1/2 =

{
δ̃VF (n, s, δx, δy, |w|δt) if nzw ≥ 0

Fδxδyδz − δ̃VF (n, s, δx, δy, δz − |w|δt) if nzw < 0

}
in (i, j, k)

(δVF )
←
i,j,k+1/2 =

{
δ̃VF (n, s, δx, δy, |w|δt) if nzw ≥ 0

Fδxδyδz − δ̃VF (n, s, δx, δy, δz − |w|δt) if nzw < 0

}
in (i, j, k + 1).

(5.2)

The distinction of cases in this equation is necessary due to our requirement that

the region where we compute the liquid volume δ̃VF must contain the origin. Let
us give an example in two dimensions. To this end, let u > 0 and go back to the
2D example illustrated in Figure 5.1. Recall that in Subsection 4.3.1 the number
of interface configurations is reduced by reflecting the plane in such a way that all
components of its unit normal n = (nx, ny, nz)

T become negative and by shifting the
plane’s origin from the cell center to the lower left hand corner of the cell.

We define S := [δx − |u|δt, δx] × [0, δy] as illustrated in Figure 5.1. First, let
nx ≥ 0 as shown in Figure 5.1(a). In this case, the origin s lies in the reflected
image SR of the subregion S after the computation of the reflected plane and the
computation of the new position of the origin by (4.12). Then, we may compute
the advected liquid volume directly in the subregion SR, which in (5.2) amounts to

(δVF )
→
i+1/2,j,k = δ̃VF (n, s, |u| δt, δy, δz).

Now, let nx < 0 as shown in Figure 5.1(b). Then, the origin s is not in the
subregion S after the computation of the new position of the origin by (4.12) (here, no
reflection is necessary). Then, we simply compute the liquid volume in the subregion
[0, δx − |u|δt] × [0, δy] which includes the origin of s and subtract this volume from
the overall liquid volume Fδxδy to obtain the liquid volume in S. Thus, we have

(δVF )
→
i+1/2,j,k = Fδxδyδz − δ̃VF (n, s, δx− |u|δt, δy, δz) in (5.2).
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(a) nxu ≥ 0

(b) nxu < 0

Fig. 5.1: Placement of origin depending on the sign of nxu. For the computation of the
volume fractions, the origin of the plane needs to be in the the rectangular part S of the
computational cell δx× δy × δz as marked by yellow boxes. For nxu ≥ 0, the picture in the
middle shows the reflected plane which is computed across the vertical dashed line. Then,
the third picture shows the placement of the origin s defined by (4.12) in the liquid region
as far from the interface as possible. Still, in this case the origin remains in the reflected
image SR of the subregion. If nxu < 0, a reflection is unnecessary since nx < 0 already, but
the newly computed origin s remains outside the subregion S.

In summary, we are now able to compute the advected liquid volumes (δVF )
⇄

which are needed in (3.10) to obtain the liquid volume fractions Fi+1/2,j,k, Fi,j+1/2,k

and Fi,j,k+1/2 for the transport of F in (3.5)–(3.7).

6. Reinitialization of the LS function. The last step of our CLSVOF method
is the reinitialization of the LS function with the help of the reconstructed interface, i.e.
we want the LS function to be the exact signed normal distance to the reconstructed
interface.

Before the reinitialization of the LS function and after the final reconstruction
of the interface, the volume fractions are truncated to avoid unphysical flotsam and
jetsam, which are generally created by round-off errors, i.e.

Fi,j,k =

{
0 if φi,j,k < −ε or Fi,j,k < 0

1 if φi,j,k > ε or Fi,j,k > 1,
(6.1)

where ε denotes the thickness of the interface proportional to the mesh size h due
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Fig. 6.1: Level-set redistancing: The gray
area marks one phase and the white area
marks the other one, while the thick black
lines denote the reconstructed interface.
The red points, which are connected to
their cell centers by dashed lines, are those
with the shortest distance to the inter-
face. Possible candidates for these points
are projection points xp from the cell cen-
ter onto the interface or points xv on
the boundary of cell (i, j, k); compare Ta-
ble 6.1.

to smoothing of density and viscosity in this area. By restricting F to lie between 0
and 1, we introduce a truncation error and lose a very small amount of mass in the
process. Note that this mass loss is typically an order of magnitude less than that
lost in LS methods [21].

The reconstructed interface consists of piecewise linear plane segments as well as
the plane segments at the cell boundaries that connect a plane in one cell with the
plane in the cell next to it. The sign of the LS function can be determined by the sign
of the VOF function sgn(F − 0.5). The magnitude of φ is calculated as the shortest
distance from the cell center to any of the reconstructed interface segments. Thus,
in the cell (i, j, k) with a reconstructed interface, we have to locate the point xs on
the interface which has the shortest distance to a neighboring cell center x′ of a cell
(i′, j′, k′).

In summary the reinitialization algorithm consists mainly of the following two
parts, which are illustrated in Figure 6.1 (a)–(c):

1. Try the simple cases: The point xs can be found at the face center or face
corner of cell (i, j, k) as in (c). Or, the projection of x′ onto the interface lies
in cell (i, j, k) as in (a).

2. Do the difficult cases: The point xs is one of the vertices of the polygon in
cell (i, j, k) as in (b). In 3D, xs could also be the projection of x′ onto one of
the line segments of the polygon.

For the computation of xs we have mainly consulted Sussman and Puckett [36]
(2D/3D), Sussman [34] (2D/3D), Son and Hur [33] (2D), Son [32] (3D) and Wang et
al. [39] (2D/3D). Most of the algorithms given in these articles describe the distance
computation well for the simple interface configurations. However in three dimensions,
the most difficult case is the one where we need to compute the vertices of the interface,
which is not dealt with in detail in the works of Sussman [36] and [34]. Nevertheless,
the technicalities of the vertex computation can be found in Son’s article [32]. Then
again, Wang et al. [39, p. 234] criticize Son’s 3D algorithm for its complexity and
describe their own new distance computation procedure in two and three dimensions.
But while this procedure might work in 2D, we could not implement it successfully in
3D [17].

In the following, we propose a simple procedure for computing the interface ver-
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Table 6.1: Description of points used in the reinitialization algorithm.

Point Description

x
′ cell center of (i′, j′, k′) within the narrow band about cell (i, j, k)

xs the sought point on the interface in cell (i, j, k) with shortest distance to x
′

xv point on the boundary of cell (i, j, k) with shortest distance to x
′, candidate for xs

xp projection of x′ onto the interface, candidate for xs

tices in 3D. In contrast to Son’s approach, we do not rotate the interface to work with
the reduced number of interface configurations, which would render the computation
more complicated since we also need to transform the coordinates of the vertices back
into the original system. Instead, we work directly in the original system with a larger
amount of interface configurations and still compute the vertices efficiently by taking
into account the distances of the vertices of the computational cell to the interface. In
addition, we describe the more simple cases of the reinitialization procedure in detail
by following the aforementioned articles and [39] in particular.

The following description is simplified by shifting the plane’s origin to the origin
of the computational domain (0, 0, 0) so that from here on we define

φR := nxx+ nyy + nzz + d′ (6.2)

with d′ the distance from (0, 0, 0) to the plane defined by (4.5). The signed distance
of a an arbitrary point p = (px, py, pz) ∈ R

3 to the above plane is defined by

D(p) := n · p+ d′ = nxpx + nypy + nzpz + d′. (6.3)

This distance is positive, if p lies on the same side of the plane towards which the
unit normal points and negative otherwise. The projection of a point p ∈ R3 onto the
plane is defined by

P(p) := p−D(p) · n. (6.4)

In what follows, we write the Euclidean distance between two points p1 and p2 as

deuc(p
1,p2) :=

√
(p2x − p1x)

2 + (p2y − p1y)
2 + (p2z − p1z)

2.

Furthermore, we introduce an auxiliary level-set function φaux, which we initialize in
all computational cells with a very large value. This function is needed since we aim
at the minimum distance of each cell center to the reconstructed interface. At the
end of our algorithm, we set φ = φaux in all considered cells.

Now, let (i, j, k) be a given cell with a reconstructed interface as described in
Subsection 4.1. Then, (i′, j′, k′) with |i′ − i| ≤ K, |j′ − j| ≤ K and |k′ − k| ≤ K
are the cells within a narrow band of width K about (i, j, k). Let us denote the cell
center of (i′, j′, k′) by x′ and the point on the interface with the shortest distance to
x′ by xs. In Table 6.1, we give an overview and description of all points used in the
reinitialization algorithm.
1. If (i, j, k) is a cell with a reconstructed interface, the value of the auxiliary function

φaux simply becomes the distance of the cell center to the reconstructed interface,
i.e.

φaux
i,j,k = sgn(Fi,j,k − 0.5)|D(x′)| = sgn(F − 0.5) |nxx

′ + nyy
′ + nzz

′ + d′| ,
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where d′ is now the distance of the computational domain’s origin to the plane
(and no longer from the corner or center of the computational cell).

2. As a candidate for xs, determine the point xv on the boundary of cell (i, j, k) with
the shortest distance to the cell center of (i′, j′, k′). This point will always be found
at the corner of a cell face of (i, j, k) or at the center of a cell face of (i, j, k). Its
coordinates are given by

xv := (xi+ l
2
, yj+m

2
, zk+n

2
)

with1

l = max(−1,min(1, i′ − i))

m = max(−1,min(1, j′ − j))

n = max(−1,min(1, k′ − k)).

Then, we compute the signed distance of the point xv to the reconstructed interface
by

D(xv) = d′ + nxxv + nyyv + nzzv.

This distance is positive if the interface’s normal vector points to the same side of
the interface, where xv lies. If the sign of this distance is different from the sign of
the LS function in the cell center x′ of cell (i′, j′, k′), i.e. D(xv) sgn(φi′,j′,k′) ≤ 0,
we know that xv and x′ belong to different phases (Fig. 6.1 (c)). Then, we update
φaux by

φaux
i′,j′,k′ = sgn(Fi′,j′,k′ − 0.5)min

(
deuc(xv,x

′), |φaux
i′,j′,k′ |

)

with deuc(·, ·) the Euclidean distance between these points defined by (6). Instead,
if D(xv) sgn(φi′,j′,k′) > 0, both points xv and x′ belong to the same phase; see
Figure 6.1(a)), and we proceed with the next step.

3. Then, the next likely candidate for xs, is the projection of x′ onto the interface,
i.e. the point

xp = P(x′)

(6.4)︷︸︸︷
:= x′ −D(x′)n.

If xp is inside cell (i, j, k), this point must lie directly on the interface and, by
definition, is the one with the smallest distance to x′. In this case we set

φaux
i′,j′,k′ = sgn(Fi′,j′,k′ − 0.5)min

(
deuc(xp,x

′), |φaux
i′,j′,k′ |

)
.

If the projection point is not in cell (i, j, k), we proceed with the next step.
4. With the above part of the algorithm all the simple standard cases are dealt with.

Indeed, we now know that xs must lie on one of the intersection points of the plane
in cell (i, j, k) with the boundary of cell (i, j, k) (i.e. on one of the vertices of the at

1This definition of xv can be understood as follows (cf. Fig. 6.1): If (i′, j′, k′) is a direct neighbor
of (i, j, k) (e.g. i′ = i + 1, j = j, k = k), then l = max(−1,min(1, i + 1 − i)) = max(−1, 1) = 1,
m = max(−1,min(1, j − j)) = 0 and n = 0 so that xv = xi+ 1

2
,j,k, which is a face center of cell

(i, j, k). If (i′, j′, k′) is a diagonal neighbor (e.g. i′ = i+ 1, j = j + 1, k = k), then l = 1, j = 1, k = 0
and xv = xi+ 1

2
,j+ 1

2
,k, which is a face corner.
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most 6-sided polygon; cf. Figure 6.2). Additionally, we have to take into account
that xs could be the projection point of a neighboring cell onto the side of the
polygon.
In order to find xs, we propose the following algorithm: Set mindist to a very large
value and consider the vertices of the computational cell which are connected by
12 edges. For these edges s = 1, ..., 12:
(a) Consider the pair of vertices (ps1 ,ps2) of the computational cell which are

connected by this edge.
(b) Compute the distances D(ps1) and D(ps2) of these points to the interface.2

(c) If D(ps1)D(ps2) > 0, the interface does not cut the edge (since both points
lie on the same side of the interface). In this case, go back to (a) and consider
the next edge. Otherwise, the interface does cut the edge and we proceed
with the next step.

(d) Compute the intersection point of the interface with the edge which we denote
by pis

s1s2 . Set mindist = min
(
deuc

(
pis
s1s2 ,x

′
)
,mindist

)
.

(e) Compute the projection of x′ onto both of the polygon’s interface segments
which have pis

s1s2 as a common vertex. We denote the projection points
by p

pr1
s1s2 and p

pr2
s1s2 . If the point p

pr1
s1s2 is in cell (i, j, k), we set mindist =

min
(
deuc

(
p
pr1
s1s2 ,x

′
)
,mindist

)
. If the point p

pr2
s1s2 is in cell (i, j, k), set mindist =

min
(
deuc

(
p
pr2
s1s2 ,x

′
)
,mindist

)
.

(f) Go to (a) and consider the next edge. If all 12 edges have been taken care of,
go to the last step.

(g) Set φaux
i′,j′,k′ = sgn(Fi′,j′,k′ − 0.5)min

(
|mindist |, |φ

aux
i′,j′,k′ |

)

5. Finally, set φi,j,k = φaux
i′,j′,k′ in all cells where φaux now contains meaningful values

inside the narrow band of K cells. All other cells outside the narrow band can
be filled with a constant: For example, on nearly uniform grids we compute the
maximum diagonal length dmax of all computational cells. In cells which lie outside
the narrow band of K cells, we set

φi,j,k =

{
−Kdmax − dmax if φi,j,k < 0

Kdmax + dmax if φi,j,k > 0,
(6.5)

i.e. these cells are filled with a constant distance to the interface.
What makes the algorithm described in step 4 fast is that by comparing the sign

of the distance of the cell’s vertices to the interface, we know very quickly which
edges of the computational cell intersect the polygon. Then, since the coordinates
of the vertices of the edges are already stored as grid information, we can compute
the vertices of the polygon and the projection points onto the line segments very
efficiently.

Let us exemplify their computation for a pair of vertices p11 = (p1, p2, p3) and
p12 = (p1 + δx, p2, p3) whose edge intersects the polygon (cf. Fig. 6.2). Then, pis can
simply be computed as

pis =

(
nyp2 + nzp3 + d′

−nx
, p2, p3

)
.

Furthermore, we know that the polygon segments which intersect this vertex must lie

2See equation (6.3) for the definition of the signed distance of a point p to a plane. This distance
is positive, if p lies on the same side of the plane towards which the unit normal points and negative
otherwise.
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Fig. 6.2: Illustration for finding the ver-
tices of the polygon and the projection
points onto the segments of the polygon.
The vertices p11 = (p1, p2, p3) and p12 =
(p1 + δx, p2, p3) of the computational cell
are connected by the same edge which is in-
tersected by the 6-sided polygon. This in-
tersection point is denoted by p

is. The seg-
ments of the polygon which are connected
to p

is lie in the y = p2-face. (thick red line)
and the z = p3-face (thick blue line) of the
cell.

within the faces y = p2 and z = p3 of the computational cell.3 They obey the linear
equations

nxx+ nzz + (d′ + nyp2) = 0 and (6.6)

nxx+ nyy + (d′ + nzp3) = 0. (6.7)

We normalize these equations and obtain the new parameters

ñx := nx/
√
n2
x + n2

y, ñz := nz/
√

n2
x + n2

y, d̃ := (d′ + nyp2)/
√

n2
x + n2

y

for the first polygon segment and

n̂x := nx/
√

n2
x + n2

z, n̂y := ny/
√
n2
x + n2

z, d̂ := (d′ + nzp3)/
√

n2
x + n2

z.

for the second polygon segment. Then equations (6.6) and (6.7) become

ñxx+ ñzz + d̃ = 0 and (6.8)

n̂xx+ n̂yy + d̂ = 0. (6.9)

In the next step, we compute the projection of x′ onto both of the polygon’s
interface segments (6.8) and (6.9). Since we know that these segments lie in the faces
y = p2 and z = p3, respectively, these entries of the coordinates of the projection
point are fixed, while the remaining two entries can be computed by the standard
projection onto the normalized line equations (6.8) and (6.9). Thus,

ppr1 =
(
x′1 − (ñxx

′
1 + ñzx

′
3 + d̃)ñx, p2, x

′
3 − (ñxx

′
1 + ñzx

′
3 + d̃)ñz

)
and

ppr2 =
(
x′1 − (n̂xx

′
1 + n̂yx

′
2 + d̂)n̂x, x

′
2 − (n̂xx

′
1 + n̂yx

′
2 + d̂)n̂y, p3

)
,

which concludes our example for the computation of xs as one one of the vertices of
the at most 6-sided polygon or as the projection of a neighboring cell center onto the
side of the polygon.

3 Here, we define the xf -face of cell (i, j, k) as
{

(x, y, z) : x = xf , yj−1/2 ≤ y ≤ yj+1/2, zk−1/2 ≤ z ≤ zk+1/2

}

,

and we define the other faces analogously.
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Finally note that all parts of the implementation of the CLSVOF method have
to be done with special care concerning floating point comparisons, which arise in
the computation of the volume fractions and within the reinitialization equation.
Additionally, all divisions have to be carefully controlled since the denominators can
become tiny. Although these considerations hold for every computer program, the
sheer number of such occurrences within the implementation of the CLSVOF method
necessitate this remark.

7. Parallelization. Our flow solver NaSt3DGPF [24] already works completely in
parallel and employs a natural parallelization strategy for the Navier-Stokes equations:
the Cartesian grid Ωh is decomposed into Q overlapping subdomains Ωh

q , q = 1, . . . , Q,
which are in turn treated by one of the Q processors. Furthermore, we define the
domain Ωh

q+ which equals the domain Ωh
q plus an additional strip of ghost cells in

each space direction. Then, individual processes no longer require access to the en-
tire data structure and the solution of iterative algorithms can be distributed among
them. Furthermore, we assure the convergence of the parallelized algorithm by an ex-
change of relevant data between processes treating adjacent subdomains (neighboring
processes). Each of these subdomains is extended by an artificial boundary, which
guarantees the well-definedness of the equations on every process. The details of our
parallelization approach are extensively described in [4, 16, 17].

In this section, we focus on the parallelization of the CLSVOF method, which
requires additional communication between processes on adjacent subdomains. To our
knowledge, the parallelization of the reinitialization procedure is described nowhere
else in the literature.

Let us focus on the transport part of our algorithm. In the transport steps (3.5),
(3.6) and (3.7) we not only need boundary values for φ and F but also boundary
values for the interface normals nx, ny nz and the interface’s distance to the origin,
which are all computed in the interface reconstruction process. These values need
to be communicated if they lie outside the domain Ωh

q+ on which we compute the
interface reconstruction.

The most challenging part of the parallelization of the CLSVOF method is the
reinitialization, in which the LS function is computed as the exact distance of the cell
centers to the reconstructed interface. Here, (i, j, k) is a given cell with a reconstructed
interface as described in Subsection 4.1, while (i′, j′, k′) with |i′− i| ≤ K, |j′− j| ≤ K
and |k′−k| ≤ K are the cells within a narrow band of width K about (i, j, k). Again,
we denote the cell center of (i′, j′, k′) by x′ and the point on the interface with the
shortest distance to x′ by xs (cf. Table 6.1). Then, in each cell center the LS value is
the minimum distance to all considered interface segments, i.e.

φi′,j′,k′ := min
i,j,k

(deuc(x
′
i′,j′,k′ ,xs

i,j,k)), (7.1)

for (i − i′) ≥ K, (j − j′) ≥ K and (k − k′) ≥ K. Here, deuc(x
′
i′,j′,k′ ,xs

i,j,k) is the
Euclidean distance of the cell center x′i′,j′,k′ to each interface segment, i.e. xs

i,j,k is
the point on the interface with shortest distance to x′i′,j′,k′ .

There are two strategies for the parallelization of the reinitialization in the CLSVOF

method. The first and seemingly more natural strategy is for each process to check
only its own domain Ωh

q for cells with an interface. Then, the distances from the cell
centers of neighboring processes have to be computed and communicated. The second
strategy is for each process to check its own domain and the K cells of neighboring
processes for interface segments (requiring communication). Then, each process can
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Fig. 7.1: Example for the parallelization
of the reinitialization within the CLSVOF

method. The red line denotes the bound-
ary between the processes q1 and q2. All
cell centers are marked by black dots, and
the distance from the cell centers to the
interface segments are drawn by dashed
black lines. Then, the red dot denotes the
point with the shortest distance from the
respective cell center to the interface seg-
ment.

compute the distances to these segments in its own domain Ωh
q , for which no commu-

nication is necessary.

Here, we apply the second strategy, i.e. each process checks its own domain and
the K cells of neighboring processes for interface segments and computes distances
to these interfaces in its own domain Ωh

q only. The first part of our strategy requires

communication among the processes since for the K strips of boundary cells of Ωh
q

each process needs to know

1. if there is a cell containing an interface,
2. the three values of its normal and its distance to the origin,
3. the value of φ in each cell,
4. and the value of F in each cell.

This is a standard communication step, which is more costly due to the larger number
of functions and strips of boundary cells that have to be considered. However, it has
to be done only once for every time step and can be further reduced, if the position
of the interface is taken into account. Furthermore, the minimum distance can be
computed by each process individually, which renders our strategy less complex.

Let us further exemplify our approach by the 2D example in Figure 7.1. Here, q1
computes the minimum of the distances from x′i,j+1 to both interface segments in cell
(i, j) and (i + 1, j), while q2 computes the distance to these interface segments from
x′i+1,j+1. Furthermore, both q1 and q2 know about the interface segments in cells
(i, j) and (i + 1, j), so that no unnecessary computations are performed. Thus, each
process performs the minimum computation (7.1) with the restriction that x′i′,j′ ∈ Ωh

q .
Each process can do this computation individually and no further communication is
necessary.

The details of our implementation are as follows:

1. Each process checks its own domain for interface segments as well as the K
strips of boundary cells of Ωh

q . If the process reaches the boundary of the

overall computational domain Ωh, we only check its first layer of boundary
cells, not all three rows of ghost cells.

2. If a cell with a reconstructed interface is found, each process only computes
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Algorithm 1: Nesting of loops for the parallelization of the reinitialization
equation.

for (i=il -K; i<=iu+K; i++)

for (j=jl -K; j<=ju+K; j++)

for (k=kl -K; k<=ku+K; k++){

i f (i>=0 && i<=imax+1 && j>=0 && j<=jmax+1 && k>=0 && k<=kmax +1)

i f (IsCellWithReconstructedInterface (i, j, k)){

for (p=pl; p<=pu; p++)

for (q=ql; q<=qu; q++)

for (r=rl; r<=ru; r++)

i f (! IsCellWithReconstructedInterface (p, q, r)){

\\find minimal distance of point in cell p,q,r

\\to interface in i,j,k

}

}

}

the minimal distance to the interface in its own domain Ωh
q and in the ghost

cells rows of Ωh.

We have

Ωh := [imin, imax]× [jmin, jmax]× [kmin, kmax] and Ωh
q := [il, iu]× [jl, ju]× [kl, ku]

without ghost cells. Then, in the x-direction, we define the lower and upper boundaries
in which each process computes distances by

pl :=





imin − 3 if i−K < imin − 1, i.e. we are below the lower boundary of Ωh

il if i−K < il, i.e. we are at the lower boundary of Ωh
q

i−K else,

(7.2)
and

pu :=





imax + 3 if i+K > imax + 1, i.e. we are above the upper boundary of Ωh

iu if i+K > iu, i.e. we are at the upper boundary of Ωh
q

i+K else,

(7.3)
and qu, qo, ru and ro for the indices j and k are defined analogously. Note that the
‘-3’ or ‘+3’ indicates that we have three rows of ghost cells for the boundary of Ωh.
If more or less rows are needed, this number has to be adapted accordingly.

The nesting of loops for the parallelization of the reinitialization equation is then
given in Algorithm 1. Thus, our first three loops make sure that each processor checks
its own domain for cells which contain an interface as well as the K boundary cells.
Then, the ‘if statement’ lets each process consider one strip of boundary cells of Ωh

only. If a cell with a reconstructed interface is found, each process looks at the K
neighboring cells and computes their distance to the interface cell. Additionally, the
next three loops and the conditions for their lower (7.2) and upper bound (7.3) make
sure that each process only computes distances its own domain Ωh

q .
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Fig. 8.1: Circle at maximum stretching. On the left, the contour computed by the CLSVOF

method is shown. The blue rectangle is magnified on the right, where grid cells are drawn.
The very thin filaments are resolved by 2–3 grid cells only.

8. Numerical Results. In this section, we are concerned with two standard
test cases with prescribed velocity field. First, we solve the stretching of a circle in a
shear velocity field as proposed by Rider and Kothe [30], which is a two-dimensional
example. Our second advection case is the fully three-dimensional deformation of a
sphere. Both of these test cases allow for a direct comparison between the different
interface capturing methods, without involvement of the flow solver and without the
costly solution of the Poisson equation.

Our parallel simulations were computed on the Atacama cluster of the Institute
for Numerical Simulation [13], Bonn University. This cluster consists of 78 Dell Pow-
erEdge M620 nodes with 1264 cores and has a Linpack performance of 20630 GFlop/s,
while maintaining a total memory of 4992 GB. Note that all surface and volume inte-
grals for the analysis of results are computed by the ParaView [26] or VisIt software [2]
in a post-processing step. Both software tools are able to reconstruct the iso 0 level-
set surface. Then, an integration over the interface Γf can be done without the use
of the δ-function, which always comes with a thickness of several cells across the in-
terface and introduces a constant error in the integration. Here, ParaView and VisIt
rely on the Marching Cubes algorithm [20] for isosurface extraction. For details on
the applied filters; see [17]. Additionally, for visualization purposes only, we use the
Tecplot 360 software (Release 1, 2013) [38].

8.1. Two-dimensional stretching of a circle in a shear velocity field.

Our first test case is the two-dimensional stretching of a circle in a shear velocity field
as proposed by Rider and Kothe [30]. This advection test is a realistic problem since
interfaces undergo strong topological changes, including merging and fragmentation.
Our presented test takes such shear effects into account and is further challenging due
to severe topological changes with very thin filaments on the scale of the mesh size
(Fig. 8.1). The LS and the CLSVOF method are evaluated by their ability to cope with
these changes and their ability to preserve the initial mass of the sphere. In addition,
we are interested in the computational efficiency of both methods.

8.1.1. Setup of the numerical experiment. We choose a flow domain Ω with
size Ω = [0, 1.0]× [0, 1.0]× [0, 0.5] which is quasi-periodic with respect to the z-axis. A
cylinder with radius 0.15 is centered at x̄(t = 0) = (0.5, 0.75, 0.25)T. In the following,
we denote the area occupied by the cylinder by Ω1 = Ω1(t) ⊂ Ω. Due to the quasi-
periodic setup, we then have a circle on each slice in the periodic z-direction. Hence,
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Table 8.1: Simulation parameters for the two-dimensional stretching of a circle in a shear
velocity field.

u: − sin2(πx) sin(2πy) cos (πt/T )
v: sin2(πy) sin(2πx) cos (πt/T )
w: 0
final time: T = 8
flow domain: Ω = [0, 1.0]× [0, 1.0]× [0, 0.5]
circle radius: 0.15
circle center: (0.5, 0.75, 0.25)

interface thickness: ǫ = 1.75h
grid resolution: 128× 128× 5 and 256× 256× 10
quasi 2D: periodic boundary conditions in z-direction
boundary conditions: no-slip except for z-direction

in the following, we always use the term ‘circle’ – although we are talking about a
cylinder from the three-dimensional point of view.

The prescribed shearing field is given by

u = − sin2(πx) sin(2πy) cos (πt/T )

v = sin2(πy) sin(2πx) cos (πt/T )

w = 0

(8.1)

with T = 8 the time when the flow returns to its initial position. Due to the shearing
field, the circle deforms to a vortex with maximum stretching at t = 4. Then the
velocity field is inverted and the vortex is compressed back to its initial position and
circular shape. Note that a multiplication by cos(πt/T ) causes any incompressible
flow field to return to its initial state at t = T [18, 30], a feature employed in this
section as well as for the three-dimensional deformation field in the next section.
Then, the differences in data at t = 0 and t = T can be used for error measurements.
All numerically and physically relevant parameters are summarized in Table 8.1.

We compute the solution on two grids with 128 × 128 and 256 × 256 grid cells
in the x- and y-direction. Since we are aiming at a quasi-2D solution with our 3D

Navier-Stokes solver, we resolve the domain of length 0.5 in z-direction by 5 or 10
grid cells for the lower and higher resolution, respectively.4 We then have periodic
boundary conditions in the z-direction and no-slip boundary conditions hold at all
remaining boundary faces. On both grids the time step is restricted by

δt = cfl ·
hmin

max(i,j,k) (ui,j,k, vi,j,k, wi,j,k)
(8.2)

with CFL number cfl = 0.25 and hmin the smallest mesh size.

Our simulations are conducted in parallel on one 16-core node of the Atacama
cluster. Since the velocity field is prescribed, we do not solve the full Navier-Stokes
equations. We only have to concern ourselves with the solution of the transport
equation and with the reinitialization of the LS function.

4Normally, we would not apply two different resolutions in the periodic direction. However, the
CLSVOF code cannot yet deal with anisotropic grids which is due to our present implementation –
not the method itself.
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8.1.2. Expected behavior. Certainly, for this test, we expect better mass con-
servation with the CLSVOF method compared to our LS method at least on coarse
grids. If we choose a fine enough grid, both the LS method and the CLSVOF method
should be able to conserve a satisfactory amount of mass and to recover the initial
circular configuration.

Concerning the computing time, we expect both the CLSVOF and the LS method
to behave similarly. The bottleneck for the LS method is the reinitialization of the
LS function, which takes up most computing time. In the CLSVOF method, the LS

function φn+1 needs to be exact within a narrow band of K cells about the interface,
where we usually set K = 4. With N the number of cells which contain an interface
reconstruction, the speed of the algorithm is O(K3N) [36], which is also that of
the reinitialization of the LS method in a tube of K cells about the zero level-set. In
addition to the LS method, we have to transport the VOF function and to compute the
reconstruction of the interface for the CLSVOF method. Instead, for the LS method, we
employ several costly features in the reinitialization equation like a high-order WENO

method in space and a Runge-Kutta scheme for time discretization. All in all, we
therefore expect a similar computational efficiency of both methods.

8.1.3. Discussion of results. The development of the circle in the shear flow
over time is shown in Figure 8.2, where we draw the zero level-set contour extracted
with the Tecplot software on the z = 0.25-slice at times t = 2, 4, 6 and 8. The top
four figures refer to the coarse grid solution (h = 1/128), while the four figures on the
bottom refer to the fine grid solution (h = 1/256). At t = 8, we also plot the initial
circle as a dashed black line, which should be recovered by the respective numerical
methods.

In Figure 8.2, the CLSVOF interface is the black line filled with white, while the
LS solution is marked by solid black. As expected, the CLSVOF method is much better
at mass conservation than the LS method. Note that the interface of the LS method
is up to a certain point in time always almost equal to that recovered by the CLSVOF

method. But the thin filaments which develop at the front or back of the stretched
circle are simply lost with the LS method.

The mass loss is most notable on the coarse grid with h = 1/128 (Fig. 8.2(a)). At
maximum stretching (t = 4), there is a vast difference between the length of the vortex
with the LS and the CLSVOF method. Several satellite droplets evolve at the rear end
of the vortex with the CLSVOF method, which tries to recover the thin filaments.
After the flow reverses, these droplets become an irregular structure, which can be
seen at t = 6. Then, the initial circle, which is drawn as a dashed black line in the
last picture, cannot be recovered exactly, but the CLSVOF method is still very close.
In contrast, due to the vast amount of mass lost with the LS method, the LS solution
is nowhere near spherical in the last frame of Figure 8.2(a).

As expected, the differences between the CLSVOF and the LS method are less
prominent on the finer grid (Fig. 8.2(b)). Note that on this fine mesh, the filament at
the rear end of the vortex is resolved by only 2–3 grid cells (cf. Figure 8.1). The LS

solution now loses much less mass than on the coarse grid but still performs less well
than the CLSVOF method. Additionally, only one satellite drop evolves on the finer
grid at t = 4, so that the CLSVOF method recovers the circle even more accurately
than on the coarse grid. Again, the final shape produced by the LS method is less
circular due to the mass loss over time.

In a last step, we measure the computing time of both methods for both grid
resolutions. All simulations were conducted in parallel on one 16-core node of the
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(a) h = 1/128

(b) h = 1/256

Fig. 8.2: Two-dimensional stretching of a circle in a shear velocity field for two different
grid resolutions on the slice z = 0.25. The outer lines mark the zero level-set and are filled
with black for the LS method and with white for the CLSVOF method. Quite noticeably, the
LS solution always remains within the bounds of the CLSVOF solution. For comparison, we
draw the initial circle (dashed black) in the t = 8 frame for both grid resolutions.
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Table 8.2: Computing time for the two-dimensional stretching of a circle in a shear velocity
field on one 16-core node of the Atacama cluster.

LS CLSVOF

1/128 0 h 33min 0 h 19min
1/256 6 h 10min 2 h 56min

Atacama cluster. The resulting computing time is shown in Table 8.2. The CLSVOF

method performs admirably and is twice as fast as the LS method on the finest grid.
This might be due to the very expensive components of the LS reinitialization scheme
such as the fifth order WENO scheme in space and the third-order Runge-Kutta scheme
in time, which yield an accurate but computationally expensive solution.

Next, we present some exemplary results from the literature, where the test case
of the ‘circle in shear flow’ has already been solved with the CLSVOF method.

8.1.4. Comparison to results from the literature. Our test case has been
studied with the CLSVOF method by Ménard, Tanguy and Berlemont in [23] and by
Wang, Yang and Stern in [40] (cf. also [39]). In [23] the CLSVOF method is specifically
adapted to handle very thin filaments for the simulation of the primary break-up of
liquid jets. This is achieved by a modification of the interface reconstruction stencil
(cf. Section 4) when there is more than one interface front in the stencil domain, i.e.
when there are very fine filaments of one fluid phase. Due to this modification, very
good results are obtained at t = T

2 when the flow is inverted as well as for the final
configuration t = T (with T = 6 in this work) compared to the exact Lagrangian
solution.

The results presented in [40] are obtained by a CLSVOF method which uses a
Lagrangian method with a second-order Runge-Kutta scheme for the advection of the
piecewise linear interface. The results obtained in that work are comparable to our
own results. From a merely qualitative point of view, the circle seems to be recovered
slightly better in [40] on the coarse grid with h = 1/128, but results with a finer mesh
resolution are missing.

8.1.5. Remarks. We can draw several conclusions from this challenging test
case.

First, the CLSVOF is well equipped to deal with severe topological changes and
to maintain the mass of thin filaments developing on the scale of the mesh size.
Furthermore, the circle is quite accurately returned to its initial position. Remarkably,
the results with the CLSVOF and the LS method are very close to each other: Up to
the onset of mass loss, the interface of the LS method is always almost equal to that
recovered by the CLSVOF method. This is a very good result, since the re-distance
algorithm in the CLSVOF method is completely different from the classical Hamilton-
Jacobi reinitialization in the LS method. Therefore, we can infer that our new vertex
finding algorithm in the re-distancing of the CLSVOF method works perfectly. Last,
the CLSVOF method is least computationally expensive, which is indispensable for the
computation of highly resolved real life problems such as droplet impact.

Second, the results with the LS method are not too far from those with the CLSVOF

method on the finest grid. Actually, this is what we expect of the LS method, which
exhibits several high-performance features like WENO schemes for reinitialization and
transport and high-order time discretization methods. These methods, however, have
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Table 8.3: Simulation parameters for the three-dimensional deformation of a sphere.

u: +2 sin2(πx) sin(2πy) sin(2πz) cos (πt/T )
v: − sin2(πy) sin(2πx) sin(2πz) cos (πt/T )
w: − sin2(πz) sin(2πx) sin(2πy) cos (πt/T )
final time : T = 3
flow domain: Ω = [0, 1]× [0, 1]× [0, 1]
circle radius: 0.15
circle center: (0.35, 0.35, 0.35)

interface thickness: ǫ = 1.75h
grid resolution: 1/32, 1/64, 1/128, 1/256 and 1/512
employed methods: LS & CLSVOF

boundary conditions: no-slip

to be paid for in computing time, so that the LS method takes twice as long as the
CLSVOF method on the fine grid, where it produces reasonable results. Still, even on
the fine grid, the mass loss of the LS method is a severe problem, so that the initial
circle can be hardly recovered. This mass loss intensifies on the coarse grid, where
the LS method no longer produces results comparable to the CLSVOF method.

Additionally, our comparison with results from the literature shows that, although
our CLSVOF method already produces good results, there is room for improvement and
the possibility to adapt the CLSVOF method for a specific purpose. With our article,
we hope to lay the basis for a thorough understanding and implementation of the
basic CLSVOF method so that further improvements or specialties are straightforward
to integrate.

All in all, the CLSVOF method compares favorably with our well-tested LS method
for which convergence results have already been previously established [6, 7, 5], while
maintaining a much larger amount of mass.

8.2. Three-dimensional deformation of a sphere. Our second advection
test case is the fully three-dimensional deformation of a sphere. We aim to ensure
that the CLSVOF method also works well in 3D, while outperforming the LS method
concerning the conservation of mass. As in the previous section, the deformation
velocity field is multiplied by cos(πt/T ) which causes the flow field to return to its
initial state at t = T . In this configuration, we have a maximum deformation and
thinning at t = 1.5 which is well suited for an evaluation of our methods. Addition-
ally, when the flow field reverses we can judge the LS and the CLSVOF method by the
accuracy with which they recover the initial configuration. In this test, we also mea-
sure the amount of mass maintained at t = T quantitatively with the VisIt software
and compute convergence rates for both methods.

8.2.1. Setup of the numerical experiment. The flow domain Ω is a square
with edge length 1. Moreover, a sphere of radius 0.15 is centered at x̄(t = 0) =
(0.35, 0.35, 0.35)T which separates both fluid phases. In the following, we denote the
area occupied by the sphere as Ω1 = Ω1(t) ⊂ Ω. The 3D deformation field is defined
by

u = 2 sin2(πx) sin(2πy) sin(2πz) cos (πt/T )

v = − sin2(πy) sin(2πx) sin(2πz) cos (πt/T )

w = − sin2(πz) sin(2πx) sin(2πy) cos (πt/T )

(8.3)



31

Fig. 8.3: Evolution of the three-dimensional sphere computed with the CLSVOF method
on mesh size 1/128 at times 0.0, 0.48, 0.98, 1.49, 1.98, 2.48 and 3.0.

with T = 3 the time at which the sphere should have returned to its initial position.
In Figure 8.3, the movement and deformation of the sphere over time is shown. Here,
we see that the sphere is deformed by two rotating vortices which initially stretch
out opposite sides of the sphere and then reverse them back to their initial shape.
Note that our test case originates from a two-dimensional setting first proposed by
LeVeque [18].

All relevant simulation parameters are summarized in Table 8.3, and on all grids
the time step is restricted by (8.2) with a CFL number cfl = 0.25. Again for this test,
the velocity field is prescribed, so we do not solve the full Navier-Stokes equations.
As in the 2D variant above, we are only concerned with the solution of the transport
equation and the reinitialization of the LS function. Our numerical experiment is
evaluated as follows. First, we compare the zero level-set for both the LS and the
CLSVOF method on grids with mesh sizes 1/128 and 1/256. Then, we investigate
the mass convergence behavior of the LS and the CLSVOF method, i.e. we investigate



32

how much mass can be conserved with both methods at the final time T = 3. To
this end, we employ five grids with mesh sizes 1/32, 1/64, 1/128, 1/256 and 1/512
which correspond to the levels l = 1, . . . , 5, respectively. The analytical mass of the
sphere with the parameters in Table 8.3 is ma = 4/3πr3 ≈ 0.0141374. Numerically,
we approximate the mass retained at t = 3 in a post-processing step with the VisIt
software [2]. From the difference between the numerical and the analytical solution,
we compute the discrete error norm e and the convergence rate ρ by

el = |ml −ma| and ρl =
ln
(

el−1

el

)

ln
(

hl−1

hl

) =
ln
(

el−1

el

)

ln (2)
(8.4)

since hl = 2hl+1 for the discrete mesh width.

8.2.2. Expected Results. Certainly, concerning the conservation of mass, we
expect that the LS method will perform less well than the CLSVOF method on all
grids. However, small mass losses may still occur with the CLSVOF method due to the
truncation of the volume fraction to satisfy 0 ≤ F ≤ 1 at all times. On a fine enough
grid, both the LS method and the CLSVOF method should be able to conserve close
to 100% of the mass.

In addition, both methods have to show a substantial improvement in their ability
to conserve the initial mass of the sphere on successively refined grids. Note that the
operator splitting method for the transport of both the LS and the CLSVOF method is
second order accurate in space and time. Additionally, the reinitialization of the LS

method benefits from a fifth order WENO scheme in space and a third-order Runge-
Kutta scheme in time and no interface reconstruction is necessary. Therefore, we
expect a quadratic convergence rate with the LS method. In contrast, we perform
a piecewise linear interface reconstruction (PLIC) in every time step of the CLSVOF

method, which might result in a lower convergence rate.5

8.2.3. Description of Results. In a first step, we plot the deformed sphere at
times t = 1.5 and t = 3.0 on two grids with mesh sizes 1/128 and 1/256, which is
shown in Figure 8.4 for both the CLSVOF and the LS method. The deformed shapes
at t = 1.5 correspond to maximum stretching, while at t = 3.0 the shape has returned
to its initial position.

On the coarser grid (Fig. 8.4(a)), the CLSVOF method shows a certain improve-
ment in mass and shape conservation compared to the LS method. At t = 1.5, the
overall shape of the deformed sphere is very well maintained with slight mass loss in
the inner part. Here, the CLSVOF method only partially resolves the thin interface
produced at the middle section of the stretched shape. In contrast, the main mass
loss with the LS function occurs at the boundary of the shape which becomes com-
pletely fragmented and even unsymmetrical. All in all, for both methods, the grid
resolution is not sufficient to resolve the thin membrane stretched at the center part
of the deformed shape. Consequently, in the final time frame, we see deviations from
the initial spherical shape. Due to the larger mass loss, these deviations are more

5Note that our CLSVOF method is an essential yet still basic tool. Several enhancements such
as unsplit advection [19], increased accuracy by higher-order interface reconstruction [29] or even a
completion by the CLSMOF method [14] are possible. All of these, however, presuppose a thorough
understanding and implementation of the basics of the CLSVOF method in the first place which we
provide in this article.
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CLSVOF LS

(a) h = 1/128

CLSVOF LS

(b) h = 1/256

Fig. 8.4: Three-dimensional sphere deformation with the CLSVOF (left) and the LS method
(right) for two grids with mesh widths 1/128 and 1/256. For both resolutions, t = 1.5 in the
top and t = 3.0 in the bottom row. Ideally at time t = 3.0, the deformed sphere should have
returned to its original shape and location; see Fig. 8.5 for a comparison of the contour lines
for mesh width 1/256.

severe for the LS than for the CLSVOF method. For both, a spherical object with a
‘scar’ in the middle develops.

If we turn to the higher resolution (Fig. 8.4(b)), we see that both the LS and
the CLSVOF method behave similarly. In order to see the differences between the
CLSVOF and the LS method, we draw the zero level-set on various slices along the
z-axis in Figure 8.5(b) at t = 1.5. Here we observe that the LS method still loses
a little bit of mass at the edges, while the CLSVOF method is now able to resolve
the thin structure which only consists of 2–4 grid cells in width (Fig. 8.5(a)). Then,
at t = 3.0 in Figure 8.4(b), the scar in the final shape is again visible with the
CLSVOF method. This is due to the anticipated accumulated errors of the interface
reconstruction process. Similar but more severe deformations occur for the LS method
due to its mass loss. However, both methods are able to return the sphere to its initial
shape and location.

Second, we quantify the mass loss of both methods. In Table 8.4, the percentage
of the still remaining mass at t = 3.0 is given. Most notably, this is a very hard test
case for the LS method: On the coarsest grid, no mass is left at all. Furthermore,
we lose nearly all of the mass on level 2 and about 25% of mass on level 3. Even on
the finest grid, the mass cannot be preserved up to 100%. In contrast, the CLSVOF

method loses only 15% of mass on the coarsest grid, and from level 3 upwards, the
CLSVOF method conserves up to 100% of mass. By comparison, we see that the
CLSVOF method on level 1 outperforms the LS method on level 3 by 10% concerning
mass conservation. Additionally, on the finer grids, the CLSVOF method conserves
almost all of the mass, which the LS method is unable to achieve.

Let us consider the effects of the LS and the CLSVOF method on the overall mass
convergence behavior in space and time at t = 3.0 by comparing the errors and
convergence rates with (8.4). Our results are summarized in Table 8.4 and Figure 8.6
where we see second order convergence for the LS method and a convergence order
of about 1.4 for the CLSVOF method. As expected, the convergence rate is slightly
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(a) Zero isosurface of the deformed sphere with indication of the extracted slices (left) and
the number of grid cells resolving the filaments on the slices (right).

(b) Zero contour of both the LS (red) and the CLSVOF method (black) on the slices normal
to the z-axis indicated above.

Fig. 8.5: Three-dimensional sphere deformation with the CLSVOF (black) and the LS

method (red) for the grid with mesh width 1/256 (cf. Fig. 8.4(b)). Shown are the zero
level-set contour of both the LS and the CLSVOF method on various slices normal to the
z-axis at t = 1.5.
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Table 8.4: Table of mass convergence for the three dimensional deformation of the sphere
with the LS and the CLSVOF method evaluated at t = 3.0; see Fig. 8.6 for a convergence
plot.

LS CLSVOF

Level Mass [%] elLS ρlLS Mass [%] elCLSVOF ρlCLSVOF

1 0 1.414−2 – 85.8 2.007−3 –
2 13.2 1.227−2 0.204 95.2 6.777−4 1.566
3 74.5 3.605−3 1.767 99.3 1.029−4 2.720
4 94.0 8.427−4 2.097 99.7 3.657−5 1.492
5 98.5 2.078−4 2.020 99.9 1.377−5 1.409
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Fig. 8.6: Mass convergence history with the LS and the CLSVOF method for the three-
dimensional deformation of a sphere; compare Table 8.4.

worse for the CLSVOF method. However, the absolute error in mass on the coarsest
grid for the CLSVOF method is smaller than the error of the LS method on level 3.
Furthermore, on the finest grid, the absolute error is still about an order of magnitude
smaller with the CLSVOF than with the LS method.

8.2.4. Comparison to results from the literature. Last, we compare our
results to those from the literature. In Figure 8.7, for a resolution h = 1/128, we
compare our results (red) with those by Wang et al. (violet) [39] and with those by
Ménard, Tanguy and Berlemont (blue) [23] at t = 1.5 and t = 3.0 with a resolution
h = 1/150. All three results are very close to each other and mainly differ in their
ability to resolve the thin membrane in the middle of the droplet. Here, the CLSVOF

method by Ménard performs best since it is specifically adapted to handle very thin
filaments for the simulation of the primary break-up of liquid jets. The blue results as
presented in [40] are obtained by a CLSVOF method which uses a Lagrangian method
with a second-order Runge-Kutta scheme for the advection of the piecewise linear
interface. These results compare very well with our own work. However, the thin
structure is recovered slightly better in [40].For all CLSVOF methods, a scar is present
in the sphere in the final time frame, which is probably due to slight mass loss and
accumulated numerical errors in the interface reconstruction process [39].

Again, from a qualitative point of view, all three results are in very good agree-
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Fig. 8.7: Three-dimensional sphere deformation with our solver NaSt3DGPF (red), results
from [39] (violet) and from [23] (blue) at times t = 1.5 (top) and t = 3.0 (bottom). Unfor-
tunately, the results in [39] and [23] employ different perspectives.

ment with each other and the slight differences in mass conservation can be attributed
to the applied methods of transport, reinitialization and interface reconstruction.

8.2.5. Remarks. In this subsection, we established that both the LS and the
CLSVOF method fare very well with our three-dimensional test case. From level 3
onwards both methods are able to return the deformed shape back to its initial position
and to its spherical state. From level 4 onwards, both methods conserve a substantial
amount of mass. Furthermore, we established the expected second-order convergence
rate for the LS and a convergence order 1.4 for the CLSVOF method. Despite the better
rate of the LS method, the mass error with the CLSVOF method was always about
1 to 3 orders of magnitude smaller. Therefore, and looking back at Figure 8.6, it
seems unlikely that the point where the LS method outperforms the CLSVOF method
concerning mass conservation becomes relevant – even with today’s computing power.

All in all, our results are very much in favor of the CLSVOF method. Also in three
dimensions, this method is well equipped to deal with severe topological changes and
to maintain the mass of the thin filaments developing on the scale of the mesh size.
Furthermore, this test case strongly supports the 3D suitability of our new vertex
finding algorithm in the re-distancing of the CLSVOF method.

Thus, we are perfectly equipped to move on to test cases which involve the whole
flow solver; see [17] for first steps into that direction.

9. Conclusion. We implemented the CLSVOF method, which proved to be faster
than our previous higher-order LS method and conserved mass excellently even on
coarse grids. In our description of the CLSVOF method, we included all details of
the implementation. Thus, this article can be used as a comprehensive guide for an
implementation into existing LS Navier-Stokes solvers, which has not been available
so far. Additionally, we presented a new technique for the reinitialization of the LS

function within the CLSVOF method. Furthermore, we also addressed the details of
parallelization, which is neglected in the standard literature. Here, we focused on the
parallelization of our new vertex finding algorithm, which is a key part of the reini-
tialization whose parallelization is not straightforward. In addition to the LS method,
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the CLSVOF method was validated for two basic advection tests in two and three
dimensions. To summarize, the CLSVOF method showed superb mass conservation
properties and performed computations faster than our high-order LS method whose
reinitialization is very costly.

Of course, the CLSVOF method can always be adapted and improved to fit to a
specific simulation purpose. Ménard, Tanguy and Berlemont [23] specifically enhance
the interface reconstruction process to handle very thin filaments for the simulation
of the primary break-up of liquid jets. In [40], a second-order Lagrangian method is
chosen for the transport of the volume fractions for the simulation of liquid-liquid drop
impact and of plunging breaking waves. Furthermore, unsplit methods for the trans-
port of the LS and the VOF function are considered in [19]. In an unsplit method,
the interface has to be reconstructed only once, which is invaluable if we aim at
expensive higher-order interface reconstruction schemes in three-dimensions. A fur-
ther development of the CLSVOF method is the coupled level-set and moment-of-fluid
(CLSMOF) method, which uses next to the LS and the VOF function also a reference
centroid in order to produce a slope and an intercept for the local reconstruction of
the interface [14].

Nevertheless, all these adaptions and improvements rely on a thoroughly imple-
mented basic CLSVOF method, for which we have provided a framework in this article.
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