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Multipath Assisted Positioning in Vehicular

Applications
Markus Ulmschneider, Ronald Raulefs, Christian Gentner and Michael Walter

Abstract—Precise localization and tracking in intelligent trans-
portation systems has aroused great interest since it is required
in a large variety of applications. The positioning accuracy of
global navigation satellite systems is unreliable and insufficient
enough for many use cases. In urban canyons or tunnels, the
positioning performance degrades due to a low received signal
power, multipath propagation, or signal blocking. Instead we
exploit the ubiquitous access to cellular mobile radio networks.
Cellular networks are designed to cover the access to the network
in an area by a single link to reduce the risk of interference
from neighboring base stations. The idea of Channel-SLAM is to
exploit the numerous multipath components (MPCs) of a radio
signal arriving at the receiver for positioning. Each MPC can
be regarded as being sent from a virtual transmitter in a pure
line-of-sight condition. Within this paper, we show how to apply
multipath assisted positioning in an urban scenario. Therefore,
we analyze how a road user equipped with a circular antenna
array is tracked in an urban scenario in the presence of only one
physical transmitter. We further jointly estimate the positions of
the physical and the virtual transmitters to enrich maps.

Index Terms—Channel-SLAM, multipath assisted positioning,
simultanous localization and mapping, tracking

I. INTRODUCTION

The rapid growth of available services and applications

depending on location awareness in intelligent transportation

systems (ITSs) has led to an ever increasing demand for

precise localization and tracking systems. Examples for these

applications range from enhanced navigation with guided lane

tracking, and platooning to fully autonomous driving.

The positioning accuracy of global navigation satellite sys-

tems (GNSSs) is not sufficient for many applications. Fur-

thermore, certain scenarios such as urban canyons or tunnels

pose an additional challenge due to multipath propagation and

blocking of signals [1]. Hence, especially in such areas, there

is a high demand for complementary positioning systems.

There exists a variety of systems that may be used to support

GNSS in such challenging scenarios. They include radar or

lidar, as well as optical systems. Radar and lidar are usually

used for relative positioning among surrounding traffic, but

they can not see through surrounding traffic or beyond block-

ing objects (walls, etc.). However, optical systems may be used

for relative positioning, but also for absolute positioning if a-

priori information in form of a map based on visual features

is available. Different weather and daylight conditions pose

severe challenges to such systems.

In tunnels or urban canyons, a rich multipath environ-

ment can be expected [2]. Multipath propagation has been
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considered a foe using wireless positioning and navigation

technologies, since it biases range estimates and hence de-

grades the positioning accuracy. Standard methods to tackle

the multipath problem estimate the channel impulse response

(CIR) at a receiver that has to be located, and try to mitigate

the influence of the multipath components (MPCs) on the line-

of-sight (LoS) path.

Our proposed approach is to use a radio frequency (RF)

based system that is based on multipath assisted positioning

using signals of opportunity (SoO). Contrary to the standard

methods, the idea of multipath assisted positioning is not to

combat MPCs, but to exploit them for positioning: each MPC

arriving at a receiver via a different propagation path can be

regarded as a separate signal being sent synchronously from

another signal source in a pure LoS condition to the receiver.

We name such a signal source a virtual transmitter (VT). The

concept of VTs will be explained in more detail in Section II.

Both the physical and the virtual transmitters can be used for

positioning.

Fundamental limits and theoretical results on multipath as-

sisted positioning have been presented in [3]. Some approaches

using multipath assisted positioning assume the physical and

virtual transmitter positions to be known in advance, for

example in form of a floorplan in indoor [4] or in radar [5]

applications.

In a general setting, however, the positions of the virtual and

possibly also of the physical transmitters are unknown. Their

positions might be estimated jointly with the receiver position

in a simultaneous localization and mapping (SLAM) algorithm

as the receiver travels through the scenario. In this respect,

locating the receiver and mapping the physical and virtual

transmitters is performed simultaneously. With the Channel-

SLAM algorithm, an approach has been presented in [6], [7]

that uses a recursive Bayesian estimation approach for the

estimation problem. The algorithm does not differentiate be-

tween physical and virtual transmitters: each signal component

arriving at the receiver, no matter if via the LoS path or as a

MPC, is treated as a signal from a transmitter in a pure LoS

condition.

Today’s local dynamic maps (LDMs) for ITS applications

contain data that support localization to improve the control

functions of the vehicle. The inclusion of additional features

to LDMs, such as virtual or physical transmitter locations,

might support systems using such maps and improve the

positioning performance. Moreover, it increases the reliability

under conditions where not enough physical transmitters are

present.

The purpose of this paper is to show how to use multipath

assisted positioning in vehicular applications. We simulate a
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Fig. 1. Signals from the physical transmitter Tx are reflected at the straight
surface and can be interpreted as originating from a VT vTx, which is static
during the receiver motion. The position of vTx is the position of the physical
transmitter Tx mirrored at the surface.

road user moving through an urban environment. The user

is equipped with a gyroscope and a circular antenna array

in order to be able to incorporate angle of arrival (AoA)

information of incoming signal components.

The remainder of the paper is organized as follows. Sec-

tion II introduces the idea of multipath assisted positioning

and its application in a vehicular context. The Channel-SLAM

algorithm is derived in Section III. We present the simulation

scenario and results in Section IV. Section V concludes the

paper.

II. MULTIPATH ASSISTED POSITIONING

The Channel-SLAM algorithm uses MPCs for positioning

instead of mitigating them. In order to use MPC for position-

ing, a model reflecting the MPCs parameters in dependency

of the receiver position needs to be found. Channel-SLAM

treats each MPC as a LoS signal from a VT whose position

is unknown to the receiver.

Fig. 1 illustrates the idea of VTs: The physical transmitter

Tx broadcasts a signal that arrives via a reflection from a

straight surface, i.e. via a non-line-of-sight (NLoS) path. From

the user point of view, this signal may be regarded as being

sent from the VT vTx in a pure LoS condition. The position

of the VT is the position of the transmitter Tx mirrored at the

surface. As the user moves along its trajectory, the position of

the VT is static and the VT is inherently synchronized to the

physical transmitter.

Fig. 2 presents a scenario where the signal is scattered. The

propagation effect of scattering occurs if an electromagnetic

wave impinges an object and the energy is spread out in

all directions. If the receiver moves through this scenario,

the signals scattered from this punctual scatterer seem to be

emerging from the scatterer itself. Hence, we obtain a VT at

the scatterer position. This VT, however, has an additional

clock offset τVT > 0 towards the physical transmitter. In

Fig. 2, τVT is the propagation distance between the physical

and the VT, dVT, divided by the speed of light. A transmitter’s

clock offset and its additional propagation time are therefore

equivalent.

Fig. 2. Signals from the physical transmitter Tx are scattered at the punctual
scatterer and can be interpreted as originating from a VT vTx, which is static
during the receiver motion. The VT has an additional propagation distance
dVT compared to the physical transmitter Tx.

vTx2

car

Tx0vTx1

dVT

A B

C

Fig. 3. A car moves from the bottom to the top through an urban scenario
with three buildings A, B, and C. The physical transmitter Tx0 is located at
the corner of building B. There are two MPCs arriving at the receiver that
are regarded as being transmitted by the VTs vTx1 and vTx2.

Between the physical transmitter and the scatterer additional

interactions are possible. Hence, the concepts of single reflec-

tions and single scatterings can be generalized in a straight-

forward manner to situations where a signal from a physical

transmitter undergoes multiple reflections and scatterings [6],

[7]. The propagation path of each MPC can therefore be

equivalently described as a direct path between a VT and

the receiver plus a constant additional propagation distance

dVT. If only reflections occur on the pathway between physical

transmitter and receiver, this additional propagation distance

is zero. If the MPC was interacting with at least one scatterer,

the additional propagation distance is greater than zero.

A scenario of a car equipped with an RF receiver moving

through an urban canyon is depicted in Fig. 3. The driving

direction of the car is from bottom to the top. The light gray

areas represent walls of buildings reflecting RF signals, and

the buildings are labeled A, B, and C. A physical transmitter,

labeled Tx0, is located at the corner of building B. The

transmitter might be emitting radio signals. The car is in LoS

to Tx0. One MPC arrives at the car via the reflection at the

wall of building A. Following the Channel-SLAM concept,
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this MPC can be regarded as being sent from the VT vTx1 in

a pure LoS condition. The position of vTx1 is the position of

the physical transmitter Tx0 mirrored at the wall of building

A. The black circle near the corner of building C models a

punctual scatterer. One signal component at the car is received

via this scatterer. Hence, the scatterer can be regarded as an

additional VT vTx2 as in Fig. 2. Accordingly, the position of

vTx2 is equal to the position of the punctual scatterer, and

its additional propagation distance dVT to the receiver is the

Euclidean distance between Tx0 and Tx2.

III. ALGORITHM DERIVATION

A propagation path can be represented by a direct path

between a VT and the receiver. Hence, for each MPC i, with

i = 0, . . . , N(tk) − 1, we can define a VT by its position

rVT,i(tk) and an additional propagation distance dVT,i(tk),
where N(tk) is the number of MPCs, or equivalently, VTs, at

time instant tk. Knowing the positions of the VTs, the receiver

position ru(tk) can be estimated. A method to estimate

the position of the receiver at the same time as landmarks

located in the environment is called SLAM [8]. We consider

a stationary scenario with a moving receiver. The SLAM

algorithm is used by the receiver to estimate its own position

and the position of the VTs as landmarks.

In a first step, the received signal is processed by the

Kalman enhanced super resolution tracking (KEST) algorithm

[9], which estimates for each MPC i the propagation length

di(tk), the complex amplitude αi(tk) and the AoA φa,i(tk) in

the azimuth plane as shown in Fig. 4. Our approach considers

a 2.5-dimensional scenario, and the antenna array is able

to measure the azimuth and the elevation angle. However,

within the scope of this paper, we consider a 2-dimensional

positioning approach, and hence, only the azimuth angle is

considered. For each time instant tk, the relevant estimates of

the KEST algorithm are condensed as the vector z(tk) with

z(tk) = [φ̂a(tk) d̂(tk)], (1)

where

φ̂a(tk) = [φ̂a,0(tk), . . . , φ̂a,N(tk)−1(tk)]
T (2)

are the estimates for the AoA in the azimuth plane and

d̂(tk) = [d̂0(tk), . . . , d̂N(tk)−1(tk)]
T (3)

are the estimates for the propagation lengths.

In order to use the VTs for positioning, their states have to

be estimated during the receiver movement. Hence, the state

vector x(tk) at time instant tk is defined by

x(tk) =
[

xu(tk)
T
,xVT,0(tk)

T
, . . . ,xVT,N(tk)−1(tk)

]T

,

(4)

with the receiver state

xu(tk) =
[

ru(tk)
T
,vu(tk)

T
, bu(tk), ρu(tk)

]T

, (5)

where ru(tk) is the receiver position, vu(tk) the receiver

velocity, bu(tk) and ρu(tk) the receiver’s clock bias and drift,

respectively. The parameters representing the VT of the ith

MPC are defined as

xVT,i(tk) =
[

rVT,i(tk)
T , dVT,i(tk)

]T
, (6)

where rVT,i(tk) is the position of the ith VT and dVT,i(tk)
its additional propagation distance.

For solving the SLAM problem, i.e., estimating the state

vector x at time steps 0 to k, x(t0:k), we follow a recursive

Bayesian filtering approach. In general, recursive Bayesian

filtering provides a methodology to optimally estimate param-

eters in non-stationary conditions [10]. It consists of two steps,

the prediction step and the update step. As illustrated in [7],

assuming a first-order Markov model and independence among

the measurements for the single VTs, the transition prior can

be expressed here as

p
(

x(tk)|x(tk−1)
)

=p
(

xu(tk)|xu(tk−1)
)

·
N(tk)−1
∏

i=0

p
(

xVT,i(tk)|xVT,i(tk−1)
)

, (7)

where the number of VTs at time tk is denoted by N(tk). As

mentioned in Section II and [7], the position of the VTs are

time-invariant. Hence, we obtain for the ith MPC

p
(

xVT,i(tk)|xVT,i(tk−1)
)

= δ (xVT,i(tk)− xVT,i(tk−1)) .
(8)

For the transition prior probability density function (PDF)

of the user state xu(tk), p
(

xu(tk)|xu(tk−1)
)

, we include

gyroscope measurements for heading information. As shown

in Fig. 4, the proposed movement model considers a two

dimensional Cartesian coordinate system, where we obtain the

heading changes ∆β(tk) from the gyroscope [11]. Hence, the

receiver position ru(tk) is calculated as

ru(tk) = ru(tk−1) + (tk − tk−1)vu(tk) , (9)

with the receiver velocity

vu(tk) = R(∆β(tk)) · vu(tk−1) + nu(tk), (10)

where nu(tk) ∼ N (0,Qu(tk)) is the transition noise with

covariance matrix Qu(tk). The 2-dimensional rotation matrix

R(∆β(tk)) is

R(∆β(tk)) =
[

cos (∆β(tk) + nβ(tk)) − sin (∆β(tk) + nβ(tk))

sin (∆β(tk) + nβ(tk)) cos (∆β(tk) + nβ(tk))

]

,(11)

where nβ(tk) is the heading noise which is distributed fol-

lowing a von Mises distribution. For the clock bias and clock

drift, known prediction models can be applied, see e.g. [12].

Assuming the elements of z(tk) to be independent Gaussian

distributed, the PDF p
(

z(tk)|x(tk)
)

for the update step of the
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φa,i(tk)

∆β(tk)

vu(tk)

VT

di(tk)

Fig. 4. A vehicle equipped with a circular antenna array that is visualized
by the black dots. The antenna array is considered to be aligned in moving
direction, and the center of the antenna array is defined as the phase center.

Bayesian filter can be expressed as

p
(

z(tk)|x(tk)
)

=

N(tk)−1
∏

i=0

1√
2πσd,i(tk)

e
−

(d̂i(tk)−di(tk))2

2σ2
d,i

(tk)

· 1√
2πσφ,a,i(tk)

e
−

(φ̂a,i(tk)−φa,i(tk))2

2σ2
φ,a,i

(tk) ,

(12)

where σ2
d,i(tk) and σ2

φ,a,i(tk) denote the corresponding noise

variances of the additional propagation length and AoA mea-

surements, respectively. The predicted propagation lengths

di(tk) are calculated as

di(tk) = ‖ru(tk)− rVT,i(tk)‖+dVT,i(tk)+ bu(tk) · c, (13)

where c denotes the speed of light. The predicted AoAs in the

azimuth plane, φa,i(tk), can be calculated as

φa,i(tk) = atan2(rVT,i(tk)−ru(tk))−atan2(vu(tk)), (14)

where the function atan2(x) is the four quadrant inverse

tangent function. It returns the angle between the positive x-

axis and the point x, which is positive for counter-clockwise

angles. The AoAs are aligned in moving direction of the car

as in Fig. 4, where the center of the antenna array is defined

as the phase center.

IV. SIMULATIONS

For verifying our estimation approach, we performed simu-

lations exploiting the multipath propagation in a simple urban

scenario depicted in Fig. 5. The black lines represent walls

reflecting the transmit signals, whereas black dots represent

scattering objects. We have one physical transmitter, Tx0,

that is represented by a red upward triangle. Knowing the

environment, we model VTs that arise due to reflections

and scattering of the signals emitted by Tx0 as illustrated

in Section II. We incorporate reflections and scattering of

orders one and two, i.e., single and double reflections and/or

scattering.

Based on the positions of the physical and modelled virtual

transmitters, we create a CIR for each time instance. We

assume a power loss of 3 dB whenever a signal is reflected at a

wall, and a power loss of 6 dB when the signal is scattered at a
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Fig. 5. An urban scenario with one physical transmitter labelled Tx0. The
receiver track is depicted in blue with the start and end positions marked as
START respectively END. The traveled distance is marked for every 50m.
Black lines represent walls that reflect the RF signal, black dots represent
objects that scatter the signal.

punctual scatterer. The CIRs are band-limited to a bandwidth

of 100 MHz. Additionally, we add noise of a constant variance

on top of the CIRs to reach an average signal-to-noise-ratio

(SNR) of 7 dB.

As depicted in Fig. 4, the user is equipped with a 2-

dimensional circular antenna array consisting of 4 antennas.

It moves on a track represented in Fig. 5 by the blue line

with a constant velocity of 10m/s. The start and end positions

are indicated by the labels START respectively END. The

user starts moving to the right, takes a turn to the right

moving downwards, turns left doing one loop around the

central building and moves to its final position. During the

user movement, the physical and virtual transmitters might be

visible or not depending on the geometry of the scenario and

the current user position. Hence, not all transmitters are visible

at every user position.

The KEST algorithm estimates the parameters of the MPCs

based on the sampled, band-limited CIRs, i.e., the received

signal, every 0.05ms. Fig. 6 shows the estimation results

of KEST versus the receiver traveled distance in meters. The

y-axis shows the delay of signal components arriving at the

receiver. For the sake of a better intuition, the actual delays

are multiplied by the speed of light resulting in values in

meters, or, in other words, in propagation distances. Since

Channel-SLAM considers an underdetermined system, long

visible paths are preferable. For the evaluations, we extract

only the long visible paths from the KEST estimates as

visualized in Fig. 6. Although we could use all detected

MPCs in Channel-SLAM, this would drastically increase the

computational complexity.

Equivalently to [7], for the simulations, we implemented a

Rao-Blackwellized particle filter (PF), see [13], that estimates
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Fig. 6. Estimation results of KEST for the CIR versus the receiver traveled
distance in meters. Only paths that are visible to the receiver for longer time
are shown.

TABLE I
PARAMETERS OF THE USED SIGNALS

Parameter Value

RF carrier frequency 1.51GHz

signal bandwidth 100MHz

average SNR 7 dB

measurement update rate 20Hz

the user position and the location of the VTs as described

in Section III. Accordingly, we simulate a gyroscope at the

user, whose heading measurements are taken into account

in the movement model of the receiver, again as mentioned

in Section III.

We assume the starting position and the initial direction

of the user to be known in order to define a local coordinate

system. For its tracking, 3000 particles are initialized normally

distributed around the true user position with a standard

deviation of 1m. We assume no a-priori knowledge on the

physical and virtual transmitter positions and clock offsets.

Hence, during the receiver movement, the VT states are

estimated including the physical transmitter state. A new VT is

initialized after KEST initializes a new propagation path. The

initialization of a VT is performed based on the first AoA and

propagation length measurements for this VT, i.e., the KEST

estimates from Eq. (1), as in [7].

Fig. 7 shows an example of the estimated receiver trajectory

by the cyan line. The figure also shows the PDFs of an

estimated VT and the receiver position for a traveled distance

of 245 m. The true position of the receiver is depicted by the

blue cross. The PDF for the VT position is located close to the

true physical transmitter position, and therefore corresponds

most probably to the LoS path.

Fig. 8 shows the root mean square error (RMSE) for the

user position versus the traveled distance. Because of using

prior knowledge for the initialization of the receiver position,

the position error at the beginning of the track is rather
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Fig. 7. Example estimated receiver trajectory in cyan. The blue track is the
true receiver trajectory. Additionally, the PDFs of estimated VT positions and
the receiver position for a traveled distance of 245 m are plotted.
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Fig. 8. The RMSE of the receiver versus the receiver traveled distance.

low. Afterwards, the RMSE is increasing during the receiver

movement. However, we are still able to estimate the receive

position below 18 m after a traveled distance of 600 m. To

reduce the overall positioning error, further sensors may be

included, e.g., GNSS pseudo range or velocity measurements.

V. CONCLUSION AND OUTLOOK

Within this paper, we presented the idea of Channel-SLAM

for ITS applications. We simulated a road user equipped

with a circular antenna array consisting of 4 antennas and

a gyroscope moving through an urban multipath scenario.

Exploiting the multipath components for positioning, the user

could be tracked. Future work will contain the creation and

exchange of maps of physical and virtual transmitters among
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road users. We expect that a-priori maps of transmitters will

lead to a faster convergence of the positioning solution as well

as a better positioning performance. In particular, the inclusion

of VT positions in LDMs will improve the positioning perfor-

mance in vehicular applications.
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