
GPU-Based Nonlocal Filtering for Large Scale

SAR Processing

Gerald Baier1, Xiao Xiang Zhu1,2

(1) Remote Sensing Technology Institute (IMF), German
Aerospace Center (DLR),

Oberpfaffenhofen, 82234 Wessling, Germany
(2) Signal Processing in Earth Observation (SiPEO), Technical

University of Munich (TUM),
Arcisstr. 21, 80333 Munich, Germany

November 30, 2016

Abstract

In the past few years nonlocal filters have emerged as a serious con-
tender for denoising synthetic aperture radar (SAR) images, offering su-
perior noise reduction and detail preservation compared to many other
filters. In this manuscript we analyze how nonlocal filters, whose com-
putational costs were so far prohibitive for large scale processing, can be
implemented efficiently on graphics processing units (GPU). As a case
study NL-SAR, a state of the art SAR filter, is implemented to run on
a NVIDIA Tesla K40. We describe the appeal of GPUs, or any other
coprocessor, for nonlocal filters. Nonlocal filtering of TanDEM-X inter-
ferograms for generating digital elevation models with a higher resolution
and accuracy is given as an application that benefits from efficient and
fast nonlocal filtering.

Index terms— synthetic aperture radar, denoising, nonlocal, graphics pro-
cessing units (GPU)

1 Introduction

Starting with NVIDIA’s Compute Unified Device Architecture (CUDA) and
later the Open Computing Language (OpenCL) coprocessors that accelerate nu-
merical algorithms via general purpose computing on graphics processing units
(GPGPU) have become ubiquitous in high performance computing. With their
throughput-oriented architecture coprocessors are far better suited for tasks
with abundant parallelism, such as image processing, as general purpose central

1

processing units (CPU). These qualities make them attractive for large scale
processing of SAR data, which was our prime motivation to investigate their
usage for nonlocal filtering.

Nonlocal filters have emerged in the past years as the state of the art fil-
tering concept, outperforming traditional filters in terms of noise reduction and
detail preservation. With regard to DLR’s TanDEM-X mission, nonlocal fil-
ters permit the generation of a severely less noisy digital elevation model with
far more details, compared to legacy local filters [1]. Currently their excessive
computational cost keep them from widespread use. In this paper we evaluate
how coprocessors, in our case a NVIDIA Tesla K40, can be used for nonlocal
filtering, where we use NL-SAR [2] as an example. The paper is structured as
follows. Section 2 gives a brief introduction to the nonlocal filtering concept and
NL-SAR. Section 3 describes, on a high level of abstraction, the architecture of
modern GPUs affecting how NL-SAR is to be implemented, which is described
in Section 4. Section 5 gives performance results and shows the processing of a
complete TanDEM-X interferogram as an example.

2 Nonlocal Filtering and NL-SAR

Nonlocal filters, which were first introduced in [3], indiscriminately use measure-
ments in a far larger area for estimating the noise free parameters of each target
pixel than conventional filters. Inside this area, termed search window or search
area, a nonlocal filter assigns each pixel a weight, depending on its similarity to
the target pixel, before estimating its value through weighted means:

û(x) =
∑
y∈∂x

w(x,y)u(y), (1)

where û is the denoised estimate, ∂x is the search window centered around the
pixel position x, w are the weights and u are the original pixel values.

The similarities between pixels are not only a function of the respective pixel
values themselves, but also take into account their local neighborhoods, called
patches. By comparing patches instead of pixels local structures are considered,
leading to improved filtering results. The price to pay, compared to traditional
filters, is a severely increased computational complexity, which for a näıvely
implemented nonlocal filter is O(NWP), where N is the number of pixels in
the image, W the search window size and P the size of a patch.

There exist several filters that adapted the nonlocal filtering concept to SAR,
InSAR and PolSAR image statistics. NL-SAR [2] is used as a case study to show
the potential of coprocessors for nonlocal filtering of SAR data. Only a very brief
and incomplete introduction to NL-SAR is given here, for a complete treatment
the interested reader is referred to the original paper.

NL-SAR operates on covariance matrices and is therefore capable of filtering
simple SAR amplitude images as well as InSAR or PolSAR data. The similarity
for two pixels is defined as a likelihood-ratio test based on the hypothesis that

2

their two Wishart distributed covariance matrices are equal:

L (C1, C2) =
|C1||C2|

| 12 (C1 + C2)|2
(2)

where C1 and C2 are the empirical covariance matrices of the two pixels and
|.| is the determinant. To ensure that the estimation of C1 and C2 is robust
and has full rank, off-diagonal elements are rescaled and convolution with a
Gaussian kernel is performed as a preestimation step. The patch dissimilarities
are computed by summing up the negative logarithm of their respective pixel
similarities:

∆(x,y) = −
∑
p∈P

logL (C(x + p), C(y + p)) , (3)

where P contains all the indices’ offsets in a patch.
The weighting kernel is trained on a homogeneous area and stores the patch

dissimilarities’ corresponding empirical cumulative distribution function (ECDF).
During filtering patch dissimilarities are mapped into weights depending on their
quantile in the ECDF. Fig. 1 shows the mapping kernel.

Figure 1: Mapping of dissimilarities into weights

NL-SAR also features a parameter selection which, depending on the equiva-
lent number of looks, picks the best search window size, patch size and Gaussian
kernel scale. Bias reduction further ensures a closer adherence to the original
data in case the nonlocal estimate is oversmoothed.

3 GPU Architecture

In order to implement NL-SAR to run efficiently on GPUs, their underlying
architecture has to be considered. Fig. 2 shows the general architecture of a
GPU computing device and how it works in tandem with the host computer.

The host transfers data to the GPU’s global memory and then schedules
a function, called kernel, which executes in parallel on the compute units and
manipulates data stored in global memory.

3

Data

Host

RAM

GPU

Global Memory

Local
Memory

Compute
Unit

Local
Memory

Compute
Unit

Figure 2: High-level view of a GPU and the host computer

Each compute unit launches several threads which perform the actual com-
putation of the kernel and should have identical workloads for optimal perfor-
mance.

All threads of a compute unit share access to the global and local memory,
where the access to local memory is much faster and access to the global memory
should be coalesced, meaning the threads access consecutive memory addresses.
Global memory is furthermore accessible by threads from all compute units,
however synchronization of threads is only possible for threads inside one com-
pute unit and not among them. The architecture imposes a certain paradigm
for implementing efficient GPGPU code:

• communication between host and device should be avoided

• it is mandatory that the problem can be split up in order to be processed
separately and independently by the compute units

• as access to local memory is much faster, copying data from global to local
memory speeds up the program if the data in local memory is accessed
multiple times

In the following section we will describe how the architecture applies to and can
be exploited by nonlocal filters.

4 Nonlocal Filters on GPUs

Nonlocal filters are extremely compute-intensive so that the overhead caused
by exchanging data with the host is negligible. As every pixel can be processed
independently, filtering an image can be easily split up into tiles, which are then
processed in parallel by the compute units. Due to the large overlapping search
windows nonlocal filters extensively reuse data so that many kernel functions can
easily be sped up by making use of local memory. Taking Eq. (1) as an example,
the pixel data u(y) can be copied to local memory, where it is accessible for all
threads of a compute unit.

4

All of the just mentioned facts show the potential of GPUs for accelerating
nonlocal filtering. In the following paragraphs we describe in greater details
some of the parts of nonlocal filters and especially NL-SAR that are less trivial
to efficiently implement.

The most computationally expensive task for any nonlocal filter is calculating
the weights, which requires both the patch and pixel similarities. As Fig. 3
shows, the pixel similarities computed for two pixels can be reused for many
patches, and in the case of NL-SAR even for patches with different sizes. By
exploiting this redundancy as described in [4], the computational cost is in
essence independent of the chosen patch size.

Figure 3: Reusing pixel similarities

The pixel similarities are stored in a four dimensional array, where the first
two dimensions define the offset of the target pixel to the center pixel and the
latter two are the image dimensions plus the overhead caused by the search
window and the patch size. Fig. 4 visualizes how pixel similarities with the
same offset to the center pixels are stored consecutively in memory. Storing the
pixel similarities and later the patch similarities and weights in such a manner
allows for efficient coalesced memory access when multiple pixels are processed
in parallel.

Global Memory

Figure 4: Memory Layout for coalesced Access to Pixel Similarities with iden-
tical Offset

A 2D convolution over the last two dimensions with a rectangular window
produces the patch dissimilarities (see Eq. (3)). For best performance the 2D
convolution is performed as two separate 1D convolutions and makes use of local
memory as described in [5]. Separation of the convolution is crucial to avoid
idle threads after caching values in local memory.

5

Number of Compute Units 15
Number of CUDA cores 2880
CUDA cores per Compute Unit 192
Graphics Clock 745MHz
Memory Clock 3000MHz
Global Memory 12 GB
Local Memory Size (set at runtime) 16/32/48 KB
Peak single precision Flops 4.29 TF/s
Peak double precision Flops 1.43 TF/s

Table 1: Tesla K40 technical specification

Computing the weights from the patch dissimilarities requires some adaption
of the scheme that is used in the original paper, which relies on a binary search
to find the quantile of the patch similarities. We eliminate the binary search by
resampling the ECDF on a uniform grid and storing the respective quantiles in
a lookup table.

An additional optimization is exploiting the symmetry of weights, i.e. w(x,y) =
w(y,x).

5 Experiments

NL-SAR was implemented in OpenCL following the aforementioned general
implementation guidelines and optimizations. Development and benchmarking
was conducted on a NVIDIA Tesla K40, where Table 1 lists the most pertinent
technical specifications. Single precision floating point numbers proved to be
sufficient for nonlocal InSAR filtering.

For an InSAR image of size 2048×2048 Fig. 5 lists the processing time with
a search window of size 21× 21 for different patch sizes P and Gaussian kernel
scales S. The same code is run for comparison on all cores of an Intel i7-4770.

One goal of employing coprocessors is large scale reprocessing of TanDEM-X
interferograms to provide a DEM product of higher resolution and accuracy [1].
Fig. 6 shows a DEM of Weihai, China with an area of roughly 2700km2 and
compares the filtering result of a conventional boxcar filter and NL-SAR. For
this image a 27962×15240 pixels interferogram had to be processed, which with
S = [1, 3, 5] and P = [3, 5, 7, 9, 11] took 35min on the NVIDIA Tesla K40.

6 Conclusion

An initial feasibility study of implementing a nonlocal InSAR filter on a GPU
was presented showing that nonlocal filtering is ideally suited to be offloaded
to a dedicated coprocessor due to its high compute intensity. Our performance
numbers and example show, that large scale nonlocal filtering of TanDEM-X
interferograms is practical.

6

Figure 5: Runtime of NL-SAR for an InSAR image of size 2048 × 2048 for
different parameter sets

Aknowledgement

We gratefully acknowledge the support of NVIDIA Corporation with the dona-
tion of the Tesla K40 GPU.

References

[1] Xiao Xiang Zhu, Richard Bamler, Marie Lachaise, Fathalrahman Adam,
Yilei Shi, and Michael Eineder, “Improving TanDEM-X DEMs by Non-local
InSAR Filtering,” in EUSAR 2014; 10th European Conference on Synthetic
Aperture Radar; Proceedings of, June 2014, pp. 1–4.

[2] C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jager, “NL-SAR:
A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR De-
noising,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 53,
no. 4, pp. 2021–2038, April 2015.

[3] Antoni Buades and Bartomeu Coll, “A non-local algorithm for image de-
noising,” in In CVPR, 2005, pp. 60–65.

[4] J. Darbon, A. Cunha, T.F. Chan, S. Osher, and G.J. Jensen, “Fast nonlocal
filtering applied to electron cryomicroscopy,” in Biomedical Imaging: From
Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on,
May 2008, pp. 1331–1334.

[5] Victor Podlozhnyuk, “Image Convolution with CUDA,” http:

//docs.nvidia.com/cuda/samples/3_Imaging/convolutionSeparable/

doc/convolutionSeparable.pdf, July 2012.

7

http://docs.nvidia.com/cuda/samples/3_Imaging/convolutionSeparable/doc/convolutionSeparable.pdf
http://docs.nvidia.com/cuda/samples/3_Imaging/convolutionSeparable/doc/convolutionSeparable.pdf
http://docs.nvidia.com/cuda/samples/3_Imaging/convolutionSeparable/doc/convolutionSeparable.pdf

(a) Complete DEM

(b) NL-SAR (c) Boxcar

Figure 6: Test site Weihai and results for NL-SAR and a boxcar filter

8

	Introduction
	Nonlocal Filtering and NL-SAR
	GPU Architecture
	Nonlocal Filters on GPUs
	Experiments
	Conclusion

