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ABSTRACT 

Multibaseline SAR interferometry may face unmodeled 
interferometric phase such as unmodeled motion phase and 
uncompensated atmospheric phase, as well as non-Gaussian 
statistics in the context of distributed scatterer. We 
developed the robust InSAR optimization (RIO) [1] 
framework to systematically tackle these issues. 
Experiments show that RIO outperforms the current 
multibaseline InSAR methods in terms of the variance of 
the phase history parameters estimates for contaminated 
observations, while still keeping a relative efficiency of 
80% for outlier-free observations. 

Index Terms— robust estimation, M-estimator, RIO, 
covariance matrix, RME, InSAR, SAR 

1. INTRODUCTION 

Multibaseline synthetic aperture radar interferometry (InSAR) 
techniques are widely employed for millimeter-level long-term 
deformation monitoring and 3-D reconstruction of large areas. 
For example, persistent scatterer interferometry (PSI) [2], [3], 
and SqueeSAR [4], [5], which utilizes persistent scatterers (PS) 
and distributed scatterers (DS), respectively. In general, 
millimeter accuracy of the yearly linear deformation rate can 
be achieved with respect to a reference point [2], [6], [7]. 

However, these accuracies refer to the optimal estimators 
derived based on the following assumptions: 

 Correct interferometric phase history model. This is 
sometimes not fulfilled, e.g. unmodeled motion phase. 
Unmodeled interferometric phase leads to biased 
parameters estimates. 

 Gaussian-distributed data. For instance, PS is modeled as 
a deterministic signal with additive zero-mean white 
complex circular Gaussian (CCG) noise [2], while DS is 
modeled as correlated zero-mean CCG [4], [8]. Non-
Gaussian scatterers act as outliers under such assumption. 

Violation of these assumptions greatly compromises the 
performance of the estimators. RIO solves the problem by 
introducing the following two points: 

 It replaces the maximum likelihood estimator (MLE) for 
Gaussian distribution which minimizes the sum of the 
squared residuals with an M-estimator [9] which 
minimizes the sum of a customized function  x  of the 
residuals. 

 Should DS be exploited, the sample covariance matrix Ĉ  
is replaced with the robust rank M-estimator (RME) of the 

covariance: ˆ
RMEC  proposed in this paper. ˆ

RMEC  is robust 

against both outlier and samples with non-stationary 
phase. 

2. ROBUST INSAR OPTIMIZATION 

2.1. Robust Estimators for Phase History Parameters 

2.1.1. Persistence Scatterer 
The periodogram is one of the most common estimators for PS 
phase history parameters θ : 
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Where N is the number of images, ng  and n  are the complex 

pixel value and the modeled phase of the nth image, 
respectively. Equation (2.1) is actually the MLE under the 
assumption of additive white CCG noise [10]. 

In case of insufficient order of phase history model, the 
unmodeled phase renders the noise of PS no longer Gaussian. 
Therefore, a robust estimator is required in such case. RIO 
introduces the following estimator to deal with possible large 
phase error: 
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where     is a robust loss function, e.g. Huber’s loss 

function or Tukey’s biweight loss, the residual  i θ  is 

  exp ii jg   θ ,  Re  ,  Im   are the real and imaginary 

parts, and R  and I  are the corresponding standard 

deviations of the real and imaginary parts. Equation (2.2) is 
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solved iteratively, where R  and I  are updated at each 

iteration. 

2.1.2. Distributed Scatterer 
The MLE for DS phase history parameters is as follows:  

     1ˆargˆ min
HH




θ
g Φ Cθ θ Φ θ g   (2.3) 

where  Φ θ  is the diagonal matrix containing the modelled 

phase of g,   is the element-wise absolute value operator, and 

Ĉ  is the estimated covariance matrix. 

RIO introduces a robust diagonal weighting matrix W into the 
MLE: 

     arg minˆ H
θ

θ ε θ Wε θ   (2.4) 

where the residual is the whitened DS observations, i.e.: 

    
1 2ˆ H

ε θ Φ θC g .  (2.5) 

The residual is better to be whitened with a robust covariance 

matrix estimate, such as the ˆ
RMEC  which will be covered in 

Section 2.2. 

W downweights the observations with large unmodeled phase. 
Given a robust loss function  x , each element of W is can 

be derived from the corresponding element of the residual 

 ε θ as follows [1]: 

     i i iW    θ θ   (2.6) 

where  x  is the first order derivative of  x . 

However, the weights calculated based on a single DS pixel 
are not optimal. It should be calculated based on the expected 
residuals ε  of the whole DS neighbourhood. The expected 
residuals are better to be robustly estimated using equation 
(2.7), due to the possible outliers in the neighbourhood: 
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where the superscript m denotes the sample number in the 
neighbourhood, and mw  is a robust weight. The complete final 
estimator should be as follows: 

       arg miˆ n
m

mHm m
θ

θε W ε εθ θ . (2.8) 

Similar to (2.2), equation (2.8) is also solved iteratively. The 
weighting matrix is updated at each iteration. Its computation 
should start with a selected DS neighbourhood which jointly 
determines a single weighting matrix. This matrix is used for 

the parameters retrieval of each single-look DS observation 
vector in the neighbourhood. The weighting matrix is then 
updated according to all the estimates in the neighbourhood. 

2.2. Robust Covariance Estimators 

In a similar vein, the covariance estimation of non-Gaussian 
scatterers can also be robustified using an M-estimator. 

The M-estimator of a covariance matrix is basically an 
iteratively reweighted sample covariance matrix [11]: 
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where k is the iteration index, and  w x  is a weighting 

function.  w x  downweights highly deviating samples 

whose whitened version   1 2ˆ ˆ
mm k k  C gC  is large in 

magnitude, which greatly depends on the intensities of mg . 

For samples with non-stationary interferometric phase 
caused by topography, deformation, etc., RIO defines a new 
quantity: complex rank of InSAR multivariate as follows 
[1]: 
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where jg  is the direct neighbourhood of mg , and the   

denotes the element-wise product. Through the 
multiplication of the sample with the complex conjugate of 
its direct neighbour, the deterministic phase is mitigated. 
Based on (2.10), we can define the RME of the covariance 
matrix analogous to (2.9) as follows [1]: 
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where the iteration index k is dropped for simplicity. RME 
is a fourth-order descriptor of the sample statistics. It can be 

proven that the element wise square root of ˆ
RMEC  

approaches ˆ
MLEC  asymptotically under CCG for using one 

direct neighbourhood [1]. Therefore, element-wise square 

root on ˆ
RMEC  should be taken after equation (2.11). 

3. PRACTICAL DEMONSTRATION 

3.1. Robustness Against Unmodeled Phase 

An area in Las Vegas with significant non-linear motion 
was selected as the test area. Its amplitude image is shown 
in Figure 1(a). As an example, the deformation phase 
history of the pixel marked by the yellow cross w.r.t. a 



reference point nearby is shown in Figure 1(b). As we can 
see, not only the magnitude of the motion is large, but also 
the motion is very complex. If only linear motion model is 
considered, the unmodeled motion phase is equivalent to 
large phase error. Non-robust estimators, i.e. MLE, will give 
biased estimates. 

The upper subfigures of Figure 2 compare the result of RIO 
and the ordinary MLE when only the linear motion model is 
considered. The robust estimates correctly reconstruct the 
subsiding bowl, whereas the MLE estimates are heavily 
biased by the unmodeled motion of the building. The 
advantage of the robust estimator is clearer in the lower 
subfigures of Figure 2which is the bias of the estimates 
w.r.t. the reference linear deformation rate estimated using a 
multi-component nonlinear motion model. 
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(a)                                      (b) 

Figure 1. (a) the amplitude image of the test area with 
significant non-linear motion, and (b) the deformation phase 
history of the pixel marked by yellow cross in (a). The black 
dots are the wrapped deformation phases and its duplicates by 
adding and subtracting 2π. The black curve is a non-linear fit 
to the phase history, and the red and blue lines are linear 
fittings using RIO and MLE, respectively. 
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Figure 2. Upper: linear deformation rate estimates by robust 
estimator and ordinary MLE, and lower: the bias of the robust 
and non-robust estimates to the “ground truth” (linear 
deformation rate estimated considering the non-linear motion 
model). Unit: [mm/year]. 

3.2. Robustness against Non-Gaussian Scatterers 

A test area in the volcanic region Campi Flegrei was selected 
for this test. The test area consists of a single road in the middle 
which usually appears as DS in X-band SAR images. Figure 3 
shows the linear deformation rate of the DSs estimated using 

the classical sample covariance matrix ˆ
MLEC  (left column) and 

that using the proposed ˆ
RMEC  (right column). Identical 

samples were used for estimating these two covariance 
matrices. They were adaptively selected with the Kolmogorov-
Smirnov (KS) test using ten amplitude images. Due to the low 
detection rate caused by the small number of images, we 
expect a non-negligible number of outliers in the selected 
samples. The same ordinary DS MLE was employed to 
estimate the linear deformation rate in both cases. Therefore, 
any improvement was solely credited to the use of a more 
robust covariance matrix estimate. 

The improvement is clearly demonstrated. Homogeneous 
deformation rates are expected, as the size of the test area is 
roughly one hundred meter. However, many estimates appear 
in subfigure (a) as salt-and-pepper noise. We believe this is due 
to the low detection rate of the KS test, and the non-stationarity 
of the samples. In contrast, homogenous deformation rate of 
the road is shown in subfigure (b). 

For further comparison, the histograms of the linear 
deformation rates of the road were plotted in Figure 3(c) 

and (d) respectively. When using ˆ
MLEC , many local peaks 

appear in the histogram which should not correspond to the 

deformation signal. With ˆ
RMEC , results are considerably 

more homogenous, and thus more reasonable. 
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(c)                                    (d) 

Figure 3. (a) and (b) comparison of the linear deformation rate of 
the two test sites estimated using the ordinary ˆ

MLE
C  and the 

proposed ˆ
RMEC , respectively, and (c) and (d) the corresponding 

histograms of the linear deformation rates in Figure 3 (a) (b). 

3.3. Large Area Processing 

RIO has been implemented for parallel processing on large 
servers. Figure 4 is the result of the entire area of the volcanic 
region Campi Flegrei. The stack contains 34 TS-X high 
resolution spotlight images, spanning from Dec. 2009 to Mar. 
2012. The result of using only the PS is shown as the upper 
plot of Figure 4. The lower one is the result using the proposed 
RME on DS, combined with the PS result. It retrieves 15 times 
more scatterers than using the PS only. For good visualization, 
only 10% of the points from either method are plotted in 
Figure 4, and the point size is kept the same for both subplots. 
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Figure 4. Linear deformation rate of the super volcano Campi 
Flegrei using only the PS (upper), and using PS+DS with the 
proposed RME covariance matrix estimation method (lower). 

4. CONCLUSION AND OUTLOOK 

RIO is designed for the robust retrieval of the phase history 
parameters, e.g. deformation parameters, from multibaseline 
SAR image stacks. It can be easily applied to most of the 
current multibaseline InSAR techniques, such PSI, 
SqueeSAR, and TomoSAR. RIO outperforms these methods 
by 7 to 35 times [1] in terms of the estimates accuracy for 
outlier-heavy observations. But it is also able to maintain a 
relative efficiency of 80% for outlier-free observations. 
Therefore, RIO is perfectly suited for large data processing. 

We are currently developing a classification algorithm to 
detect outlier pixels so that only these pixels will be 
processed by RIO.  

5. REFERENCES 

[1] Y. Wang and X. X. Zhu, “Robust Estimators for Multipass 
SAR Interferometry,” IEEE Trans. Geosci. Remote Sens., 
vol. 54, no. 2, 2015. 

[2] A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in 
SAR interferometry,” IEEE Trans. Geosci. Remote Sens., 
vol. 39, no. 1, pp. 8–20, Jan. 2001. 

[3] N. Adam, B. Kampes, M. Eineder, J. 
Worawattanamateekul, and M. Kircher, “The development 
of a scientific permanent scatterer system,” in ISPRS 
Workshop High Resolution Mapping from Space, 
Hannover, Germany, 2003, vol. 2003, p. 6. 

[4] A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and 
A. Rucci, “A New Algorithm for Processing Interferometric 
Data-Stacks: SqueeSAR,” IEEE Trans. Geosci. Remote 
Sens., vol. 49, no. 9, pp. 3460–3470, Sep. 2011. 

[5] Y. Wang, X. Zhu, and R. Bamler, “Retrieval of Phase 
History Parameters from Distributed Scatterers in Urban 
Areas Using Very High Resolution SAR Data,” ISPRS J. 
Photogramm. Remote Sens., vol. 73, pp. 89–99, Sep. 2012. 

[6] R. Bamler, M. Eineder, N. Adam, X. Zhu, and S. Gernhardt, 
“Interferometric Potential of High Resolution Spaceborne 
SAR,” Photogramm. - Fernerkund. - Geoinformation, vol. 
2009, no. 5, pp. 407–419, Nov. 2009. 

[7] X. Zhu and R. Bamler, “Very High Resolution Spaceborne 
SAR Tomography in Urban Environment,” IEEE Trans. 
Geosci. Remote Sens., vol. 48, no. 12, pp. 4296–4308, 2010. 

[8] R. Bamler and P. Hartl, “Synthetic aperture radar 
interferometry,” Inverse Probl., vol. 14, no. 4, p. R1, 1998. 

[9] P. J. Huber, Robust Statistics. John Wiley & Sons, 1981. 
[10] D. Rife and R. R. Boorstyn, “Single tone parameter 

estimation from discrete-time observations,” Inf. Theory 
IEEE Trans. On, vol. 20, no. 5, pp. 591–598, 1974. 

[11] E. Ollila and V. Koivunen, “Influence functions for array 
covariance matrix estimators,” in Statistical Signal 
Processing, 2003 IEEE Workshop on, 2003, pp. 462–465. 


