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The risk of type 2 diabetes (T2D) is increased by abnor-
malities in sleep quantity and quality, circadian alignment,
and melatonin regulation. A common genetic variant in a
receptor for the circadian-regulated hormone melatonin
(MTNR1B) is associated with increased fasting blood glu-
cose and risk of T2D, but whether sleep or circadian dis-
ruption mediates this risk is unknown. We aimed to test if
MTNR1B diabetes risk variant rs10830963 associates with
measures of sleep or circadian physiology in intensive in-
laboratory protocols (n = 58–96) or cross-sectional studies
with sleep quantity and quality and timing measures from
self-report (n = 4,307–10,332), actigraphy (n = 1,513), or
polysomnography (n = 3,021). In the in-laboratory studies,

we found a significant associationwith a substantially longer
duration of elevated melatonin levels (41 min) and delayed
circadian phase of dim-light melatonin offset (1.37 h),
partially mediated through delayed offset of melatonin
synthesis. Furthermore, increased T2D risk in MTNR1B
risk allele carriers was more pronounced in early risers
versus late risers as determined by 7 days of actigraphy.
Our results provide the surprising insight that theMTNR1B
risk allele influences dynamics of melatonin secretion,
generating a novel hypothesis that the MTNR1B risk allele
may extend the duration of endogenous melatonin pro-
duction later into the morning and that early waking may
magnify the diabetes risk conferred by the risk allele.
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Increased risk of type 2 diabetes (T2D) is associated with
abnormalities in sleep quantity (1) and quality (1,2), cir-
cadian alignment (3,4), and melatonin regulation (5,6). A
common variation at MTNR1B (7,8) was identified by
genome-wide association studies to associate with diabe-
tes traits. The mechanism whereby these variants lead to
elevated T2D risk is unknown.

MTNR1B is one of two high-affinity receptors for the
pineal hormone melatonin, which is released exclusively
at night and plays a role in glucose homeostasis (6,9). In
humans, the release of melatonin occurs concurrent with
overnight fasting during sleep. Elevated melatonin levels
during an oral glucose load during the day causes impaired
glucose tolerance (6,10). Common variants in MTNR1B as-
sociate with increased risk of T2D, fasting blood glucose
(FBG) levels (7,8), and lower glucose-stimulated insulin se-
cretion in individuals without diabetes (11). Functional stud-
ies have established that MTNR1B rs10830963 is the likely
causal variant (12). Strong independent association of rare,
loss-of-function variants in MTNR1B with increased risk of
T2D further implicates MTNR1B as the most likely causal
gene in the region (13).

Although MTNR1B plays a role in glucose homeostasis
(reviewed in refs. 14 and 15), it is currently unknown how
MTNR1B rs10830963 may alter its normal role in glucose
metabolism. In this study, we explored the hypothesis
that the association of rs10830963 with T2D may be
mediated via effects on melatonin endocrinology, sleep
timing/physiology, and/or the circadian system. Under-
standing these intermediate trait associations may lead
to further insights into mechanisms by which risk vari-
ants influence glycemic traits and point toward new ave-
nues of therapeutic intervention. We tested association of
rs10830963 with sleep, circadian, and melatonin traits in
two study populations with complementary strengths: 1)
intensive in-laboratory protocols (n = 58–96) with partici-
pants assessed for precise measures of circadian physiology,
and 2) cross-sectional studies (Candidate-gene Associa-
tion Resource [CARe]) with sleep quantity, quality, and
timing measures from questionnaires (n = 4,307–10,332),
actigraphy (n = 1,513), and overnight polysomnography
(PSG) (n = 3,021).

RESEARCH DESIGN AND METHODS

In-Laboratory Studies

Study Participants
Participants included 193 healthy individuals (a subset of
58–96 for whom measures of circadian physiology were
available) from completed research studies in the Intensive
Physiologic Monitoring Unit, Center for Clinical Investiga-
tion, Brigham and Women’s Hospital from 2001–2011, as
previously described, who donated a blood sample for genet-
ic analysis (16). To promote a stable circadian rhythm, all
participants maintained an 8-h sleep schedule of their choice
at home for 1–3 weeks prior to admission. Compliance was
verified with a sleep diary, call-ins, and wrist actigraphy.

Participants also completed a morningness-eveningness
questionnaire (MEQ) (17). The genetic sample collection
and analyses were approved by the Partners HealthCare
Human Research Committee. Separate informed consent
was obtained for enrollment in the genetic studies.

Circadian Phenotypes
Of the 193 participants studied in the laboratory, a subset
of 58–96 was assessed in intensive protocols with precise
measures of endogenous circadian physiology. Measures
of circadian rhythm timing (phase), magnitude (amplitude),
length (period), and melatonin physiology were measured in
the in-laboratory samples using hourly plasma melatonin
concentrations and core body temperature (CBT) (1-min
epochs) collected over a minimum of 24 h (Supplementary
Table 1). We used baseline data from individual studies in
which subjects had undergone either a constant routine or
posture protocol (n = 96) (18–20) or a forced desynchrony
protocol (n = 63) (21–23) (Supplementary Fig. 1A–C). Mel-
atonin phase measures collected included dim-light melato-
nin onset (DLMO) and dim-light melatonin offset (DLMOff)
calculated as the time of the melatonin profile fitted curve at
which levels crossed 25% of peak upward and downward,
respectively; melatonin synthesis offset calculated from a
linear model fitted to each melatonin profile (24); and the
midpoint of melatonin calculated as the midpoint between
DLMO and DLMOff [DLMO + (DLMOff 2 DLMO)/2].
Phase was also measured by CBT nadir, the time when the
fitted circadian curve of CBT was at its minimum (18). To
assess the difference between internal and external timing,
phase angles were calculated as the time between sleep mid-
point and DLMO, DLMOff, or CBT nadir. Circadian ampli-
tude of melatonin and CBT were calculated as 50% of the
difference between the minimum and peak of the fitted
circadian curve. Measures of melatonin stability were calcu-
lated from a linear model fitted to each melatonin profile,
generating plasma melatonin clearance rate and half-life.
The duration of melatonin secretion was measured as the
difference between DLMO and DLMOff. Sleep timing phe-
notypes included bedtime, wake time, midpoint of sleep,
and sleep duration derived from 7 days of time-stamped
call-ins during which subjects were required to maintain a
self-selected but fixed 8-h sleep schedule prior to laboratory
admission. Procedures for the determination of circadian
phase, phase angle, amplitude, and period have been pre-
viously described (17,19,21,24).

Sample Genotyping
DNA was extracted from whole blood using standard
methods (Qiagen). All samples were genotyped for
rs10830963 and 58 African American and Hispanic ances-
try informative markers to test and correct for population
stratification. Genotyping was performed using the
Sequenom platform (Broad Institute, Cambridge, MA).
Quality control steps excluded samples with ,60% call rate
and single nucleotide polymorphisms (SNPs) with,90% call
rate, departure from Hardy-Weinberg equilibrium (P , 1027),
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or minor allele frequency ,1%. In-laboratory samples ac-
quired since the original genotyping effort (n = 9) and
samples that failed quality control in the previous round
(n = 49) were whole-genome amplified and re-genotyped
for all SNPs.

Evaluation of Population Stratification
The smartpca feature in EIGENSTRAT software (25) was
used to calculate principal components after merging
with HapMap 3 CEU, YRI, ASW, and CHB populations,
and outliers 4 SD from the mean of the CEU population
in the first three principal components were removed. Con-
cordance between self-reported “non-Hispanic white” an-
cestry and included samples of European ancestry was
90.6%.

Association Testing
Genetic association analyses were performed in PLINK
(26), using an additive genetic model and adjusting for
age, sex, and five significant principal components that
capture ancestry information. The significance threshold
was set at P = 0.05. No correction was performed for
multiple phenotypes tested.

CARe Study

Study Participants
Briefly, participants in the CARe study included .40,000
multiethnic individuals from nine National Institute of
Heart, Lung, and Blood Institute (NHLBI) cohorts with
genotype and phenotype data, described by Musunuru
et al. (27). We used data from up to 10,322 individuals
of European ancestry from the Atherosclerosis Risk in
Communities (ARIC) study (28), the Coronary Artery
Risk Development in Young Adults (CARDIA) study (29),
the Cardiovascular Health Study (CHS) (30), the Framingham
Heart Study (FHS) (31), the Multi-Ethnic Study of Ath-
erosclerosis (MESA) (32), and the ancillary Sleep Heart
Health Study (SHHS) (33), selected based on the availabil-
ity of data on genotyping, glycemic traits, sleep question-
naires, and PSG (n = 3,021). We also used data from the
ancillary MESA Sleep Study conducted at visit 5 (n =
1,513), based on the availability of data on genotyping,
wrist actigraphy (34), and glycemic traits.

Sleep Phenotypes
Self-reported sleep measures were assessed via question-
naires covering sleep behavior over the month leading up
to the study in each parent cohort (32,33,35). Individual
cohort questions (Supplementary Table 2) were harmo-
nized across CARe cohorts into the following self-reported
sleep phenotypes: weekday and weekend bedtime; wake
time; midpoint of sleep; weekday, weekend, and weekly
sleep duration; average sleep latency; and the binary ques-
tions of difficulty falling asleep, wake after sleep onset,
early morning awakenings, frequent napping, and exces-
sive daytime sleepiness.

PSG sleep measures were available in the SHHS cohorts
(n = 3,021). PSG was conducted during an unattended

overnight home session as previously described (36). Par-
ticipants were fitted with sensors by a certified technician,
and data were captured overnight. Sleep stages were scored
using guidelines described by Kales and Rechtschaffen (37).
Total sleep time and total time in bed were available from
the FHS component of SHHS (n = 556), and percentage of
sleep time in each stage was available for all three SHHS
cohorts (FHS, CHS, and ARIC, n = 3,021). The percentage of
sleep time in each stage was computed by dividing time in
the sleep stage by the recorded sleep time.

The MESA Sleep Study protocol included 7-day actigraphy
(Actiwatch Spectrum, Philips Respironics, Murrysville,
PA) together with sleep diaries and questionnaires (n =
1,513). Actigraphy data during 30-s intervals were
scored as sleep or wake by Actiware-Sleep v.5.59 analy-
sis software. Subject bedtime, sleep midpoint, and wake
time from weekday, weekend, and weekly averaged data
were calculated from actigraphy using the sleep log as
upper and lower bounds. Sleep duration was defined as
the average duration of sleep between sleep onset (sleep
start time) and morning wakening (sleep end time)
while in bed after “lights off.”

T2D Phenotypes
Information on demographics, age, sex, and racial/ethnic
group was obtained by questionnaire. Height, weight, and
FBG levels were measured at visit 5. The use of diabetes
medications was determined by questionnaire and from
medication containers (32). T2D was defined as an FBG
$7.0 mmol/L (126 mg/dL) or use of insulin/oral hypo-
glycemia medications.

Sample Genotyping
The ITMAT/Broad/CARE (IBC) array v2 genotype data
included rs10830963 (27,38). SNPs were clustered into
genotypes using Illumina BeadStudio software. Quality
control filters for SNPs and samples were applied sepa-
rately within each cohort using PLINK (26). SNPs were
excluded for Hardy-Weinberg equilibrium P , 1027 and
call rates ,95% and samples for individual call rates
,90%, sex mismatch, and duplicate discordance. To control
for relatedness, estimates of pairwise identity-by-descent
were calculated, and individuals with values .0.125 were
pruned from the sample.

Evaluation of Population Stratification
Self-reported ethnicity was verified by multidimensional
scaling analysis of identity-by-state distances as imple-
mented in PLINK, including HapMap panels as reference
standards. SNPs in linkage disequilibrium (r2 .0.3) were
pruned and EIGENSTRAT was used to compute 10 principal
components on the subset of individuals passing quality
control for use as covariates in the regression analyses (25).

Association Testing
Power calculations were performed using Quanto in in-
dependent subjects using the gene-only setting (39). Linear
and logistic regression analyses were performed in PLINK
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adjusting for age, sex, BMI, and principal components of
ancestry (26). A fixed-effects, inverse-variance meta-analysis
was performed in METAL (40). For primary analysis, sig-
nificance threshold was set at P = 0.05 (as only one hy-
pothesis was tested). No correction was performed for the
multiple phenotypes tested. For interaction analyses, the
significance was set at P , 0.05, as only one hypothesis
was tested. Interaction analysis adjusting for age, sex, and
BMI was performed in PLINK (26). Interaction plots were
generated in R using the effects package.

RESULTS

Association With Later DLMOff and Longer Melatonin
Duration in the In-Laboratory Studies
Descriptive characteristics of the laboratory study pop-
ulation are shown in Table 1. We tested rs10830963 for
association with sleep and circadian traits (Table 2). In the
in-laboratory studies, we found significant associations
between MTNR1B diabetes risk variant rs10830963G
and timing of the melatonin rhythm: an allelic dose-
dependent delayed DLMOff by 1 h and 22 min (b = 1.36
h, 95% CI 0.28–2.44, N = 95, P = 0.015, r2 = 19%) and a
longer duration of elevated melatonin levels by 41 min
during constant routine protocols (defined as the differ-
ence between DLMO and DLMOff) (b = 41 min, 95% CI
4.2–78, N = 94, P = 0.032, r2 = 2.5%). This association is
driven by the delay in DLMOff, as we did not see an
association with DLMO (P = 0.236) (Table 2 and Fig. 1).

We then asked if melatonin synthesis offset accounts
for the relationship between rs10830963 and delayed
DLMOff. A suggestive association of the risk allele with
delayed melatonin synthesis offset (b = 1.05 h, 95% CI
20.17 to 22.28, N = 82, P = 0.097) was observed, and
after conditioning on melatonin synthesis offset, the ef-
fect of rs10830963 on DLMOff was halved (bconditional =
0.65 h, 95% CI 20.066 to 1.366, P = 0.079, PANOVA ,
0.001), suggesting partial mediation. Additional adjust-
ment for season of study had no effect (data not shown).

We tested if chronotype or sleep timing contributes
to the association between rs10830963 and DLMOff. We
found significant mediation by sleep timing (bedtime
82.3%, P = 0.05; midpoint 84.4%, P = 0.04; wake time
85.9%, P = 0.05; chronotype (MEQ) 47.7%, P = 0.13),
although a small portion of the effect is independent
of sleep timing. The relationship between rs10830963
and melatonin duration is not mediated by sleep duration
(P = 0.24).

Association With Glycemic Traits and Modification of
T2D Risk by Sleep Timing in the CARe Study
Descriptive characteristics of the CARe cohort are shown
in Table 1. MTNR1B variant rs10830963 was significantly
associated with T2D and FBG in the CARe study (T2D:
odds ratio [OR] 1.08, 95% CI 1.01–1.16, N = 2,516 partic-
ipants with diabetes/17,293 participants without diabetes,
P = 0.01; FBG: b = 1.52 mmol/L, 95% CI 1.30–1.74, N =
17,252 participants without diabetes, P = 1.41 3 10241).

No significant association was observed between MTNR1B
rs10830963 and self-reported, 7-day actigraphy, or PSG
measures of sleep timing, quality, or duration (Table 3).
Notably, no comparable measures of melatonin secretion
were available in the CARe cohorts, therefore our laboratory
findings could not be evaluated in this study population.

However, given that sleep timing under a controlled
sleep duration schedule largely mediated the association
with DLMOff, we tested if rs10830963 association with
T2D is modulated by sleep timing in the CARe study. If
true, this would be consistent with the hypothesis that
risk allele carriers with earlier wake times would be more
likely to have elevated melatonin levels than noncarriers
at times of T2D diagnostic testing and morning meal
consumption, and this difference between genotypes
would be less apparent in participants with later wake
times. Objectively measured sleep timing (7-day actigraphy)
significantly modified the effect of rs10830963 on T2D
risk, such that earlier sleep timing in combination with
the G allele carries an increased risk compared with later
sleep timing (N = 1,513, bedtime Pinteraction = 0.053, sleep
midpoint Pint = 0.0176, wake time Pinteraction = 0.024)
(Table 4 and Fig. 2). In analyses of participants of Euro-
pean descent stratified by median bedtime, midpoint, and
wake time, a significant association between rs10830963
genotype and T2D was seen in early sleep timing (bedtime
,23:12, N = 310, OR [95% CI] 1.48 [1.01–2.18], P = 0.044;
midpoint ,02:58, N = 310, 1.80 [1.00–3.22], P = 0.0492;
wake time ,06:41, N = 303, 1.88 [1.04–3.40], P = 0.035)
but not in late sleep timing (bedtime $23:12, N = 310, 1.29
[0.77–2.16], P = 0.337; midpoint $02:58, N = 310, 1.34
[0.79–2.29], P = 0.277; wake time $06:41, N = 320, 1.25
[0.74–2.13], P = 0.406), independent of sleep duration.
Thus, the effect of rs10830963 on risk of T2D may be
modified by sleep timing, with risk allele carriers with
earlier sleep timing at an increased risk.

DISCUSSION

We hypothesized that a common T2D risk variant in
MTNR1B would be associated with melatonin, sleep, or
circadian traits. We found the MTNR1B diabetes risk var-
iant (rs10830963G) was associated with a later melatonin
offset and a longer duration of elevated melatonin levels
in highly controlled laboratory studies. Furthermore, we
demonstrated that the increased T2D risk in rs10830963G
carriers is more pronounced in early sleep timing and almost
absent in late sleep timing, in which an extended morning
melatonin profile would be obscured by the later rise
time. Thus, taken together, our data suggest that MTNR1B
rs10830963G extends the duration of melatonin production
later into the morning, and waking up earlier in the morning
magnifies the diabetes risk with MTNR1B genotype.

The impact of MTNR1B rs10830963G on DLMOff is
significantly mediated by sleep timing, suggesting that
MTNR1B variation may influence DLMOff through changes
in sleep timing or that MTNR1B variation may influence
sleep timing through changes in the timing of the melatonin
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Table 1—Cohort characteristics

In-laboratory studies
N 198
Females, n (%)† 70 (35)
Age, years† 25.41 (9.58)
Owl/lark questionnaire, numeric score (n = 193)† 52.18 (12.15)
Bedtime, clock time (n = 151)* 23:49 (1.49)
Sleep midpoint, clock time (n = 151)* 03:59 (1.41)
Wake time, clock time (n = 151)* 08:10 (1.46)
Calculated sleep duration, h (n = 151)* 8.04 (0.13)
Phase of DLMO, clock time (n = 96) 10:31 (1.86)
Phase angle between melatonin onset and sleep midpoint, h (n = 93) 5.58 (1.09)
Midpoint of melatonin secretion, clock time (n = 95) 03:36 (1.82)
Phase of DLMOff, clock time (n = 95) 08:38 (1.98)
Phase angle between melatonin offset and sleep midpoint, h (n = 93) 4.53 (1.20)
Phase of melatonin synthesis offset, clock time (n = 82) 6:31 (1.95)
Duration of melatonin secretion, h (n = 94) 10.11 (1.08)
Plasma melatonin clearance rate, min21 (n = 80) 0.03 (0.02)
Plasma melatonin clearance half-life, min (n = 80) 34.17 (20.57)
Circadian melatonin amplitude, pg/mL (n = 95) 38.30 (23.02)
Circadian period of melatonin, h (n = 58) 24.17 (0.19)
Phase of circadian CBT nadir, clock time (n = 90) 04:59 (2.09)
Phase angle between CBT nadir and sleep midpoint, h (n = 88) 0.77 (1.37)
Circadian CBT amplitude, °F (n = 89)† 0.52 (0.15)
Circadian period of CBT, h (n = 64)† 24.15 (0.20)

CARe study
N 10,332
Females, n (%) 5,683 (55)
Age, years 64.65 (12.49)
BMI, kg/m2 27.34 (5.04)
Self-report average weekly sleep duration, h (n = 8,380) 7.24 (2.77)
Self-report average weekday sleep duration, h (n = 6,508) 7.1 (1.15)
Self-report average weekend sleep duration, h (n = 4,517) 7.48 (1.22)
Calculated average weekly sleep duration, h (n = 4,476)** 7.48 (1.05)
Calculated average weekday sleep duration, h (n = 4,505)** 7.39 (1.10)
Calculated average weekend sleep duration, h (n = 4,488)** 7.72 (1.19)
Bedtime, weekday, clock time (n = 4,542) 22:56 (1.05)
Bedtime, weekend, clock time (n = 4,528) 23:11 (1.07)
Sleep midpoint, weekday, clock time (n = 4,511) 02:32 (0.84)
Sleep midpoint, weekend, clock time (n = 4,502) 02:55 (0.84)
Wake time, weekday, clock time (n = 4,527) 06:19 (1.16)
Wake time, weekend, clock time (n = 4,530) 06:54 (1.24)
Sleep latency, min (n = 4,495) 16.61 (17.14)
Total sleep time, PSG measured, h (n = 556) 6.39 (0.97)
Total time in bed, PSG measured, h (n = 556) 7.50 (0.84)
REM sleep percent, PSG measured (n = 3,026) 19.51 (6.64)
Stage 1 sleep percent, PSG measured (n = 3,026) 5.26 (3.87)
Stage 2 sleep percent, PSG measured (n = 3,026) 57.02 (13.13)
Stage 3/4 sleep percent, PSG measured (n = 3,026) 18.22 (12.24)
Self-reported cases, n (%)
Frequent daytime sleepiness 2,778 (26.97)
Frequent difficulty falling asleep 3,455 (33.49)
Frequent wake after sleep onset 5,760 (55.79)
Frequent early awakening 3,747 (36.56)
Frequent naps 2,415 (42.41)

MESA
N 1,513
Females, n (%) 853 (56)
Age, years 69.18 (9.21)
BMI, kg/m2 28.73 (5.63)
Objectively measured bedtime, clock time 23:31 (1.40)
Objectively measured sleep midpoint, clock time 03:07 (1.19)
Objectively measured wake time, clock time 06:42 (1.38)

Data are shown as mean (SD) or n (%). *Measures were collected via call-ins during a 1-week schedule of 8 h of sleep prior to in-
laboratory studies. All in-laboratory measures, except for those indicated with †, were from subjects on a study protocol with restricted
8-h time in bed. **Sleep duration was calculated from self-reported bedtime and wake time. REM, rapid eye movement.
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profile. No significant associations with other sleep and cir-
cadian traits were observed, consistent with previous studies
of narrower scope showing no MTNR1B risk allele effect on
self-reported sleep disturbances (41,42). Although our
observations must be regarded as preliminary due to
the limited sample size with detailed circadian measures
and melatonin profile, they collectively add new insights
linking MTNR1B to T2D. Melatonin receptor 1B (known
as Mel1B or MT2) is one of two trans-membrane receptors
for melatonin, a hormone that acts as a signal for the bi-
ological night. MTNR1B rs10830963G allele carriers have
been reported to show increased Mel1B receptor expression
in the pancreatic b-cell (11). Melatonin signaling during
the night, when diurnal humans are fasting, inhibits basal
and glucose-stimulated insulin secretion (5,43,44). Delayed
DLMOff and a longer duration of melatonin in risk allele
carriers may result in an increased risk for food intake to
coincide with elevated melatonin levels in the morning, lead-
ing to decreased glucose tolerance and possibly elevated di-
abetes risk. Consistently, risk allele carriers with earlier sleep
timing have an increased T2D risk, possibly due to concom-
itant food intake and elevated melatonin levels in the morn-
ing. In addition to the adverse effects of an increase in
melatonin levels into daytime, a reduction in nighttime mel-
atonin signaling also appears to be deleterious. Reduced
nighttime melatonin signaling, either by MTNR1B receptor
rare loss-of-function variants (13) or reduced nighttime mel-
atonin levels (5), is associated with an increased risk of T2D.

Future studies are warranted to test causality and to assess
how the impact of rs10830963G on melatonin offset and
duration alters the proper timing and magnitude of basal
and postprandial insulin secretion and glucose control.

Table 2—MTNR1B rs10830963 association with sleep, circadian, and melatonin traits in the in-laboratory studies

N b SE P

Owl/lark questionnaire, numeric score 193 20.345 2.389 0.885

Bedtime, clock time 151 30.36 19.38 0.119

Sleep midpoint, clock time 151 31.8 19.38 0.103

Wake time, clock time 151 33.12 19.5 0.091

Calculated sleep duration, h 151 0.046 0.033 0.165

Phase of DLMO, clock time 96 0.648 0.542 0.236

Phase angle between melatonin onset and sleep midpoint, h 93 0.165 0.338 0.627

Midpoint of melatonin secretion, clock time 95 1.014 0.514 0.052

Phase of DLMOff, clock time 95 1.361 0.55 0.015

Phase angle between melatonin offset and sleep midpoint, h 93 0.45 0.382 0.242

Phase of melatonin synthesis offset, clock time 82 1.047 0.624 0.097

Duration of melatonin secretion, h 94 0.684 0.314 0.032

Plasma melatonin clearance rate, min21 80 20.006 0.007 0.382

Plasma melatonin clearance half-life, min 80 4.753 7.048 0.502

Circadian melatonin amplitude, pg/mL 95 0.058 7.258 0.994

Circadian period of melatonin, h 57 0.01 0.067 0.885

Phase of circadian CBT nadir, clock time 90 0.627 0.575 0.279

Phase angle between CBT nadir and sleep midpoint, h 88 20.242 0.413 0.559

Circadian CBT amplitude, °F 89 20.027 0.042 0.521

Circadian period of CBT, h 63 0.003 0.069 0.964

Results are from linear regression analysis in whites adjusted for age, sex, and five principal components of ancestry. Significant results are shown
in boldface type, no correction was applied for multiple phenotypes. Allele frequency of rs10830963 in the in-laboratory studies was 0.32.

Figure 1—Circadian phase of DLMOff and duration of elevated melato-
nin levels vary byMTNR1B genotype in the in-laboratory cohort. Adjusted
mean and standard error shown by rs10830963 genotype (T2D risk allele
G). P value derived from multiple linear regression tests between geno-
type and phenotype adjusted for age, sex, and principal components of
ancestry. A: Circadian phase of DLMOff (n = 95, adjusted mean [SE] in
clock time, CC 07:49 [23min], CG 09:10 [24min], andGG 10:32 [35min]).
B: Duration of melatonin production (n = 94, adjusted means [SE] in clock
time, CC 9.70 h [0.74], CG 10.38 h [1.15], and GG 11.07 h [1.21]).
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The strength of our study comes from the depth and
breadth of phenotypes available in our cohorts. The
laboratory study was limited in size due to the nature of
the intensive physiological studies required to obtain
precise phenotypes. This sample is one of the largest of
its kind and contains precisely measured endogenous
circadian measures that require multiday studies under
highly controlled laboratory conditions to assess endog-
enous circadian control of plasma melatonin and CBT.
These results need to be interpreted in light of the biases
of this study, however, as only young healthy subjects
were studied and held to self-selected sleep schedules
prior to the in-laboratory portion of the study (8-h sleep
duration) that may not reflect biological preference.
Although the sample size is limited, the phenotypes were
measured in great depth, minimizing misclassification
and maximizing specificity to biological processes of
interest. Sleep timing in MESA is measured objectively
across multiple days, minimizing phenotype measure-
ment error. The sample size, however, is limited. In all
future studies, it will also be important to measure

melatonin levels at the time of glucose assessment in the
morning by genotype.

The CARe study is a large well-powered study encom-
passing one of the largest epidemiological studies of sleep
habits (SHHS) with self-reported and objective overnight
PSG-measured sleep phenotypes. Notably, our study did
not identify significant associations with the available
measures of sleep quality or quantity in the CARe study,
consistent with previous studies (41,42). It is important
to recognize, however, that the indices of sleep quality,
duration, and timing available in these cohort studies
likely are measured with modest-to-moderate error, and
misclassification would attenuate any true associations.
Previous studies demonstrated a 50% reduction in power
associated with measurement error equivalent to one SD
of the trait (45). This may even be true for PSG-measured
phenotypes in the CARe study, where first-night effects
influence sleep measures taken during a single unsuper-
vised overnight PSG episode. This study establishes that
diabetes risk variants in MTNR1B are unlikely to play a
role in central sleep behaviors, and thus, future research

Table 3—MTNR1B rs10830963 association with sleep traits in CARe study

rs10830963G

N Effect/OR (95%CI) SE P Minimum effect detectable†

Bedtime, weekday, min 4,359 20.72 1.50 0.63 3.93

Bedtime, weekend, min 4,346 20.84 1.56 0.60 4.2

Sleep midpoint, weekday, min 4,329 20.78 1.20 0.51 3.3

Sleep midpoint, weekend, min 4,321 20.66 1.20 0.58 3.3

Wake time, weekday, min 4,344 21.08 1.62 0.51 4.5

Wake time, weekend, min 4,347 20.78 1.80 0.66 4.8

Self-report average weekly sleep duration, h 6,406 0.01 0.03 0.62 0.135

Self-report average weekday sleep duration, h 6,321 0.02 0.02 0.45 0.065

Self-report average weekend sleep duration, h 4,333 0.01 0.03 0.69 0.08

Calculated average weekly sleep duration, h 4,295 0.00 0.03 0.99 0.07

Calculated average weekday sleep duration, h 4,323 20.01 0.03 0.85 0.07

Calculated average weekend sleep duration, h 4,307 0.01 0.03 0.83 0.08

REM sleep percent, PSG measured 3,021 0.22 0.19 0.23 0.53

Stage 1 sleep percent, PSG measured 3,021 0.18 0.11 0.08 0.31

Stage 2 sleep percent, PSG measured 3,021 0.15 0.35 0.67 1.045

Stage 3/4 sleep percent, PSG measured 3,021 -0.55 0.32 0.08 0.97

Sleep latency, min 6,316 0.99 0.01 0.38 1.15

Objectively measured bedtime, min 1,513 22.20 3.54 0.54 9.7

Objectively measured sleep midpoint, min 1,513 21.92 0.75 0.53 8.1

Objectively measured wake time, min 1,513 21.64 3.50 0.64 9.6

Frequent difficulty falling asleep 9,846 1.01 (0.94–1.07) 0.88 1.052

Frequent early awakening 9,808 0.98 (0.92–1.05) 0.66 1.051

Frequent daytime sleepiness 9,977 0.98 (0.91–1.05) 0.65 1.05

Frequent naps 6,457 1.06 (0.98–1.15) 0.15 1.0875

Frequent wake after sleep onset 9,855 0.97 (0.91–1.04) 0.43 1.064

Results are from linear or logistic regression analyses adjusting for age, sex, BMI, and ancestry. Suggestive results are shown in
boldface type. Allele frequency was 0.27. †Minimum detectable effect at 80% power, a = 0.05. REM, rapid eye movement.
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should emphasize the evaluation of their role in periph-
eral tissues of relevance to T2D.

Given the clear and adverse effects of sleep disruption
and circadian disruption on glucose control and diabetes
risk, our new evidence linking sleep and the circadian-
related MTNR1B gene variant with altered melatonin phys-
iology and indicating how this might impact glucose control
and diabetes risk is an important advance. Moving forward,
the association of MTNR1B rs10830963 with melatonin
rhythm phenotypes should be followed up with further
in-depth mechanistic studies on a tissue level and pheno-
typing in individuals preselected based on genotypes of
interest. In general, circadian metabolic assessments as
well as targeted interventions (e.g., with light intervention
or pharmacological doses of melatonin) may be useful strat-
egies for probing the functional consequences of the variant
on circadian rhythms, sleep physiology, and metabolism.
Ultimately, this research could lead us toward new therapeu-
tic interventions that reduce the impact of extended ele-
vated melatonin levels into the morning perhaps via
alterations to melatonin dynamics, melatonin-mediated
insulin secretion, or timing of food intake.
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