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Abstract 19 

Stratospheric ozone recovery and increasing greenhouse gases are anticipated to have a large 20 

impact on the Southern Hemisphere extratropical circulation, shifting the jet stream and 21 

associated storm tracks. Models participating in the Coupled Model Intercomparison Project 22 

Phase 5 poorly simulate the austral jet, with a mean equatorward bias and 10° spread in their 23 

historical climatologies, and project a wide range of future trends in response to 24 

anthropogenic forcing in the Representative Concentration Pathways (RCP). Here, the 25 

question is addressed whether the unweighted multimodel mean (uMMM) austral jet 26 

projection of the RCP4.5 scenario can be improved by applying a process-oriented Multiple 27 

Diagnostic Ensemble Regression (MDER). MDER links future projections of the jet position 28 

to processes relevant to its simulation under present-day conditions. MDER is first targeted to 29 

constrain near-term (2015-2034) projections of the austral jet position, and selects the 30 

historical jet position as the most important of 20 diagnostics. The method essentially 31 

recognizes the equatorward bias in the past jet position, and provides a bias correction of 32 

about 1.5° southward to future projections. When the target horizon is extended to mid-33 

century (2040-2059), the method also recognizes that lower stratospheric temperature trends 34 

over Antarctica, a proxy for the intensity of ozone depletion, provide additional information 35 

which can be used to reduce uncertainty in the ensemble mean projection. MDER does not 36 

substantially alter the uMMM long-term position in jet position, but reduces the uncertainty in 37 

the ensemble mean projection. This result suggests that accurate observational constraints on 38 

upper-tropospheric and lower stratospheric temperature trends are needed to constrain 39 

projections of the austral jet position.  40 
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1. Introduction 41 

Uncertainty in the circulation response to anthropogenic forcing remains a pressing problem 42 

in climate projections (Shepherd 2014). The models participating in the Coupled Climate 43 

Model Intercomparison Project Phase 5 (CMIP5) simulate a wide spread in the austral jet 44 

position trends in both the historical and future scenarios, particularly in austral summer 45 

(Eyring et al. 2013; Gerber and Son 2014). Shifts in the jet and the associated storm track in 46 

this season have had significant impacts on regional temperatures and precipitation across the 47 

Southern Hemisphere (SH) in recent decades (e.g. Kang et al. 2011; Thompson et al. 2011), 48 

and have also impacted the meridional overturning of the ocean, with implications for carbon 49 

and heat uptake (e.g. Waugh et al. 2013). It is therefore important to provide reliable 50 

projections of future summer austral jet position trends. 51 

 52 

Historical trends in the austral jet stream have been largest in austral summer (Marshall 2003), 53 

as the circulation has been impacted by two anthropogenic forcings in this season: 54 

stratospheric ozone loss and greenhouse gas (GHG) increase (Arblaster and Meehl 2006). 55 

Ozone depletion led to radiative cooling of the lower stratosphere over Antarctica in the late 56 

20
th

 century and strongly impacted the SH extratropical circulation, shifting the jet stream 57 

poleward (Gillett and Thompson 2003; Son et al. 2010). The recovery of ozone is expected to 58 

have the opposite effect as ozone depletion, thus tending to shift the jet equatorward (Perlwitz 59 

et al. 2008; Son et al. 2008). Increasing GHGs appear to drive a poleward expansion of the jet 60 

streams in both hemispheres (Yin 2005), and controlled double CO2 experiments suggest that 61 

the response of the jet in the SH is strongest in austral summer (Kushner et al. 2001). 62 

 63 

The balance between ozone recovery and increasing GHGs will influence future austral jet 64 

position (Son et al. 2008; Arblaster et al. 2011). While ozone appears to have dominated the 65 
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response in the past (Polvani et al. 2011), the balance in the future depends in part on the 66 

speed of ozone recovery and the strength of future greenhouse gas emissions (Son et al. 2010; 67 

Simpkins and Karpechko 2012; Barnes and Polvani 2013; Eyring et al. 2013). Even for a 68 

given forcing scenario, however, there is still considerable spread. Amongst the CMIP5 69 

models, Gerber and Son (2014) found that in a moderate carbon future, as characterized by 70 

the Representative Concentration Pathway 4.5 (RCP4.5), differences in ozone changes 71 

contributed most significantly to the spread in future climate projections. There was also 72 

considerable spread associated with processes independent of the thermodynamic trends, 73 

however, suggesting that uncertainty in the dynamical response to temperature trends also 74 

plays a role in model spread. 75 

 76 

CMIP5 models differ substantially in their ability to simulate the basic climatology and trends 77 

of the 20
th

 century (Eyring et al. 2013). The austral circulation has long presented a particular 78 

challenge to climate models, with substantial biases in the basic position and variability of the 79 

jet stream (e.g. Kidston and Gerber 2010; Swart and Fyfe 2012). These biases have significant 80 

implications; for example, Bracegirdle et al. (2015) emphasize that a model’s ability to 81 

represent the austral circulation is one of the most important factors influencing future 82 

projections of the Antarctic climate.  83 

 84 

In this study, we diagnose relationships between models’ ability to simulate the historical 85 

climate and their ability to simulate the future, with an ultimate goal of better discriminating 86 

amongst their projections of the future. This relates to the question whether the ordinary 87 

arithmetic ensemble mean, i.e. the “one-model-one-vote” approach (Knutti et al. 2010) gives 88 

the best estimate of future austral jet position. We use the Multiple Diagnostic Ensemble 89 

Regression (MDER) methodology of Karpechko et al. (2013) to relate future projections to 90 
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process-oriented diagnostics based on the 20
th

 century in order to see if one can improve on 91 

the unweighted multimodel mean (or uMMM) projection of future climate..  92 

 93 

We first explain the MDER method and detail the process-oriented diagnostics which are used 94 

to evaluate the models’ ability to simulate the austral climate in Section 2. We include the 95 

main diagnostics that have been linked to the austral jet position in the recent literature. 96 

Section 3 then outlines the observational and reanalysis constraints on these diagnostics and 97 

lists the CMIP5 models used in this study. In Section 4, we use MDER to improve projections 98 

of the position of the jet stream in the near-term (2015-2034) and mid-term (2040-2059). We 99 

conclude our study in Section 5 with a discussion of the results.  100 

 101 

2. Method and Diagnostics 102 

2.1. Multiple Diagnostic Ensemble Regression (MDER) 103 

Karpechko et al. (2013) developed the MDER method to show how Antarctic total column 104 

ozone projections in October are related to observable process-oriented present-day 105 

diagnostics in chemistry-climate models. The method identified key biases in model transport 106 

processes, and used them to establish future ozone projections with higher precision compared 107 

to the uMMM projection. 108 

 109 

The method is based on statistical relationships between models’ simulation of the historical 110 

climatology and their future projections, which are often referred to as “emergent constraints” 111 

(e.g. Bracegirdle and Stephenson 2012). If there is a robust linear relationship between future 112 

projections of a target variable (e.g. the position of the austral jet) and a diagnostic of the past 113 

climate, one can use observations to make an improved forecast, as illustrated schematically 114 

in Figure 1. The key idea is to use the models to establish a relationship between the historical 115 
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climatology and future projections – i.e. the linear regression illustrated by the red line – and 116 

use this relationship to estimate the future projection based on historical observations. The 117 

method thus depends (1) on the existence of robust correlations between key processes and 118 

the future variable to be projected and (2) the ability to constrain the relationships with 119 

available observations. 120 

 121 

As emphasized by Bracegirdle and Stephenson (2012), one must be wary of spurious 122 

relationships between the past climatology and future projections. This danger of over-fitting 123 

grows larger when considering multiple diagnostics at once, and the main difficulty of the 124 

MDER method stems from the need to systematically reject spurious relationships and avoid 125 

using redundant information, i.e. cases where the same effective emergent constraint is 126 

captured by two different diagnostics. Cross validation is used to help filter out spurious 127 

relationships and redundancy is avoided by a step-wise regression procedure, as detailed 128 

below. 129 

 130 

More formally, the method exploits relationships between a climate response variable y and a 131 

set of m diagnostics of the present climate xj, where j = 1, 2 … m. For a set of n climate 132 

models, the multiple linear regression of the relation can be written in matrix form: 133 

𝐘 = 𝟏𝛽0 + 𝐗𝛃 +  𝛆,   (1) 134 

where 𝐘 = {𝑦1, 𝑦2, … 𝑦𝑛}𝑇 is the vector of the climate response variables in the model 135 

projection (a superscript T denotes the transpose); 𝟏 = {1,1, … 1}𝑇 is a column-vector of size 136 

n; 𝐗 =  (

x1,1 x1,2
…  x1,𝑚

x2,1 x2,2
…  x2,𝑚

…
x𝑛,1

…
x𝑛,1

…     … 
… x𝑛,𝑚

) is the matrix of diagnostics and ε is the vector of 137 

independent random variables of size n representing the uncertainty in the projections. The 138 

parameters β0 and β of the multiple regression represented in Eq. (1), where β is a column-139 
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vector of size m, are estimated by a least square fit. A key additional assumption for MDER is 140 

that the relationship defined by Eq. (1) and parameters estimated from the model ensemble 141 

simulations holds also for the true climate – and not just for the climate models. Under this 142 

assumption Eq. (1) can be used to estimate the climate response y0, given the vector of 143 

observed diagnostics X0: 144 

�̂�0 = �̂�0 + 𝐗0
𝑇�̂�,   (2) 145 

where the hatted quantities indicate that a variable is the best fit determined from the 146 

regression analysis. 147 

 148 

The selection of the diagnostics xj in MDER is done in a two-step process. First, physical 149 

processes which are expected to influence the climate response y must be identified. A set of 150 

diagnostics representing these processes are selected based on expert judgement, as discussed 151 

in Section 2.2. This step is necessarily subjective, and Eyring et al. (2005) and Bracegirdle et 152 

al. (2015) provide practical examples of diagnostic selections. Second, a stepwise regression 153 

procedure (von Storch and Zwiers 1999) is applied in order to only choose a subset of 154 

diagnostics for the multiple linear regression which contribute significantly to intermodel 155 

variation in the climate response y. In the stepwise regression diagnostics are iteratively added 156 

to and removed from the regression model depict by Eq. (1). This will continue until the 157 

regression sum of squares is not further increased by adding more diagnostics according to an 158 

F-test, with the level of significance chosen in this study being p = 0.05. A more detailed 159 

description of the stepwise regression can be found in von Storch and Zwiers (1999). 160 

 161 

An example of a model weighting strategy which uses only the first (subjective) step for 162 

diagnostic selection is giving by Waugh and Eyring (2008). However, as discussed in 163 
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Räisänen et al. (2010), Bracegirdle and Stephenson (2012) and Karpechko et al. (2013), it is 164 

not necessary that all the subjectively selected diagnostics play a discernible role in climate 165 

response, or contribute significantly to intermodel spread in the response. As a result, the 166 

statistical model in Eq. (1) may become overfitted and not necessarily provide the best 167 

estimate of the climate response.  168 

 169 

For example Karpechko et al. (2013) initially selected 19 diagnostics known to be relevant to 170 

stratospheric ozone under present day conditions; but only 1 to 4 diagnostics, depending on 171 

the forecast period, were selected by the stepwise algorithm during the second step (i.e. m was 172 

≤ 4 in their study). Similarly Räisänen et al. (2010) found that up to 4 diagnostics could be 173 

added to the regression model before overfitting problems started to emerge. Räisänen et al. 174 

(2010) applied a multiple regression model, as in Eq. (1), to diagnose the climate response in 175 

surface air temperature, but used ad-hoc diagnostics which were not necessarily directly 176 

related to physically relevant processes. 177 

 178 

In order to assess whether projections following from the MDER algorithm may be 179 

susceptible to overfitting, we perform a cross-validation strategy (Michaelsen 1987). In the 180 

field of weather forecasting, one can test a predictive model against subsequent observations, 181 

but clearly we cannot wait to verify climate model projections. Thus we perform cross-182 

validation in a “pseudo reality,” where, one model at a time is chosen to represent reality 183 

(hence the term pseudo reality) and withdrawn from the model ensemble. As a measure of 184 

prediction error, a squared difference between the projected future jet position and the jet 185 

change in this pseudo reality is calculated for both MDER and uMMM approaches. The 186 

process is repeated n times, once using each model as the pseudo reality, and the resulting 187 

root mean squared errors (RMSE) quantifies the accuracy of the prediction.  188 
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 189 

Diagnostics which have been known to impact on the austral jet stream are discussed in the 190 

following subsection and listed in Table 1. The MDER method and the calculation of the key 191 

process-oriented diagnostics for austral jet position were implemented in the Earth System 192 

Model Evaluation Tool (ESMValTool, Eyring et al. (2015)), and individual results of the 193 

diagnostics calculated from models and observations or reanalyses are shown in the 194 

supporting information. The austral jet position is calculated as the December-January-195 

February (DJF) latitude of maximum zonal mean zonal wind at 850 hPa between 30°S and 196 

80°S, following Son et al. (2009). To diagnose the exact latitude of the maximum zonal mean 197 

zonal wind, a parabolic fit around the three points of maximum wind speed was calculated for 198 

each time step. 199 

 200 

2.2. Key process-oriented diagnostics for austral jet position 201 

Several processes have been linked to the austral jet position in the literature. For most 202 

diagnostics, we include both the climatological value (denoted by _c) and the linear trend 203 

(denoted by _t) over the observation period, which we defined to be 1979-2005. An exception 204 

is the meridional gradient of Absorbed Shortwave Radiation (ASR) diagnostic (ASR-SH), 205 

which was defined only for a shorter period (2000 – 2005) due to the lack of observations 206 

before 2000. The choice of 1979-2005 restricts us to the satellite era, where we have some 207 

confidence in the reanalyses, and ends with the historical scenario in the CMIP5. The precise 208 

definition of each diagnostic, its value in the reanalysis/observational data set, and its 209 

multimodel mean value from the CMIP5 ensemble are listed in Table 1. The values from each 210 

individual model and the observational or reanalysis datasets are presented in the supporting 211 

information (Figures S1 to S11).  212 

 213 
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In the list below we briefly justify the inclusion of each diagnostic in our analysis. Note, 214 

however, that the vast majority of the diagnostics will not ultimately be utilized by MDER to 215 

predict future jet position. This is largely due to the fact that many diagnostics are correlated 216 

with each other (e.g. biases in the climatological position of the jet stream are highly 217 

correlated with biases in the natural variability; Kidston and Gerber 2010). The abbreviated 218 

short names in the list below are used in the figures and are specified again in Table 1. 219 

 220 

 O3-SP: Stratospheric ozone at 50 hPa, averaged over the south pole, directly captures 221 

differences in the strength of the ozone hole and recovery (Eyring et al. 2013). Many 222 

models used the Cionni et al. (2011) dataset generated by SPARC, a few models 223 

interactively simulated ozone, and others used datasets generated by related Chemistry 224 

Climate Models. 225 

 O3-NGlob: The near global mean ozone at 50 hPa diagnostic provides a complementary 226 

measure of ozone loss and recovery, and impacts near-global lower stratospheric 227 

temperatures trends in particular (Eyring et al. 2013). 228 

 T-SP: South Polar stratospheric temperature at 100 hPa is another indicator of ozone 229 

change (depletion/recovery). Due to differences in models radiation schemes and 230 

dynamical feedbacks, models with the same ozone can simulate different thermal trends 231 

despite having the same underlying ozone. The radiative cooling in the lower stratosphere 232 

due to ozone depletion results in an enhanced temperature gradient in the upper 233 

troposphere/lower stratosphere (UTLS), and therefore accelerates the austral jet (Wilcox 234 

et al. 2012). Gerber and Son (2014) found variance in T-SP to be a significant source of 235 

spread in CMIP5 models in both the historical and future scenario integrations. 236 
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 T-NGlob: The near global mean temperature at 100 hPa is again a complementary 237 

measure of stratospheric trends, seeking to identify differences between the models that 238 

are not confined to the polar cap. 239 

 T-Trop: Changes in upper troposphere temperatures in the tropics at 250 hPa influence 240 

temperature gradients in the UTLS (Wilcox et al. 2012), and were also a key driver of 241 

model spread in the analysis of Gerber and Son (2014). Upper-tropospheric temperatures 242 

in the tropics are influenced by both changes in surface temperatures and changes in the 243 

atmospheric stability. 244 

 U-Jet: The historical DJF SH jet position at 850 hPa has been found to correlate with a 245 

models response (Kidston and Gerber 2010). This could reflect geometric constraints on 246 

the circulation (Barnes and Polvani 2013) and/or differences in the dynamics of the jet 247 

with latitude (Garfinkel et al. 2013). Recent trends in the jet also provide a measure of 248 

how sensitive the jets are to forcings, and may also reflect natural variability, as discussed 249 

in Section 5.  250 

 H-SH: Along with U_jet, the latitude of the SH Hadley cell boundary defined by zero Ψ at 251 

500 hPa gives us information about circulation biases and trends associated with ozone 252 

depletion over the past period (Son et al. 2010), where Ψ denotes the meridional stream 253 

function.  254 

 P-SH: A decrease in extratropical zonal mean tropopause pressure integrated south of 255 

50°S is associated with warming of the troposphere and cooling of the lower stratosphere 256 

(two signatures of global warming) and has been strongly linked to the position of the 257 

extratropical jet streams (Lorenz and DeWeaver 2007).  258 

 SAM-efold: The e-folding time scale of a models’ Southern Annular Mode (SAM) in the 259 

troposphere characterizes the strength of interactions between baroclinic eddies and the 260 

extratropical jet stream (Lorenz and Hartmann 2001; Gerber et al. 2008a). Fluctuation 261 
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dissipation theory suggests that the time scales of natural variability may be related to the 262 

response to external forcing (Gerber et al. 2008b; Ring and Plumb 2008), and there is 263 

evidence for this in comprehensive climate models (Kidston and Gerber 2010; Son et al. 264 

2010; Barnes and Polvani 2013).  265 

 ASR-SH: Ceppi et al. (2014) link changes in the jet stream to changes in the meridional 266 

gradient of SH Absorbed Shortwave Radiation (ASR). Changes in the ASR gradient can 267 

force changes in the equator-to-pole temperature gradient, directly impacting the 268 

baroclinicity of the atmosphere. 269 

 SIE-SP: Changes and biases in the climatological mean sea-ice extent in the Southern 270 

Ocean impact the local energy budget, and could influence the equator-to-pole 271 

temperature gradient (Stroeve et al. 2012; Ceppi et al. 2014; Bracegirdle et al. 2015). 272 

 273 

3. Models, observational and reanalysis constraints 274 

The MDER method was applied to 28 models of the CMIP5 ensemble, as listed in Table 2, 275 

created and run by 18 different modeling centers. Many centers provided multiple ensemble 276 

member integrations of the same model and scenario. We use all the available ensemble 277 

members, which helps reducing the impact of natural variability. In order not to bias the 278 

MDER method towards models which ran more ensemble integrations, we first average all 279 

ensemble members for each individual model together prior to the calculations. Hence MDER 280 

only sees one historical and future (RCP4.5) time series for each model. Only models that 281 

provided output for all process-oriented present-day diagnostics are included into the analysis, 282 

because the method does not allow for missing values (Karpechko et al. 2013). 283 

 284 

The future trends in the austral jet position were calculated from monthly means from the 285 

RCP4.5 scenario integrations, which are forced by changing GHGs concentrations, but also 286 
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include aerosol, ozone, and land use changes, and natural forcings (Taylor et al. 2012). The 287 

present-day diagnostics were calculated from the monthly mean CMIP5 historical 288 

simulations, in general for the period 1979 – 2005 (see details in Table 1) and results are 289 

shown in the supplementary material. Each of the present-day diagnostics is compared with 290 

monthly mean reanalysis data or observations as listed in Table 1.  291 

 292 

Direct measurements are used in the diagnostics where available, but for many diagnostics we 293 

had to rely on meteorological reanalysis. For the evaluation, monthly means for the period 294 

1979–2005 are used except for the zonal means of net balanced climatology Top-of-295 

Atmosphere (TOA) fluxes which are only available for the period 2000 – 2014. A list of the 296 

reanalysis and observations used in this study is given in Table 1. 297 

 298 

4. Application of MDER to projections of the summertime austral jet position 299 

To highlight how the most important factors constraining the jet stream evolve in time, we 300 

apply MDER to two time horizons. We first focus on the jet position in the near-term from 301 

2015-2034. A twenty-year period was selected to reduce the influence of natural variability in 302 

the jet stream. Over this short time horizon, no significant changes in anthropogenic forcings 303 

occur in the RCP4.5 scenario, so we expect the method to focus on correcting biases in the 304 

historical climatologies. We then focus the method on a mid-century projection, 2040-2059, a 305 

time when the stratospheric ozone and greenhouse gas concentrations have changed.  306 

 307 

4.1. Near-term projections of the austral jet position 308 

Figure 2a shows the absolute value of the correlation coefficients between the short-term 309 

projection of the austral jet position and our 20 process-oriented present-day diagnostics. The 310 

coefficients reveal a strong correlation between the climatological mean of the historical 311 
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austral jet position (U-Jet_c) and the near-term projection of the austral jet position. The 312 

correlation coefficient is near unity with a tight uncertainty envelope, as quantified by the 313 

95% confidence interval. Models simulating the jet too far equatorward in the historical 314 

simulations (which can be seen in Figure S6) also do so for the near-term future, and vice 315 

versa. The high correlation between the historical and the projected austral jet position will 316 

cause the MDER algorithm to recognize and correct for this well-known equatorial bias in the 317 

CMIP5 model ensemble.  318 

 319 

The climatological mean of the Hadley cell boundary (H-SH_c, Figure S7) position (r = 0.90) 320 

and trend (r = 0.58) are also highly correlated with the jet position from 2015-2034, although 321 

the relationship is of opposite sign for the trend. Biases in the position of the SH Hadley cell 322 

mirror biases in the extratropical jet stream (Son et al. 2010; Arblaster and Meehl 2006), such 323 

that the first relationship is strongly linked to the connection with the historical jet position U-324 

Jet_c discussed above. At face value, the negative correlation between the near-term jet 325 

position and the trend in the SH Hadley cell position (H-SH_t) suggests that models which 326 

saw more expansion of the tropics in the late 20
th

 century tend to have a more equatorward jet 327 

in coming decades. Given that the near-term jet is so highly correlated with the jet in the past, 328 

this could reflect the fact that models with an equatorward bias in their climatology are more 329 

sensitive to external forcing (and so exhibited larger trends in the 20
th

 century), as found by 330 

Kidston and Gerber (2010) for future jet shifts. The late 20
th

 century trend in the jet stream 331 

itself, U-Jet_t is also negatively correlated with the 2015-2034 jet position, albeit more 332 

weakly. It is unclear to us why the trend in the Hadley cell is more strongly associated with jet 333 

position than the trend in the jet itself. 334 

 335 
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The e-folding time scale of SAM (SAM-efold, Figure S10) also exhibits a statistically 336 

significant positive correlation (r = 0.59) with the near-term projection of the austral jet. As in 337 

the case of the Hadley cell, the SAM e-fording time scale is linked to the historical jet 338 

position U-Jet_c (e.g. Kidston and Gerber 2010), and so again may be a manifestation of the 339 

same relationship. Since the H-SH and SAM-efold diagnostics ultimately provide somewhat 340 

redundant information compared to the diagnostic U-Jet_c, the MDER algorithm rejects them 341 

from the regression model. 342 

 343 

The diagnostic of near global climatological mean ozone (O3-NGlob_c, Figure S1) shows the 344 

fifth highest correlation, and the link is statistically significant (r = 0.50) at the 95% 345 

confidence level. The correlation could reflect that fact that models which experienced larger 346 

ozone loss over the historical period (and so exhibit a climatology with less ozone) also 347 

experienced a stronger ozone hole, and so a poleward shift in the jet stream (Eyring et al. 348 

2013).  349 

 350 

The remaining correlations in Figure 2a are not statistically significant at the 95% level of the 351 

linear regression. In general, however, diagnostics indicating biases in the SH circulation 352 

climatology show a stronger correlation to the near-term austral jet stream position than 353 

diagnostics which characterize trends over the historical period. 354 

 355 

From all the diagnostics included, the MDER algorithm creates a parsimonious regression 356 

model to predict the near-term austral jet position, focusing exclusively on the diagnostic U-357 

Jet_c, as shown in Figure 3a. The model is simply -1.36 + 0.98 x U-Jet_c. In essence, the 358 

algorithm detects the equatorward bias of the CMIP5 models in the jet stream in the past and 359 

provides a correction to the future projection. As the result depends on a single parameter, 360 
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Figure 3a can be compared quite easily with our schematic diagram in Figure 1. MDER 361 

focuses on the nearly perfect correlation between the historical jet position (U-Jet_c) and jet 362 

location in 2015-2034. The uMMM projection puts the jet at 48.9°S (red horizontal line), but 363 

knowing that the historic jet was biased in the CMIP5 models (located on average at 48.5 364 

instead of 50.0°S), MDER suggests that it should also be 1.5° poleward of the uMMM in 365 

2015-2034, at 50.4°S, as indicated by the blue dashed lines. 366 

 367 

While the result is almost trivial, this is the first time, to our knowledge, that projections of 368 

the future multi-model jet position have been bias corrected. Taking the uMMM would place 369 

the jet at 48.9°S over the period 2015-2034, substantially equatorward of its current position 370 

in reanalysis. MDER suggests that it should be at 50.4°S, just a bit poleward of its current 371 

location. 372 

 373 

Cross validation of the results indicates that MDER can reduce uncertainty in the jet 374 

projection. This is realized by comparing the results of future austral jet position estimates 375 

with the MDER method against the uMMM in pseudo reality, following Karpechko et al. 376 

(2013). The root mean squared projection error (RMSE) of the near-term austral jet positions 377 

is nearly an order of magnitude lower using the MDER method compared to uMMM (Figure 378 

4; RMSEMDER = 0.42 deg; RMSEuMMM = 2.37 deg). This dramatic drop in uncertainty in the 379 

cross-validation can be understood more easily by viewing time series of the jet position, 380 

shown in Figure 5. In the cross validation test with an uMMM methodology, one is effectively 381 

seeking to predict one model’s jet position (i.e., the pseudo reality) using the positions 382 

projected by all the other models. The RMSEuMMM thus reflects the spread in the mean jet 383 

position from 2015-2034, a spread on the order of degrees. The errors are large because the 384 

uMMM cannot successfully predict cases when the pseudo reality is an outlier model. With 385 
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MDER, however, we explicitly take into account information on the historical jet position in 386 

the model chosen as the pseudo reality, and only use the other models to estimate the jet shift 387 

between 1979-2005 and 2015-2034. For this short time horizon, the forced signal is small, on 388 

the order 1/10
ths

 of a degree. 389 

 390 

We should emphasize that the RMSE error bounds obtained in the cross-validation exercise 391 

provide nice illustration of the actual prediction errors associated with uMMM and MDER. 392 

Formal estimates of the prediction errors from the full model ensemble further demonstrate 393 

how the prediction uncertainty is reduced by MDER in comparison to uMMM. Based on 28 394 

realizations of climate change under the RCP 4.5 scenario, the 95% confidence intervals for 395 

MDER and uMMM methods are 0.8 or 4.8 deg correspondingly. Here, the MDER error is 396 

calculated in a standard way as confidence interval for the response variable of regression 397 

(e.g. Karpechko et al. 2013, Eq. 6). For uMMM the corresponding confidence interval is 398 

given by 𝑡(1+�̃�)/2 × 𝑠 where s is the standard deviation across individual model projections, 399 

𝑡(1+�̃�)/2 is the (1 + �̃�)/2 quantile of t distribution and 𝑝=0.95. The MDER uncertainty is 400 

calculated assuming perfect knowledge of the observed diagnostics. 401 

 402 

A more realistic uncertainty bound should reflect both uncertainty in the multi-model estimate 403 

of the climate signal (in case of MDER, uncertainty in the change between 1979-2005 and 404 

2015-2034), and uncertainty associated with calculation of the diagnostics. The latter is 405 

affected by reanalysis errors and internal variability. While reanalysis errors can only be 406 

estimated qualitatively (see discussion in Section 5), the influence of the internal variability 407 

can be directly incorporated into the prediction uncertainty. In 27 years of reanalysis, the 408 

mean jet can only be bounded to the range 50.0 ± 0.5 deg with 95% confidence. When 409 

uncertainty associated with internal variability is taken into account (by the law of error 410 
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propagation) the uncertainty of MDER prediction becomes 1 deg., still considerably less than 411 

the uncertainty of uMMM method.  412 

 413 

4.2. Mid-term projections of the austral jet position 414 

A key finding from our application of MDER to the near-term jet position is that the 415 

climatological biases in CMIP5 historical integrations are larger than any of the shifts 416 

predicted in the next two decades. We next apply the MDER to mid-term (2040 - 2059) jet 417 

position where the forcing signal is larger. As we will show, however, the mean trends in the 418 

jet remain small, likely due to the fact that stratospheric ozone loss and greenhouse gas 419 

increases tend to oppose each other in coming decades (e.g. Perlwitz et al. 2008, Son et al. 420 

2008). Nonetheless, MDER suggest that we can glean more information than a simple bias 421 

correction when focusing on longer–term projections. 422 

 423 

Figure 2b illustrates correlations between the process-oriented diagnostics and the mid-term 424 

austral jet projections. Even at mid-century, SH circulation biases in the historical integrations 425 

are still the most important. The top five diagnostics with the strongest correlations to mid-426 

term austral jet positions are the same as for near-term. The importance of the remaining 15 427 

process-oriented diagnostics has changed, although those correlation coefficients are 428 

generally not statistically significant. 429 

 430 

Despite the similarities in the correlation structure, MDER obtains a more complex result for 431 

the mid-term projection. The method initially constructs the regression model, -1.66 +1.02 x 432 

U-Jet_c – 0.40 x T-SP_t – 0.10 x T-SP_c, involving three diagnostics: the historical austral jet 433 

positions (U-Jet_c), stratospheric south polar cap temperature trends at 100 hPa (T-SP_t) and 434 

the 100 hPa polar cap temperature climatology, T-SP_c. While the U-Jet_c term can again be 435 
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interpreted as a bias correction of the austral position in the CMIP5 models, the T-SP terms 436 

indicate the diagnostics associated with the formation of the ozone in the historical period can 437 

be used to improve future projections of the jet position. 438 

 439 

The negative sign of the T-SP_t term reflects the fact that models which experienced larger 440 

stratospheric cooling over the historical period tend to exhibit a more equatorward shift of the 441 

jet in the future. Wilcox et al. (2012) and Gerber and Son (2014) found that models with more 442 

cooling over the polar cap tend to experience a more poleward shift in the jet, suggesting that 443 

the jet is responding to the equator-to-pole temperature gradient in the upper 444 

troposphere/lower stratosphere. Here, the relationship has changed sign because we are 445 

comparing cooling over the historical period to an equatorward shift in the future. Models 446 

which experienced a strong thermodynamic response to ozone loss in the past are likely to 447 

have an equal and opposite response to ozone recovery in the future, i.e. more warming, and 448 

so a more equatorward jet shift. T-SP_t can thus be acting as a proxy for the strength of ozone 449 

loss and recovery, a key driver of austral jet shifts. We emphasize, however, that it is the 450 

temperature response to ozone loss which appears to be crucial. The regression model picks 451 

T-SP_t over the actual historic trend in ozone, O3-SP_t, even though both statistics are nearly 452 

equally correlated with future jet position. Many models used a similar ozone data (Cionni et 453 

al. 2012), but do not exhibit a uniform thermal response due to differences in their radiation 454 

schemes.  455 

 456 

We were concerned that the negative sign of the correlation with T-SP_c could reflect a 457 

similar connection to the ozone hole, as ozone depletion already occurred over the entire 458 

historical period (1979-2005): a colder historical climatology is indicative of a larger ozone 459 

hole. It is thus unclear how the climatology would contain information independent from the 460 
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polar cap temperature trend, which raises the danger that MDER could be overfitting the 461 

diagnostics. In order to avoid inclusion of redundant information with unclear physical 462 

interpretation, we recalculated the regression model, intentionally removing the T-SP_c 463 

diagnostic, and obtained the result: -1.41 + 0.99 x U-Jet_c - 0.36 x T-SP_t. The difference 464 

between the projections made by these two models is 0.2°, much smaller than the uncertainty 465 

of either statistical model (see below). Based on further cross-validation tests (not shown), we 466 

believe the simple model is more robust and apply it in Figure 3b. It incorporates two 467 

physically justified constraints: a correction for biases in the climatological jet position and a 468 

correction based on the intensity of thermodynamic response to stratospheric ozone loss. 469 

 470 

Figure 4 shows also the cross validation tests for the mid-range jet projection. As one might 471 

expect the RMSEMDER prediction error (0.59 deg) is larger for the mid-21st century case than 472 

for the near-term analysis (where it was 0.42 deg), but still more than four times less than the 473 

uMMM prediction error (RMSEuMMM = 2.47 deg). Again, the key is that the shifts in the jet 474 

stream, even 50 years away, are small relative to the biases in the models historical 475 

climatology. As noted in the discussion of section 4.1, the RMSE errors reflect our 476 

uncertainty in light of 28 realizations of the future, and do not account for uncertainty in jet 477 

associated with a single realization, as will be the case with our one Earth. 478 

 479 

From the regression model in Figure 3b, the MDER analysis predicts an austral jet stream 480 

position for the mid-term climatological mean of 50.6°S, implying a mean shift of 0.2° 481 

southward compared to the 2015-2034 position of the austral jet (or 0.6° southward from its 482 

historical climatology). The uMMM projection, 50.0°S, suggests a small southward shift from 483 

the 2015-2034 mean as well, but only by 0.1°. Note that this is still northward of the jet 484 
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location in historical reanalysis: naïvely comparing the future projection with historical 485 

reanalysis would give one the opposite trend. 486 

 487 

In our near-term application, MDER took the shift in the uMMM projection and bias 488 

corrected for the mean jet location. With inclusion of information on stratospheric polar cap 489 

temperature trends, MDER modifies the jet trend as well. We emphasize, however, that this 490 

modification (and the total trends themselves) is very small relative to the 1.5° bias in the 491 

models historical jet position climatology. The trends are also small relative to uncertainty in 492 

the jet position associated with natural variability; given 1979-2005 reanalysis data, we can 493 

only say that the mean jet position was between 50.0 ± 0.5°S with 95% confidence. 494 

 495 

5. Summary and Discussion 496 

We have used a multiple diagnostic ensemble regression (MDER) algorithm to analyze the 497 

austral jet position in projections of the 21
st
 century under the RCP 4.5 scenario, a moderate 498 

carbon future. MDER allowed us to us to incorporate 20 process-oriented constraints from 499 

observations and reanalysis to improve upon the unweighted multimodel mean (uMMM) 500 

projection. The method can be interpreted as a re-weighting of models based on biases in their 501 

historical climatologies (Karpechko et al. 2013).  502 

 503 

We first applied the MDER method to the near-term climatological mean (2015-2034) of the 504 

austral jet position. The method removed the equatorward bias in the jet stream, suggesting 505 

that the best estimate of its future position should be 1.5° southward of that found in the 506 

uMMM projection (48.9°S). We next focused on a mid-century austral jet stream projection, a 507 

target period of 2040-2059. In addition to the same need to correct for the climatological jet 508 

position bias, MDER found that lower stratospheric polar cap temperature trends over the 509 
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historical period could be used to effectively discriminate future trends. From a physical 510 

standpoint, historical temperature trends are an indicator of the intensity of the ozone hole. It 511 

is likely that models with more intense cooling over the historical period of ozone loss will 512 

experience more intense warming as ozone recovery, and hence a more equatorward shift in 513 

the jet stream as it responds to changes in the upper troposphere/lower stratosphere 514 

temperature gradient. 515 

 516 

Expected shifts in the jet stream in coming decades are generally small, on the order of 1/10
ths

 517 

of a degree, in part due to cancellation between the impacts of stratospheric ozone recovery 518 

and increased greenhouse gas loading (e.g. Perlwitz et al. 2008). Biases in some models 519 

climatological jet position, on the other hand, are on the order of degrees, and the multimodel 520 

mean position is 1.5 degrees poleward of that found in ERA-Interim reanalysis. Thus, a naïve 521 

use of the uMMM to project the mean jet position in the near or mid-term places the future jet 522 

equatorward of its current position, even though most models project that it should shift 523 

slightly poleward over this period. While this bias correction is a fairly straightforward result, 524 

it is, to our knowledge, the first effort to account for this bias in future projections. 525 

 526 

Getting the jet in the right place has significant implications. First, it is co-located with the 527 

storm track, and so tightly linked with the boundary between the subtropical dry zone and 528 

extratropical precipitation maximum. Shifts in the jet have significant impacts on regional 529 

precipitation (e.g. Kang et al. 2011; Thompson et al. 2011) and it is critical that regional 530 

modeling efforts to downscale climate information from global models account for this bias. 531 

Second, the surface wind stress associated with the jet stream plays a key role in the 532 

overturning circulation of the ocean (Waugh et al. 2013). Biases in the austral jet position 533 
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limit our ability to accurately model the heat and carbon uptake of the deep ocean (Swart and 534 

Fyfe 2012).  535 

 536 

Given these large model biases, an alternative approach would be to first compute the jet shift 537 

from the historical period to the future using the models, and then to simply add this to the 538 

historical climatology based on reanalyses (e.g. Räisänen 2007). MDER effectively led to this 539 

result for the near-term projection. This change based approach, however, relies on the 540 

explicit assumption that biases in simulated present-day and future climates remain constant 541 

(i.e. that the jet shift only depends on the applied forcing and is independent on present jet 542 

positions). MDER does not make this assumption, and it did make a difference (albeit a small 543 

one) for the mid-term projection. 544 

 545 

Our regression model for the mid-range jet projection suggests that we can use a historical 546 

trend in polar stratospheric temperatures to better estimate the future jet position.  547 

Constraining this trend with reanalysis, however, is problematic, as changes in the 548 

observational network can lead to spurious trends. Calvo et al. (2012) suggest that Antarctic 549 

lower stratospheric cooling due to ozone depletion (T_SP_t) may be underestimated by ERA-550 

Interim by as much as a factor of 2 compared to radiosonde observations. On the other hand, 551 

the interannual variability of the temperatures is so large that the discrepancy between trend 552 

estimates based on ERA-Interim and radiosondes is within statistical uncertainty (Calvo et al. 553 

2012).  554 

 555 

To test this for our study, Figure 6 of the supporting information compares the T-SP 556 

diagnostics derived from the CMIP5 models with ERA-Interim data and the radiosonde 557 

observations that were analyzed by Young et al. (2013): HadAT2 (Hadley Centre 558 
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Atmospheric Temperatures, ver. 2, Thorne et al. (2005)); IUK (Iterative Universal Kriging, 559 

Sherwood et al. (2008)); RAOBCORE (Radiosonde Observation Correction using Reanalysis, 560 

ver. 1.5, Haimberger et al. (2008)); RICH-obs (Radiosonde Innovation Composite 561 

Homogenization (obs), ver. 1.5, Haimberger et al. (2012)). For the season (DJF) and period 562 

(1979-2005) considered in our study, the mean trend in ERA-Interim is approximately -1.4 563 

K/dec, and so slightly smaller than that in the radiosonde datasets, where the trends vary 564 

between -1.6 and -2.2 K/dec, The ERA-Interim trend, however, is still mostly within the given 565 

observational uncertainty. We also found that the ERA-Interim climatology (lower panel in 566 

Figure 6) is very similar to the radiosonde climatology.  567 

 568 

The focus of MDER on different time periods provides additional insight into which physical 569 

processes are important for projections at the mid-term horizon. In the near term, diagnostics 570 

focused on biases in the climatology are most important. At midcentury, uncertainty 571 

associated with stratospheric ozone trends also becomes important. Towards the end of the 572 

century, when the ozone hole is mostly recovered, uncertainty in tropical warming trends 573 

begin to appear in the MDER results (not shown). The tropical warming trends over the 574 

historic period give an indication of how sensitive a model is to greenhouse gas warming: 575 

models that warm more over the historic period tend to warm more in the future, and so 576 

project greater circulation trends. We did not present these results here, however, due to the 577 

lack of reliable direct measurements of upper troposphere temperature trends. Our study thus 578 

emphasizes the need for reliable long term climate records, which may prove critical for 579 

constraining future model projections.  580 

 581 
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Table 1: Description of the diagnostics, reanalysis or observational data used to constrain the 781 

models , their mean value and uncertainty for the diagnostic, the corresponding value in the 782 

CMIP5 ensemble, and a reference. The substring “t” denotes the trend of this diagnostic and the 783 

substring “c” the climatological mean calculated for the period 1979 – 2005, except for the ASR-784 

SH diagnostic, which was calculated for the period 2000 - 2005.  785 

Short 
Name 

Diagnostic Reanalysis 
/ 

Observatio
ns 

Reanalysis 
/ 

Observatio
nal 

Value 

CMIP5 

Mean ± 
Stddev 

References 

Impact of Antarctic Ozone Depletion on the position of the jet stream 

T-SP_t Trends and climatological 
means in ONDJ polar 
stratospheric temperatures at 
100 hPa over Antarctica (60-
90°S) 

ERA-
Interim 

(Dee et al. 
2011) 

-1.17 ± 0.63 
K/dec 

-1.40 ± 0.72 
K/dec 

Figure 10d of 
Eyring et al. 
(2013) 

Figure 10 of 
Gerber and 
Son (2014)  T-SP_c As above As above 219.47 ± 

0.51 K 
218.17 ± 

2.75 K 

O3-SP_t Trends and climatological 
means in SOND ozone at 50 hPa 
over Antarctica (60-90°S) 

BDBP 
(Hassler 

et al. 
2009) 

-0.42 ± 0.05 
ppmv/dec 

-0.32 ± 0.10 
ppmv/dec 

Figure 10c of 
Eyring et al. 
(2013) 

O3-SP_c As above As above 2.02 ± 0.077 
ppmv 

2.49 ± 0.23 
ppmv  

Impact of GHG warming and climate sensitivity on the position of the jet stream 

T-NGlob_t Trends and climatological 
means  

in annual mean near-global 
(82.5°S  

to 82.5°N) temperature at 100 
hPa 

ERA-
Interim 

(Dee et al. 
2011) 

-0.14 ± 
0.062 
K/dec 

-0.09 ± 0.09 
K/dec 

Figure 10b of 
Eyring et al. 
(2013) 

T-NGlob_c As above As above 204.47 ± 
0.05 K 

205.88 ± 
1.43 K 

O3-
NGlob_t 

Trends and climatological 
means in annual-mean near-
global (NG, -82.5°S to 82.5°N) 
ozone at 50 hPa 

BDBP 

(Hassler et 
al. 2009) 

-0.13 ± 
0.017 

ppmv/dec 

-0.05 ± 0.02 
ppmv/dec 

Figure 10a of 
Eyring et al. 
(2013) 
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O3-
NGlob_c 

As above As above 2.08 ± 0.02 
ppmv 

2.20 ± 0.13 
ppmv 

T-Trop_t Trends and climatological 
means 

in DJF upper tropospheric 
tropical  

(30°S-30°N) temperatures at 
250 hPa  

ERA-
Interim 

(Dee et al. 
2011) 

0.29 ± 0.09 
K/dec 

0.38 ± 0.13 
K/dec 

Figure 10f of 
Eyring et al. 
(2013); Figure 
10 of Gerber 
and Son 
(2014) 

T-Trop_c As above As above 230.67 ± 
0.08 K 

229.23 ± 
1.68 K  

U-Jet_t Trends and climatological 
means in DJF SH jet position at 
850 hPa 

ERA-
Interim 

(Dee et al. 
2011) 

-0.79 ± 0.32 
lat/dec 

-0.45 ± 0.48 
lat/dec 

Figure 10e of 
Eyring et al. 
(2013) 

U-Jet_c As above As above -50.02 ± 
0.27 lat 

-48.49 ± 2.32 
lat 

H-SH_t Trends and climatological 
means of the location of the 
SH Hadley cell boundary 

defined by zero Ψ at 500 hPa 

ERA-
Interim 

(Dee et al. 
2011) 

-0.65 ± 0.18 
lat/dec 

-0.26 ± 0.22 
lat/dec 

Figure 5e of 
Son et al. 
(2010) 

H-SH_c As above As above -36.27 ± 
0.17 lat 

-35.59 ± 1.59 
lat 

P-SH_t Extratropical zonal mean 
tropopause 

pressure integrated south of 
50°S 

ERA-
Interim 

(Dee et al. 
2011) 

-0.16 ± 
0.07 

hPa/de
c 

-0.32 ±0.17 
hPa/dec 

Figure 5c of 
Son et al. 
(2010)  

P-SH_c As above As above 280.11 ± 
0.62 hPa 

252.18 
±13.77 hPa 

SAM_efold
_c 

e-folding time scale of 
southern  

annular mode in the 
troposphere 

ERA-
Interim 

(Dee et al. 
2011) 

12 ± 0.84 
days 

24.19 ± 10.21 
days 

Figure 1c of 
Kidston and 
Gerber 
(2010)  

ASR-SH_c Meridional gradient in 
absorbed solar radiation (ASR) 
throughout the atmosphere 

CERES-
EBAF 

(Doelling et 
al. 2013) 

136.38 ± 
16.83 index 

130.78 ± 6.57 
index 

(Ceppi et al. 
2014) 

Impact of Antarctic Sea-Ice on SH winds and the position of the jet stream 

SIE-SP_t Trends of annual mean 
Antarctic sea-ice extent 

NSIDC 
(Cavalieri 

et al. 
1996) 

0.068 ± 0.109 
106km2/dec 

-0.04 ± 0.05 
106km2/dec 

Figure 3b of 
Stroeve et 
al. (2012) 

SIE-SP_c As above As above 12.17 ± 0.06 
106km2 

11.15 ± 4.38 
106km2 
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Table 2: Overview of CMIP5 models that are used in this study together with the number of 786 

ensembles and which concentration scenarios were simulated by each model. 787 

Nr. Models Modeling Center RCP
4.5 

Main Reference 

01 ACCESS1-0 Centre for Australian Weather and 
Climate Research, Australia 

1 (Dix et al. 2013) 

02 ACCESS1-3 1 

03 bcc-csm1-1 Beijing Climate Center, China 
Meteorological Administration, China 

1 (Wu 2012) 

04 bcc-csm1-1-m 1 

05 BNU-ESM College of Global Change and Earth 
System Science, Beijing Normal 
University, China 

1  

06 CanESM2 Canadian Centre for Climate 
Modelling and Analysis, Canada 

5 (Arora et al. 2011) 

07 CCSM4 National Centre for Atmospheric 
Research, USA 

5 (Meehl et al. 2012) 

08 CESM1-BGC Community Earth System Model 
Contributors 

1 (Gent et al. 2011) 

09 CESM1-CAM5 3 

10 CMCC-CMS Centro Euro-Metiterraneo per I 
Cambiamenti Climatici, Italy 

1 (Vichi et al. 2011) 

11 CNRM-CM5 Centre National de Recherches 
Meteorologiques, France 

1 (Voldoire et al. 2013) 

12 CSIRO-Mk3-6-0 Commonwealth Scientific and 
Industrial Research Organization in 
collaboration with Queensland 
Climate Change Centre of Excellence, 
Australia 

10 (Rotstayn et al. 2012) 

13 FGOALS-g2 LASG, Institute of Atmospheric 
Physics, Chinese Academy of Sciences 
and CESS, 

1 (Li et al. 2013) 

14 GFDL-CM3 NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

1 (Donner et al. 2011) 

15 GFDL-ESM2G 1 (Dunne et al. 2013) 

16 GFDL-ESM2M 1 

17 HadGEM2-AO National Institute of Meteorological 
Research, Korea Meteorological 
Administration, Korea 

1 (Martin et al. 2011) 

18 Inmcm4 Russian Institute for Numerical 
Mathematics, Russia 

1 (Volodin et al. 2010) 

19 IPSL-CM5A-LR Institut Pierre Simon Laplace, France 4 (Dufresne et al. 2013) 

20 IPSL-CM5A-MR 1 

21 IPSL-CM5B-LR 1 
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22 MIROC5 Japan Agency for Marine-Earth 
Science and Technology, Atmosphere 
and Ocean Research Institute (The 
University of Tokyo), and National 
Institute for Environmental Studies, 
Japan 

3 (Watanabe et al. 
2011) 

23 MIROC-ESM 1  

24 MIROC-ESM-CHEM 1 
 

25 MPI-ESM-LR Max Planck Institute for Meteorology, 
Germany 

3 (Giorgetta et al. 
2013) 26 MPI-ESM-MR 3 

27 MRI-CGCM3 Meteorological Research Institute 
japan 

1 (YUKIMOTO et al. 
2012) 

28 NorESM1-M Norwegian Climate Centre, Norway 1 (Iversen et al. 2012) 
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FIGURES CAPTIONS 789 

Figure 1: A schematic diagram illustrating the linear regression model for constraining future 790 

projections of the jet position. Each blue dot represents (hypothetical) output from different 791 

climate models, comparing a model’s performance on a diagnostic based on the historical 792 

scenario integration (x-axis) with its projection of the jet position in the future (y-axis). The 793 

unweighted Multi-Model Mean (uMMM) projection is the average of all blue dots in y, and 794 

marked by the horizontal blue arrow. The linear relationship between the past diagnostic and 795 

future projection illustrates an emergent constraint, which is quantified by linear regression 796 

(red line). The linear relationship can be used to estimate the future projection based on the 797 

observations of the past diagnostic, as marked by the black arrows. Uncertainty in the new 798 

projection (gray shading) arises from two sources: uncertainty in the observational constraint 799 

(green shading) and uncertainty in the linear regression (red shading). 800 

Figure 2: Absolute values of the correlation coefficient between future austral jet position and 801 

present-day diagnostics as listed in Table 1 across the CMIP5 model ensemble (see Table 2), 802 

for (a) the near-term austral jet position climatological mean (2015-35) and (b) the mid-term 803 

austral jet position climatological mean (2040-59). Error bars show the 95% confidence 804 

intervals for the correlation coefficients. Colored markers indicate positive (red) and negative 805 

(blue) correlations. 806 

Figure 3: Scatter plot showing the correlation between the future austral jet position and (a) 807 

the quantity (-1.36 + 0.98 x U-Jet_c) for the near term climatological mean (2015-34) and (b) 808 

the quantity (-1.41 +0.99 x U-Jet_c – 0.36 x T-SP_t) for the mid-term climatological mean 809 

(2040-59). Numbers indicate estimates of simulated climatological mean values of each 810 

CMIP5 model and the error bars show one standard deviation of the means, calculated from 811 

seasonal means. The solid blue line shows the least squares linear fit to the CMIP5 model 812 
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ensemble and the gray shading marks the 95% confidence interval for the least squares linear 813 

regression. The orange shading indicates one standard deviation of the observed 814 

climatological mean values calculated using historical values. The red dotted line shows the 815 

unweighted ensemble mean (uMMM) and the blue dashed line the MDER prediction. 816 

Figure 4: Root mean squared error (RMSE) differences between the ensemble-mean future 817 

climatological mean (2015-34 and 2040 - 2059) austral jet position and the future 818 

climatological mean austral jet position in pseudo reality for each pseudo reality considered 819 

(grey circles) under the RCP4.5. The ensemble mean is calculated for each scenario from the 820 

unweighted model mean (uMMM, red boxes) and the MDER method (blue boxes). The cross 821 

indicates the RMSE for each case and the boxes show the 25th-75th percentiles across the 822 

error ensemble. The bars inside the box indicate the median of the ensemble. 823 

Figure 5: Time series of the austral jet position for RCP4.5 scenario between 1980 and 2100. 824 

Grey lines show the individual models (iteratively smoothed with a 1-2-1 filter, repeated 30 825 

times, to reduce the noise) and the red dotted line the unweighted model mean across all 826 

CMIP5 models in Table 2. Diamonds show the predicted mean estimate resulting from the 827 

MDER analysis, for the near-term (2015 - 34) and mid-term (2040 - 59) climatological means 828 

austral jet position. Error bars indicate the 95% confidence interval of the regression analysis. 829 

The orange line shows the reanalysis data from ERA-Interim. 830 

Figure 1: Trends in October-November-December-January (ONDJ) temperature anomalies 831 

(ta) at 100 hPa over Antarctica for radiosondes data (HadAT2; RAOBCORE; RICH-obs), the 832 

ERA-Interim reanalysis and the individual models of the CMIP5 ensemble. Vertical lines 833 

indicate the sample standard deviation of the mean value. 834 
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FIGURES 835 

  836 

Figure 2: A schematic diagram illustrating the linear regression model for constraining future 837 

projections of the jet position. Each blue dot represents (hypothetical) output from different 838 

climate models, comparing a model’s performance on a diagnostic based on the historical 839 

scenario integration (x-axis) with its projection of the jet position in the future (y-axis). The 840 

unweighted Multi-Model Mean (uMMM) projection is the average of all blue dots in y, and 841 

marked by the horizontal blue arrow. The linear relationship between the past diagnostic and 842 

future projection illustrates an emergent constraint, which is quantified by linear regression 843 

(red line). The linear relationship can be used to estimate the future projection based on the 844 

observations of the past diagnostic, as marked by the black arrows. Uncertainty in the new 845 

projection (gray shading) arises from two sources: uncertainty in the observational constraint 846 

(green shading) and uncertainty in the linear regression (red shading). 847 
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 848 

Figure 3: Absolute values of the correlation coefficient between future austral jet position and 849 

present-day diagnostics as listed in Table 1 across the CMIP5 model ensemble (see Table 2), 850 

for (a) the near-term austral jet position climatological mean (2015-35) and (b) the mid-term 851 

austral jet position climatological mean (2040-59). Error bars show the 95% confidence 852 

intervals for the correlation coefficients. Colored markers indicate positive (red) and negative 853 

(blue) correlations. 854 

855 
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 856 

Figure 4: Scatter plot showing the correlation between the future austral jet position and (a) 857 

the quantity (-1.36 + 0.98 x U-Jet_c) for the near term climatological mean (2015-34) and (b) 858 

the quantity (-1.41 +0.99 x U-Jet_c – 0.36 x T-SP_t) for the mid-term climatological mean 859 

(2040-59). Numbers indicate estimates of simulated climatological mean values of each 860 

CMIP5 model and the error bars show one standard deviation of the means, calculated from 861 

seasonal means. The solid blue line shows the least squares linear fit to the CMIP5 model 862 

ensemble and the gray shading marks the 95% confidence interval for the least squares linear 863 

regression. The orange shading indicates one standard deviation of the observed 864 

climatological mean values calculated using historical values. The red dotted line shows the 865 

unweighted ensemble mean (uMMM) and the blue dashed line the MDER prediction. 866 

  867 



 

40 

 

 868 

Figure 5: Root mean squared error (RMSE) differences between the ensemble-mean future 869 

climatological mean (2015-34 and 2040 - 2059) austral jet position and the future 870 

climatological mean austral jet position in pseudo reality for each pseudo reality considered 871 

(grey circles) under the RCP4.5. The ensemble mean is calculated for each scenario from the 872 

unweighted model mean (uMMM, red boxes) and the MDER method (blue boxes). The cross 873 

indicates the RMSE for each case and the boxes show the 25th-75th percentiles across the 874 

error ensemble. The bars inside the box indicate the median of the ensemble. 875 
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 877 

Figure 6: Time series of the austral jet position for the RCP4.5 scenario between 1980 and 878 

2100. Grey lines show the individual models (iteratively smoothed with a 1-2-1 filter, 879 

repeated 30 times, to reduce the noise) and the red dotted line the unweighted model mean 880 

across all CMIP5 models in Table 2. Diamonds show the predicted mean estimate resulting 881 

from the MDER analysis, for the near-term (2015 - 34) and mid-term (2040 - 59) 882 

climatological means austral jet position. Error bars indicate the 95% confidence interval of 883 

the regression analysis. The orange line shows the reanalysis data from ERA-Interim. 884 
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 885 

Figure 7: Trends in October-November-December-January (ONDJ) temperature anomalies 886 

(ta) at 100 hPa over Antarctica for radiosondes data (HadAT2; RAOBCORE; RICH-obs), the 887 

ERA-Interim reanalysis and the individual models of the CMIP5 ensemble. Vertical lines 888 

indicate the sample standard deviation of the mean value. 889 




