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Abstract—There are several standardized protocols based on 
SpaceWire which provide data exchange between several nodes. 
SpaceWire is also suitable for interprocess communication (IPC), 
by the help of higher level protocols. However, currently there is 
no standardized protocol which is targeting IPC on SpaceWire 
networks. This paper proposes a protocol, which uses the 
capabilities of SpaceWire to build up networks for distributed 
computing on a spacecraft. The core of this protocol is the IPC 
mechanism for communication between the nodes and methods 
to support a reconfiguration of the network. A key feature of this 
protocol is an interface for a reconfiguration mechanism, which 
can be implemented on application level. This enables the 
utilization of unreliable commercial off the shelf (COTS) nodes, 
allowing system recovery from erroneous state. Additionally, the 
reconfiguration can be used to adapt the distributed computer to 
different mission phases. The protocol has the potential to build 
the foundation of a distributed on-board computer consisting of 
COTS components. Such distributed computer could be capable 
of fulfilling high performance demands as well as high reliability 
needs. Though, the protocol itself is not restricted to be used 
solely in fully-featured reconfigurable distributed systems. The 
IPC methods can be applied stand-alone as well, to establish a 
lightweight communication between nodes on a SpaceWire 
network by excluding the reconfiguration parts of the protocol. 

Index Terms— SpaceWire, Network, Protocol, Reconfigurable, 
Interprocess Communication, COTS, High Reliability. 

I. INTRODUCTION 
Distributed systems with COTS components use multiple 

computing nodes to share the workload and offer significantly 
higher computing performance than currently used space-
qualified on-board computers. It is necessary to offer complex 

IPC services and satisfy strict requirements for satellite 
missions, such as real time and reliable transmission as well as 
high transmission speed. Reliability of COTS can be realized 
via redundancy by the execution of equivalent tasks on 
different nodes and by the reconfiguration of nodes and tasks, 
i.e., migration of tasks to other available nodes after some
nodes fail. The distributed system should support upgrade, 
maintenance and failure detection, isolation as well as 
recovery.  

SpaceWire is suitable for IPC with further protocols. 
However, currently there is no standardized protocol that is 
explicitly targeting IPC on SpaceWire networks and to be 
utilized in reconfigurable distributed on-board computers. 
Therefore, a new protocol, based on SpaceWire, is necessary to 
support the reconfigurable distributed on-board computers. 

We will introduce a new protocol called SpaceWire-IPC, 
which is beneficial for reliable and fault tolerant distributed on-
board computers 

The paper is organized as follows. Section II presents the 
related work, which was taken into account during 
development of our proposed SpaceWire-IPC protocol. Section 
III describes the requirements for the protocol, derived from 
our project. Structure and properties of the new protocol 
SpaceWire-IPC are introduced in section IV. Finally, section V 
provides the comparison between SpaceWire-IPC and already 
existing protocols, followed by a conclusion in section VI. 

II. RELATED WORK

This section provides an overview of existing SpaceWire 
compatible protocol specifications. With the exception of 
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SpaceWire-R, all protocols are referenced and officially 
adopted by an according ECSS standard [1]. Additionally, the 
trends of IPC and reconfiguration in space systems are 
presented. 

A. Overview of Existing SpaceWire Protocols 
The subsequent paragraphs list SpaceWire protocols, which 

were considered for the development of the distributed on-
board system. 

1) Remote Memory Access Protocol (RMAP) 
The Remote Memory Access Protocol (RMAP) protocol, 

defined by standard [2], is commonly used in space 
applications for reading from and writing to memory in remote 
SpaceWire nodes. The protocol provides the ability to address 
destinations by the use of path or logical addressing over the 
Target SpW Address fields as defined in [3]. However, in case 
only logical addressing is required it is also possible to skip the 
Target SpW Address. The protocol can be directly integrated 
into a standard SpaceWire protocol by using the Protocol 
Identifier. By use of an Instruction byte, the following 
modes/message types are possible: 

• Read command/ write command 
• Verify / no verify of data before write 
• Acknowledge / no acknowledge of write command 
• Read-Modify-Write 
If data shall be read or an acknowledgment is required, a 

set of Reply Address fields are available, which are usable for 
path and/or logical addressing. The source of the received 
command is stored inside the Initiator Logical Address. To 
prevent a lock-step limitation during communication two 
Transaction Identifier bytes are available, which allow the user 
to apply out of order transfers. To define the target location for 
read or write commands, a set of four Address fields, plus an 
additional Extended Address field is used. 

Written and read data is secured by Cyclic Redundancy 
Checks (CRCs) for Header and Payload data independently. 

2) CCSDS Packet Transfer Protocol (CCSDS PTP) 
The CCSDS protocol is intended to encapsulate a user 

defined protocol that needs to be transferred through a 
SpaceWire network [4]. Similar to the RMAP, an arbitrary 
amount of Target SpW Address fields can be used for routing. 
Alternatively, the Target Logical Address is used to define the 
destination. The Protocol Identifier distinguishes between 
different SpaceWire packet types. The interpretation of data of 
the CCSDS Packet fields is user specific and defined inside the 
User Application field. 

3) GOES-R Reliable Data Delivery Protocol (GRDDP) 
The main purpose of GRDDP is to transfer data of sensors, 

telemetry and commands among peripheral instruments and the 
on-board computer [5]. The Destination SLA serves as a logical 
address, related to the targeted destination. To provide 
information about the source of the packet Source SLA is used. 
Four different packet types can be used by defining the Packet 
Type field: 

• Application Data 
• Acknowledge 
• Reset Command 

• Urgent Message Data 
To detect packet loss or to order out-of-order packets, a 

Sequence Number is provided. The whole packet, except End-
Of-Packet (EOP), is covered and checked by a CRC. 

4) Serial Transfer Universal Protocol (STUP) 
The STUP protocol, defined in [6], serves as a light 

weighted protocol with the intention to implement a more 
complex protocol, inside the data field. To define the source of 
the packet the Source Logical Address is used. Different kinds 
of data structures can be defined by the Data fields. The 
standard defines an example where the first data byte defines a 
kind of message type, which is used to interpret the left data 
bytes. Only write, read and read reply commands are offered in 
this example. 

5) SpaceWire-R 
SpaceWire-R is used for reliable data transmission within 

SpaceWire networks [7]. It is based on the GRDDP and the 
Joint Architecture Standard Reliable Data Delivery Protocol 
(JAS RDDP). SpaceWire-R provides features like 
multiplexing, message segmentation, reliable transfer, network 
traffic flow control (optional) and heartbeat signaling 
(optional) [7]. 

B. Trends in Space Systems 
Several space projects use distributed on-board computers 

to meet the increasing demands of on-board processing ability. 
The On-Board Computer - System Architecture (OBC-SA) 
consists of two on-board computers, one of which is COTS 
from Freescale’s PowerPC multicore CPU [8]. The High-
Performance Reconfigurable Computing Space Processor 
(CSP)’s hardware structure is based on both COTS and 
radiation-hardened technologies. ISS SpaceCube Experiment 
Mini (ISEM)’s hardware has two CSP boards which are 
interconnected by SpaceWire and UART [9]. CSP aims to 
offer space image processing, distributed parallel computation 
and fault tolerance [9]. The Fault-Tolerant Distributed On-
Board Computer (FTD-OBC) gains higher reliability and 
higher processing performance by multiple processing nodes 
connected by CAN buses of 1 Mbps [10]. 

III. PROTOCOL REQUIREMENTS 
Inspired by the rise of distributed computing techniques 

and advantages of SpaceWire, the project Scalable On-board 
computing for Space Avionics (ScOSA) and its predecessor 
project On-board Computer - Next Generation (OBC-NG) at 
German Aerospace Center (DLR) use COTS hardware besides 
radiation-hardened components to establish a distributed on-
board computing network, based on SpaceWire. Their goal is 
to leverage performance of a distributed architecture and still 
maintain the required reliability. 

In ScOSA, three types of nodes, High-Performance Nodes 
(HPNs), Reliable Computing Nodes (RCNs) and Interface 
Nodes (IFNs) are used (see Fig. 1). HPNs are based on a Xilinx 
Zynq XC7Z020 architecture (CPU + FPGA) while RCNs have 
a LEON3 as FPGA soft-core implementation. The SpaceWire 
router is integrated in the FPGAs of the RCNs, the HPNs and 
the IFNs. 



 
Fig. 1.  ScOSA system overview 

The middleware offers monitoring, task management, 
checkpointing and reconfiguration services for the system. 
These services are coordinated by three types of roles among 
the RCNs and HPNs: Master, Observer and Worker. A global 
configuration for all nodes means the deployment of the 
Master, Observers and Workers on RCNs and HPNs, settings 
of monitoring behavior, and channels availability and 
subscriber lists of IFNs, etc. The Master is responsible to 
initiate the configuration for all nodes in the network, by 
broadcasting the configuration command. The Master also 
monitors the distributed system via a periodical heartbeat 
mechanism and a plausibility check of some control values of 
application tasks. Some internal states of the application tasks 
are periodically sent to the mass memory storage for 
checkpointing. If a node fails, the Master will trigger a system 
reconfiguration and redistribute the tasks to other nodes. After 
the reconfiguration finishes, the checkpoints will be retrieved 
from storage back to the nodes, which are running the 
corresponding tasks. Two or more Observers are assigned to 
monitor the Master. In case the Master fails, a decision will be 
made to choose one Observer to take over the failed Master’s 
tasks. 

This reconfigurable distributed system intensively relies on 
IPC. For the consideration of scalability and throughput, a bus 
topology can’t be used [11]. Nodes are interconnected with 
point-to-point links. An irregular network topology structure is 
used to avoid a single-point failure and to maintain flexibility 
[11]. 

To summarize the analysis of requirements for the ScOSA 
distributed system, the network should 

• be scalable and flexible, 
• be able to transfer arbitrary large messages, 
• have high reliability supported by redundant routes 

among nodes in case of failed nodes, 
• guarantee the reliability of messages delivery, 
• deal with message losses, 
• support monitoring, error notification and 

reconfiguration. 

IV. PROTOCOL DESCRIPTION 
The ScOSA project mainly uses the SpaceWire-IPC for the 

communication among the distributed computing nodes. The 
SpaceWire-IPC is located at the transport layer of ISO-OSI 
model [12]. SpaceWire acts as the underlying protocol (see 
Fig. 2). 
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Fig. 2.  Protocols and OSI model 

A. Features 
SpaceWire-IPC offers communication for: 
• IPC among nodes 
• Management services from and to Master 
SpaceWire-IPC supports: 
• Multiple logical nodes on one physical device 
• Reliable transmissions of data as well as unreliable 

transmissions 
• Recognition of failed connections and failover 

mechanisms 
• Transmission of messages with arbitrary size 
• Transmission of large-size messages 
• Transparent use for different underlying protocols 
• Multiple APIs rather than only read and write 

commands 
The protocol is message-based, meaning that instead of 

streams, single messages are sent from one node to another. 
These messages can be reliable or unreliable. 

SpaceWire offers no regulation regarding the maximum 
packet sizes. SpaceWire-IPC implements a sequencing 
technique, which allows splitting large messages into smaller 
packets, with their size being user-defined. The message is 
subdivided in packets on the sender and reassembled at its 
destination node. In case of reliable message, it is a 
bidirectional packet transfer with acknowledgments. Each 
packet has a checksum to verify the integrity. 

B. Design Decisions 
This section lists and explains the message structures used 

in SpaceWire-IPC (see Fig. 3). 
 

Target SpW Address
(1 byte)

Target SpW Address
(1 byte)…...

Target Logical Address
(1 byte)

Potocol Identifier
(1 byte)

Sender Node ID
(2 bytes)

Receiver Node ID
(2 bytes)

Timestamp
(8 bytes)

Payload Data
(0 to n bytes)

EOP
(1 byte)

Message Type
(1 byte)

Checksum
(4 bytes)  

Fig. 3.  Structure of a SpaceWire-IPC Packet 

 



1) Message Header 
The message header shown in Fig. 3 is identical for all 

types of messages. The header contains source and destination 
of the packet, the timestamp it has been created and the size of 
the payload. While the header stays the same, the message type 
determines the structure of the payload data. 

a) Sender Node ID and Receiver Node ID 
Sender Node ID and Receiver Node ID are the logical 

addresses of the nodes that participate in this transmission. An 
ID determines exactly one entity in the network capable of 
sending and receiving messages. This does not necessarily 
mean, that it has to be unique for each physical node (regarding 
to SpaceWire Addressing), which is connected to the network. 
A physical node can have multiple software components 
running, which are able to send and receive messages. 

b) Timestamp 
This marks the time the packet has been created. The 

timestamp, together with the sender and receiver node ID, is 
the unique identifier for a packet. 

c) Message Type 
This field determines the structure of the payload data. It 

also indicates how the receiving node should handle this 
message. The possible values are listed in TABLE I. 

One exception in this scheme is the Large Message 
Transfer. The bits 0-6 define the encapsulated message type as 
usual. The most significant bit determines if this message is 
part of a Large Message Transmission. 

TABLE I.  SUMMARY OF MESSAGE TYPES 

Integer Value Message Type 

0 Unreliable Data Transmission 

1 Reliable Data Transmission 

2 Data Request 

3 Data Response 

4 Reconfiguration Request 

5 Message Acknowledge 

6 Heartbeat 

7 Error Notification 

128+ Large Message Transfer 

 
d) Payload Data 

To stay as versatile as possible, the payload data is just an 
arbitrary-sized byte array. The structure can be derived from 
the message type. For some message types, the array has a 
fixed size, other message types have a variable-sized array of 
data. The exact structure for each data type is described later in 
this paper. 

e) Checksum 
The checksum provides a way to check the integrity of the 

transmission. As it is not guaranteed that the underling protocol 
has a mechanism to detect erroneous messages, the integrity 

check will be implemented in this protocol. The protocol does 
not dictate a specific algorithm for the checksum. The only 
restriction is, that it must not exceed the size of the 32-bit value 
provided by this field. The value of this checksum should 
consider all of the previous fields of the transmission to 
guarantee the integrity of the whole packet. 

The checksum algorithm can be selected by considering the 
mission requirements and available resources of the nodes in 
the network. An example for checksums is the CRC32 
algorithm as described in the IEEE802.3 (Ethernet) Standard. 

2) Data Transmissions 
The Data Transmission types are the central message type 

for transmitting data inside the distributed system. The data is 
handled by the protocol as an arbitrary byte array. Hence, it has 
no influence on the handling of the message. The structure and 
handling of the data is not part of the protocol and has to be 
conducted at the application level. 

The payload structure of Data Transmissions is the same 
for both, reliable and unreliable transmissions and its layout is 
shown in Fig. 4. The Data Size contains the number of 
elements of the following byte array. The data byte array 
contains the actual data. 
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Transmission
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Segment 
Data
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Requested Configuration
4 bytes

Original Message Timestamp
8 bytes

Acknowledgment Type
1 byte

 
Fig. 4.  Summary of payload structures 

Data can be transmitted in a reliable or in an unreliable 
manner. Therefore, two message types are available for this 
purpose: reliable and unreliable Data Transmission. The only 
difference between these two types is that the receiver, when 
received successfully, will acknowledge the reliable Data 
Transmission. Though, the sender can resend a packet if it was 
lost or falsely transmitted. Unreliable messages will be dropped 
when received erroneous. 

3) Data Request 
For transmitting data with the request-response method, a 

Data Request message can be sent. This message triggers the 
receiver to execute an action and send data to the sender of this 
request. 

To assign the response to the according request, the 
responding data will be transmitted with a Data Response 
message instead of a normal Data Transmission. The Data 
Response message, which is following the request, will be sent 
asynchronously. In that way, the action, which has been 
requested, can take longer time than the normal 
acknowledgment. 

The payload of a Data Request has the same structure as in 
Fig. 4. The Data Size contains the number of elements of the 



following Data Byte Array. This array contains the data that 
will be sent to the remote node. The structure of this array is 
not specified in this protocol. The data has to be parsed at the 
application layer. 

To ensure the request will trigger an action and a data 
response, Data Requests are reliable messages, which have to 
be acknowledged. 

4) Data Response 
The Data Response is used to send data back to a node that 

has sent a Data Request message. This message will be sent 
asynchronously after the action that was triggered by the 
request has been executed. 

The payload of a Data Response has also the structure 
shown in Fig. 4. The Request Time field contains the 
timestamp of the original Data Request that triggered this 
response. The Data Size contains the number of elements of the 
following byte array. The Data byte array contains the data that 
will be sent to the remote node. The structure of this array is 
not specified in this protocol. 

To ensure the request will trigger an action and a data 
response, Data Responses are reliable messages that will be 
acknowledged. 

5) Reconfiguration Request 
The Reconfiguration Request notifies all nodes in the 

network to switch to a certain configuration. Only the Master 
node is capable of sending these requests, as it is the only 
instance authorized to define the global state of the system. 
Every other node than the Master node shall only be able to 
receive this message, but not sending it. 

Reconfiguration Requests are always transmitted reliable. 
Nodes that are not responding to a Reconfiguration Request 
have to be disabled by a new reconfiguration. 

6) Message Acknowledgment 
The Message Acknowledgment is the central element in the 

reliability mechanism of this protocol. Reliably sent messages 
will be acknowledged with this message type. The 
acknowledgment can be either a positive acknowledgment, 
notifying that the message has been received successfully, or a 
negative acknowledgment to inform the sender of the original 
message, that it arrived erroneous. 

Acknowledgments are not transmitted reliable. When an 
acknowledgment packet is lost, the original message will be 
sent again. 

7) Heartbeat 
The Heartbeat is a message type, used to check if a certain 

node is responsive. The Heartbeat itself is a request for an 
acknowledgment message. This mechanism allows a 
verification of the bidirectional communication link. The 
management instance sends out these Heartbeat messages 
periodically. 

8) Error Notification 
The Error Notification is used to inform the Master of the 

distributed system about an error that occurred. As soon as a 
reliable connection is not acknowledged, after a certain amount 
of attempts, this notification will be sent to the Master node. 
This message can also be used to notify other nodes that an 
error has occurred. 

Error Notifications will be sent reliable. This enables the 
possibility to detect whether the sending node has lost the 
connection to the network, or the erroneous node is the source 
of the failure. If this error message cannot be delivered to a 
management node it can been assumed that the node itself has 
lost its connection to the rest of the distributed system. 

9) Large Message Transmission Packet 
SpaceWire itself does not limit the packet size. But to avoid 

long blocking of paths in the network, a restriction on packet 
size is defined in this protocol. Here, the Large Message 
Transfer mechanism offers a way to split a message into 
smaller packets, which then can be sent sequentially to the 
destination node. The receiver collects all parts of the messages 
and assembles them to the original message. 

The capability to send and receive Large Message 
Transmissions is optional, if a node sends a Large Message 
Transmission to a node not capable of this feature the receiver 
shall reply with an Error Notification Message. 

The Large Message Transmission is a special message 
inside the protocol. To keep the transmission size as small as 
possible, the complete header of the original message provided 
by the sending application will be integrated into the header of 
the Large Message Transfer with the modifications that the 
most significant bit of the message type field is set and the 
timestamp of each packet is independent from the timestamp of 
the original message. 

Large Message Transmissions are always reliable 
transmissions. Every segment of this transmission will be 
acknowledged individually (either positively or negatively) 
according to the timestamp of the segment. 

C. Behavior Description 
1) Reliability 

Central paradigms of the protocol are reliable messages and 
error detection and handling. The protocol provides guaranteed 
delivery services and timeout mechanism for reliable message 
transmission. The messages transmitted follow the reliability 
mechanisms that are described as follows. 

a) Single Packet Messages 
As every message is sent independently, the reliability 

mechanisms are also applied to every single message. 
Therefore, each message that is received and has a reliable 
message type has to be acknowledged. The reliability 
mechanism is divided into three phases: acknowledgment, 
resending and error notification phase. 

Acknowledgment Phase: 
Three different cases for a sent message have to be 

considered: 
When the message was received successfully, a positive 

acknowledgment will be returned to the sender and the 
transmission is complete. 

The second case is that the message has been received 
erroneous. With help of the checksum appended to every 
message, the receiver can check the integrity of the message. If 
it was received with errors, a negative acknowledgment will be 
sent, which triggers the sender node to switch to the resend 
phase. 



The last possibility is the loss of the message on its way 
through the network. In this case, the receiver will not send any 
acknowledgment either positive or negative. Therefore, the 
sender waits a defined time for the acknowledgment to arrive 
and if this time passes, it will switch to the resending phase. 

Resending Phase: 
When a message was not transmitted successfully on the 

first try the sender will attempt to resend it. The number of 
attempts is configurable. The sender again expects a message 
acknowledgment. If, at a certain try, the message will be 
acknowledged the transmission is completed. If the limit of 
resending is reached the system will assume that the link to the 
receiver is faulty and switches to the error notification phase. 

Error Notification Phase: 
In this phase of a transmission, it is very likely that the 

receiving node has lost the connection to the network, as it 
does not respond, although the sender has repeatedly tried to 
communicate with it. Another error could be that the sender 
itself has lost the connection to the network and could not 
communicate to other nodes. 

To check which node lost the connection and to inform the 
Master in the network about the error an error notification 
message will be sent to the Master node. 

This error notification message is also a reliable message 
but it is handled differently. This message will only follow the 
process up to the resending phase. If that phase fails, most 
likely the sending node has lost its connection to the network 
and cannot even reach the Master node. At this point, the node 
should shut itself down, to save energy and not to interfere with 
the rest of the system. 

b) Large Messages 
Messages which are too large to fit into one packet should 

be treated as Large Message. For single messages transmitting 
segments of the Large Message Transmission, the reliability 
mechanisms work as they do for normal single messages. 
Additional to the reliability mechanisms for single segments, 
there are some extensions for the Large Message Transmission. 
When receiving the last segment of such transmission, the 
application has to check that no segment is missing. A Large 
Message Transmission is only successful when all segments of 
this transmission have been received. If segments are missing, 
a negative acknowledgment is sent to initiate retransmission. 

2) Push Transmissions 
Push Transmission are following the publish/subscribe 

pattern. A producer of data can have many consumers, which 
subscribe to it. Whenever new data is available, the producer 
will send the new data to all of its consumers. 

The central points of this transmission are the two Data 
Transmission messages. Whenever a producer of information 
has new datasets, it will create a Data Transmission message 
for each subscribed node and send it. 

Depending on the requirements to the delivery of the data, 
the application can send either a reliable or unreliable data 
messages. 

3) Pull Transmissions 

The Pull Transmission follows a request-response behavior. 
It can be used to either trigger an action on a remote node of 
the network or requesting specific data from it. 

To start a request the initiating node has to send a Data 
Request message to the destination node. The request will 
always be acknowledged, which tells the requesting node that 
the request will be handled. 

The response to these requests will be transmitted with a 
Data Response message. Additional to the normal Data 
Transmission, which is used by the push transmission, it carries 
the timestamp of the requesting message with it to assign the 
response to its requesting message. 

Data Requests will be sent asynchronously to enable long 
responding times for the requested action and data. 

4) Reconfigurations 
The ScOSA system is designed to have one global 

configuration for all nodes. Therefore, the protocol has to 
provide means to distribute reconfiguration information to all 
nodes, to maintain a concise system state. 

Reconfiguration can have several reasons. One reason is the 
change to a new mission phase of the system so that the nodes 
of the network can be assigned different tasks. Another reason 
can be the failing of a node so that another node has to take 
over the tasks of the failed node. Despite the reason, all 
changes of the configuration have to be initiated by the Master 
by sending a Reconfiguration Request Message. The other 
nodes in the network are not allowed to send this request 
message. 

On reception of this message the receiving node will 
change into the so-called “reconfiguration state”. When it 
reaches this state, it will send all pending messages but does 
not accept sending new messages. Messages received in this 
state will be handled as usual. With this method, it can be 
assured that most of the messages will not get lost during 
reconfiguration. 

After a certain timeout, which has to be configured 
mission-specifically, the node will delete all of its pending 
messages, switch into the new state and go back into running 
state. 

The reconfiguration only affects the endpoint nodes in the 
network. For other network components (e.g. routers and 
switches), a proper protocol for configuring those components 
has to be chosen. In a SpaceWire network one can choose the 
RMAP Protocol [2] to configure the Routing tables. Therefore, 
the SpaceWire-IPC is implemented in that way that it does not 
interfere with other protocols for reconfiguring other network 
components (e.g. using different protocol identifiers at the 
underlying protocol). 

5) Large Message Transmission 
The Large Message Transmission is a special mode for 

transmitting messages in the distributed system. This mode of 
transmission provides a way to send encapsulated messages 
that would otherwise exceed this size restriction. Every other 
message used in this system can be encapsulated into a Large 
Message Transmission. 

Sending of an oversized message is completely transparent 
to the application whatever transmission (normal or large 



message transmission) is needed. The protocol implementation 
automatically determines if it is needed to send the message as 
Large Message Transmission depending on its size. 

The size of one single packet must be defined between all 
nodes in the network uniformly. The data itself will be handled 
as an array of bytes. 

The sender first assigns a unique transmission ID to this 
data and then separates the array into segments. These 
segments will then transmitted with the same Transaction ID 
and the corresponding sequence number. The sequence number 
is used to calculate the offset of this segment in the array. 

On the other end of the connection, the receiver will 
provide a special handling of incoming Large Message 
Transmissions. Instead of notifying the application for every 
received packet, the handler will collect all the parts belonging 
to this Large Message Transmission according to the same 
transmission ID and the same Sender ID. 

After receiving all parts of a transmission, the handler will 
reconstruct the encapsulated message and then send it to the 
normal handler where the original message will be handled 
transparently. 

D. Integration with SpaceWire 
The SpaceWire Specification allows custom protocols to be 

transported as payload. Therefore, a field in the header is 
reserved to specify the used protocol [1]. 

The SpaceWire Protocol supports two addressing modes, 
logical addressing and path addressing [3]. Both methods are 
possible with SpaceWire-IPC, but for simplicity, only logical 
addressing is supported by now. 

The Node ID will be mapped to a SpaceWire logical 
address with the following pattern. The least significant byte 
will be directly mapped to the SpaceWire Address. The most 
significant byte will then determine the service running on this 
node. This mapping limits the maximum addressable services 
to 256 services per physical node and 256 physical nodes 
connected to the SpaceWire Network. 

V. PROTOCOLS ASSESSMENT FOR RECONFIGURABLE 
DISTRIBUTED ENVIRONMENT 

In this section, SpaceWire-IPC and other SpaceWire based 
protocols mentioned in Section II are assessed focusing on IPC 
in distributed on-board computers. 

Although reliable communication in RMAP can be 
established by requesting acknowledgments, the protocol does 
not fit completely into the requirements for our distributed 
system. In detail the lack of distributing timestamps and 
especially heartbeats is a problem. Additionally, fragmentation 
of large data is not supported by RMAP. Besides this, a 
specific reconfiguration message type is required to modify the 
state of the distributed system. 

The CCSDS PTP only serves as a frame for more complex 
protocols without providing properties like data validity checks 
or reliable data transfers, which are required for our distributed 
system. 

Packet types of GRDDP are defined. However they are 
insufficient to cover all requirements given by ScOSA, such as 
the lack of error notification or reconfiguration handling. 

For STUP, data retransmission, segmentation of large 
messages and flow control need to be implemented explicitly 
by application users. Therefore this protocol does not cover any 
of our requirements related to IPC communication. 

Although SpaceWire-R supports reliable data transmission 
and heartbeat, it does not include any message types for error 
notification and reconfiguration. The pull request is not 
implemented within this protocol. SpaceWire-R can only send 
reliable data and lacks the unreliable data transmission. This is 
necessary for high-frequency transmissions, where new data 
will arrive quickly, and losing some packets is considered 
uncritical. Although, it shares some concept with the 
SpaceWire-IPC protocol, it is still not fully suitable for the 
ScOSA use case. 

TABLE II summarizes these SpaceWire based protocols 
and SpaceWire-IPC in terms of features of IPC. As it can be 
seen from TABLE II, RMAP, CCSDS PTP, GRDDP, STUP 
and SpaceWire-R are not targeting IPC services in SpaceWire 
networks. However, the IPC services are necessary for a pure 
COTS or hybrid reconfigurable distributed on-board 
computers. SpaceWire-IPC offers features for IPC, supporting 
monitoring, management and reconfiguration, which then can 
be implemented on higher level. 

TABLE II.  COMPARISON OF SPACEWIRE BASED PROTOCOLS 

Features 
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Data Correctness Check ×  × × × × 

Data Retransmission   ×  × × 

Multiplexing   ×  × × 
Segmentation / Large Message 
Transmission     × × 

Flow Control     ×  
Keep Alive / Heartbeat / Monitoring 
Support     × × 

Reconfiguration Support      × 

Error Notification to Manager      × 

Publish /Subscribe      × 

Request-Response ×   ×  × 

 
With SpaceWire-IPC, Data Request, Data Response or 

Data Transmissions can be used for application data exchange 
and to request or to publish state values for plausibility checks. 
Applications can set the timestamp for data transmission and 
let SpaceWire-IPC take care of the sending timestamp. 
Heartbeats can be used by the Master to monitor the whole 
distributed network and by Observers to monitor the Master or 
Observers of higher priorities. Message Acknowledgment is 



for reliable data transmission and detecting failures of a link or 
no response of a node. Reconfiguration Request can be used 
for initial configuration, reconfiguration due to failures and 
reconfiguration for new-phase missions. Error Notification is to 
inform Master the error reason for FDIR. Large Message 
Transmission can meet the increasing demands of image 
processing on-board for earth observation activities by 
transferring raw large images to several nodes for parallel 
processing. 

VI. CONCLUSIONS 
In this paper we presented the SpaceWire-IPC for 

reconfigurable distributed on-board computers. With this 
protocol, SpaceWire networks can support IPC for distributed 
computing on a spacecraft. We highlighted the reconfiguration 
feature supported by the SpaceWire-IPC, which enables COTS 
hardware to be used on-board with reliability and fault 
tolerance. With COTS nodes, high performance demands can 
be enhanced for future applications. 

Because the SpaceWire network is not fully integrated yet, 
it will be part of the ScOSA project to address this issue and to 
embed the introduced SpaceWire-IPC. Besides the physical 
implementation of a SpaceWire network and the proposed IPC 
protocol, it is also required to provide software driver support 
for all peripheries depending on the selected operating system. 

After implementation, the measurement and performance 
analysis will be carried out. 
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