
A New SpaceWire Protocol for Reconfigurable
Distributed On-Board Computers

SpaceWire Networks and Protocols, Long Paper

Ting Peng, Benjamin Weps, Kilian Höflinger
Simulation and Software Technology

German Aerospace Center
Lilienthalplatz 7

38108 Braunschweig, Germany
ting.peng@dlr.de, benjamin.weps@dlr.de,

kilian.hoeflinger@dlr.de

Kai Borchers
Institute of Space Systems

German Aerospace Center
Robert-Hooke-Str. 7

28359 Bremen, Germany
kai.borchers@dlr.de

Daniel Lüdtke, Andreas Gerndt
Simulation and Software Technology

German Aerospace Center
Lilienthalplatz 7

38108 Braunschweig, Germany
daniel.luedtke@dlr.de, andreas.gerndt@dlr.de

Abstract—There are several standardized protocols based on
SpaceWire which provide data exchange between several nodes.
SpaceWire is also suitable for interprocess communication (IPC),
by the help of higher level protocols. However, currently there is
no standardized protocol which is targeting IPC on SpaceWire
networks. This paper proposes a protocol, which uses the
capabilities of SpaceWire to build up networks for distributed
computing on a spacecraft. The core of this protocol is the IPC
mechanism for communication between the nodes and methods
to support a reconfiguration of the network. A key feature of this
protocol is an interface for a reconfiguration mechanism, which
can be implemented on application level. This enables the
utilization of unreliable commercial off the shelf (COTS) nodes,
allowing system recovery from erroneous state. Additionally, the
reconfiguration can be used to adapt the distributed computer to
different mission phases. The protocol has the potential to build
the foundation of a distributed on-board computer consisting of
COTS components. Such distributed computer could be capable
of fulfilling high performance demands as well as high reliability
needs. Though, the protocol itself is not restricted to be used
solely in fully-featured reconfigurable distributed systems. The
IPC methods can be applied stand-alone as well, to establish a
lightweight communication between nodes on a SpaceWire
network by excluding the reconfiguration parts of the protocol.

Index Terms— SpaceWire, Network, Protocol, Reconfigurable,
Interprocess Communication, COTS, High Reliability.

I. INTRODUCTION
Distributed systems with COTS components use multiple

computing nodes to share the workload and offer significantly
higher computing performance than currently used space-
qualified on-board computers. It is necessary to offer complex

IPC services and satisfy strict requirements for satellite
missions, such as real time and reliable transmission as well as
high transmission speed. Reliability of COTS can be realized
via redundancy by the execution of equivalent tasks on
different nodes and by the reconfiguration of nodes and tasks,
i.e., migration of tasks to other available nodes after some
nodes fail. The distributed system should support upgrade,
maintenance and failure detection, isolation as well as
recovery.

SpaceWire is suitable for IPC with further protocols.
However, currently there is no standardized protocol that is
explicitly targeting IPC on SpaceWire networks and to be
utilized in reconfigurable distributed on-board computers.
Therefore, a new protocol, based on SpaceWire, is necessary to
support the reconfigurable distributed on-board computers.

We will introduce a new protocol called SpaceWire-IPC,
which is beneficial for reliable and fault tolerant distributed on-
board computers

The paper is organized as follows. Section II presents the
related work, which was taken into account during
development of our proposed SpaceWire-IPC protocol. Section
III describes the requirements for the protocol, derived from
our project. Structure and properties of the new protocol
SpaceWire-IPC are introduced in section IV. Finally, section V
provides the comparison between SpaceWire-IPC and already
existing protocols, followed by a conclusion in section VI.

II. RELATED WORK

This section provides an overview of existing SpaceWire
compatible protocol specifications. With the exception of

The final publication appeared: T. Peng, B. Weps, K. Höflinger, K. Borchers, D. Lüdtke and A. Gerndt, "A New SpaceWire
Protocol for Reconfigurable Distributed On-Board Computers," in International SpaceWire Conference, Yokohama, Japan, 2016.
URL: http://2016.spacewire-conference.org/proceedings/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/77232137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SpaceWire-R, all protocols are referenced and officially
adopted by an according ECSS standard [1]. Additionally, the
trends of IPC and reconfiguration in space systems are
presented.

A. Overview of Existing SpaceWire Protocols
The subsequent paragraphs list SpaceWire protocols, which

were considered for the development of the distributed on-
board system.

1) Remote Memory Access Protocol (RMAP)
The Remote Memory Access Protocol (RMAP) protocol,

defined by standard [2], is commonly used in space
applications for reading from and writing to memory in remote
SpaceWire nodes. The protocol provides the ability to address
destinations by the use of path or logical addressing over the
Target SpW Address fields as defined in [3]. However, in case
only logical addressing is required it is also possible to skip the
Target SpW Address. The protocol can be directly integrated
into a standard SpaceWire protocol by using the Protocol
Identifier. By use of an Instruction byte, the following
modes/message types are possible:

• Read command/ write command
• Verify / no verify of data before write
• Acknowledge / no acknowledge of write command
• Read-Modify-Write
If data shall be read or an acknowledgment is required, a

set of Reply Address fields are available, which are usable for
path and/or logical addressing. The source of the received
command is stored inside the Initiator Logical Address. To
prevent a lock-step limitation during communication two
Transaction Identifier bytes are available, which allow the user
to apply out of order transfers. To define the target location for
read or write commands, a set of four Address fields, plus an
additional Extended Address field is used.

Written and read data is secured by Cyclic Redundancy
Checks (CRCs) for Header and Payload data independently.

2) CCSDS Packet Transfer Protocol (CCSDS PTP)
The CCSDS protocol is intended to encapsulate a user

defined protocol that needs to be transferred through a
SpaceWire network [4]. Similar to the RMAP, an arbitrary
amount of Target SpW Address fields can be used for routing.
Alternatively, the Target Logical Address is used to define the
destination. The Protocol Identifier distinguishes between
different SpaceWire packet types. The interpretation of data of
the CCSDS Packet fields is user specific and defined inside the
User Application field.

3) GOES-R Reliable Data Delivery Protocol (GRDDP)
The main purpose of GRDDP is to transfer data of sensors,

telemetry and commands among peripheral instruments and the
on-board computer [5]. The Destination SLA serves as a logical
address, related to the targeted destination. To provide
information about the source of the packet Source SLA is used.
Four different packet types can be used by defining the Packet
Type field:

• Application Data
• Acknowledge
• Reset Command

• Urgent Message Data
To detect packet loss or to order out-of-order packets, a

Sequence Number is provided. The whole packet, except End-
Of-Packet (EOP), is covered and checked by a CRC.

4) Serial Transfer Universal Protocol (STUP)
The STUP protocol, defined in [6], serves as a light

weighted protocol with the intention to implement a more
complex protocol, inside the data field. To define the source of
the packet the Source Logical Address is used. Different kinds
of data structures can be defined by the Data fields. The
standard defines an example where the first data byte defines a
kind of message type, which is used to interpret the left data
bytes. Only write, read and read reply commands are offered in
this example.

5) SpaceWire-R
SpaceWire-R is used for reliable data transmission within

SpaceWire networks [7]. It is based on the GRDDP and the
Joint Architecture Standard Reliable Data Delivery Protocol
(JAS RDDP). SpaceWire-R provides features like
multiplexing, message segmentation, reliable transfer, network
traffic flow control (optional) and heartbeat signaling
(optional) [7].

B. Trends in Space Systems
Several space projects use distributed on-board computers

to meet the increasing demands of on-board processing ability.
The On-Board Computer - System Architecture (OBC-SA)
consists of two on-board computers, one of which is COTS
from Freescale’s PowerPC multicore CPU [8]. The High-
Performance Reconfigurable Computing Space Processor
(CSP)’s hardware structure is based on both COTS and
radiation-hardened technologies. ISS SpaceCube Experiment
Mini (ISEM)’s hardware has two CSP boards which are
interconnected by SpaceWire and UART [9]. CSP aims to
offer space image processing, distributed parallel computation
and fault tolerance [9]. The Fault-Tolerant Distributed On-
Board Computer (FTD-OBC) gains higher reliability and
higher processing performance by multiple processing nodes
connected by CAN buses of 1 Mbps [10].

III. PROTOCOL REQUIREMENTS
Inspired by the rise of distributed computing techniques

and advantages of SpaceWire, the project Scalable On-board
computing for Space Avionics (ScOSA) and its predecessor
project On-board Computer - Next Generation (OBC-NG) at
German Aerospace Center (DLR) use COTS hardware besides
radiation-hardened components to establish a distributed on-
board computing network, based on SpaceWire. Their goal is
to leverage performance of a distributed architecture and still
maintain the required reliability.

In ScOSA, three types of nodes, High-Performance Nodes
(HPNs), Reliable Computing Nodes (RCNs) and Interface
Nodes (IFNs) are used (see Fig. 1). HPNs are based on a Xilinx
Zynq XC7Z020 architecture (CPU + FPGA) while RCNs have
a LEON3 as FPGA soft-core implementation. The SpaceWire
router is integrated in the FPGAs of the RCNs, the HPNs and
the IFNs.

Fig. 1. ScOSA system overview

The middleware offers monitoring, task management,
checkpointing and reconfiguration services for the system.
These services are coordinated by three types of roles among
the RCNs and HPNs: Master, Observer and Worker. A global
configuration for all nodes means the deployment of the
Master, Observers and Workers on RCNs and HPNs, settings
of monitoring behavior, and channels availability and
subscriber lists of IFNs, etc. The Master is responsible to
initiate the configuration for all nodes in the network, by
broadcasting the configuration command. The Master also
monitors the distributed system via a periodical heartbeat
mechanism and a plausibility check of some control values of
application tasks. Some internal states of the application tasks
are periodically sent to the mass memory storage for
checkpointing. If a node fails, the Master will trigger a system
reconfiguration and redistribute the tasks to other nodes. After
the reconfiguration finishes, the checkpoints will be retrieved
from storage back to the nodes, which are running the
corresponding tasks. Two or more Observers are assigned to
monitor the Master. In case the Master fails, a decision will be
made to choose one Observer to take over the failed Master’s
tasks.

This reconfigurable distributed system intensively relies on
IPC. For the consideration of scalability and throughput, a bus
topology can’t be used [11]. Nodes are interconnected with
point-to-point links. An irregular network topology structure is
used to avoid a single-point failure and to maintain flexibility
[11].

To summarize the analysis of requirements for the ScOSA
distributed system, the network should

• be scalable and flexible,
• be able to transfer arbitrary large messages,
• have high reliability supported by redundant routes

among nodes in case of failed nodes,
• guarantee the reliability of messages delivery,
• deal with message losses,
• support monitoring, error notification and

reconfiguration.

IV. PROTOCOL DESCRIPTION
The ScOSA project mainly uses the SpaceWire-IPC for the

communication among the distributed computing nodes. The
SpaceWire-IPC is located at the transport layer of ISO-OSI
model [12]. SpaceWire acts as the underlying protocol (see
Fig. 2).

On-board Applications

Physical
Data Link
Network
Transport

Session
Presentation
Application

OSI Model

SpaceWire

SpaceWire-IPC

Fig. 2. Protocols and OSI model

A. Features
SpaceWire-IPC offers communication for:
• IPC among nodes
• Management services from and to Master
SpaceWire-IPC supports:
• Multiple logical nodes on one physical device
• Reliable transmissions of data as well as unreliable

transmissions
• Recognition of failed connections and failover

mechanisms
• Transmission of messages with arbitrary size
• Transmission of large-size messages
• Transparent use for different underlying protocols
• Multiple APIs rather than only read and write

commands
The protocol is message-based, meaning that instead of

streams, single messages are sent from one node to another.
These messages can be reliable or unreliable.

SpaceWire offers no regulation regarding the maximum
packet sizes. SpaceWire-IPC implements a sequencing
technique, which allows splitting large messages into smaller
packets, with their size being user-defined. The message is
subdivided in packets on the sender and reassembled at its
destination node. In case of reliable message, it is a
bidirectional packet transfer with acknowledgments. Each
packet has a checksum to verify the integrity.

B. Design Decisions
This section lists and explains the message structures used

in SpaceWire-IPC (see Fig. 3).

Target SpW Address
(1 byte)

Target SpW Address
(1 byte)…...

Target Logical Address
(1 byte)

Potocol Identifier
(1 byte)

Sender Node ID
(2 bytes)

Receiver Node ID
(2 bytes)

Timestamp
(8 bytes)

Payload Data
(0 to n bytes)

EOP
(1 byte)

Message Type
(1 byte)

Checksum
(4 bytes)

Fig. 3. Structure of a SpaceWire-IPC Packet

1) Message Header
The message header shown in Fig. 3 is identical for all

types of messages. The header contains source and destination
of the packet, the timestamp it has been created and the size of
the payload. While the header stays the same, the message type
determines the structure of the payload data.

a) Sender Node ID and Receiver Node ID
Sender Node ID and Receiver Node ID are the logical

addresses of the nodes that participate in this transmission. An
ID determines exactly one entity in the network capable of
sending and receiving messages. This does not necessarily
mean, that it has to be unique for each physical node (regarding
to SpaceWire Addressing), which is connected to the network.
A physical node can have multiple software components
running, which are able to send and receive messages.

b) Timestamp
This marks the time the packet has been created. The

timestamp, together with the sender and receiver node ID, is
the unique identifier for a packet.

c) Message Type
This field determines the structure of the payload data. It

also indicates how the receiving node should handle this
message. The possible values are listed in TABLE I.

One exception in this scheme is the Large Message
Transfer. The bits 0-6 define the encapsulated message type as
usual. The most significant bit determines if this message is
part of a Large Message Transmission.

TABLE I. SUMMARY OF MESSAGE TYPES

Integer Value Message Type

0 Unreliable Data Transmission

1 Reliable Data Transmission

2 Data Request

3 Data Response

4 Reconfiguration Request

5 Message Acknowledge

6 Heartbeat

7 Error Notification

128+ Large Message Transfer

d) Payload Data

To stay as versatile as possible, the payload data is just an
arbitrary-sized byte array. The structure can be derived from
the message type. For some message types, the array has a
fixed size, other message types have a variable-sized array of
data. The exact structure for each data type is described later in
this paper.

e) Checksum
The checksum provides a way to check the integrity of the

transmission. As it is not guaranteed that the underling protocol
has a mechanism to detect erroneous messages, the integrity

check will be implemented in this protocol. The protocol does
not dictate a specific algorithm for the checksum. The only
restriction is, that it must not exceed the size of the 32-bit value
provided by this field. The value of this checksum should
consider all of the previous fields of the transmission to
guarantee the integrity of the whole packet.

The checksum algorithm can be selected by considering the
mission requirements and available resources of the nodes in
the network. An example for checksums is the CRC32
algorithm as described in the IEEE802.3 (Ethernet) Standard.

2) Data Transmissions
The Data Transmission types are the central message type

for transmitting data inside the distributed system. The data is
handled by the protocol as an arbitrary byte array. Hence, it has
no influence on the handling of the message. The structure and
handling of the data is not part of the protocol and has to be
conducted at the application level.

The payload structure of Data Transmissions is the same
for both, reliable and unreliable transmissions and its layout is
shown in Fig. 4. The Data Size contains the number of
elements of the following byte array. The data byte array
contains the actual data.

Message Acknowledgement

Data RequestData Transmissions Data Response

Error Notification

Large Message Transmission

Reconfiguration Request

Data Size Data
X bytes

Data Size
4 bytes

Data
X bytes4 bytes

Data Size
4 bytes

Data
X bytes

Request Time
8 bytes

Affected Node ID
2 bytes

Error Reason
1 byte

Segment Number
(with Last-Segment-Flag)

2 bytes

Segment
Size

X bytes

Transmission
ID

1 byte

Segment
Data

4 bytes

Requested Configuration
4 bytes

Original Message Timestamp
8 bytes

Acknowledgment Type
1 byte

Fig. 4. Summary of payload structures

Data can be transmitted in a reliable or in an unreliable
manner. Therefore, two message types are available for this
purpose: reliable and unreliable Data Transmission. The only
difference between these two types is that the receiver, when
received successfully, will acknowledge the reliable Data
Transmission. Though, the sender can resend a packet if it was
lost or falsely transmitted. Unreliable messages will be dropped
when received erroneous.

3) Data Request
For transmitting data with the request-response method, a

Data Request message can be sent. This message triggers the
receiver to execute an action and send data to the sender of this
request.

To assign the response to the according request, the
responding data will be transmitted with a Data Response
message instead of a normal Data Transmission. The Data
Response message, which is following the request, will be sent
asynchronously. In that way, the action, which has been
requested, can take longer time than the normal
acknowledgment.

The payload of a Data Request has the same structure as in
Fig. 4. The Data Size contains the number of elements of the

following Data Byte Array. This array contains the data that
will be sent to the remote node. The structure of this array is
not specified in this protocol. The data has to be parsed at the
application layer.

To ensure the request will trigger an action and a data
response, Data Requests are reliable messages, which have to
be acknowledged.

4) Data Response
The Data Response is used to send data back to a node that

has sent a Data Request message. This message will be sent
asynchronously after the action that was triggered by the
request has been executed.

The payload of a Data Response has also the structure
shown in Fig. 4. The Request Time field contains the
timestamp of the original Data Request that triggered this
response. The Data Size contains the number of elements of the
following byte array. The Data byte array contains the data that
will be sent to the remote node. The structure of this array is
not specified in this protocol.

To ensure the request will trigger an action and a data
response, Data Responses are reliable messages that will be
acknowledged.

5) Reconfiguration Request
The Reconfiguration Request notifies all nodes in the

network to switch to a certain configuration. Only the Master
node is capable of sending these requests, as it is the only
instance authorized to define the global state of the system.
Every other node than the Master node shall only be able to
receive this message, but not sending it.

Reconfiguration Requests are always transmitted reliable.
Nodes that are not responding to a Reconfiguration Request
have to be disabled by a new reconfiguration.

6) Message Acknowledgment
The Message Acknowledgment is the central element in the

reliability mechanism of this protocol. Reliably sent messages
will be acknowledged with this message type. The
acknowledgment can be either a positive acknowledgment,
notifying that the message has been received successfully, or a
negative acknowledgment to inform the sender of the original
message, that it arrived erroneous.

Acknowledgments are not transmitted reliable. When an
acknowledgment packet is lost, the original message will be
sent again.

7) Heartbeat
The Heartbeat is a message type, used to check if a certain

node is responsive. The Heartbeat itself is a request for an
acknowledgment message. This mechanism allows a
verification of the bidirectional communication link. The
management instance sends out these Heartbeat messages
periodically.

8) Error Notification
The Error Notification is used to inform the Master of the

distributed system about an error that occurred. As soon as a
reliable connection is not acknowledged, after a certain amount
of attempts, this notification will be sent to the Master node.
This message can also be used to notify other nodes that an
error has occurred.

Error Notifications will be sent reliable. This enables the
possibility to detect whether the sending node has lost the
connection to the network, or the erroneous node is the source
of the failure. If this error message cannot be delivered to a
management node it can been assumed that the node itself has
lost its connection to the rest of the distributed system.

9) Large Message Transmission Packet
SpaceWire itself does not limit the packet size. But to avoid

long blocking of paths in the network, a restriction on packet
size is defined in this protocol. Here, the Large Message
Transfer mechanism offers a way to split a message into
smaller packets, which then can be sent sequentially to the
destination node. The receiver collects all parts of the messages
and assembles them to the original message.

The capability to send and receive Large Message
Transmissions is optional, if a node sends a Large Message
Transmission to a node not capable of this feature the receiver
shall reply with an Error Notification Message.

The Large Message Transmission is a special message
inside the protocol. To keep the transmission size as small as
possible, the complete header of the original message provided
by the sending application will be integrated into the header of
the Large Message Transfer with the modifications that the
most significant bit of the message type field is set and the
timestamp of each packet is independent from the timestamp of
the original message.

Large Message Transmissions are always reliable
transmissions. Every segment of this transmission will be
acknowledged individually (either positively or negatively)
according to the timestamp of the segment.

C. Behavior Description
1) Reliability

Central paradigms of the protocol are reliable messages and
error detection and handling. The protocol provides guaranteed
delivery services and timeout mechanism for reliable message
transmission. The messages transmitted follow the reliability
mechanisms that are described as follows.

a) Single Packet Messages
As every message is sent independently, the reliability

mechanisms are also applied to every single message.
Therefore, each message that is received and has a reliable
message type has to be acknowledged. The reliability
mechanism is divided into three phases: acknowledgment,
resending and error notification phase.

Acknowledgment Phase:
Three different cases for a sent message have to be

considered:
When the message was received successfully, a positive

acknowledgment will be returned to the sender and the
transmission is complete.

The second case is that the message has been received
erroneous. With help of the checksum appended to every
message, the receiver can check the integrity of the message. If
it was received with errors, a negative acknowledgment will be
sent, which triggers the sender node to switch to the resend
phase.

The last possibility is the loss of the message on its way
through the network. In this case, the receiver will not send any
acknowledgment either positive or negative. Therefore, the
sender waits a defined time for the acknowledgment to arrive
and if this time passes, it will switch to the resending phase.

Resending Phase:
When a message was not transmitted successfully on the

first try the sender will attempt to resend it. The number of
attempts is configurable. The sender again expects a message
acknowledgment. If, at a certain try, the message will be
acknowledged the transmission is completed. If the limit of
resending is reached the system will assume that the link to the
receiver is faulty and switches to the error notification phase.

Error Notification Phase:
In this phase of a transmission, it is very likely that the

receiving node has lost the connection to the network, as it
does not respond, although the sender has repeatedly tried to
communicate with it. Another error could be that the sender
itself has lost the connection to the network and could not
communicate to other nodes.

To check which node lost the connection and to inform the
Master in the network about the error an error notification
message will be sent to the Master node.

This error notification message is also a reliable message
but it is handled differently. This message will only follow the
process up to the resending phase. If that phase fails, most
likely the sending node has lost its connection to the network
and cannot even reach the Master node. At this point, the node
should shut itself down, to save energy and not to interfere with
the rest of the system.

b) Large Messages
Messages which are too large to fit into one packet should

be treated as Large Message. For single messages transmitting
segments of the Large Message Transmission, the reliability
mechanisms work as they do for normal single messages.
Additional to the reliability mechanisms for single segments,
there are some extensions for the Large Message Transmission.
When receiving the last segment of such transmission, the
application has to check that no segment is missing. A Large
Message Transmission is only successful when all segments of
this transmission have been received. If segments are missing,
a negative acknowledgment is sent to initiate retransmission.

2) Push Transmissions
Push Transmission are following the publish/subscribe

pattern. A producer of data can have many consumers, which
subscribe to it. Whenever new data is available, the producer
will send the new data to all of its consumers.

The central points of this transmission are the two Data
Transmission messages. Whenever a producer of information
has new datasets, it will create a Data Transmission message
for each subscribed node and send it.

Depending on the requirements to the delivery of the data,
the application can send either a reliable or unreliable data
messages.

3) Pull Transmissions

The Pull Transmission follows a request-response behavior.
It can be used to either trigger an action on a remote node of
the network or requesting specific data from it.

To start a request the initiating node has to send a Data
Request message to the destination node. The request will
always be acknowledged, which tells the requesting node that
the request will be handled.

The response to these requests will be transmitted with a
Data Response message. Additional to the normal Data
Transmission, which is used by the push transmission, it carries
the timestamp of the requesting message with it to assign the
response to its requesting message.

Data Requests will be sent asynchronously to enable long
responding times for the requested action and data.

4) Reconfigurations
The ScOSA system is designed to have one global

configuration for all nodes. Therefore, the protocol has to
provide means to distribute reconfiguration information to all
nodes, to maintain a concise system state.

Reconfiguration can have several reasons. One reason is the
change to a new mission phase of the system so that the nodes
of the network can be assigned different tasks. Another reason
can be the failing of a node so that another node has to take
over the tasks of the failed node. Despite the reason, all
changes of the configuration have to be initiated by the Master
by sending a Reconfiguration Request Message. The other
nodes in the network are not allowed to send this request
message.

On reception of this message the receiving node will
change into the so-called “reconfiguration state”. When it
reaches this state, it will send all pending messages but does
not accept sending new messages. Messages received in this
state will be handled as usual. With this method, it can be
assured that most of the messages will not get lost during
reconfiguration.

After a certain timeout, which has to be configured
mission-specifically, the node will delete all of its pending
messages, switch into the new state and go back into running
state.

The reconfiguration only affects the endpoint nodes in the
network. For other network components (e.g. routers and
switches), a proper protocol for configuring those components
has to be chosen. In a SpaceWire network one can choose the
RMAP Protocol [2] to configure the Routing tables. Therefore,
the SpaceWire-IPC is implemented in that way that it does not
interfere with other protocols for reconfiguring other network
components (e.g. using different protocol identifiers at the
underlying protocol).

5) Large Message Transmission
The Large Message Transmission is a special mode for

transmitting messages in the distributed system. This mode of
transmission provides a way to send encapsulated messages
that would otherwise exceed this size restriction. Every other
message used in this system can be encapsulated into a Large
Message Transmission.

Sending of an oversized message is completely transparent
to the application whatever transmission (normal or large

message transmission) is needed. The protocol implementation
automatically determines if it is needed to send the message as
Large Message Transmission depending on its size.

The size of one single packet must be defined between all
nodes in the network uniformly. The data itself will be handled
as an array of bytes.

The sender first assigns a unique transmission ID to this
data and then separates the array into segments. These
segments will then transmitted with the same Transaction ID
and the corresponding sequence number. The sequence number
is used to calculate the offset of this segment in the array.

On the other end of the connection, the receiver will
provide a special handling of incoming Large Message
Transmissions. Instead of notifying the application for every
received packet, the handler will collect all the parts belonging
to this Large Message Transmission according to the same
transmission ID and the same Sender ID.

After receiving all parts of a transmission, the handler will
reconstruct the encapsulated message and then send it to the
normal handler where the original message will be handled
transparently.

D. Integration with SpaceWire
The SpaceWire Specification allows custom protocols to be

transported as payload. Therefore, a field in the header is
reserved to specify the used protocol [1].

The SpaceWire Protocol supports two addressing modes,
logical addressing and path addressing [3]. Both methods are
possible with SpaceWire-IPC, but for simplicity, only logical
addressing is supported by now.

The Node ID will be mapped to a SpaceWire logical
address with the following pattern. The least significant byte
will be directly mapped to the SpaceWire Address. The most
significant byte will then determine the service running on this
node. This mapping limits the maximum addressable services
to 256 services per physical node and 256 physical nodes
connected to the SpaceWire Network.

V. PROTOCOLS ASSESSMENT FOR RECONFIGURABLE
DISTRIBUTED ENVIRONMENT

In this section, SpaceWire-IPC and other SpaceWire based
protocols mentioned in Section II are assessed focusing on IPC
in distributed on-board computers.

Although reliable communication in RMAP can be
established by requesting acknowledgments, the protocol does
not fit completely into the requirements for our distributed
system. In detail the lack of distributing timestamps and
especially heartbeats is a problem. Additionally, fragmentation
of large data is not supported by RMAP. Besides this, a
specific reconfiguration message type is required to modify the
state of the distributed system.

The CCSDS PTP only serves as a frame for more complex
protocols without providing properties like data validity checks
or reliable data transfers, which are required for our distributed
system.

Packet types of GRDDP are defined. However they are
insufficient to cover all requirements given by ScOSA, such as
the lack of error notification or reconfiguration handling.

For STUP, data retransmission, segmentation of large
messages and flow control need to be implemented explicitly
by application users. Therefore this protocol does not cover any
of our requirements related to IPC communication.

Although SpaceWire-R supports reliable data transmission
and heartbeat, it does not include any message types for error
notification and reconfiguration. The pull request is not
implemented within this protocol. SpaceWire-R can only send
reliable data and lacks the unreliable data transmission. This is
necessary for high-frequency transmissions, where new data
will arrive quickly, and losing some packets is considered
uncritical. Although, it shares some concept with the
SpaceWire-IPC protocol, it is still not fully suitable for the
ScOSA use case.

TABLE II summarizes these SpaceWire based protocols
and SpaceWire-IPC in terms of features of IPC. As it can be
seen from TABLE II, RMAP, CCSDS PTP, GRDDP, STUP
and SpaceWire-R are not targeting IPC services in SpaceWire
networks. However, the IPC services are necessary for a pure
COTS or hybrid reconfigurable distributed on-board
computers. SpaceWire-IPC offers features for IPC, supporting
monitoring, management and reconfiguration, which then can
be implemented on higher level.

TABLE II. COMPARISON OF SPACEWIRE BASED PROTOCOLS

Features

R
M

A
P

C
C

SD
S

PT
P

G
R

D
D

P

ST
U

P

Sp
ac

eW
ir

e-
R

Sp
ac

eW
ir

e-
IP

C

Data Correctness Check × × × × ×

Data Retransmission × × ×

Multiplexing × × ×
Segmentation / Large Message
Transmission × ×

Flow Control ×
Keep Alive / Heartbeat / Monitoring
Support × ×

Reconfiguration Support ×

Error Notification to Manager ×

Publish /Subscribe ×

Request-Response × × ×

With SpaceWire-IPC, Data Request, Data Response or

Data Transmissions can be used for application data exchange
and to request or to publish state values for plausibility checks.
Applications can set the timestamp for data transmission and
let SpaceWire-IPC take care of the sending timestamp.
Heartbeats can be used by the Master to monitor the whole
distributed network and by Observers to monitor the Master or
Observers of higher priorities. Message Acknowledgment is

for reliable data transmission and detecting failures of a link or
no response of a node. Reconfiguration Request can be used
for initial configuration, reconfiguration due to failures and
reconfiguration for new-phase missions. Error Notification is to
inform Master the error reason for FDIR. Large Message
Transmission can meet the increasing demands of image
processing on-board for earth observation activities by
transferring raw large images to several nodes for parallel
processing.

VI. CONCLUSIONS
In this paper we presented the SpaceWire-IPC for

reconfigurable distributed on-board computers. With this
protocol, SpaceWire networks can support IPC for distributed
computing on a spacecraft. We highlighted the reconfiguration
feature supported by the SpaceWire-IPC, which enables COTS
hardware to be used on-board with reliability and fault
tolerance. With COTS nodes, high performance demands can
be enhanced for future applications.

Because the SpaceWire network is not fully integrated yet,
it will be part of the ScOSA project to address this issue and to
embed the introduced SpaceWire-IPC. Besides the physical
implementation of a SpaceWire network and the proposed IPC
protocol, it is also required to provide software driver support
for all peripheries depending on the selected operating system.

After implementation, the measurement and performance
analysis will be carried out.

REFERENCES
[1] "Space engineering. SpaceWire protocol identification," ECSS-

E-ST-50-51C, ESA-ESTEC Requirements & Standards
Division, Noordwijk, 2010.

[2] "Space engineering. SpaceWire - Remote memory access
protocol," ECSS-E-ST-50-52C, ESA-ESTEC Requirements &
Standards Division, Noordwijk, 2010.

[3] "Space engineering. SpaceWire - Links, nodes, routers and
networks," ECSS-E-ST-50-12C, ESA-ESTEC Requirements &
Standards Division, Noordwijk, 2008.

[4] "Space engineering. SpaceWire - CCSDS packet transfer
protocol," ECSS-E-ST-50-53C, ESA-ESTEC Requirements &
Standards Division, Noordwijk, 2010.

[5] "GOES-R Reliable Data Delivery Protocol (GRDDP)," 417-R-
RTP-0050, NASA Goddard Space Flight Center GOES-R
Project, Greenbelt, 2008.

[6] P. Rastetter, U. Liebstückel and S. Fischer, "STUP SpaceWire
Protocol," SMCS-ASTD-PS-001, 2009.

[7] "SpaceWire-R," SCDHA 151-0.4, Japan Aerospace Exploration
Agency (JAXA), Institute of Space and Astronautical Science
(ISAS), 2015.

[8] "Project information OBC-SA," [Online]. Available:
https://scrivito-public-cdn.s3-eu-west-
1.amazonaws.com/fokus/public/57b85e4561eb7de5/1683f2d1b4
4c512887644ed0eac105fd/Projektblatt_OBCSA_EN.pdf.
[Accessed 15 August 2016].

[9] C. Wilson, J. Stewart, P. Gauvin, J. MacKinnon, J. Coole, J.
Urriste, A. George, G. Crum, E. Timmons, J. Beck, T. Flatley,
M. Wirthlin, A. Wison and A. Stoddard, "CSP Hybrid Space
Computing for STP-H5/ISEM on ISS," in Small Satellite
Conference, Logan, 2015.

[10] M. Fayyaz and T. Vladimirova, "Fault-Tolerant Distributed
approach to satellite On-Board Computer design," in 2014 IEEE
Aerospace Conference, Big Sky, 2014.

[11] D. Lüdtke, K. Westerdorff, K. Stohlmann, A. Börner, O.
Maibaum, T. Peng, B. Weps, G. Fey and A. Gerndt, "OBC-NG:
towards a reconfigurable on-board computing architecture for
spacecraft," in Proceedings of IEEE Aerospace Conference, Big
Sky, Montana, 2014.

[12] I. T. Union, "X.200: Information technology - Open Systems
Interconnection - Basic Reference Model: The basic model," 11
June 1994. [Online]. Available: http://www.itu.int/rec/T-REC-
X.200-199407-I. [Accessed 08 August 2016].

	I. Introduction
	II. Related Work
	A. Overview of Existing SpaceWire Protocols
	1) Remote Memory Access Protocol (RMAP)
	2) CCSDS Packet Transfer Protocol (CCSDS PTP)
	3) GOES-R Reliable Data Delivery Protocol (GRDDP)
	4) Serial Transfer Universal Protocol (STUP)
	5) SpaceWire-R

	B. Trends in Space Systems

	III. Protocol Requirements
	IV. Protocol Description
	A. Features
	B. Design Decisions
	1) Message Header
	a) Sender Node ID and Receiver Node ID
	b) Timestamp
	c) Message Type
	d) Payload Data
	e) Checksum

	2) Data Transmissions
	3) Data Request
	4) Data Response
	5) Reconfiguration Request
	6) Message Acknowledgment
	7) Heartbeat
	8) Error Notification
	9) Large Message Transmission Packet

	C. Behavior Description
	1) Reliability
	a) Single Packet Messages
	b) Large Messages

	2) Push Transmissions
	3) Pull Transmissions
	4) Reconfigurations
	5) Large Message Transmission

	D. Integration with SpaceWire

	V. Protocols Assessment for Reconfigurable Distributed Environment
	VI. Conclusions
	References

