Near Real Time Applications to retrieve Wind Products for Maritime Situational Awareness

Holger Daedelow, Egbert Schwarz, Sergey Voinov

Maritime Security Lab Neustrelitz

German Aerospace Center (DLR) German Remote Sensing Data Center (DFD) National Ground Segment (NBS)

Braunschweig 2016

Knowledge for Tomorrow

Outline

- Maritime Applications
- Wind Detection Workflow
- Summary

Applications for Maritime Awareness

Application

Oil Ship Wind Sea State Ice

System engineering and development for:

- efficient use of the processing environment (parallel processing)
- operational use of research findings
- processing of different sensors and modes (Multi- Mission)
- operational data fusion of different data sources like EO data and T-AIS or S-AIS
- product development
- dissemination systems development

- Supported satellites:
 - TerraSAR-X / TanDEM-X
 - o Radarsat-2
 - o Sentinel 1A
- Based on Processing System Management (PSM)
- Parallel processing
- Fully automated
- GUI for monitoring and control

Weather Research and Forecasting Model (WRF)

- is a numerical weather prediction (NWP) and atmospheric simulation system designed for research and operational applications
- It is a supported "community model", i.e. a free and shared resource with distributed development and centralized support
- Uses GFS data from NOAA as input

- Outputs:
- TSX1_NSG_12960_20160812T171044 _wrfout.kmz
- TSX1_NSG_12960_20160812T171044 _wrfout.nc

Weather Research and Forecasting Model (WRF) - Output-Products

Netcdf -File

netcdf TSX1_NSG_12960_20160812T171044_wrfout {

```
dimensions:
    lon = 28 ;
    lat = 35 ;
    lev = 1 ;
    time = UNLIMITED ; // (7 currently)
•
   variables:
double lon(lon);
double lat(lat);
double time(time);
         time:standard_name = "time" ;
         time:units = "hours since 2016-08-12 15:00:00";
         time:calendar = "standard";
    float ws10(time, lev, lat, lon);
         ws10:long_name = "Wind Speed at 10 M (m s-1)";
         ws10:_FillValue = 1.e+30f;
         ws10:missing_value = 1.e+30f;
    float wd10(time, lev, lat, lon);
         wd10:long_name = "Wind Direction at 10 M (Degrees)";
         wd10:_FillValue = 1.e+30f;
         wd10:missing_value = 1.e+30f;
```

Kmz-File

SAR AIS Integrated Toolbox (SAINT)

- Our main SAR detection
 processor
- Object detection (ship/iceberg)
- Wind and wave detection
- Very fast (a few second to process huge SAR image unless there are thousands of detections)
- Developed at Maritime Security Lab Bremen, part of DLR's Remote Sensing Technology Institute

Product Generation

- .txt
- .kmz
- .shape
- .nc
- .tiff

"original_SAINT_windfield.txt"

LAT	LON	U10	windDir-cwN
54.327797	8.013083	6.945118	306.907135
54.309814	8.019656	6.972426	306.841248
54.291836	8.026226	7.170168	306.775940
54.273853	8.032791	7.140850	306.711853
54.255871	8.039352	7.069013	306.648544
54.237888	8.045909	6.765116	306.586151

Product Delivery Services

Sentinel 1A Sensor IWS, 2016/08/31T052424

View from web-mapping client

Product Delivery Services

Sentinel 1A Sensor IWS, 2016/08/31T052424

View from Google Earth

SAR Wind Detection

Summary

- Operational satellites: TerraSAR-X / TanDEM-X / (PAZ), Radarsat-2, Sentinel 1A / (1B)
- Results in Near Real Time after image acquisition
- Fully automated
- Continuously improving algorithms and hardware environment

Thank you very much for your attention!

Contact:

E-mail: <u>holger.daedelow@dlr.de</u> Phone: 03981 480 139

