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ABSTRACT: 
 
Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs 
are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent 
handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country 
and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and 
sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the 
acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system 
for the automated wetland delineation with a high temporal (about two weeks) and a high spatial sampling (about five meters). The 
similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the 
differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification 
filtering are already enough to establish a monitoring system of prime importance for a whole region. 
 
 

1. INTRODUCTION 

It is well known that the global warming predicted for the 
coming decades goes along with an increasing severity of 
weather phenomena. While temperate regions will be more 
affected by heavy rains and some (minor) droughts, already 
semi-arid regions will suffer extremely from the changing 
climate. The transition from rainy to dry seasons (e.g.) is 
expected to vary much more than nowadays. Wetlands fulfil 
their function as fresh water reservoirs that are filled once a year 
and have to supply the inhabitants, agriculture, and industry 
until the next rainy season, and therefore, the sophisticated 
water management is indispensable. In return, this requires an 
up-to-date estimation of the water reserve, which raises serious 
problems.  
 
The current standard is the installation of water gauges at 
selected locations, e.g. dams. Though this allows a near-real 
time measurement of the water level at a certain point, and 
consequently modelled water volumes, it provides no reliable 
information about the remaining water resource, particularly for 
wetlands like Lac Bam where siltation rates are so high that the 
lake floor topography is constantly changing (Moser et al., 
2016). Therefore, area-wide measurements are needed for a 
better water resource estimation. Instead of installing and 
connecting a large number of water level loggers, remote 
sensing solutions might be a convenient alternative. Optical 
remote sensors share three main problems: First, they require 
cloud-free conditions and sufficient sun illumination. Second, 
they only report the reflectance directly on the illuminated 
surface, i.e., water covered by plants will be detected as green 
canopy (vegetation). Third, the turbid and sediment-rich water 
bodies show very high reflectance values in the visual part of 
the spectrum, similar to bare soil, and much higher than usual 

reflectance in the near infrared part, which is favoured for water 
detection because almost all the radiation is absorbed, resulting 
in very low values over surface water.  
 
In contrast to that, Synthetic Aperture Radar (SAR) sensors 
provide numerous advantages: Being an active sensor system, 
they are independent of external illumination, therefore they can 
operate day and night. The microwave bands typically used can 
pass through clouds and thus, make the sensor weather 
independent. Last, but not least, the measurement of 
electromagnetic backscattering in wavelengths of 1 cm until 
about 1 m does not reflect the surface material, but the 
geometric structure of the surface. Calm water surfaces 
therefore act like a mirror that reflects all the radiation away 
from the sensor. Water thus appears very dark, regardless of its 
turbidity, which has been exploited in many studies for different 
SAR sensors (Santoro and Wegmuller, 2014, White et al., 2014, 
Martinis et al., 2015). The longer wavelengths even allow to 
penetrate forest canopy at a certain extent and therewith, to look 
through plant cover. The microwaves reflector formed by plants 
and soil is characteristic for the moisture content. As dry soil 
has a very weak response, the backscattering is dominated by 
the plants, which form a more or less smooth surface imaged by 
shorter wavelengths (X-band, e.g.) or a diffuse backscattering 
volume in longer wavelengths (C-band, e.g.). By the help of 
multi-polarized SAR, the scattering mechanisms can be well 
distinguished. As soon as the soil moisture reaches its 
maximum, the water surface forms a diplane reflector together 
with the plant stems. This causes a high double-bounce 
component when imaged by multi-polarized SAR (Henderson 
and Lewis, 2008, Schmitt and Brisco, 2013, Gallant et al., 2014, 
Brisco et al., 2011). Dual-co-polarimetric SAR imagery has 
been successfully used to detect flooded vegetation, mainly 
using TerraSAR-X where this mode is enabled (Schmitt and 
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Brisco, 2013, Betbeder et al., 2015). In summary, SAR 
represents the optimal sensor group for the regular remotely 
sensed monitoring of water bodies and wetlands.  
 
One limiting factor is the availability of suitable space-borne 
SAR sensors with a high spatial, temporal, and polarimetric 
resolution. The polarimetric resolution determines the 
distinguishability of different scattering mechanisms. 
TerraSAR-X (TSX) supports dual-co-polarized measurements 
able to identify surface and double-bounce scattering, and dual-
cross-polarized measurements that report the volume scattering. 
RADARSAT-2 (RS-2) only allows the dual-cross-polarized 
imaging. Fully polarized images were not of interest in this 
work, since the focus is on the exploitation of partial-
polarimetric data. Because of the longer wavelength the dual-
cross-polarized mode seems to be suitable to map the volume 
component. The shorter wavelength of TerraSAR-X in contrast 
is expected to better distinguish between surface and double-
bounce. Therefore, a combination of this two sensors is chosen 
in this study. The temporal resolution is related to the repeat 
pass orbits, i.e. the time gap between two acquisitions from the 
same imaging geometry. TerraSAR-X provides repeat pass 
acquisitions in an eleven day period, and RADARSAT-2 
requires twenty-four days. For this study we acquired images 
from two different RADARSAR-2 orbits (one in ascending and 
one in descending direction) in order to increase the sample rate 
to the one provided by TerraSAR-X. Last, the spatial resolution 
describes the distinguishability of two targets in close 
neighbourhood. In favour of the comparability a common pixel 
grid of five by five meter on the ground was chosen for both 
sensors which implies a slight oversampling in the case of 
RADARSAT-2 and a subsampling in the case of TerraSAR-X.  
 
The research question followed in this contribution is whether 
the methodology developed on TerraSAR-X dual-co-polarized 
data in former studies (Moser et al., 2016) is directly 
transferable to C-band dual-cross-polarized SAR data from 
RADARSAT-2 with a lower spatial resolution. The 
supplementary C-band measurement might be used to construct 
a multi-frequency SAR image, which is quite new in space-
borne SAR remote sensing, or just to fill temporal gaps in order 
to generate extremely dense time series. With view to the 
Sentinel-1 mission inter alia providing dual-cross-polarized C-
band SAR data with a temporal sampling of six days only (after 
launch of the second satellite sensor), the time series aspect 
attracts much attention. Therefore, this study will perform a 
multitemporal classification on the full time series stack, and 
check each reasonable combination of sensor and polarization 
mode in order to estimate the expectable accuracy.  
 
The focus of this paper is on, firstly, the interpretation of SAR 
scattering mechanisms in different types of flooded or floating 
vegetation using dual-polarimetric X- and C-band SAR data and 
secondly, the derivation of change classes applying a 
multitemporal classification on the full time series stack. The 
objective is to classify the following wetland classes and 
respective change classes: open water, flooded or floating 
vegetation in water, and irrigated fields from multi-polarized 
SAR imagery, based on the semi-arid wetland site Lac Bam in 
Burkina Faso. This study is unique due to the dense time series 
of multi-polarized SAR data in conjunction with a ground-truth 
field campaign that has been recently carried out. This 
campaign was specifically tailored towards areas that are prone 
to classification errors for flooded vegetation, tested in previous 
work using polarimetric SAR imagery (Moser et al., 2016). 
Results will contribute as preparation for possible applications 
using Sentinel-1 time series over African wetlands.  

This paper is organized as follows: The next section introduces 
the study site in detail and gives an overview to the available 
data sets such as the images acquired by SAR sensors or the 
reference data gathered in field campaigns. Then, the 
methodology is presented consisting of the Kennaugh element 
framework (Schmitt et al., 2015) and multitemporal 
classification including SAR time series fusion. The results are 
shown, discussed and validated with respect to the available 
reference data in the fourth section of the paper. A brief 
summary and an outlook on ongoing studies conclude the paper. 
 
 

2. STUDY SITE AND DATA 

2.1 Area of Interest 

Lac Bam, a Ramsar wetland of international importance, was 
chosen as a test site for this study. Lac Bam is the largest 
freshwater lake in Burkina Faso and of high significance for the 
local population, for biodiversity, and fulfils various ecosystem 
functions. The site is located at the transition between the 
Sahelian and Sudano Savannah climate of Burkina Faso, 
characterized by a rainy season between the summer months of 
June and September/October, and a long dry season where 
water availability is particularly important for different 
livelihoods (farming, pastoralism, fishing) as well as for 
domestic households. Large areas of Lac Bam contain different 
emerging or floating vegetation in water, mainly grasses, water 
lilies and trees (Moser et al., 2016). More than 1000 motor 
pumps extract water for the irrigation of fields for vegetable 
gardening during the long dry season. These fields are situated 
around the lake and change dynamically throughout the season 
as well as between the different years. Irrigated cultivations are 
part of the wetland by common nomenclatures defined for 
example by the Ramsar convention (Ramsar., 2016). They are 
very relevant to be monitored for water availability and food 
security issues. Lac Bam is only monitored in terms of water 
level at the dam in the South, but no area-wide water monitoring 
has been carried out to date, considering open water as well as 
waters including flooded or floating vegetation. Moser et al. 
(2014) used Lac Bam as one case study to monitor open water 
areas using optical medium resolution time series from MODIS. 
This work builds on the study recently published by Moser et al. 
(2016) which is the first attempt for an area-wide monitoring 
applied at Lac Bam.  
 
2.2 Synthetic Aperture Radar Data 

Three different dual-polarimetric repeat-pass time series have 
been acquired, two from RADARSAT-2 in C-band (5.405 GHz, 
wavelength: 5.6 cm), and one from TerraSAR-X in X-band 
(9.65 GHz, wavelength: 3.1 cm), between October 2014 and 
May 2015. The data, presented in Table 1, contain regular 
temporal intervals and are acquired under the same geometry 
conditions. RADARSAT-2 data is available in dual-cross-pol 
(HH-HV) Fine Beam mode, as two different repeat-pass time 
series with an interval of 24 days each. Acquisitions from the 
orbits in ascending and descending pass direction were 
performed, which are shifted with distances of 11 and 13 days 
with respect to each other, resulting in a higher temporal 
coverage when using both of them. TerraSAR-X data has a 
temporal repeat frequency of 11 days and was acquired from an 
ascending orbit (Table 1).  
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TerraSAR-X 
ascending 

RADARSAT-2 
ascending 

RADARSAT-2 
descending 

18.10.2014  18.10.2014 

29.10.2014 29.10.2014  

09.11.2014  11.11.2014 

20.11.2014 22.11.2014  

01.12.2014  05.12.2014 

12.12.2014 16.12.2014  

23.12.2014   

03-01.2015*  29.12.2014 

14.01.2015 09.01.2015  

25.01.2015  22.01.2015 

05.02.2015 02.02.2015  

16.02.2015  15.02.2015 

27.02.2015 26.02.2015  

10.03.2015  11.03.2015 

21.03.2015 22.03.2015  

01.04.2015  04.04.2015 

12.04.2015 15.04.2015  

23.04.2015  28.04.2015 

04.05.2015 09.05.2015  

15.05.2015  22.05.2015 

* image was interpolated due to missing acquisition 
Table 1. Synthetic aperture radar time series 

 

 
Figure 1. Map used for the field campaign in Region A and 

Region B which both feature flooded vegetation areas that are 
well classified (yellow) and not detected (blue), using dual-

polarimetric TerraSAR-X or RADARSAT-2 imagery  

2.3 GPS and Photo Field Campaign 

A field campaign at Lac Bam was carried out between 25 and 
29 October 2015, with the main purpose to gather ground truth 
photo, GPS data, a description of the flooded vegetation and the 
water depth of regions that were not correctly classified by 
polarimetric SAR data. Field Data were collected for four 
regions, region A and B are displayed in Figure 1. Different 
vegetation types: well detected flooded vegetation, with and 
without containing trees (yellow) and not detected flooded 
vegetation, with an without containing trees (blue), and sparse 
vegetation (green) Every approximately 100 m photos and 
measurements were taken with a digital camera, a GPS camera, 
and a GPS device. The vegetation type, the distance between the 
photo point and the vegetation, the height and density of the 
vegetation, and the water depth has been estimated or measured 
at every photo spot.  
 
 

3. METHODOLOGY 

3.1 Partial-Polarimetric SAR Processing 

Traditionally, the analysis of single-polarized and polarimetric 
data is completely different. In the case of single-polarized data, 
where only one intensity value per pixel is available, the 
strength of the backscattering as well as the local texture is 
studied. In contrast to that, the interpretation of polarimetric 
data focusses on so-called polarimetric decompositions that 
transform the measured complex values into physically 
interpretable measures. The decompositions always require 
fully-polarized “quadpol” images, i.e. four perpendicular 
polarizations at the same time. Consequently, the swath width 
and the azimuth resolution are significantly reduced when using 
quad-pol acquisitions modes. The trade of spatial resolution 
versus polarimetric information content leads to so-called 
“partial-polarimetric” or “multi-polarized” SAR images. In 
general, only two of four possible polarizations are measured: 
the combination HH-VV often is referred to as “dual-co-
polarized”, both combinations HH-HV and VV-VH are named 
“dual-cross-polarized”. The decompositions developed for dual-
polarized SAR images are mostly restricted to one special 
polarization combination and with respect to model-based 
approaches, even to one special wavelength. The comparison of 
two different polarization combinations or even two different 
SAR sensors is thus inhibited.  
 
A very basic scattering description was published recently that 
overcomes this drawback by the strict distinction between 
intensity and polarimetric information. The decomposition into 
normalized Kennaugh elements (Schmitt et al., 2015) is 
applicable to any SAR measurement in single, dual, or quad-
polarized mode, or even acquired in one of the future hybrid-
compact-pol modes. The main idea is to generate one total 
intensity layer and a variable number of channels holding the 
polarimetric information. In the case of dual-co-polarized 
images, the Kennaugh elements compose like this: 

𝐾𝐾0 =
1
2

{|𝑆𝑆𝐻𝐻𝐻𝐻|2 + |𝑆𝑆𝑉𝑉𝑉𝑉|2} 

𝐾𝐾3 = −𝑅𝑅𝑅𝑅{𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝑉𝑉𝑉𝑉} 

𝐾𝐾4 =
1
2

{|𝑆𝑆𝐻𝐻𝐻𝐻|2 − |𝑆𝑆𝑉𝑉𝑉𝑉|2} 

𝐾𝐾7 = 𝐼𝐼𝐼𝐼{𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝑉𝑉𝑉𝑉}                                                              (1) 
 
The total intensity is kept in K0. K3 describes the relation 
between double-bounce and surface scattering events. K4 relates 
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the horizontal component to the vertical component. The phase 
shift induced by the imaged target is captured by K7.  
 
Dual-cross-polarized data is described by the total intensity in 
K0 as well. The remaining polarimetric information unfolds to 
K1 as relation between co- and cross-polarized intensity, and 
two correlation measures K5 and K8, which are of minor 
importance for application in natural environments. 

𝐾𝐾0 = |𝑆𝑆𝐻𝐻𝐻𝐻|2 + |𝑆𝑆𝐻𝐻𝑉𝑉|2 

𝐾𝐾1 = |𝑆𝑆𝐻𝐻𝐻𝐻|2 − |𝑆𝑆𝐻𝐻𝑉𝑉|2 

𝐾𝐾5 = 𝑅𝑅𝑅𝑅{𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆∗𝐻𝐻𝑉𝑉} 

𝐾𝐾8 = 𝐼𝐼𝐼𝐼{𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆∗𝐻𝐻𝑉𝑉}                                                           (2) 
 
The Kennaugh elements in linear scale are then normalized by 
their total intensity or a synthetic reference in the case of K0 
(calibration). The projection on a closed and uniform data range 
is very suitable for data storage or delivery because the 
radiometric sampling rate can be reduced considerably without 
losing too much information. When using typical classifiers 
from optical remote sensing applications like the maximum 
likelihood classification, the logarithmic scaling is preferred 
because of the normal-like distribution of the data. Therefore, 
the Kennaugh elements are converted to the unit decibel, which 
is most common in SAR remote sensing.  
 
The coregistration is performed automatically by projecting the 
image on the same coordinate frame by the help of exact (post-
processing) orbit data and an accurate elevation model. 
Therewith, the geometric and radiometric comparability is 
assured and synergies resulting from the multifrequency image 
stack (in C- and X-band) can be fully exploited. Figure 2 
displays the Kennaugh elements for two selected images that 
have both been acquired on 18 October 2014: 
 

 
Figure 2. Kennaugh elements deducted from (a) TerraSAR-X 

dual-co-pol HH-VV data: K0, K3, K4, and K7 (top row), and (b) 
RADARSAT-2 dual-cross-pol HH-HV data: K0, K1, K5, K8 

(bottom row). Both images were acquired on 18 October 2014.  

 
3.2 Multitemporal Classification 

An analysis chain as developed in Moser et al. (2016) for 
TerraSAR-X time series is transferred onto the RADARSAT-2 
time series, and used for both sensors – TSX and RS-2 – 
comparatively and in conjunction. A supervised classification 
approach was chosen using a pixel-based maximum likelihood 
algorithm, which is a well traceable and a basic approach that 
needs only a short time frame for computation. Each pixel is 

classified according to the highest probability value to belong to 
a certain class. No post-classification filtering or processing was 
performed. First, the classification was applied on every image 
in the time series, deriving the three wetland classes open water 
(W), flooded/floating vegetation (V), irrigated cultivation (F), 
and land/non-wetland (L). To derive change classes and 
delineate the wetland extent throughout the season a 
multitemporal classification was applied with the following 
change classes of interest: permanent open water (W), water to 
land (W–L), flooded vegetation to land (V–L), flooded 
vegetation to irrigated fields (V–F) (with land in the transition 
between), the dynamic class of rapidly changing irrigated fields 
(F–L/L–F), and the two land classes land/permanent vegetation 
(L1), and land/soils and rocks (L2).  
 
A training and validation dataset (AOIs) were generated based 
on four optical data at four different time steps: a very high 
resolution (VHR) WorldView-2 and GeoEye-1 image, as well 
as two high resolution (HR) RapidEye images. The AOIs were 
randomly separated into training and validation data, with the 
same number of AOIs and area size (to the extent possible) for 
each class. The same AOIs were used for the four different time 
steps and were constructed for two different purposes: (1) for 
classifying each image with the four classes W, V, F and L; (2) 
for the multitemporal classification resulting in the above-
mentioned seven change classes. Additionally, photos and GPS 
points from the field campaigns in October 2013 and October 
2015 were very helpful for the definition and interpretation of 
the reference data. Seven change classes were derived from the 
four optical images at different times throughout the year, out of 
which five relevant wetland classes are validated in Table 2.  
 
The design of the study aimed to exploit different combinations 
of Kennaugh elements, polarizations (dual-co-pol and dual-
cross-pol), and wavelengths (C-band and X-band) – separately 
and in synergy – for a multitemporal classification applied on 
the full time series of the geocoded, calibrated, and multi-scale 
multi-looking filtered Kennaugh elements. A weighting matrix 
to enhance the influence of the Kennaugh element K0 for the 
class permanent open water was applied on the covariance 
matrix prior to classification, due to instability of the water class 
in the other polarimetric channels. Other than that, no further 
pre-processing or spatial or temporal post-classification filtering 
was performed.  
 
 

4. RESULTS AND DISCUSSION 

4.1 Interpretation of Polarimetric SAR Scattering 
Mechanisms 

Photos and GPS points have been measured in the field in four 
regions that were difficult to classify using polarimetric SAR 
(Region A and B are indicated in Figure 1). Figure 3 shows four 
photographs from the field campaign representing (a) flooded 
grasses seen from the shoreline that were well classified using 
TSX, (b) flooded grasses, here on a picture taken from the lake 
towards the shoreline, (c) dense water lilies that were not 
classified with both X- and C-band, and (d) sparse flooded 
vegetation in shallow waters, with visibility through to the 
ground in the optical VHR reference satellite images, that were 
only classified with TerraSAR-X as areas of flooded vegetation, 
but not with RADARSAT-2.  
 

a) 

b) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-8-57-2016

 
60



 

 
Figure 3. Ground truth photos taken during the October 2015 

field campaign: (a) flooded grasses seen from the shoreline, (b) 
flooded grasses from the lake towards the shoreline, (c) dense 

water lilies, and (d) sparse flooded vegetation in shallow waters, 
photos by R. Ouedraogo and L. Moser  

 
Figure 4 shows a supervised classification with the three 
wetland classes: water (blue), flooded vegetation (green) and 
irrigated fields (red) that was performed on one Kennaugh 
element image of both, TSX and RS-2 (compare Figure 2), 
acquired at the same day (18 October 2014). This should result 
in the same information, however, from Figure 4 it becomes 
apparent that flooded vegetation can be well delineated applying 
the classification on the TSX image, which is not at all the case 
for RS-2. Also irrigated cultivations are detected using TSX, but 
using RS-2 the classes flooded vegetation and irrigated 
cultivation are inter-mixed and further extended to non-wetland 
areas. This represents a pixel-based result on the 5 m grid scale 
to which TSX has been sampled (with slight undersampling), as 
well as RS-2 (with slight oversampling). No further post-
classification filtering has been applied. Misclassifications 
outside the wetland area occur for both sensors, which is 
expected due to the fact that there are a lot of trees, shrubs and 
dwellings that can be accounted for high backscatter, 
particularly at the end of the rainy season where there is still a 
lot of natural green vegetation.  
 

 
Figure 4. Supervised classification applied on the Kennaugh 

elements of (a) TerraSAR-X and (b) RADARSAT-2, both from 
18 October 2014. The classes are: open water (blue), flooded 
vegetation (green), irrigated cultivation (red) and non-wetland 

(beige). Region A, B, and C contain floating vegetation that was 
not classified by either of the two sensors.  

 
The regions studied in the field campaign in in October 2015 – 
Region A and B, as marked in Figure 1 and Figure 4 – were not 
detected as flooded vegetation with both sensors, and flooded 

vegetation in Region C was only detected using TerraSAR-X. 
The assumption is that no strong double-bounce or difference 
between HH and VV occurs in X-band, and no strong volume 
scattering occurs in C-band, since the vegetation is mainly 
floating on the water surface and is very dense, so that the SAR 
radiation cannot trespass the canopy, and scatter from the water 
surface into the vegetation, and back to the sensor.  
 
As shown in Figure 5, the temporal development of each class 
was observed in terms of the temporal profile of AOIs, plotted 
over the time series, in order to define change classes and 
compare the change of the scattering mechanisms over one 
season. The mean of the AOIs was plotted for K3 and K4 from 
TerraSAR-X for different flooded and floating vegetation types: 
water lilies in purple, grasses in pink, grasses with flooded trees 
in green, and shallow flooded soil/fields in turquoise.  

 

 
Figure 5. Temporal development of flooded vegetation classes  

 
Despite the fact that the single image classification did not have 
the same success for TerraSAR-X HH-VV and RADARSAT-2 
HH-HV images, adding a temporal component presents new 
opportunities and again highlights the importance of time series 
for wetland remote sensing (see Figure 6): A multitemporal red-
green-blue (RGB) stack of K0 for TSX (sum of HH and VV 
intensity), and K0 for RS-2 (sum of HH and HV intensity) 
appears promising for detecting temporal changes from both 
sensors. Both, TSX (X-band) and RS-2 (C-band) are able to 
capture similar dynamics – in this case considering only the 
intensity (K0) – however, under the condition that the temporal 
change is considered. The starting point of the time series (18 
October 2014 for TSX and RS-2) is visualized as red channel, 
resulting in some flooded vegetation on the wetland’s outer 
boundaries and in the north of Lac Bam being coloured in bright 
red, and most of the background image being coloured in dark 
red, due to still present natural vegetation at the end of the rainy 
season. An image in the middle of the dry season (25 January 
2015 for TSX and 22 January 2015 for RS-2) is displayed as 
green channel, which causes areas of both, flooded vegetation 
and irrigated cultivation, appear in light green. An image 
representing the end of the dry season (15 May 2015 for TSX, 9 
May 2015 for RS-2) is assigned to the blue channel, showing 
areas where open water retreated at the end of the dry season in 
dark blue. Rocky and urban areas that are characterized by 
strong backscatter throughout the whole year appear in light 
blue to grey and white.  

C C 

a) 

c)  d) 

 b) 

a) b) 
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Figure 6. Multitemporal red-green-blue (RGB) stack of K0 for 

(a) TerraSAR X: 18 Oct. 2014, 25 Jan. 2015, 15 May 2015; and 
(b) RADARSAT-2: 18 Oct. 2014, 22 Jan. 2015, 09 May 2015 

 

4.2 Multitemporal Classification 

Different experiments have been conducted using the same 
training dataset for different classification results. Both for 
RADARSAT-2 and TerraSAR-X a classification was carried 
out, using: (1) all four Kennaugh elements, (2) combinations of 
the most significant Kennaugh elements, and (3) only the sum 
of intensities K0. For RADARSAT-2 only the difference 
between ascending and descending orbit was explored using as 
classification input (4) all four Kennaugh elements of only 
images acquired in ascending orbit, and (5) images acquired in 
descending orbit. After fusion of the multi-frequency time series 
of both sensors (TSX + RS-2) the classification was performed 
with: (6) all four Kennaugh elements of both sensors, (7) the 
most significant Kennaugh elements of both sensors, and (8) 
only K0 of both sensors.  
 
Figure 7 shows the two best multitemporal classification results: 
For TerraSAR-X this was the combination of Kennaugh 
element K0, K3 and K4, for RADARSAT-2 the combination of 
K0 and K1. For a combined X-band and C-band time series the 
fusion of the before mentioned two combinations yielded the 
best results. Permanent open water (W) displayed in blue, the 
change class water to land (W–L) in light blue, flooded 
vegetation to land (V–L) in light green, flooded vegetation to 
irrigated fields (V–F) (with land in the transition between) in 
green, the dynamic class of rapidly changing irrigated fields (F–
L/L–F) in red, and the two land classes land/permanent 
vegetation (L1) in dark green, and land/soils and rocks (L2) in 
beige.  

 

Figure 7. Multitemporal classification results for (a) TerraSAR-
X (K0–K3–K4), and (b) RADARSAT-2 (K0–K1) 

 
Though classification using the same classes (water, flooded 
vegetation, irrigated fields and non-wetland) on a single dual-
pol image was only successful for TerraSAR-X but not 
RADARSAT-2, the multitemporal classification proofs that 
using the full time series stack a classification is possible, and 
the same information can be extracted from X-band dual-co-
polarimetric as well as C-band dual-cross-polarimetric channels, 
as well as a combination of the two sensors. 
  
4.3 Classification Accuracy Assessment 

The validation dataset was created based on the same four 
optical VHR and HR data as the training set, see Chapter 3.2). 
The same number of AOIs per class – with approximately the 
same size – was used for validation. No AOIs were excluded, 
and no post-classification filtering was applied, in order to 
guarantee that the direct output of the pixel-based multitemporal 
classification of the Kennaugh element time series stacks is 
validated. Hence, the validation results refer to the whole 
monitoring system, including acquisition, data processing, and 
automated interpretation.  
 
Table 2 shows the results of the accuracy assessment in terms of 
Producer’s Accuracy (PA) and User’s Accuracy (UA) for the 
five relevant wetland change classes, and the Overall Accuracy 
(OA) of the entire classification that includes also further land 
classes. Combinations of different Kennaugh elements, 
polarizations (dual-co-pol and dual-cross-pol), and wavelengths 
(C-band and X-band) – separately and in synergy – are ranked 

a) b) a) b) 
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according to the classification OA (Table 2). The five relevant 
wetland classes out of the seven change classes are: permanent 
open water (W), water to land (W–L), flooded vegetation to 
land (V–L), flooded vegetation to irrigated fields (V–F), and 
dynamic irrigated fields to land or land to fields (F–L/L–F).  
 
A color scale was applied on the validation table based on five 
categories formed by a joint evaluation of the percentage of the 
Producer’s and User’s accuracy of correctly classified pixels: 
(1) both PA and UA between 90 and 100% (green), (2) the 
lower value between 80% and 90% and the higher one can be 
the same or above (yellow), (3) the lower value between 70% 
and 80% (light orange), (4) one value lower than 70% (dark 
orange), and (5) both values lower than 70% (brown). We 
consider values lower than 70% accuracy as not applicable for 
wetland classification or monitoring. 
 

 

W 
(PA/UA) 

W–L 
(PA/UA) 

V–L 
(PA/UA) 

V–F 
(PA/UA) 

F–L/L–F 
(PA/UA) OA 

TSX (K0-
3-4)+RS2 
(K0-1) 

100% / 
93.8% 

71.0% / 
100% 

93.3% / 
90.9% 

88.5% / 
78.3% 

97.6% / 
93.7% 

92,8% 

TSX (K0-
3-4) 

100%  / 
95.7% 

84.0% / 
100% 

92.2% / 
94.8% 

86.1% / 
74.4% 

94.3% / 
93.5% 92.1% 

RS2 (K0-
1) 

100%  / 
96.0% 

86.0% / 
100% 

90.8% / 
90.5% 

78.0% / 
68.9% 

91.9% / 
86.2% 90.6% 

TSX (all) 100%  / 
91.5% 

67.8% / 
100%  

91.8% / 
93.0% 

87.1% / 
72.2% 

94.8% / 
92.1% 89.9% 

TSX (K0) 
+ RS2 
(K0) 

98% / 
100% 

95.1% / 
99.3% 

89.7% / 
91.4% 

65.5% / 
64.0% 

90.4% / 
83.2% 

88.6% 
TSX (all) 
+ RS2 
(all) 

100% / 
95.3% 

48.4% / 
100%  

89.3% / 
76.2% 

86.4% / 
64.4% 

97.6% / 
87.5% 87.4% 

RS 2 (all) 
desc. 

100% / 
98.0% 

89.1% / 
98.4% 

78.5% / 
87.5% 

83.6% / 
60.3% 

81.8% / 
78.4% 86.7% 

RS2 (K0) 99.1% / 
100% 

95.2% / 
99.5% 

84.2% / 
89.3% 

57.0% / 
52.1% 

79.8% / 
70.5% 84.4% 

RS2 (all) 
asc. 

100% / 
96.1% 

80.7% / 
100% 

84.8% / 
81.8% 

59.1% / 
48.0% 

81.7% / 
76.4% 83.5% 

RS2 (all) 
asc+desc 

100% / 
93.1% 

49.7% / 
100% 

79.6% / 
72.6% 

81.4% / 
50.6% 

90.9% / 
80.1% 81.7% 

TSX (K0) 99.6% / 
100% 

97.5% / 
100% 

80.7% / 
83.5% 

38.0% / 
39..5% 

75.0% / 
82.6% 81.6% 

Table 2: Accuracy Assessment for the multitemporal 
classification of different polarimetric, frequency, and 

Kennaugh element combinations of the TerraSAR-X and 
RADARSAT-2 time series, ranked by Overall Accuracy (OA)  

 
The main findings of the validation are that multitemporal 
classification results for (a) TerraSAR-X (K0–K3–K4), and (b) 
RADARSAT-2 (K0–K1), or a multi-frequency combination of 
the two sensors are most suitable for wetland extent delineation 
and the derivation of wetland change classes. Furthermore, the 
comparison between ascending and descending orbit of 
RADARSAT-2 was tested, with the result that descending orbit 
is favoured for the multitemporal wetland classification of Lac 
Bam, reasons for that are subject to further investigations.  
 

In all experiments the class permanent open water (W) was 
classified with a very high accuracy. The class W–L is best 
detected using only K0 – the sum of intensities of the dual-pol 
data – in TSX (K0), RS-2 (K0) and TSX (K0) + RS-2 (K0). 
Therefore it can be concluded that the monitoring of open water 
or open water to land can be very successfully carried out with 
SAR intensity data and without any contribution of the 
polarimetric channels. This, however, is not the case for many 
studies considering also vegetation or cultivation in wetlands.  
 
TerraSAR-X dual-co-pol data is favoured for applications 
where the classification of flooded vegetation is of high 
relevance. This is reflected in very high classification accuracies 
for the class V–L with TSX using (1) all Kennaugh elements, 
(2) the most relevant Kennaugh elements K0–K3–K4, or (3) a 
combination of the most relevant Kennaugh elements from TSX 
and RS-2. Using RS-2, very high accuracies of V–L could be 
achieved with the favoured Kennaugh elements K0–K1, but the 
class V–F shows only low accuracies in the order of PA 
78%/UA69%. Using TSX, the class V–F achieves higher 
accuracies in the order of 86–87% PA and 72%–74% UA. A 
combination of TSX and RS-2 would also lead to the desired 
results. Using only K0 is the worst choice for classifying V–F, 
and so are most other combinations of RS-2 data. Moreover, the 
single image classification (see Figure 4) showed that TSX data 
could very successfully delineate flooded vegetation, whereas 
RS-2 data could not.  
 
As far as irrigated fields are concerned, the best choice is to 
work with the Kennaugh elements of TSX or the combined 
most significant Kennaugh elements of TSX and RS-2. 
Tendentially, all other combinations involving RS-2 show too 
low accuracies (70–82% for PA and UA) for F–L/L–F, and as 
well lower accuracies for V–F, as mentioned in the previous 
paragraph. Therefore TSX dual-co-pol data can be considered to 
be preferred for monitoring irrigated fields.  
 

5. CONCLUSIONS 

Especially in semi-arid regions, where water reservoirs and 
wetlands are the main water resource during the long dry 
season, monitoring of water – including waters of flooded or 
floating vegetation – is vital, as is monitoring of irrigation 
activities around wetlands extracting water from the wetland. In 
this study an approach for wetland delineation and the 
derivation of change classes from regular, dense time series is 
performed, using different dual-polarimetric SAR data time 
series. Using a well-established supervised classification 
method, based on a maximum likelihood classifier, a 
multitemporal classification approach developed for wetland 
monitoring using TerraSAR-X data could be successfully 
transferred onto RADARSAT-2 data. This study represents the 
first multi-frequency wetland monitoring using partial-
polarimetric SAR data.  
 
Results demonstrate the importance of the temporal component 
in remotely sensed information. Though a supervised 
classification of the wetland classes open water, flooded 
vegetation and irrigated cultivation on single Kennaugh images 
of TerraSAR-X was successful, it failed when using 
RADARSAT-2 data. Comparable information, however, could 
be derived when focussing on a stack of a time series as input to 
a multitemporal classification, adding the temporal aspect. This 
could be realized thanks to the Kennaugh element framework 
(Schmitt et al., 2015), enabling multi-scale and multi-frequency 
processing and the derivation of geolocated and calibrated 
Kennaugh elements from different sensors and polarizations. 
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This study presents the first multi-frequency data fusion using 
the Kennaugh element framework. A fusion of the TerraSAR-X 
and RADARSAT-2 Kennaugh elements could therefore be 
applied, leading to similarly high classification accuracies 
(almost 93% overall accuracy) than when using the TerraSAR-
X time series with the most significant Kennaugh elements: K0, 
K3, and K4 (92% overall accuracy). Moreover, using the two 
most significant Kennaugh elements K0 and K1 of 
RADARSAT-2 high classification accuracies (almost 91% 
overall accuracy) could be achieved.  
 
The classification accuracies exceeded our expectations. Open 
water and the change class water to land could be well detected 
in the Kennaugh element K0 from both sensors, representing the 
total intensity from co-polarized HH-VV TerraSAR-X data, as 
well as cross-polarized HH-HV RADARSAT-2 data. For all 
classes related to flooded vegetation or irrigated cultivation, the 
use of multi-polarized imagery, and therefore the use of further 
Kennaugh elements, is required. The classification accuracies 
for change classes of flooded vegetation to land or to irrigated 
fields were significantly higher for most combinations involving 
TerraSAR-X dual-co-polarimetric data, with respect to 
RADARSAT-2 dual-cross-polarimetric data. The multitemporal 
classification approach could be successfully transferred from 
TerraSAR-X to RADARSAT-2 data.  
 
While the results in this study focus on wetland extent, 
delineation, and dynamic change classes, a next step would be 
to perform time series analysis to derive seasonal start, duration 
and end maps and time series of areal change for every time 
step in the dense polarimetric SAR time series. This has been 
successfully done by Moser et al. (2016), using dual-
polarimetric TSX time series for wetland monitoring. This work 
shows, that the approach classifying every image in the time 
series cannot be directly transferred to dual-cross-pol C-band 
data – such as RADARSAT-2 – and there is still a need for 
further research. This study concludes to an outlook on future 
possibilities and the feasibility to establish an operational 
monitoring system of prime importance for a whole region, like 
semi-arid areas in West Africa. RADARSAT-2 data can be 
considered to be comparable with the European Space Agency’s 
Sentinel-1 (S-1) data, which are systematically acquiring data 
since April 2015 over a large coverage of African areas, 
including the Lac Bam site. In May 2016 there will be a full S-1 
time series from the rainy to the dry season acquired, such as 
the one used in this work. With a repeat frequency of 12 days 
for Sentinel-1 – that is reduced to 6 days once both satellites are 
in orbit – there is great potential for the exploitation of regular 
dual-cross-polarimetric time series over wetland sites. Besides 
Sentinel-1, also the TSX time series will be further on acquired 
for the Lac Bam site. This study shows that a coverage of 2–3 
images per year – as it is currently applied for many wetland 
studies and projects – is not enough to correctly delineate 
wetlands or capture their seasonal dynamics and change classes.  
 
We also want to emphasize that this the approach applied in this 
work was based on a basic, well-established and statistically 
comprehensible supervised maximum likelihood classification 
method, that was only minimally modified enhancing the 
weight of K0 for open water classification. The performance in 
terms of processing time was very good, and – without any 
other pre-classification time series analysis or post-classification 
filtering – very high classification accuracies could be achieved 
on a per-pixel level. We therefore conclude to the suitability of 
the multi-scale, multi-frequency Kennaugh element framework, 
and the potential of dual-polarimetric SAR time series for 
wetland classification and monitoring.  
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