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Excitation of guided waves and sine sweep – Experiments on a 
NACA0012 - profile from CFC 
 



• Ice detection at the place of generation 
 
 Information about state of airplane icing  
  Increase of safety 
  Targeted use of thermal De-Icing 
  Lower energy consumption 
 Sensor application on the inner surface of the leading edge 
  Reduced aerodynamic resistance / lower operating costs 
 
- Maintenance 

 

Motivation/Advantages over the state of art 
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• Generation of structure-borne noise: 
 

• Transmitter-receiver-principle: 
1.) Excitation with a defined frequency range 
  Analysis in time and frequency domain 
 
2.) Excitation with a fixed frequency 
  Excitation of ultra sonic guided waves , Analysis in time domain 
  

Measurement principle 
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• General: 
• 1 x NACA0012 – rear part from aluminium with 2 x leading edge from CFC 
 total lenght 1 m 

• Application with Sikomin SR 1710i / SD 8824 under vacuum 
• Electrical insulation by hot melt and influence of specimen fixing 

investigated beforehand 
 

• Ultrasonic guided waves: 
• 2 x DuraAct Patch Transducer (rectangular)  
• Excitation frequency: 218 kHz, Sine 
• Cycle number: 1, 4, 10 

 
• Swept sine: 

• 8 x discs actuator (round) 
• Excitated frequency range from 1 kHz to 800 kHz 

Experimental setup 
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• The diagram shows the decrease of the mean value of the 
absolute values. 

Influence of electric insulation 
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Examples of time signals 
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• not every excited frequency will decrease due to ice build-up! 



Influence of position and angle between transmission 
path and fibre 
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Influence of position and angle between transmission 
path and fibre 
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Influence of position and angle between transmission 
path and fibre 
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Influence of position and angle between transmission 
path and fibre 
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Influence of position and angle between transmission 
path and fibre 

> Greener Aviation 2016 > Christian Mendig  •  ICE DETECTION BY MECHANICAL WAVES > 11.10.2016 DLR.de  •  Chart 12 



 
• A manual applied retroactive insulation leads to a significant decrease in signal 

amplitude! 
 

• Attaching the leading edge to spar and ribs changes the boundary conditions 
and leads to further decrease in signal amplitude ! 

 
• A beforehand encapsulated piecoceramic is preferable to a piezoceramic 

without enclosure (smaller decrease in amplitude, no failure due to electrical 
connections between piezoceramic and single carbon fibres)! 
 

• The position on the leading edge and the angle between transmission path and 
layer structure have even a big influence to the expecting signal amplitude ! 

> Greener Aviation 2016 > Christian Mendig  •  ICE DETECTION BY MECHANICAL WAVES > 11.10.2016 DLR.de  •  Folie 13 

Results for the design 
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  Ice thickness and ice type are variing over the profil depth  
  
  Ice thickness is difficult to measure 



Measurements for increasing icing time 
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• Influence of temperature change has to be taken into account. 
• This influence in turn variies with the position of the piezoceramic 

and the choosen frequency range for excitation. 



Measurements for increasing icing time 
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• Reliable operation needs minium ice thickness / ice area 



Measurements for increasing icing time 
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• Areas with different sensitivity exist 
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Conclusion – Swept sine excitation 

• Detection of ice accretion by analysing U�  and U  is possible 
 

• Low sensitivity of U�  and U  for less amounts of ice 
 

• Small electric power for excitation (1 W) enables sufficient ranges 
 

• For design and interpretation of U�  and U , several influencing parameters 
have to be considered: 

 
• Boundary conditions of fixing (spars and ribs) 
• Insulation of piezo ceramics 
• Position of piezo ceramics 
• Angle between transmission path and fibre layers 
• Temperature 



• Temperature has no influence to term (0 %) and amplitude (< 2 %) 
 

(For this setup! Temperature is changing parameters like elastic 
modulus of the structure and capacity of the piezo ceramics!) 

 

Results guided waves – influence of temperature 
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Results of guided waves – Terms 
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Results of guided waves – New wave package when 
icing occours 
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• Term of new wave package is decreasing 

Results of guided waves – Terms of new wave packet 
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Results guided waves – Example of a signal 
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  Decrease in amplitude with increasing mass / thickness of ice
     (Iced area difficult to determine) 
  Increase in term with increasing mass / thickness of ice 
   



Results guided waves – U�  and U    
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Ice build-up without ice on the shortes transmission 
path 
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• Strong decrease in the three wave packages. 
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• Detection of ice accretion by analysing U�  and U  is possible 
 

• High sensitivity in the area of thin ice thickness for U�  and U   
 

• Increasing sensitivity of the term with increasing ice thickness 
 

  Combination of both methods for maximum sensitivity possible 
 

Conclusion – Guided waves 
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