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Abstract: Due to the unprecedented technology development of sensors, platforms and algorithms for 

3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image 

based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D 

city models, become more accessible than ever before. Change detection (CD) or time-series data 

analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to 

facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to 

provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD 

techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the 

particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), 

not only provides a source with different modality for analysis, but also transcends the border of 

traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based 

geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote 

sensing and close-range data, in support of both academia and industry researchers who seek for 

solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the 

general considerations of 3D CD problems in different processing stages and identify CD types based on 

the information used, being the geometric comparison and geometric-spectral analysis. We then 

summarize relevant works and practices in urban, environment, ecology and civil applications, etc.  

Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 

3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.  

Keywords: 3D Change Detection; Digital Surface Models; Oblique Images; LiDAR; Land-cover 

Classification; Very High Resolution 

1. Introduction 

Notations of spatial resolution defined in this article:  

LTMR: Low-to-medium Resolution; refers to remote sensing data with a spatial resolution lower than 4 meters. 

HR: High resolution; Refers to remote sensing data with a spatial resolution of 1-4 meters 

VHR: Very high resolution; Refers to remote sensing data with a spatial resolution of 0.3-1 meters. 

UHR: Ultra-high resolution; Refers to remote sensing data with a spatial resolution less than 0.3 meters. 

 

Change detection (CD) and analysis is one of the major topics in remote sensing. It is referred by Singh 

(1989)   as “the process of identifying differences in the state of object or phenomenon by observing it 
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at different times”. Three-dimensional (3D) CD, as a subset of the general remote sensing CD problem, is 

featured by its additional data source (height, depth, or full 3D information) and the possible outcomes 

(volumetric/height differences). The data can be 3D models, point clouds or digital elevation models 

(DEM) that provide explicit 3D positions/shapes of the ground objects, or stereo-view/multi-view images 

that have potentials to generate such explicit 3D information. 3D CD is a relatively new topic, greatly 

driven by the growing accessibility of 3D data and need in 3D smart cities (Daniel and Doran, 2013; 

Gruen, 2013). With this new dimensional information, the scope of CD applications can be greatly 

expanded to a full 3D space, with flexibilities of detecting change in any viewing perspective and level of 

detail, including but not limited to 3D deformation analysis in landslides, fault rupture detection, 3D city 

model updating, 3D structure and construction monitoring, 3D object tracking, tree growth monitoring 

and biomass estimation etc.  (Choi and Lee, 2011; Kim et al., 2013; Miller et al., 2000; Rebolj et al., 2008; 

Torres-Sánchez et al., 2014). Moreover, the 3D geometric information reflects the physical geometry of 

the objects, which has a great potential to improve the performance and overcome some of the limits of 

traditional 2D image-based CD. 

1.1. Existing challenges and limits in traditional 2D image-based change detection  

For a long time, many CD studies have been conducted using 2D remote sensing images on large-scale 

problems such as forest monitoring, urban sprawl, earthquake assessment, etc. (Brunner et al., 2010; 

Coppin et al., 2004; Hayes and Sader, 2001; Lu et al., 2004; Ram and Kolarkar, 1993; Saito et al., 2004; 

Song et al., 2014; Tewkesbury et al., 2015). Among these works, most of the CD tasks were performed 

using low-to-medium resolution (LTMR) images on a landscape level (Ingram et al., 1981; Lambin and 

Ehrlich, 1997; Lu et al., 2002; Mas, 1999; Metternicht, 1999; Singh, 1986). A few of them investigated 

the possibility of using very high resolution (VHR) images for 2D CD in a finer level (Bouziani et al., 2010; 

Brunner et al., 2010; Huang et al., 2014; Košecka, 2012; Vakalopoulou et al., 2015). However, as the 

image resolution reaches a finer level, several problems emerge in 2D CD: 

1). Higher spectral variability: Pixels in VHR images reveal more detailed information, which greatly 

reduced the mixed-pixel effect in comparison to LTMR (Foody, 1996). However, it also brings higher 

spectral variability for ground objects, since an object can be represented by a group of pixels with 

different spectral values (Blaschke, 2010). This makes the CD results more sensitive to techniques 

related to pixel-wise comparison such as image differencing and ratioing (Lu et al., 2004; Singh, 1989).  

2) Perspective distortion: Image registration is a crucial step for 2D CD requiring per-pixel 

correspondences, which is usually modeled by 2D transformations (rigid, similarity and projection, etc.). 

The 2D transformations approximate the ground as a planar surface, which might be reasonable for 

LTMR images whereas they are too coarse for VHR images, consequently leading to the problem of 

multi-sensor image registration (Chen et al., 2014; Qin et al., 2013). To a technically more extreme yet 

common example, i.e. close-range images in a complex street environment (Qin and Gruen, 2014; Xiao 

et al., 2015), purely 2D image-based CD is less likely to be considered due to the large differences of 

viewing angle and perspective effects. Therefore, most of the 2D CD works limit their study scope to 

images that have similar viewing angles and are captured by the same or similar sensors (Bouziani et al., 

2010; Pacifici et al., 2007), largely restricted to top-view remote sensing data. 
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3) Lack of volumetric information. 2D CD can extract planimetric changes such as 

appearing/disappearing, shrinking/expanding. However, these results do not suffice the need of 

applications requiring the vertical information, such as quantitative estimation of landslides volume, 

tree growth and building construction progress monitoring (Martha et al., 2010; Tian et al., 2014b; 

Waser et al., 2008).  

Techniques were used to address the first two problems in 2D CD for VHR image (Noh and Howat, 2015). 

As for the first problem, post-classification methods (Pacifici et al., 2007) are usually applied to label the 

multi-temporal images to bypass the direct comparison of the image spectral values. The object-based 

analysis is also regarded as an approach that reduces the spectral value variation for change detection 

(Hussain et al., 2013). To address the perspective differences (problem 2), object-based methods are 

adopted to segment the image into pixel groups (also called super pixels or regions) (Hussain et al., 

2013), with the intention to increase the overlap of identical objects for reducing misregistration errors 

(Chen et al., 2014; Desclée et al., 2006; Durieux et al., 2008). Another approach adopts image pyramids 

for hierarchical result fusion, which takes the CD results of the coarse image level and gradually applies 

them to a finer level (Carvalho et al., 2001). These techniques partially addressed the perspective-

induced misregistration to a certain level, while the compromise of resolution and granularity brings a 

lot of detection errors. Indeed, though object-based methods seem to be a fair trick to increase the 

tolerance of 2D image comparison to perspectively distorted images, it is still quite sensitive to 

registration errors (Chen et al., 2014). 

1.2. Advantages and challenges in 3D change detection 

1.2.1. Advantages 

3D CD has clearly more advantages towards the limitations of 2D CD (as shown in Table 1), as the 3D 

geometric information is free of illumination variations and perspective distortions. The co-registration 

of 3D data can be rigorously modeled and the pixel/object/surface correspondences can be more 

precisely achieved (Gruen and Akca, 2005), with all range of objects in CD applications. These 

advantages have been known for a long time (Murakami et al., 1999), while the major barrier of 3D CD 

applications was the cost and accessibility of accurate 3D data: Airborne LiDAR flights were usually 

expensive, and high accuracy photogrammetric stereo measurements from images still required manual 

involvement. Nowadays we get much better access to accurate 3D data: low-cost lightweight LiDAR and 

terrestrial LiDAR system are becoming more affordable, and the recent development of automated 

image geo-referencing (Pierrot-Deseilligny et al., 2011; Snavely et al., 2006) and advanced dense image 

matching (DIM) techniques have dramatically raised the availability of image-based 3D information 

(Remondino et al., 2014) with improved quality. Image data from UAV (unmanned aerial vehicle) and 

satellite platforms can be readily processed automatically, flowing from images to point clouds and 

digital surface models (DSM). It is capable of automatically generating LiDAR comparable dense point 

clouds within a reasonable processing time (Gehrke et al., 2010). Additionally, improved optical satellite 

sensors enable acquiring large scale (even multi-view) stereo images with sub-meter spatial resolution 

(such as Worldview, GeoEye images), with short revisit cycles. Nano satellite systems (Barnhart et al., 

2007), which coordinate a series of low-cost optical satellites in the orbit, can constantly acquire high 
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resolution images with a global coverage on a daily basis.  These sources make the 3D information more 

accessible and thereby have motivated great interest in using such 3D data for CD problems.  

Table 1. Overview of the differences between 3D and 2D CD problems 

 2D CD 3D CD 

Data sources 2D panchromatic/spectral images, 2D vector data 3D point clouds, digital surface models, stereo images, multi-
view images, 3D models, etc. 

Application scale Generally applied to LTMR images at a landscape level 
Limited applications in very high resolution at 
individual building level 

Generally applicable to data with any resolution 
 
Applicable for data from oblique views 

Advantages Well-investigated  
Easy to collect data  
Easy to implement 

Height component robust to illumination differences 
Free of perspective effect even for VHR data 
Provide volumetric differences 
 

Disadvantages Strongly affected by illumination and atmospheric 
conditions 
Limited by viewing angles, perspective distortions 

Unreliable 3D information may result in artifacts 
Partly still expensive data sources 

 
1.2.2. Challenges in 3D change detection  

One more dimension in data for CD may not be regarded as a simple extension of a height layer in image 

analysis, since an additional dimension in space (from 2D to 3D) can create so much variation that leads 

to new challenges in both methodological and application domain. 

1) Uncertainties of 3D data. Due to various means of 3D data generation, the uncertainty of the 

geometric (e.g. height) information varies with the sensors, algorithms and object scales. For 

example, the image matching may fail on thin and tall objects or large texture-less area. 

Uncertainties of point clouds generated using different dense matching methods may have 

different and non-uniform distributions. 

2) Fusion of heterogeneous/multi-modal data: Geometric data presents a different modality from 

the image data. Fusion of both data requires special considerations of different types of data 

uncertainties, feature extraction and multi-source weighting (Tian et al., 2013). 

3) Applications in any viewing perspective with any resolution. In additional to top-view data, 

applications in a full 3D space from any perspectives and level of details lead to a largely 

expanded problem domain, including the handling of single structure monitoring, 3D object 

tracking, point cloud based CD etc., where the presence of occlusions, disturbances of unwanted 

objects, incomplete data, and 3D feature extraction require new techniques and methods that 

were not used in traditional 2D image-based CD. 

 

1.2.3. About this review 

This paper provides an overview of the recent developments of 3D CD techniques, with a particular 

focus on how this third dimensional information (height/depth) is incorporated into the CD process. 3D 

data generated from images, Light Detection and Ranging (LiDAR), and readily available 3D geospatial 

products, such as 3D models, digital elevation models (DEM), etc., are the major sources of concern. In 

addition, this paper also summarizes some of the ongoing efforts and relevant practices that require 3D 

CD techniques in various fields. According to the objects of interest and viewing-scenario, 3D CD can be 
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applied to both remote sensing data (captured from a top-view) and close-range/oblique data. Although 

applications and data are highly different, two fundamental utilizations of the 3D data can largely 

encapsulate the current 3D CD techniques: 1) Geometric comparison and 2) geometric-spectral analysis. 

We first present the major steps of a 3D CD problem in section 2, and address the technical details of 

these two points in section 3. In section 4, we categorize and identify applications and works based on 

different fields supported by 3D CD. In section 5, we discuss the potential problems and remaining 

challenges by summarizing the presented methods. Section 6 summarizes this survey and provides 

recommendations on 3D CD solutions. 

2. General considerations  

3D change detection techniques are highly disparate for many applications. Different applications vary 

in the object of interest, resolution, quality of available 3D information, etc. Similar to traditional 2D 

image-based CD, 3D CD tasks typically have three processing steps: (a) Data acquisition/selection; (b) 

Data co-registration; (c) Change analysis. The first two steps are regarded as the preprocessing steps 

that generate and align multi-temporal 3D data for change detection and analysis. When 3D information 

is incorporated in the process, each step requires special considerations (summarized in Table 2). This 

section outlines the important aspects of 3D data acquisition/generation, co-registration and the change 

representation in 3D. 

Table 2. Key considerations in a 3D CD task  

Steps Descriptions Considerations 

Data acquisition  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data co-registration 
        
 
 
 
 
 
 
 

3D-IMP: multi-view or stereo view images 
3D-EXP: point clouds, 3D models, DSMs 
etc. 
 
Acquire/select 3D multi-temporal data (at 
least two dates).  Data can be either 3D-
IMP or 3D-EXP. 
 
Platforms: Airplane, UAV, satellite, balloon, 
mobile vehicle, terrestrial stations, etc. 
 
Sensors: Optical camera, range camera, 
LiDAR, SAR. 
 
 
 
 
 
 
 
 
 
 
Align two different datasets in a common 
coordinates system for point-by-point 
comparisons, with generally one of the 
following three methods: 
1. Using imaging sensor geometry (bundle 
adjustment); 
2. Local method: direct 3D transformation 
using a set of point correspondences; 
3. Global method: iterative 3D 

 Cross-seasonal effects may induce geometric changes. The 
collection of input data should avoid extreme weather 
conditions such as heavy snows and drought of rivers. 

 Resolution and accuracy should match the range of the 
object.  The resolution should be higher such that the 
object of interest can be recorded by tenths of points or 
hundreds of pixels for robust estimation. 

 Top-view image blocks should be acquired following 
photogrammetric standards, e.g. 60-80% in forward and 
side overlap.  

 For satellite stereo images, intersection angle should be 
within the range of 15 to 25 degrees to obtain good DSM 
for methods such as SGM (Semi-global Matching) in urban 
areas, and can be slightly larger (up to 40 degrees) for 
smooth terrain (suburban, mountainous areas). 

 For off-track stereo images, capturing dates of two images 
should be within a few months, and the radiometric 
difference of two images should not be large.  

 In oblique and close-range case, incomplete/occluded data 
may lead to false detection. Convergence images, and/or 
multi-scan LiDAR point clouds are needed to close gaps.  
 

 

 Co-registration of 3D-IMP data or the mixture of 3D-IMP 
and 3D-EXP should be performed using imaging sensor 
geometry. 

 Co-registration of 3D-IMP data should be done before 
turning them into 3D-EXP data. 

 The 3D transformation of 3D-EXP data can be performed 
combing both local and global methods to achieve higher 
accuracy. 

 Co-registration for oblique-view datasets is more 
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Change representation 

transformation using all points of the 
datasets (e.g. Least squares 3D surface 
matching) and ICP (iterative closest point). 
 
 
Determine whether a point/group of points 
is changed between two datasets. There 
are three types of change presentations: 
1.  Binary change mask (change/non-
change); 
2.  Triple change mask (positive, negative 
change, or non-change); 
3. Type change (requiring post-
classification). 

complicated and may require initial values for co-
registration 

 

 

 

 For a final representation of a triple change mask, the 

height/depth information should be used independently of 

the spectral image. 

 Height/depth information can be used to increase the 
classification accuracy. 

 Both the spectral and height/depth information infer 
change detection. An optimally combined use is a key to 
produce good CD results. 

 

2.1 Data acquisition and generation 

The selection/acquisition of data is an important issue to address a CD problem (Lu et al., 2004). 

Different applications consider objects with different ranges (from millimeter to kilometers); data with a 

matching resolution and accuracy to the object of interest is always desirable for computation and 

storage considerations (Tewkesbury et al., 2015). Sometimes we are not so “free” to select or acquire 

optimal datasets, e.g. time specific data such as pre-earthquake data or data of a particular day, in which 

we basically need to rely on what we have to tackle the relevant problems. Here in this subsection, we 

consider that in most cases we have certain flexibilities for 3D data acquisition and generation with 

common approaches. Input 3D data can be in various forms such as stereo images, DEM, point clouds 

and 3D models (vector data) that spatially represent the ground geometry.  

2.1.1. Seasonal effects 

Seasonal variation is an undesired factor for traditional 2D CD, of which the humidity, snows and color 

change of tree/flowers etc. are all disturbances for detecting actual changes. 3D data are more robust 

towards this issue. However,  in the case that the ground geometry also changes, such as leaves on/off, 

dryness of the river and high-level of snow coverage  (Qin et al., 2015b), seasonal effects may still create 

disturbances for 3D CD. It is still important to avoid such extreme seasonal discrepancies when selecting 

data for 3D CD, but this is generally less restrictive than for 2D cases (Hussain et al., 2013), which stated 

that images should be acquired at nearly the same time of a year.  

2.1.2. 3D data acquisition  

Acquiring high-quality 3D data is an important starting point. The quality of the 3D data usually refers to 

the accuracy in geometry, completeness, and resolution. Accuracy and resolution requirement for a CD 

task usually depend on the range of the objects of interest. Data with a matching resolution and 

accuracy refers to data that exhibit at least equal resolution and accuracy to the object scale. Slightly 

higher resolution and accuracy are often desired, such that the object of interest can be recorded by 

tens of points or hundreds of pixels, as it will provide detailed information for object-based analysis 

(Blaschke, 2010).  
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(a) LiDAR data 

3D data from LiDAR have consistent ranging accuracies. Depending on the platforms and sensors, the 

resolution/point density varies greatly from a few points per m2 to thousands of points per m2. Airborne 

LiDAR data is usually regarded as a reliable data source for CD. Every single measurement is highly 

accurate and in a top-view set up for data capture, and there is not much occlusion. However, when 

close-range data is considered, such as terrestrial or mobile LiDAR, data completeness becomes a critical 

issue for change detection, as very likely the occluded area will be identified as changes. Therefore 

getting complete data requires multiple scans, or to keep the multi-temporal data constantly have the 

same occlusions. 

(b) Image-derived 3D data 

For 3D data derived from images, the achievable geo-referencing accuracy is largely correlated to the 

resolution. Though theoretically other factors, such as sensor distortion, image noise may affect the 

accuracy as well, these may not be critical issues nowadays for professional or even consumer grade 

cameras. A major factor for the geo-referencing accuracy is the camera network design (Alsadik et al., 

2013) which will be decisive to the performance of image geo-referencing (or bundle adjustment). For 

aerial and UAV photogrammetry, image blocks with at least 60-80% overlap in both forward and side 

direction usually renders good ray-intersection, thus giving good accuracy in spatial resection. Such 

requirements are fairly easy to achieve with automated piloting and shuttering system (Chao et al., 

2010): camera shutters are triggered when onboard location reading from the GPS (global positioning 

system) aligns with the pre-defined waypoints. Nowadays even consumer grade UAVs are equipped with 

such system (Colomina and Molina, 2014). 

Satellite stereo imagery is another important 3D data source of consideration. Often the providers offer 

on-track stereo images, the intersection (or convergence) angle of which should be kept within 15-25 

degrees to get small parallax for narrow-baseline matching methods such as SGM (d'Angelo et al., 2014). 

It can be slightly larger (up to 40 degrees) for smooth terrain or mountains. Off-track stereo images (two 

images taken from different days) refer to image pairs that are not intended to capture as stereo images. 

Such pairs are selected from single images taken at different dates, of which the capture dates, 

radiometric properties, and intersection angle needs to be carefully evaluated: capturing date should be 

within a few months to avoid significant changes between two images of the stereo pair. The 

radiometric difference of two images should not be significant to affect image matching performances.   

Data occlusion (incompleteness) is not a significant problem for top-view data (from aerial/UAV). 

However, this is an important concern when acquiring image data in oblique or terrestrial scenarios to 

cover every façade of the objects. Convergence images (Remondino and El‐Hakim, 2006) are necessary 

to cover occluded parts of the objects, such as the corner of the walls.  

2.1.3. Image matching algorithm 

Image derived 3D point clouds are generated from geo-referenced images by dense image matching 

(DIM) techniques, the performance of which is decisive on the quality of the resulting point clouds. DIM 
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methods with multiple images fall generally into two categories according to how images are structured 

(Remondino et al., 2014), 1) multi-stereo matching (MSM); 2) Multi-view matching (MVM). MSM is a 

direct extension of two-view stereo matching, in which images are paired and point clouds of each pair 

are fused/filtered to form a final point cloud (Haala and Rothermel, 2012; Hirschmüller, 2005). MVM 

considers matching points across multiple images simultaneously (Baltsavias, 1991; Furukawa and Ponce, 

2010). MVM is a more rigorous way to incorporate redundant information, but often more complicated 

to implement. A recent review (Remondino et al., 2014) in DIM compared different software packages 

(contain methods from both MSM and MVM categories) in generating point clouds from consumer 

grade images. No specific conclusions were given on the performance of all test methods, due to the 

complex test cases and flexibility of tunable parameters. Both types of methods have advantages and 

disadvantages, and their performances vary with the camera network, scene content, and complexity, 

strategies for point matching (global or local) etc. Our own experience is that generally for top-view 

photogrammetric images blocks (60-80% overlap for frame images and 15-25 degrees of intersection 

angle for satellite images), the MSM methods such as SGM (semi-global matching) appear to be a good 

choice, it leverages both speed and performances (d’Angelo and Reinartz, 2011; Krauß et al., 2013). 

However for images taken from terrestrial and mobile platforms, especially for those that form large 

baselines and poor camera networks, MVM methods in general produce more complete point clouds, 

since the visibility are modeled while many stereo algorithms tend to resist objects with large parallax 

(Morgan et al., 2010; Seitz et al., 2006). 

2.2. Data co-registration  

To compare two datasets captured in different times, spatial co-registration is a key step to building up 

point-to-point, patch-to-patch or point-to-patch correspondences. An apparent advantage of the 3D co-

registration is that the 3D data alignment can be well-modeled by 3D rigid (Besl and Mckay, 1992) or 

similarity transformations  (Gruen and Akca, 2005).  Here we differentiate two types of 3D data: 1) data 

contain explicit 3D information (3D-EXP) such as 3D point clouds, DSM, 3D models; 2) data contain 

implicit 3D information (3D-IMP) such as multi-view/stereo-view images. Depending on the input multi-

temporal data pairs (3D-EXP, 3D-IMP or mixture), the co-registration can be applied either under the 

constraint of the imaging sensor geometry (Fischler and Bolles, 1981) or by direct 3D transformations. A 

common approach to co-register two sets of 3DIMP data or mixture (one with 3D-EXP, and the other 

with 3D-IMP) is to use a set of GCPs (ground control points) and corresponding points, through the 

process of bundle adjustment (Fraser and Hanley, 2003; Triggs et al., 2000). When GCPs are not 

available, virtual GCPs can be measured from 3D-EXP data for bundle adjustment. The co-registration 

between two 3D-IMP data can be performed with free-network bundle adjustment without control 

points. In particular, if a large amount of correspondences are used under a rigorous sensor model, high-

accuracy data alignment can be achieved (Qin, 2014b) for bi-temporal and multi-temporal data sets (Qin 

et al., 2015b). It is recommended to co-register two 3D-IMP datasets before  converting  them into 3D-

EXP datasets, as the process of generating 3D-EXP data from 3D-IMP data (e.g. DSM generation from 

image blocks) may produce errors and uncertainties (Qin, 2014a; Qin, 2014b; Qin and Gruen, 2014).  

To co-register two sets of 3D-EXP data, both local and global 3D transformations can be applied. Local 

methods directly compute 3D transformations using a selected set of point correspondences (Theiler et 
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al., 2014), while the global methods minimizes the summed squared error of point-to-point or point-to-

surface distances, such as least squares 3D matching (Gruen and Akca, 2005) and Iterative closest point 

(ICP) algorithm (Besl and Mckay, 1992; Chen and Medioni, 1992; Zhang, 1994). These global methods 

have outlier removal procedures that are robust to data with a certain level of noise (Pilgrim, 1996). 

Descriptions of similar methods that minimize point-to-surface distances can be found in (Habib and 

Schenk, 1999; Karras and Petsa, 1993; Maas, 2000; Schenk et al., 2000). For the co-registration of two 

DSMs, the process is usually simplified by estimating a 3D shift between two datasets and minimizing 

the differences in height (Zhang and Cen, 2008). Terrestrial 3D-EXP data are often more complicated for 

co-registration due to the complex geometry and occlusions. Moreover, two acquisitions may not be in a 

common coordinate system, and initial values for the 3D transformation are needed. The local and 

global methods are very often applied in a combined fashion: 3D correspondences are first used to 

perform a coarse estimation of the transformation parameters, and then LS3D (Least Squares 3D Surface 

Matching) or ICP are applied to achieve point/pixel level registration.  

2.3. Change representation  

In general, the information of change can be represented in three categories: 1) binary change (Radke et 

al., 2005); 2) triple change mask: positive, negative and non-change (Tian et al., 2010)  and 3) type 

change (Lu et al., 2004). The binary change provides a binary indicator on change/non-change area. The 

second type is a triple indicator that labels the status of the change in geometry: “positive” refers to 

increased height/reduced depth and negative refers to the opposite. Type change is the most general 

and complete representation for CD tasks (Lu et al., 2004). It requires a full change matrix that specifies 

the change direction of the land-cover in a bi-temporal basis, and the positive/negative change can be 

additionally incorporated to each type changes. 

These three categories of change representation could largely encapsulate general cases. Both category 

2) and category 3) are mainly considered in top-view data scenarios, in which the third-dimensional 

information is provided as height and depth. In such cases, the presentation is similar to 2D CD, with the 

smallest unit being a pixel, object or 3D surface patch. For category 2), the height/depth information 

plays a major role in change representation, and the spectral information may be used to assist the 

change analysis (Tian et al., 2010). Post-classification is usually needed for calculating the type changes 

for category 3), and the use of height/depth information may be effective to improve the classification 

accuracy of the urban area (Huang et al., 2011) (Qin et al., 2015a) (Zhang et al., 2015).  

The final change determination is usually performed through the comparison of the geometric 

(height/depth) and/or spectral information (Sasagawa et al., 2013; Stal et al., 2013). Both the geometric 

and spectral differences infer cues of possible changes, while such cues may have strong conflicting 

evidence that may require proper weighting scheme between them (Tian and Reinartz, 2013; Zebedin et 

al., 2008).  

3. Change detection techniques with 3D information 

The process of change detection and analysis is to find out the differences of the registered 3D data, 

optionally with associated spectral information. The 3D data can be in various formats. A DSM is a 
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simple and compatible 3D format for top-view CD, as it can be converted directly from point clouds, or 

resampled from complex data such as 3D polygonal models (Qin, 2014a). For DSMs generated using DIM, 

the associated images (panchromatic, multispectral, hyperspectral or color) can be corrected to true 

orthophotos, with per-pixel correspondence to the DSM grids; thereby each pixel contains both height 

and spectral information. Oblique-view or close-range data are more complex due to the complicated 

multi-layer 3D structures and occlusions. 3D geometric information plays a key role in 3D CD on oblique-

view data, whereas the spectral information is less considered as change evidence due to the large 

luminance variation and artifacts created by texture mapping problems.  

Essentially, the 3D geometric information reveals two properties: 1) Geometric property – it provides 

physical measurements of the ground scene in the object space. 2) Information property – the geometry 

can be seen as an information source of the ground scene, enabling features (such as shapes, volumes, 

etc.) to be extracted for analysis. Although the geometric information can be used in various ways for 3D 

CD tasks, the basic concepts behind the methods can be simply differentiated according to these two 

properties. Therefore, our introduction to the current 3D CD methods will follow two rationales: 1) 

Geometric comparison - methods that measure the 3D geometric differences; 2) Geometric - spectral 

analysis - methods that take into account the geometric and/or spectral information for change analysis.  

It should be noted that these two ways of using the 3D geometric information are not completely 

isolated; rather they may sometimes be used jointly to address the 3D CD problems. Table 3 summarizes 

the major methods in both geometric comparison and geometric-spectral analysis, and in the following 

two subsections, these two categories of 3D CD techniques will be introduced in detail. 

Table 3. An overview of the current 3D change detection methods 

 Descriptions Advantages  Limitations Examples 

Geometric comparison 
 
-  Height differencing 
 
 
 
 
 
 
-  Euclidean distances 
 
 
 
 
 
 
 
 
-   Projection-based 
differences 
 
 
 
 
 
 

 
 
Differencing of two co-
registered DSMs. 
 
 
 
 
 
 
 
 
Compute the 
Euclidean differences 
between two 3D 
surfaces. 
 
 
 
 
 
Correlate images of a 
stereo pair in one 
epoch using 
DSMs/point clouds 
from another epoch, 
and then compare 
these two images 
Correlate multi-view 
images and compare 
their color consistency 

 
 
Easy to implement, efficient 
for large-scale CD problem. 
 
 
 
 
 
 
 
 
Robust to small registration 
errors for top-view 3D data; 
can be applied to full 3D data 
comparison. 
 
 
 
 
 
Avoid matching errors of 
stereo images and can be 
applied to stereo images that 
exhibit a large intersection 
angle; particularly effective 
when the available 
DSMs/point clouds are highly 
accurate (such as those 
derived from LiDAR or 3D 
models) 

 
 
Sensitive to misregistration and 
image matching errors; may 
produce many false positives for 
matched DSMs; only applied to 2.5 
D scenarios. 
 
 
 
 
 
The computation may require time 
intensive correspondence search, 
and it also requires complicated 
implementation.  
 
 
 
 
 
May have missing detections in 
homogenous areas, and is sensitive 
to the accuracy of the available 3D 
information. 

 
(Gong et al., 2000), (Martha et al., 
2010), (Chaabouni-Chouayakh et al., 
2011; Chaabouni-Chouayakh et al., 
2010; Chaabouni-Chouayakh and 
Reinartz, 2011), (Sasagawa et al., 
2013), (Dini et al., 2012), (Tian et al., 
2010), (Murakami et al., 1999), (Jung, 
2004) (Stal et al., 2013; Vu et al., 
2004), (Karras and Petsa, 1993), 
(Pilgrim, 1996) 
 
 
(Akca et al., 2010; Akca et al., 2009), 
(Waser et al., 2008; Waser et al., 
2007), (Gruen and Akca, 2005), (Qin et 
al., 2014) (Eden and Cooper, 2008), 
(Champion et al., 2010), (Heller et al., 
2001) (Habib et al., 2005), (Maas, 
2000), (Mitchell and Chadwick, 1999), 
(Rosenholm and TORLEGARD, 1988), 
(Schenk et al., 2000), (Xiao et al., 
2013), (Zavodny, 2012) 
 
(Qin, 2014a), (Qin and Gruen, 2014), 
(Knudsen and Olsen, 2003), (Taneja et 
al., 2013; Taneja et al., 2011), (Crispell 
et al., 2012), (Pollard and Mundy, 
2007), (Schindler and Dellaert, 2010) 
(Ulusoy and Mundy, 2014)                                                       
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Geometry–spectrum 
Analysis 
 
-  Post-refinement  
 
 
 
 
 
 
-Direct feature fusion 
 
 
 
 
 
 
 
 
- Post-classification  

 
 
 
Results from 
geometric comparison 
(e.g. DSM difference) 
are refined with 
geometric and spectral 
information 
 
 
 
Simultaneously 
consider the 
geometric and spectral 
features through a 
fusion algorithm to 
compute change 
evidence 
 
 
Firstly perform object 
detection or 
classification to each 
dataset, and then 
compare the resulting 
object labels for 
analysis 

 
 
 
The algorithms are flexible 
and quite efficient. 
Parameters are easy to 
understand and 
straightforward to tune.  

 
 
 
 
Consider both geometric and 
spectral information at the 
same time; can easily 
combine other sources of 
information without 
additional modification of 
the algorithm. 
 
 
The 3D information can 
greatly enhance the 
classification and object 
detection accuracies; 
 
Training samples/rules are 
from each dataset, which 
avoids a direct comparison of 
uncalibrated geometric and 
spectral information, being 
more robust to temporal 
variations. 

 
 
 
Initial change results solely depend 
on the geometric comparison, and 
missing changes cannot be 
recovered in the subsequent steps. 
 
 
 
 
Critical to configure the parameters 
in the fusion algorithms; 
Inappropriate parameters may 
propagate errors of each individual 
source to the final results. 
 
 
 
 
 
The CD results highly depend on 
the classification accuracies that 
may require careful sample 
collection and feature design. 

 
 
 
(Sasagawa et al., 2008), (Fan et al., 
1999; Liu et al., 2003; Pang et al., 
2014), (Chaabouni-Chouayakh et al., 
2010; Choi et al., 2009; Zhu et al., 
2008),  (Chaabouni-Chouayakh and 
Reinartz, 2011), (Guerin et al., 2014), 
(Qin, 2014b) 
 
 
 
(Tian, 2013), (Tian et al., 2014b), (Tian 
et al., 2014a) , (Nemmour and Chibani, 
2006; Qin, 2014a; Trinder and Salah, 
2012) 
 
 
 
 
 
 
 
(Olsen, 2004), (Walter, 2004), 
(Matikainen et al., 2010), (Champion, 
2007), (Olsen and Knudsen, 2005), 
(Rottensteiner et al., 2007), (Qin et al., 
2015a), (Tian, 2013), (Nebiker et al., 
2014), (Champion et al., 2009),  

 

3.1. Geometric comparison  

Depending on the viewing scenario (oblique-view, top-view) and data format (DSM, point clouds, stereo 

images, etc.), the geometric comparison can be quite different. It can refer to a 2.5D comparison such as 

height/depth difference (shown in Figure 1a), or a fully 3D comparison through a Euclidean distance 

measure (shown in Figure 2b). Moreover, image sets taken from different perspectives implicitly contain 

3D geometric information (refer to 3D-IMP data in section 2.2), and the geometric difference of such 

data requires image comparison through projection (projection-based method) (an example is shown in 

Figure 1c), or multi-ray consistency evaluation. Different methods have their advantages for different 

types of 3D data, and it is important to select an appropriate approach according to the application and 

data.  

(a)  (b)  (c)  

Figure 1. Different geometric comparison methods. (a) Height difference, distances are computed 

vertically. (b) Euclidean distances, distances are computed in the surface normal direction. (c) 

projection-based inter-correlation method, the geometric difference is computed by projecting image     

on to the object, and then back project to image    as      ; the differences are given by measuring the 

differences  between       and   .  
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3.1.1. Height differencing 

The DSM provides height/depth information in the form of a map grid, which essentially treats the 3D 

information as 2.5D by projecting the 3D information to a plane, either in horizontal (height) or in 

vertical (depth). Some algorithms tend to find the minimal planes (Schenk et al., 2000), and often this is 

determined by the application context. Height differencing is a straightforward derivation of image 

differencing, which applies a simple subtraction to multi-temporal DSMs, resulting in height residual 

maps to indicate potential changes. This has been widely used in applications such as tree growth 

monitoring (Gong et al., 2000; Stepper et al., 2015; Waser et al., 2008; Waser et al., 2007), earthquakes 

and damage assessment (Menderes et al., 2015; Turker and Cetinkaya, 2005) etc. It was also applied to 

urban areas. Sasagawa et al. (2013) applied the height differencing in the urban area using DSMs 

generated from ALOS (Advanced Land Observation Satellite)  triplets to indicate changes on individual 

buildings. Turker and Cetinkaya (2005) used the DSMs generated from pre- and post-earthquake stereo 

aerial images to detect collapsed buildings. However, many artifacts were observed for small buildings. 

The height residuals are directly related to the co-registration and DSM accuracy. It gives a good 

approximation of the volumetric difference area-wise, while it is not accurate enough to infer 

conclusions on individual objects due to the presence of DSM noise (especially for those generated from 

images). 

To reduce the errors induced by height differencing, window-based or object-based methods were 

proposed to average the height differences. Tian et al. (2010) took the minimal height differences over a 

shifting window to reduce DSM noise occurring at the object borders. In their later work (Tian et al., 

2013), panchromatic image-derived objects were used as the height differencing unit, which further 

reduced false positives. Such strategy is effective to reduce noise for large urban objects; however there 

remain potential risks of discarding actual changes on small objects. Very often, if the objective of CD 

was to detect the change status of individual objects (such as buildings), the height differences usually 

served as an initial step for further refinements (Chaabouni-Chouayakh and Reinartz, 2011; Jung, 2004; 

Wang, 2005). Such refinements can be performed using additional features such as geometric primitives, 

textural/spectral features, or external data sources such as from GIS (Geographical Information System) 

database (Dini et al., 2012).   

The height threshold, as one of the most important parameters to obtain the final change mask, is 

influenced by the accuracy of the data, as well as the co-registration result. One way for threshold 

determination is to use a priori information such as the pre-assessment of the DSM quality and empirical 

choices, or trial-and-error tests (Lu et al., 2004; Murakami et al., 1999). Another way is to estimate the 

threshold from the data themselves, such as from the histogram of the height residual statistics 

(Chaabouni-Chouayakh and Reinartz, 2011). In Turker and Cetinkaya (2005), the sensitivities of the 

threshold selection were tested using their experimental dataset (bi-temporal DSMs generated from 

aerial stereo images). By tuning the height threshold   from 1 to 10 m, they compared the resulting 

change mask to the reference mask, with an observation that in one test     delivered the best kappa 

index (KIA) and      rendered the best producer’s accuracy. However, these values changed when the 

test areas were different. To avoid single threshold truncation, multiple thresholds can be also used to 

indicate different levels of confidence (Qin et al., 2015a). Regions with a very high confidence of being 
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changed can be used directly as the CD output, while uncertain ones could be sent for operator’s 

decision.  

3.1.2. 3D Euclidean distances 

A major problem of height differencing is its high sensitivity to misregistration and artifacts, which may 

lead to significant errors around object boundaries (e.g. building edges). This is because the height 

differences consider the distance between two surfaces in a projected space (map projection), not 

necessarily their Euclidean difference (in the surface normal direction). The Euclidean distance of two 

surfaces take the three degrees of freedom for 3D geometry into account by computing the distance in 

the normal direction, which is theoretically more rigorous. The difference between the Euclidean and 

height distance can be easily understood in Figure 1(a-b). Techniques in this category are generally 

developed in the domain of surface co-registration and change detection, where in surface co-

registration, changes are regarded as outliers. An example of the technique in this category proposed by 

Gruen and Akca (2005) through a least squares framework, combining co-registration and Euclidean 

distance estimation.  It was later applied by Waser et al. (2008) for estimating the forest volume 

dynamics between two image-derived DSMs. Under the context of 3D model quality control, Akca et al. 

(2010) adopted the LS3D method to detect the 3D geometric modeling error against the LiDAR 

measurements. Euclidean differences are also closely tied to co-registration methods, the goal of which 

is to minimize the Euclidean differences of two 3D surfaces, and the readers may refer to the global 

methods that minimize point-to-surface or surface-to-surface distances (Habib et al., 2005; Karras and 

Petsa, 1993; Maas, 2000; Mitchell and Chadwick, 1999; Pilgrim, 1996; Rosenholm and TORLEGARD, 1988; 

Schenk et al., 2000), where the outliers of the co-registration can be detected as changes. 

Although Euclidean distance is theoretically more rigorous than height difference, its advantages on 

processing the DSMs can be sometimes compensated by post-processing techniques after height 

difference. However, its capabilities on oblique data are irreplaceable. Occlusions and incompleteness of 

3D data generated from oblique-view images and/or terrestrial/mobile LiDAR present much more 

complex scenarios than remote sensing top-view data. Co-registration is more difficult in such a case, 

hence it requires strict solutions. Akca (2007) showed various successful CD examples using Euclidean 

distance measure in close range applications under the context of deformation analysis and quality 

control (Akca et al., 2010).  Other derivative measures based on Euclidean distance can be also used for 

CD. Girardeau-Montaut et al. (2005) applied an octree structure to divide the 3D spaces, and the 

Hausdorff measure was employed to compute the distance between different spaces. Similarly, Kang 

and Lu (2011) adopted the Hausdorff distance (Huttenlocher et al., 1993)  to detect the difference 

between LiDAR scanning data and a reference 3D model. Instead of using the octree structure, they 

applied the Hausdorff measure on the point segments, and occluded parts are estimated using the 

depth images of the scan. In an indoor environment, Núñez et al. (2010) modeled the environmental 

geometry with a Gaussian Mixture Model (GMM), and distance of the new LiDAR scan to the GMM are 

computed to detect the changes. 

 

Sometimes the pixel-wise geometric comparison may render many artifacts, while certain extracted 

geometric features may be more robust. Eden and Cooper (2008) measured the differences of 3D lines 
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across two multi-view image sets, which significantly reduced the noise and disturbances. Under the 

same concept, Champion et al. (2010) extracted 3D lines from stereo images to verify the existence of 

buildings by comparing them to the GIS database. Heller et al. (2001) extracted changes by comparing 

the co-registered 3D data derived from images taken from different sensors. Changes were represented 

by multiple feature points that were significantly different in the geometric comparison. Nevertheless, 

failing to detect such features may omit some important changes. Therefore, feature-based methods 

should only be applied under the context that the object of interest can be represented by certain 

features.  

  
3.1.3. Projection-based geometric differences  

Poorly captured stereo images, such as those with large intersection angles, leading to large parallaxes, 

may not be able to produce usable DSMs/point clouds for CD using even the most advanced DIM 

algorithms. If relatively reliable DSM or point cloud is available at one date and images are geo-

referenced with respect to the 3D data, the projection-based geometric difference can be used to assess 

the geometric consistency between the stereo images and 3D data. It correlates, one image of the 

stereo pair, using the DSM or point cloud, with the other image, and compares their 

radiometric/spectral differences (shown in Figure 1c). In principle, these two correlated images should 

be the same if the stereo pair is consistent with the DSM/point clouds. Qin (2014a) applied inter-

correlation in the process of 3D model updating , where two satellite stereo images are correlated using 

3D polygonal models, and the correlated image patches are evaluated using the energy produced by 

SGM (Semi-global matching) algorithm (Hirschmüller, 2008). In Knudsen and Olsen (2003), 3D models 

were projected onto 2D photos, followed by supervised classification for change detection.  

This technique is particularly effective to the oblique-view images and point clouds/3D models, as a 

direct comparison using point clouds generated via DIM usually produces many artifacts. Taneja et al. 

(2011) applied inter-correlation of a stereo pair to an image-derived surface model, and the differences 

in color were used as change evidence. Qin and Gruen (2014)  extended inter-correlation to a multi-

stereo case to determine view-based change evidence by comparing a strip of images with mobile LiDAR 

point clouds. Due to a fine co-registration and high accuracy of the LiDAR data, over 70% changes were 

detected in their experiments.  

Another streamline of the projection-based method divides the 3D spaces into voxel/object 

representations. In each voxel, consistencies of the projected color from multi-view images are 

evaluated statistically. Voxels with significant color differences will be spotted as changes, examples are 

Crispell et al. (2012), Pollard and Mundy (2007), Schindler and Dellaert (2010), Ulusoy and Mundy (2014). 

Pollard and Mundy (2007) performed CD with two sets of oblique imageries. They first computed the 

surface of the scene using a space carving method, where probabilities of change for each voxel were 

assigned according to the color inconsistencies projected to that voxel. Schindler and Dellaert (2010) 

took 3D objects grouped by sparse points as change unit for color consistency check.  Such color-

consistency check implicitly applied a multi-ray point matching strategy, where false positives might be 

present in occluded areas and false negative might occur in non-texture areas. Very often after the 
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probability assignment, Markov interfering processes (Blake et al., 2011) were applied to reduce noise 

effects.  

The projection-based method is an effective strategy to provide raw change evidence when the 3D 

scene is rather complex, as it does not necessarily require explicit 3D data. It can be seen as an inverse 

operation of matching, while this again, still depends on the quality of the available 3D data and may not 

be able to handle areas with insignificant texture features. 

3.2. Combined geometric and spectral analysis 

3D geometric information (DSMs, point clouds and 3D models, etc.), as an information source, can be 

applied for various analysis, such as object extraction/recognition, shape analysis. Very often the 

geometric information comes with spectral information, such as multispectral/hyperspectral orthophoto 

and image texture. It is straightforward to understand that additional channels of information may lead 

to enhanced CD results, as it can compensate errors induced by single sources. However they bring both 

advantages and error sources: the combined use of geometric and spectral information could be 

beneficial to each other, while on the other hand, it faces the risk of propagating both of their 

deficiencies to the CD results. Therefore, the main challenge of geometric-spectral analysis methods 

remains on how to appropriately address the advantages of the different information sources without 

bringing too many additional errors. In general, there are three ways to integrate the geometric and 

spectral features as information sources into a 3D CD process: 1) Post-refinement. 2)  Direct feature 

fusion. 3) Post-classification. Post-refinement refers to the process of using geometric and/or spectral 

information to refine the initial change evidence resulting from the geometric comparison. The second 

approach takes into account the geometric and spectral information (or their transformed features) as 

cues of changes, and these features are used jointly to determine the presence of change.  The third 

approach is very popular in 2D change detection, which first classifies both datasets or detects the 

objects of interest, and then compares the resulting labels of the two datasets.  

3.2.1. Post-refinement  

The results of geometric comparison vary with the quality and accuracy of the 3D data. False 

positives/negatives occur due to artifacts of the DSM/point clouds, or incomplete 3D models. Sometimes 

such errors may reveal certain patterns, such as the observation that artifacts often occur at object 

boundaries, or in vegetation classes. Such problems can be well-addressed if additional information can 

be extracted from the geometric or spectral data. Images have sharper boundaries, and if near-infrared is 

available, NDVI (normalized difference vegetation index) can be used to eliminate disturbances from the 

seasonal varying vegetation. Following the initial change evidence computed from geometry comparison, 

the geometric and spectral information can be strategically placed as an important source for refining the 

result. Attempt for such consideration was given for manual interpretations (Sasagawa et al., 2008),  

where the radiometric difference of the images was used as a double-check for DSM subtraction results. 

To automate the process, change “candidates” can be further classified by using spectral and textural 

information of the original images (Fan et al., 1999; Liu et al., 2003; Pang et al., 2014).  
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Due to the presence of noise effects in DSM subtraction, some noise-removal approaches, for instance, 

morphological filtering can be used to improve the initial change masks (Chaabouni-Chouayakh et al., 

2010; Choi et al., 2009; Zhu et al., 2008).  When only a certain type of object is of interest, shape features 

from the DSM can be used to refine the change mask using either supervised (Chaabouni-Chouayakh and 

Reinartz, 2011) or unsupervised methods. Geometric regularities can also be used to improve the initial 

change masks. Tian et al. (2010) applied a box-fitting method to regularize extracted building boundaries. 

James et al. (2012) adopted the map boundaries to constrain the DSM difference to a certain area of 

interest. Choi et al. (2009) adopted a supervised method on the initial change mask. Various shape 

features such as roughness, size, and height of the change segments were used to classify them into 

different types of objects. Based on the assumption that the change maps are globally smooth, Guerin et 

al. (2014) applied a global optimization that employs this spatial context using a generalized dynamic 

programming to eliminate potential inaccuracies resulting from DSM subtractions. Markov random field 

as a powerful refinement model, were used in 2D CD approaches (Bruzzone and Prieto, 2002; Kasetkasem 

and Varshney, 2002), and similar methods were also developed under a 3D context (Pollard and Mundy, 

2007; Qin and Gruen, 2014; Taneja et al., 2015). under the contexts of CD with UAV (unmanned aerial 

vehicle) images, Qin (2014b) hierarchically refined the initial change masks using various levels of 

segmentation combining both the orthophoto and DSM information. Different levels of segmentation 

encode the local spatial dependence between different segments. This work refined the mask using 

spatial consistencies of these segments, and reported that the method can monitor even sub-building 

sized urban objects (such as vehicles).  

The “post-refinement” approaches employ a hierarchical structure, where initial change evidence are 

given by geometric comparison, followed by geometric and spectral analysis for result refinements. 

Parameters are often easy to understand and straightforward to tune. Such methods are flexible to be 

decomposed or re-composed according to different CD applications, and the step-wise process makes 

such methods computationally efficient. However, the initial CD result solely depends on the geometric 

comparison, and missing changes in the initial step cannot be recovered in the subsequent refinement.  

3.2.2. Direct feature fusion   

Contrary to the hierarchical “post-refinement” approaches, direct feature fusion simultaneously 

considers all channels of information. Such feature fusion can be performed in either the feature level or 

decision level, meaning either the geometric/spectral features (e.g. height differences, shape indexes, 

spectral differences, NDVI. etc) are fused to generate change evidence, or change evidence resulting from 

all the sources are fused as the final change cues. Although existing works in “direct feature fusion” 

mainly consider the fusion of multi-sources images (Longbotham et al., 2012; Nemmour and Chibani, 

2006) for change detection, there are still some works that fused both geometric and spectral 

information directly for CD.  

Tian et al. (2013) directly fused the height and radiometric differences of Cartosat-1 datasets (only 

panchromatic images are available) under a change vector analysis (CVA) (Johnson and Kasischke, 1998) 

framework, which finally resulted in a single change indicator for thresholding. The geometric and 

radiometric information is weighted with empirical values. A subsequent work in Tian et al. (2014b) 

adopts a Kernel Minimum Noise Fraction (KMNF) to minimize the noise statistically presented in both the 
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height and radiometric difference for fusion, and Iterated Canonical Discriminant Analysis (ICDA) for 

generating the final change masks. The experiments were conducted on forest areas using Cartosat-1 

images, in which they reported a notable improvement compared to simple DSM/radiometric subtraction 

and CVA fusion, and to other traditional classification methods like SVM (Vapnik, 1963; Vapnik and Kotz, 

1982; Wang, 2005), and random forest (Breiman, 2001). Other information fusion theories have also 

been tested using satellite datasets. With multispectral orthophotos together with the DSMs, Tian et al. 

(2014a) adopted the Dempster-Shafer (DS) fusion to integrate several change cues extracted from DSMs, 

panchromatic and multispectral images. In their approach, the changes extracted from DSMs and images 

were used separately. The fusion model was built by assuming changes from images indicating changes of 

all object classes, while changes in height indicated change only for a subset of the objects (e.g. buildings, 

trees). Vögtle and Steinle (2004) proposed a two-step change detection approach based on LiDAR data. 

Firstly the building object and non-building objects were separated. Then the height change information 

was fused with the building object map to deliver a detailed change detection results. A similar research 

was performed by Teo and Shih (2013), in which the above ground objects were classified into buildings 

and vegetation according to the surface roughness. The object map was fused with the height difference 

map to obtain four types of changes. Under a 3D model updating process, Qin (2014a) fused multiple 

change evidence resulting from DSM and spectral features via unsupervised self-organizing maps (SOM)  

(Kohonen, 1982; Moosavi and Qin, 2012), where the a priori information (the quality of the change 

evidence) can be used to weight individual change indicators to obtain the final change evidence for 

change determination.  

Training features extracted directly from different sources and performing supervised classification also 

fall into the “direct feature fusion” category.  Feature vectors are usually formed with the differences of 

geometric (Chehata et al., 2009) and/or spectral information (Nemmour and Chibani, 2006; Pacifici et al., 

2007), and these features are combined into a classifier to identify change and non-change area (Chen et 

al., 2016; Trinder and Salah, 2012). The “direct feature fusion” methods consider both the geometric and 

spectral information as pure information sources. Different kinds of information can be combined 

appropriately to achieve optimal CD results. Such methods can be easily incorporated into other kinds of 

information without additional re-design of the algorithm. It is critical to determine the individual 

contribution of each information source when using linear fusion models. Classifier-based models may be 

able to learn the weights of information sources, such as Random  Forests (Breiman, 2001) and Neural 

Network (Foody, 1996), while this requires accurate training samples. For unsupervised fusion models 

(e.g. CVA), an equal contribution may not render the best results. Therefore a priori information or trial-

and-error test may be needed to obtain an optimal parameter configuration.  

3.2.3. Post-classification comparison 

The temporally varying conditions may greatly disturb the geometric and spectral comparison of two 

datasets. Post-classification methods propose to detect objects of interest or perform land-cover 

classification first, and then compare the resulting labels (classes), which avoid direct comparison of the 

spectral and height information. A core advantage of such method is that the 3D information may 

potentially increase the accuracy of object detection/classification, leading to improved CD results. A 

number of studies (Huang et al., 2011; Mayer, 1999; Sohn and Dowman, 2007; Zhang et al., 2015) have 
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proven that the height information can increase the accuracy of land-cover classification to a notable 

level.  

In the classification or object extraction procedure, DSMs from LiDAR or stereo images can be essentially 

seen as an additional channel of information, which is equally free to be applied into popular classifiers. 

Researchers have investigated such a strategy via a number of classification approaches, such as in 

ISODATA (Olsen, 2004), maximum likelihood (Walter, 2004) decision tree (Matikainen et al., 2010), rule-

based method (Champion, 2007; Olsen and Knudsen, 2005) and decision-fusion method (Nebiker et al., 

2014; Rottensteiner et al., 2007) 

In an urban environment, buildings are one of the most relevant object types. “Building detection + 

Change detection” is a popular strategy to detect changes of buildings. Under this framework, Qin et al. 

(2015a) integrated the height information to a supervised framework for building detection using 

scanned aerial survey photos. Building objects were then compared by considering both the height and 

texture dissimilarities. In their approach, the integration of the height information was mainly three-fold: 

1) in image segmentation; 2) in feature extraction for classification 3) in building change evaluation. This 

approach was particularly effective for rebuilt buildings, as it evaluated each building object using various 

features such as height, texture, as well as shapes.  

Supervised methods may require training samples. By assuming the amount of changes in the scene is 

not significant, existing GIS data can be used as training data (Champion et al., 2009; Matikainen et al., 

2010; Walter, 2004) to assist building detection. They can either be used directly as training samples 

(Walter, 2004), or modified using some other cues based on geometric and spectral features (Champion 

et al., 2009; Qin et al., 2015b).  

The post-classification method is regarded as a popular method, since it transforms the direct 

geometric/spectral comparison to label changes, which tends to be more robust towards disturbances 

induced by acquisition conditions (season, luminance differences, etc.), on the other hand, it is able to 

provide a type change matrix. However, in most cases, the CD results of this method highly depend on 

the classification/object detection results, which it subsequently requires careful sample collection and 

feature design.   

4. 3D change detection applications  

The development of 3D CD can greatly facilitate many new and existing applications. In this section, we 

outline existing attempts and works that adopt 3D CD techniques across various domains. Due to space 

restrictions, not all potential applications and references are included in this survey; we show several 

examples of research works in this context to demonstrate the growing demands and possibilities for 3D 

CD in various fields. A summary of 3D CD applications is included under Urban, Environment & Ecology, 

and Civil contexts:  

- Urban – building/infrastructure/urban canopy change detection, 3D city model update, disaster 

assessment. 
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- Environment & Ecology –landslides estimation, volcanic eruption, glacier movement, coastal line 

monitoring, forestation/deforestation, plant growth monitoring, dynamics of biomass. 

- Civil –monitoring of structure, construction/mining progress, traffic and pedestrian tracking. 

Table 4. Examples of 3D CD applications 

Data platform Urban Environment &  Ecology Civil 

Spaceborne Building/infrastructure change 
detection: (Grigillo et al., 2011; 
Nebiker et al., 2014),(Liu et al., 
2003; Qin et al., 2015a) 
3D model/map update: (Knudsen 

and Olsen, 2003; Li et al., 2008; Qin, 

2014a), (Kim et al., 2013), (Maas et 

al., 2016) 

 
Disaster management:(Menderes et 

al., 2015), (Adams and Friedland, 

2011),(Turker and Cetinkaya, 2005) , 

(Choi and Lee, 2011), (Gerke and 

Kerle, 2011) 

 

Landslides monitoring: (Martha et al., 2010), 
(Travelletti et al., 2012), (Ghuffar et al., 2013) 
Volcano eruption: (Hunter et al., 2003), (Baldi 

et al., 2005), (Vassilopoulou et al., 2002) 

Fault detection: (Copley et al., 2011), (Barisin 

et al., 2009). 

Glacier monitoring: (Herman et al., 2011), 

(Noh and Howat, 2014), (Baltsavias et al., 

2001), (Nuth and Kääb, 2011) 

Forest & vegetation monitoring: (Waser et al., 

2008), (Gong et al., 2000), (Nurminen et al., 

2013), (Miller et al., 2000) 

 

Construction monitoring: (Chen et al., 
2011), (Baily et al., 2003), (Malpica et 
al., 2013) 

 Airborne 

UAV Crop growth monitoring: (Bendig et al., 2013), 

(Lelong et al., 2008), (Torres-Sánchez et al., 

2014) 

Glacier monitoring: (Immerzeel et al., 2014) 

Construction monitoring: (Siebert and 

Teizer, 2014), (Han et al., 2015), 

(Brauna et al., 2015), (Rebolj et al., 

2008) 

Mining progress monitoring: (Wong, 

2001), (Lee and Choi, 2015) 

Traffic monitoring: (Douret and 

Benosman, 2004), (Reinartz et al., 2006) 

Pedestrian tracking: (Bajracharya et al., 

2009) 

structure monitoring: (Park et al., 

2007), (González-Jorge et al., 2014) 

Ground Vehicle Infrastructure monitoring: (Qin and 

Gruen, 2014),  (Košecka, 2012), 

(Taneja et al., 2015), (Girardeau-

Montaut et al., 2005), (Xiao et al., 

2015) 

Landslides monitoring: (Singer et al., 2006), 

(Jones, 2006), (Jaboyedoff et al., 2012), (Baldo 

et al., 2009), (Bauer et al., 2005) 

 
Terrestrial 

 

Table 4 summarizes examples associated with different applications. Sometimes the scopes of the study 

vary even for the same applications (e.g. landslides monitoring).  Some classic applications such as forest 

and vegetation monitoring, earthquake assessment can be performed more robust by including the 

height information (Menderes et al., 2015; Waser et al., 2008) Due to the growing demand for 3D 

geospatial data, efforts collecting nation-wide/city-wide 3D models are gradually being carried out 

(Straitstimes, 2014), of which the updating process is particularly important to maintain such expensive 

data. On the other hand, the popularity of UAV has driven the applications of crop growth monitoring 

(Lelong et al., 2008), mining (Lee and Choi, 2015) and construction monitoring (Rathinam et al., 2008), 

which may greatly improve the efficiency of traditional field works. Works in quantifying landslides and 

volcanic eruption masses can be carried out with 3D data (Martha et al., 2010). Some of the classic 

applications are benefited by the use of LiDAR-based 3D CD, e.g. structural engineers can use precise 

point clouds to assess the deformation, risk, and health of the critical infrastructure such as bridges and 

towers (Park et al., 2007). The accuracy of these applications is based on the development of 3D CD 

approaches, of which all the aforementioned methods and processes (in section 2 and 3) are keys for 

successful practices. 
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5. Discussions 

3D CD tasks aim to find all the differences in a scene or for particular types of objects using multiple 

acquisitions of 3D data. Therefore in most cases, a CD problem is not only a simple data differentiation, 

but also an identification of changes for meaningful objects. Both issues are indispensable to form 

successful solutions for 3D CD. The “data differentiation” and “identification of meaningful objects” are 

in line with two properties of the 3D data introduced in section 3, being geometric and information 

properties: geometries are compared to obtain the geometric differences, and objects of interest are 

identified through cues and features extracted from 3D information. Here in this subsection we 

extensively discuss these techniques, and other specific issues related to 3D CD techniques and 

applications. 

5.1. Geometric comparison 

Height differencing remains to be the most convenient method for an initial check on the data quality, 

although it leads to potential errors due to misregistration and data quality issues. A first attempt at 

developing a 3D CD algorithm with top-view data is usually to test if the DSM subtraction could already 

reveal a certain amount of significant changes based on the given data, further strategies and analytical 

methods can be formulated from this point. The Euclidean distance measure is often coupled with a co-

registration, for which finding the normal direction and corresponding points are computationally heavy. 

In 3D CD using DSM (2.5D) and images, the Euclidean distance does not really offer many advantages in 

terms of geometric measurement in practical applications, as the relative rotation between DSMs is not 

significant (Waser et al., 2008), and errors in the object boundaries can be eliminated by post-filtering 

techniques. Height differences can describe the geometric discrepancies well for registered DSMs (Qin, 

2014a). The Euclidean distance measure is of particular value for oblique or close-range data, where 

more precise registration and requirements for blunder eliminations are necessary.  

When the 3D geometry of the scene is so complex that even the most advanced DIM method could not 

generate reliable point clouds (often occurring in close-range applications), the projection-based 

method may be used as a smart trick to measure the geometric differences. It has the capability to 

eliminate potential geometric differences in a projected plane, or in the 3D voxel/object space, as it 

measures the color consistencies in a projected plane or voxel (or a 3D object). Its major problem is that 

it may omit areas with insignificant textures. Moreover, the voxelization of the space may result in 

aliasing problems in the final results.   

5.2. Geometric – spectral analysis 

Three categories of methods using geometric and/or spectral information have been described in 

section 3.2. These methods are mainly applied to top-view remote sensing data (“DSMs + orthophoto”). 

Among all the investigated methods, “post-refinement” appears to be the top choice when using high 

accuracy DSMs. This is because DSMs generated using advanced DIM methods nowadays are quite 

reliable, hence it can render good initial “change candidates” for further “post-refinement”, which is 

easy to implement and straightforward to understand. However, the refinements in the current works 

mainly focus on removing the false detections and some noise effects. Recovering of the false negatives 
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is very difficult and has not yet been tested to the author’s best knowledge. The ‘direct feature fusion’, 

which fuses the height changes from DSM and spectral changes from images, is further proposed under 

the concept of information fusion. The advantage of this method is that it is effective to lower resolution 

data and there are many readily available fusion algorithm such as CVA and kernel CD (Johnson and 

Kasischke, 1998; Tian et al., 2014b).  

It should be noted, that “post-classification” methods are in some cases able to produce accurate results. 

It is not sensitive to temporal variances of the spectral information as it brings semantic information into 

the datasets. Indeed a combinational use of both strategies (post-refinement and post-classification) 

might produce better results. When available, existing GIS data can be very helpful in both change 

refinement (for regularization) (Dini et al., 2012) and classification (for sample collection) (Maas et al., 

2016) .  

5.3. Pixels, Objects, Voxels 

The pros and cons about object/pixel-based techniques in remote sensing image processing have been 

frequently discussed. Although they differ in the processing units, the underlying algorithmic concepts 

are very similar in many cases as indicated by Tewkesbury et al. (2015). As this paper mainly focuses on 

VHR data, we do not particularly differentiate between these two concepts, rather keep in mind that for 

object-based methods, we gain a special property, which is the shape of the segments. For analyzing 

individual objects, the object-based concept is necessary as the shape features are very important to 

differentiate one type of object from another (Benediktsson et al., 2003). There is a potential risk that 

wrongly segmented objects may lead to erroneous results, while this could be alleviated since the 

segmentation can be improved by incorporating the available height information (Qin et al., 2015a).  

Pixel-based concepts in 3D CD is usually used for large-scale volumetric estimation, or in the initial 

height differencing step of a 3D CD task, where analysis of individual objects is not yet necessary.  The 

concept of voxels is mainly applied for the oblique-view/close-range data, where the 3D geometry 

cannot be simply represented as a 2.5D map grids. Voxelization of the space produces regular 3D grid,  

and the classic 2D inferences algorithm (Blake et al., 2011) can be extended directly to 3D. Nevertheless, 

dividing the 3D space into regular cubes may dramatically increase the memory consumption with 

possible overflow, leading to high computation burden. If we increase the granularity of the voxels to 

reduce their amount, it may induce inaccuracy and aliasing problems. Recent attempts tried to use 

coarse-to-fine strategies to form adaptive voxels to reduce the memory and computation time (Bláha et 

al., 2016). 3D object-based methods have the potential to reduce memory consumption, and have been 

demonstrated already (Schindler and Dellaert, 2010), whereas it also poses complicated issues such as 

ray-tracing, neighborhood indexing and 3D shape analysis. 

5.4. LiDAR and images 

A very basic question for a 3D CD task is to select/acquire appropriate data source. In section 2.1, we 

have suggested acquiring data with a resolution to reduce the cost depending on the problem to solve, 

the amount of data and computation. LiDAR and images are the major choices sensor-wise in the scope 

of this paper. Both sensors are available in major platforms such airborne, UAV, ground vehicles, 
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terrestrial stations, except for spaceborne platforms, where only images are available.  LiDAR has a 

consistent ranging accuracy and provides reliable measurements. Nowadays low-cost and lightweight 

LiDAR (Lin et al., 2011; Wallace et al., 2012) is available to be mounted on smaller platforms such as UAV. 

Terrestrial LiDAR and mobile LiDAR are quite mature in terms system integration and processing 

software. For airborne acquisition, LiDAR scanning is similarly expensive as using traditional aerial 

photogrammetric image acquisition. In terrestrial/close-range cases, LIDAR has a great advantage to 

offer high accuracy geometric information for a complex environment, in which images may fail to 

deliver good results. 

For tasks using UAV platforms, images may be more accessible than LiDAR. Although there is progress 

being reported in UAV-LiDAR system, the varying quality of output point clouds is highly dependent on a 

good GPS receiver, the base station, the signal quality in the low altitude flying environment, as well as 

good attitude determination. UAV image processing software (such as pix4d, photoscan, photomodeler, 

acute3D, etc.) (Remondino et al., 2014) is now quite mature on the market. Though the 

photogrammetric process is rather complicated, the enabling techniques and processing software allow 

the data to be processed largely or even fully automatically, flowing from importing images to the final 

point clouds/DSM/orthophoto/Mesh generation. Nowadays even non-photogrammetry experts can 

operate their UAVs and generate 3D data with these tools (Colomina and Molina, 2014).  

Due to the advanced development of satellite optical sensors, the resolution is not anymore an apparent 

disadvantage, as the highest resolution of commercial satellite goes up to 31 cm (Worldview 3) 

(DigitalGlobe, 2016). For wide-area 3D CD (a few hundreds of km2), the cost of satellite data is lower 

than for airborne images. It is more economical to acquire satellite data if the area can be covered by 

only a few stereo pairs. The disadvantage of satellite image may be that they are less flexible in image 

configuration, and more importantly, the aerial platform is still the major carrier of multi-camera 

systems that capture large-scale oblique images.  

6. Summary and Recommendations 

Nowadays we have easier access to 3D data. This paper provides a critical review of the current 3D 

change detection techniques.  3D CD is an extension of the very classic yet popular research - remote 

sensing change detection, where 3D information is used in the CD process. This has essentially 

facilitated a lot of new and existing applications that require 3D dynamics of the objects. The review 

presents the current development of 3D CD research following two rationales: 1) geometric comparison; 

2) geometric-spectral analysis, on how the 3D information is implemented into the CD procedure. In 

addition, we also present the growing demands of 3D CD by summarizing existing and new applications 

in various fields. 

The summary of different methods and the use of 3D data for CD applications have shown a great 

potential in 3D CD development. Various research works have demonstrated that 3D CD can significantly 

improve the reliability on CD at a very high level of detail.  Height differences remain to be the most 

straightforward way to compute the geometric differences of two DSMs. Euclidean distance measure is 

slightly complicated but particularly useful for co-registration of 3D oblique data/close-range data. 
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Projection-based methods gradually become a standard process for geometric consistency 

measurements in complicated close-range/oblique scenarios. For analyzing the geometric and spectral 

information, “post-refinement” is currently the most popular strategy due to its ease of implementation 

and understanding. On the other hand, “post-classification” and “direct feature fusion” has a great 

potential for further development, since the available spectral information may significantly improve the 

CD accuracy for DSMs with lower resolution and quality. There is a clear trend that a combination of all 

strategies may be able to potentially compensate their single deficiencies, and finally rendering more 

reliable results.  

Although different methods gain different levels of preferences, the 3D CD applications are so disparate 

that there is no universally best method/strategy that outperforms the others.  Applications related to 

3D CD are so diverse and have to be discussed case-by-case; therefore we synthesize and discuss 

algorithmic aspects according to the view scenario: 1) top-view; 2) oblique-view/close-range. Due to our 

experiences, we suggest the following specific considerations when performing a 3D change detection 

task. 

1) Resolution and object of interest: Generally higher resolution data deliver better results on a 

fixed object-scale, while this also brings increasing processing regarding time and cost. In 

general, the data should have the matching resolution and accuracy to the range of the object. 

We recommend that for pixel-wise analysis, the smallest object of interest in a 3D CD task 

should have more than 400 pixels in the image space. 

2) Co-registration is a must before starting a 3D CD task, different co-registration methods can be 

applied according to different 3D data formats. Table 5 shows our recommendations on data co-

registration.  

Table 5. Recommendations on data co-registration (ordered by priority) 
 

Data format Co-registration method Description of the method 

3DIMP to 3DIMP ❶❹❷ ❶ through a bundle adjustment framework with a large number 
of 2D tie points (Qin, 2014b) 
❷ 3D GCP/Tie points and tie points based adjustment (Qin, 
2014a). 
❸ 3D GCP/Tie based similarity transformation 
❹ Least squares surface matching (Gruen and Akca, 2005)  and 
ICP (Besl and Mckay, 1992), may need initial alignment from ❸ 

3DIMP to 3DEXP ❷❹ 

3DEXP to 3DEXP ❹❸ 

3DIMP: implicit 3D data:  multi-view or stereo view images.  
3DEXP: 3D explicit data: point clouds, 3D models, DSMs etc. 

3) For images with good photogrammetric camera network, we recommend multi-stereo matching 

methods, one of the best practices leverage speed and performance is semi-global matching and 

its sibling algorithms (such as SGM with hierarchical strategies (Rothermel et al., 2012) ). For 

images with poor camera network such as images with large intersection angles, multi-view 

matching methods fully consider multi-ray constraint, and occlusion handling may provide 

better results. 

4) For change detection pipeline building using top-view datasets, it is recommended to perform a 

height differencing for a first check of the 3D data quality. Object-based methods should be 

used if the objective of the 3D CD task is on individual objects. For oblique-view datasets, a set 
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of GCP is needed for a coarse co-registration. It is recommended to use projection-based 

methods for a first evaluation on the correct match of the dataset. 

5) “Post-classification” method is recommended when the dataset is strongly affected by seasonal 

variations, this avoids direct comparison of geometric and spectral data. 

6) “Direct feature fusion” method is recommended when DSMs have potential errors or drawbacks 

and pre- and post-event spectral images from the same dates are also available.  

7) “Post-refinement + post-classification” is recommended as a potentially optimal strategy, and 

who goes first depends on the 3D data quality:  “Post-refinement” should be applied first if the 

DSM quality is satisfactory, otherwise the opposite. 

It may not be always comprehensive to cover all kinds of different scenarios in a CD task. If we look into 

the 3D CD algorithm itself, we realize that in most of the cases, the 3D CD methods rely heavily on two 

fundamental issues: 1) Advanced image matching algorithm for 3D data generation; 2) high-level feature 

extraction and machine learning techniques based on geometric and spectral data. Therefore, apart 

from the CD algorithm itself, the development of 3D CD techniques depends on the future endeavor of 

these two research aspects, where both “reliable image matching” and “high-level image understanding” 

techniques are important keys to push forward further successes of 3D CD methods. 
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