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Abstract. Several mathematical models have been proposed to eval-
uate the performance of interconnection networks used for high-speed
connections for supercomputers, switches and routers for local and wide
area networks, as well as networks on a chip. Often these models are
based on state space reduction by exploiting symmetries of the network
and requiring uniform traffic patterns. If an interconnection network is
built for a specific application with non-uniform spatial traffic distribu-
tion, models that are more general are needed. This paper proposes a
mathematical model for performance evaluation of application-specific
interconnection networks based on inhomogeneous discrete time Markov
chains (DTMC). It supports store and forward routing, irregular network
topologies, and asymmetric spatial traffic distributions. The model is de-
scribed in a generalized way so that it can support arbitrary switching
element sizes within the network and its input buffers.

1 Introduction

Interconnection networks with point-to-point links are widely used for high-speed
connections in different domains, for example, as networks on a chip (NoC), in
supercomputers, and in switches and routers for local and wide area networks.
In the space domain, SpaceWire networks [9] are more often used to provide
high communication bandwidth onboard spacecraft.

Most interconnection networks have regular or symmetric topologies, because
supercomputers or network switches are usually designed for a large variety of
applications. However, for application-specific networks, like specialized systems
on a chip employing a network on a chip or a spacecraft with many specialized
network nodes, irregular topologies are often beneficial.

Additionally, many performance evaluation approaches presume uniform traf-
fic distributions. When planning and optimizing an interconnection network for
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a specific application, non-uniform traffic distributions, which match the traffic
patterns of the application in question, need to be considered.

For instance, in the research project OBC-NG (Onboard Computer — Next
Generation) [6], which was carried out at the German Aerospace Center (DLR),
a new reconfigurable distributed computer architecture was developed. The goal
of this project and its successor, ScOSA (Scalable On-board computing for Space
Avionics), is to provide high performance onboard computing power to support
complex future space missions. ScOSA utilizes a reconfigurable SpaceWire net-
work that allows the reconfiguration of the spacecraft computer for different
mission phases as well as for error mitigation. Each of these configurations are
predetermined for which optimization algorithms are needed to find optimal par-
titioning and mapping of tasks for each mission phase. These optimizations need
to consider the available bandwidth and possible congestion in the network.

The project considers two approaches for the stochastic performance evalua-
tion: simulation and an analytical model. CINSim (Component-based Intercon-
nection Network Simulator) [7], a stochastic discrete event simulation framework,
is used as simulator. Additionally, a mathematical model, based on inhomoge-
neous discrete-time Markov chains (DTMC) is developed, to evaluate different
network configurations. This model is presented in this paper. It supports direct
networks, where terminals are connected at each switch or switching element
as well as indirect networks like Multistage Interconnection Networks (MIN). A
discrete-time Markov chain, compared to a continuous-time Markov chain, was
chosen to model the synchronous behavior of the switch implementation.

The remainder of this paper is structured as follows: the next section gives
a brief overview of related work. Sect. 3 introduces the DTMC model. Followed
by some results, where the model results are compared to simulation. Sect. 5
presents the conclusions and an outlook to ongoing and future work is given.

2 Related Work

Performance evaluation models for interconnection networks, especially MINs,
have been proposed for many years. Dias and Jump [3] proposed a model for
MINs with a buffer at each switch input. Yoon et al. [12] described a model that
supports arbitrary buffer lengths and arbitrary switch dimensions. Youn and
Mun [13] established a model that confined packet movement from one switch
to another in one clock cycle. Atiquzzaman and Akhtar [2] proposed a model
to investigate hot spot traffic in MINs. Bin and Atiquzzaman [14] developed a
model for output buffered MINs with asymmetric traffic patterns. Tutsch and
Hommel [11] proposed a model, which considers multicast traffic within a MIN.
This model reduces the state space by exploiting symmetries in the network
topology and assuming uniformly distributed traffic.

All mentioned models are based on Markov chains. In recent years, analytical
models have been proposed that are based on queuing networks. Moadeli et al.
[8] developed a performance model for the spidergon topology for NoCs. Kiasari
et al. [5] proposed an analytical latency model for NoCs for arbitrary topologies.



An analytical model for MINs is proposed by Amiri-Zarandi et al. [1]. Hamid et
al. [4] introduce an analytical model for a multi-core multi-cluster architecture
and Sabbaghi-Nadooshan and Patooghy [10] present a performance model for
de Bruijn inspired mesh-based NoCs.

3 Model Description

This section describes the network abstraction, traffic model, and the DTMC
model itself.

3.1 Network and Traffic Model

The network model presented in this work is based on CINSim’s component-
based interconnection network model. It supports combinations of the compo-
nents source, destination, switch, and buffer. With these atomic components,
a great variety of packet-switched interconnection network architectures can be
modeled and investigated, especially irregular network topologies.

Sources generate traffic according to a geometric load distribution r (x), with
x ∈ {0, 1} (on/off source), which means that a packet is generated at each time
step with the probability r (x), and the global spatial distribution `gsd, which de-
fines the probability that a packet at source s is targeted to destination d. Desti-
nations consume packets immediately. Packets move from sources via buffers and
switches to their destinations. Switches are components to realize dynamically
changing connections between its inputs and outputs. Inputs and outputs are
connected according to the requested output of the packet. If multiple inputs con-
tain packets destined to the same output, one of the packet is randomly selected.
Switches have input buffers that store packets. It is required that each switch
input is connected to a buffer. Input buffers and destinations can only have one
preceding component. Switches work in a timeless manner in this model. Only
moving through a buffer costs at least one time step. The buffer size can be set
individually for each input buffer. Fig. 1 shows a small interconnection network
with the described components: sources on the left, input buffers with a capacity
of three packets connected to a switch, and two destinations on the right.

The proposed model employs unicast store-and-forward routing, i.e. a packet
is the smallest flow control unit in the model. It is based on the local backpressure
scheme, which means that packets that enter the network will eventually reach
their destination. Packet drops happen only at the sources. Local backpressure
means that packets can only proceed to the next buffer component during the
following time step, if buffer space is available at the current time step. The
model implements shortest-path routing. If several shortest paths are available,
a path is randomly selected. All network components operate synchronously.

To keep the modeling complexity limited, we assume that all network compo-
nents operate synchronously, driven by a global internal clock. This assumption
is quite realistic for a wide range of applications. For instance, network switches
or networks on chips often operate synchronously.



Fig. 1. A 2×2 network with two sources on the left (S), two input buffers (IB), a switch
(switching element, SE), and two destinations (D) on the right. The two virtual output
buffers (VOB) and the corresponding Markov chains (see Sect. 3.2) are also shown:
DTMCIB 1 and DTMCIB 2 for the input buffers and DTMCHOL for the Head-of-Line
(HOL) Markov chain (only unfeasible state transitions are drawn).

3.2 DTMC Model

For an adequate modeling of non-uniform spatial traffic distributions, the global
spatial distribution `g has to be considered at each switch in combination with
the actual load distribution of each source. For this, probabilities need to be
determined about the packet rate for each input/output combination at every
switch. Hence, a local spatial traffic distribution `lio is derived, which represents
the probability that a packet at a switch is transmitted from switch input i to
switch output o. Local means that this distribution refers to a single switch in
contrast to the global spatial distribution `g. To achieve this, besides the queue
length of each input buffer, the Head-of-Line places (HOL) of all buffers are
modeled to represent the target outputs of the switch. Additionally, to simplify
the equations, virtual output buffers are introduced at the switches. These buffers
indicate from which input a packet has arrived in the current time step to adapt
`lio. Since the virtual output buffers have no representation in real hardware, the
presence of a packet there does not consume time.

It is not feasible to model even small networks with a single Markov chain
due to the state space explosion. In particular, no symmetries can be exploited
compared to most models mentioned in the related work section due to the
requirement to support arbitrary topologies. For example, a simple model of a
single 3 × 3 switch with four buffer places at each input leads to 24,303 states
and 261,081 state transitions. Larger networks cannot be modeled in such a
way, since the number of states increases exponentially. Thus, a decomposition
technique is used that was also applied in previous work (e.g. [11]). However, the
proposed model in this paper does not exploit topological symmetries or requires
uniformly distributed spatial traffic distributions.



Several Markov chains are setup to reflect different behavioral aspects of the
system. Hence, the number of states and state transitions grows only linearly.
The connection between individual Markov chains is achieved by dependencies
in the state transition probabilities of the individual Markov chains, i.e. the
transient state probabilities of an individual Markov chain are considered in
the state transition probabilities of dependent other Markov chains. These state
transition probabilities change every time step until the network reaches steady-
state, leading to inhomogeneous DTMCs.

Fig. 1 shows, next to the network, the corresponding Markov chains and
virtual output buffers. For the HOL DTMC, only the unfeasible state transitions
are shown, all other transitions are feasible.

State Space of HOL DTMCs. All HOL buffer places in a switch with imax

inputs and input buffers, respectively, as well as omax outputs and virtual output
buffers, respectively, are represented by a HOL Markov chain with a finite state
space Sh (imax, omax). A combined Markov chain for all HOL buffer places is
chosen to adequately model the blocking behavior of a switch. The states of
Sh (imax, omax) are denoted by imax-tuples of an (omax + 1)-set. Each HOL place
of an input buffer i has the possible states sh

i ∈ {0, 1, . . . , omax}. The first element
of each state represents the state of the HOL place of the first input buffer. A
‘0’ represents the case, where no packet is present; a ‘1’, where a packet wants
to move to output 1 etc. sh

i denotes the target output of a packet. For instance,
sh

3 = 2 means that the HOL packet in the third input buffer of a switch is
destined to the second output of the switch.

Sh (imax, omax) of the HOL Markov chain for a switch is defined by the imax-
permutation with repetition (PR) of the set of outputs sh

i :

Sh (imax, omax) := PR
(
imax, s

h
i

)
= {(0, . . . , 0) , . . . , (omax, . . . , omax)} .

The number of possible states is given by
∣∣Sh (imax, omax)

∣∣ = (omax + 1)
imax .

Hence, the state probability vector νh of the head-of-line Markov chain has∣∣Sh (imax, omax)
∣∣ components and

∣∣Sh (imax, omax)
∣∣2 elements in its correspond-

ing transition probability matrix Ph.
Initially, it is assumed that all buffers are empty. Thus, νh

(0,0)(0) = 1 in case
of the 2×2 example. To calculate the state probability vector of the second time
step n = 1, the equation νh (1) = Ph (0) · νh (0) has to be solved according to
the Chapman-Kolmogorov equation.

State Space of Queue Length DTMCs. The finite state space Sq of the
Markov chain that represents the queue length of input buffer i is constructed
by Sq (mmax (i)) := {0, 1, . . . ,mmax (i)}, where mmax (i) denotes the number of
buffer places of input buffer i. For example, an input buffer with the capacity
for four packets has the state space Sq (4) = {0, 1, 2, 3, 4}.

The number of possible states is given by |Sq (mmax (i))| = mmax (i) + 1.
Hence, the queue length DTMC state probability vector νq has |Sq (mmax (i))|



components and a transition probability matrix Pq with |Sq (mmax (i))|2 ele-
ments. νq

0 (n) denotes the state probability that the buffer is empty at time step
n and νq

mmax(i)(n) represents the state probability that the buffer is full, respec-

tively.
In the following, it is assumed that mmax (i) > 1. With only one buffer place

in an input buffer, a packet cannot simultaneously be sent and received during
one time step due to the local backpressure scheme. With mmax (i) = 1, the
normalized throughput of this connection would maximally be 0.5.

State Space of Virtual Output Buffers. As previously mentioned, virtual
output buffers are established to simplify the modeling of the spatial distribution
within the network. Packets are only transferred to these buffers if they can be
transferred to the next switch or network output in the following time step. This
reduces the modeling of the output buffers to simple probabilities that can be
derived from the HOL states. The probabilities are updated directly during the
same iteration step. Nevertheless, the states of the virtual output buffers in a
switch are also denoted as a state probability vector νo. The state space of a
virtual output buffer is defined by the number of the input buffers of the switch
in question: So (imax) := {0, 1, . . . , imax}. The number of possible states is given
by |So (imax)| = imax + 1. Hence, the state probability vector νo has |So (imax)|
components.

State Transition Probabilities for HOL DTMCs. The state transition
probabilities for the HOL DTMCs are shown in Fig. 2. They depend on the
competition of packets at the HOL position of the input buffers for an output.
Since only a single packet can win such a competition, the losing packets stay
at their input buffer. Conflicts are resolved randomly.

Each entry of the state transition matrix Ph (n) for the HOL DTMCs at time
step n is calculated by (1). All state transitions from state s to state t at time
step n that are not feasible are set to zero. Infeasible state transitions describe
situations, for instance, if two HOL packets destined to the same switch output,
could have been successfully sent, which is not possible because only one packet
could have won the conflict. For instance, a 5× 5 switch has 7,776 possible HOL
states and 60,466,176 entries in its Ph (n) matrix. 22,221,176 state transitions
are feasible. Thus, 38,245,000 entries in Ph (n) are always zero.

(2) determines if a state transition from s to t is feasible. It is feasible if for all
HOL packets that are destined to the same switch output o (conflicting inputs,
ci
(
o, sh

)
, see (4)) only a single input changes from s to t (|∆i (o, s, t)| ≤ 1, see

(5)). This has to be true for all outputs with more than one HOL as target
(“courted outputs”, o ∈ co

(
sh
)
, see (3)).

The probability for a feasible state transition is the product of the probabil-
ities of a state change from state s to t of the HOL packet for each input. Two
general cases have to be distinguished.

First, we consider inputs that are not part of any conflict set at state s.
This includes all empty input buffers and HOL packets at s, which have no



ph
st (n) =

{
0, if feasible (s, t) = 0∏
i∈nci(s) p

noConf
st (i, n) ·

∏
o∈co(s) p

conf
st (o, n) , if feasible (s, t) = 1

(1)

feasible (s, t) :=

{
1, if ∀o ∈ co (s) : |∆i (o, s, t)| ≤ 1

0, else .
(2)

co
(
sh
)

:=
{
o : o ∈ {1, . . . , omax} ∧

∣∣∣ci
(
o, sh

)∣∣∣ > 1
}

(3)

ci
(
o, sh

)
:=
{
i : i ∈ {1, . . . , imax} ∧ sh

i = o
}

(4)

∆i (o, s, t) = ci(o, s) \ ci(o, t) (5)

nci
(
sh
)

:= {1, . . . , imax} \
⋃

o∈co(sh)

ci
(
o, sh

)
(6)

pnoConf
st (i, n+ 1) =



1− q̃ (i, n) , if si = 0 ∧ ti = 0

`liti (n) · q̃ (i, n) , if si = 0 ∧ ti 6= 0

r (si, n) · lps (i, n) , if si 6= 0 ∧ ti = 0

r (si, n) · `liti (n) · nfp (i, n), if si 6= 0 6= ti ∧ si 6= ti

r (si, n) · `liti (n) · nfp (i, n)

+ (1− r (si, n))
, if si 6= 0 ∧ ti = si

(7)

lps (i, n) =

{
ν

q
1 (i,n)·(1−q̃(i,n))

1−νq
0 (i,n)

, if νq
0 (i, n) < 1

0, if νq
0 (i, n) = 1

(8)

nfp (i, n) =

{
ν

q
1 (i,n)·q̃(i,n)

1−νq
0 (i,n)

+
1−νq

0 (i,n)−νq
1 (i,n)

1−νq
0 (i,n)

, if νq
0 (i, n) < 1

0, if νq
0 (i, n) = 1

(9)

pconf
st (o, n+ 1) =



r(o,n)
|ci(o,s)| · lps (∆i (o, s, t) , n) , if t∆i(o,s,t) = 0

r (o, n)

|ci (o, s)| · `
l
∆i(o,s,t)t∆i(o,s,t)

(n)

·nfp (∆i (o, s, t) , n)

, if t∆i(o,s,t) 6= 0

r (o, n)

|ci (o, s)| ·
∑

c∈ci(o,s)

(
`lco (n) · nfp (c, n)

)
+ (1− r (o, n))

, if ∆i (o, s, t) = ∅

(10)

Fig. 2. State transition probabilities Ph (n) for the head-of-line Markov chains

other competitors for its output (non-conflicting inputs i ∈ nci (s), see (6)).
The probabilities for these inputs are calculated individually with pnoConf

st (i, n),
defined in (7).

And second, all HOL packets of inputs that are competing for an output o
at state s have to be considered together due to their interdependence and are
calculated by pconf

st (o, n), defined in (10). The conflict sets for different outputs
are calculated independently.



Non-conflicting Inputs. The state transition probability pnoConf
st (i, n+ 1) for in-

put buffer i from state s to state t for time step n+ 1 is determined by (7). Five
cases have to be distinguished for pnoConf

st (i, n+ 1):

– First, if the queue of input buffer i in state s is empty and stays empty
in state t, then no new packet comes to i during this state transition with
probability (1 − q̃ (i, n)), where q̃ (i, n) is the receiving probability of input
buffer i in case that buffer space is available. It is determined by the sending
probability of the preceding component rPred (o, n) normalized by the prob-

ability that the buffer is not full: q̃ (i, n) = rPred(o,n)
1−νq

mmax(i)
(i,n)

.

In case the preceding component is a network source, the sending probabil-
ity rPred represents the geometric load distribution r(x) of this source (see
Sect. 3.1). For switches it is given by the probability that their virtual output
buffer is not empty, hence, a packet is sent: rPred (o, n) = 1− νo

Pred,0(o, n) .

– Second, if the queue was empty in s and has a HOL packet in t, a packet is
received during the state transition multiplied with the probability `liti (n)
that a packet that enters the switch from input i is targeted to the output
ti, i.e., the output that is given by the i-th element of t.

– Third, if the queue of i had only one packet left at s, no new packet were
coming (lps (i, n)) and this last packet was successfully sent during the state
transition to t because the output was available (r (si, n)), the new HOL state
for i would be ti = 0. The last packet sent probability lps (i, n) (see (8)) is
defined as follows: if i is definitely empty (νq

0 (i, n) = 1), the probability
equals 0; in all other cases, the probability that only one packet is present
(νq

1 (i, n)) is multiplied by the probability that no new packet is received
(1− q̃ (i, n)). The term has to be normalized by the sum of state probabilities
of a non-empty buffer, since lps(i, n) is only defined for state transitions
where the buffer is not empty.

– Fourth, if the HOL packet of i changed to a different target during the state
transition from state s to t, then the packet with the output si was suc-
cessfully sent (r (si, n)) and a new first packet (nfp (i, n)) targeted to ti is
present with the routing probability `liti (n). The new first packet probability
(nfp (i, n), see (9)) is defined as follows: in case the input buffer is definitely
empty (νq

0 (i, n) = 1) the probability equals 0.
In all other cases, the probability for a new first packet is combined by the
following two cases: input buffer i had only one packet stored (νq

1 (i, n)) and a
new packet is received (q̃ (i, n)). Or i had more than one packet, thus, receiv-
ing a new packet does not influence the HOL state (1− νq

0 (i, n)− νq
1 (i, n)).

Since a new first packet only covers the case where the buffer is not empty,
the probability has to be normalized by the term 1− νq

0 (i, n).

– Finally, if the target of the HOL packet in i at state s is equal to the target
at t, then two situations have to be distinguished. Similar to the previous
case, a packet could have been sent and the new packet is heading to the
same output, or the packet was blocked (1 − r (si, n)) due to a filled queue
in the destination switch.



Conflicting Inputs. The probability pconf
st (o, n+ 1) for a set of inputs that are

competing for output o at state s cannot be calculated independently. Thus, the
probability for each conflict set that is identified by the common output o at
state s is given by (10). Only one of the inputs can change from state s to t
in each conflict set, otherwise, this state transition would not be feasible. Three
cases for pconf

st (o, n+ 1) have to be distinguished:

– First, if the only changed input, identified by ∆i (o, s, t) (see (5)), changed its
HOL state to t∆i(o,s,t) = 0, output o was not blocked (r (o, n)) at time step n,
its HOL packet won the conflict in this conflict set (1/ |ci (o, s)|, random con-
flict resolution) and it was the last packet in this buffer (lps (∆i (o, s, t) , n)).

– Second, if one HOL packet changes its target from output o to t∆i(o,s,t) dur-
ing the state transition from s to t, then this input has won the conflict
(1/ |ci (o, s)|), the output was not blocked (r (o, n)), and a new first packet
(nfp (∆i (o, s, t) , n)) has the target output t∆i(o,s,t) with the routing proba-

bility `l∆i(o,s,t)t∆i(o,s,t)
(n).

– Third, if no input changes in the conflict set of output o (∆i (o, s, t) = ∅) from
s to t, two things could have happened: output o was blocked (1− r (o, n)),
so no HOL packet of this conflict set has moved. Alternatively, o was not
blocked (r (o, n)), one of the inputs won the conflict (1/ |ci (o, s)|), and a new
packet moved to its HOL position (nfp (c, n)) with the same output o as
target (`lco (n)). Since this could be the case for all inputs of the conflict set,
the probabilities have to be added up for each winning input.

State Transition Probabilities for Queue Length DTMCs. The state
transition matrix for the queue length of input buffer i at time step n is denoted
as Pq (i, n). The element (j, k) of pq

jk(i, n) gives the probability that the queue
length of i changes from j to k at n. The queue length can only increase or
decrease by one packet from time step n to n + 1. Thus, only the following
elements of Pq (i, n) are non-zero:

pq
jk (i, n) ≥ 0, if 0 ≤ |j − k| ≤ 1 .

To calculate all non-zero elements of pq
jk(i, n+1) for the next time step n+1, all

possible HOL states have to be considered since the decision whether a packet can
leave this buffer depends on the other input buffers as well. Equations (11)–(18)
in Fig. 3 show the state transition probabilities for the queue length DTMCs.

The state transition probability of whether the buffer is empty at time step
n and no new packet is coming at time step n+ 1 is given by (11).

If the buffer is empty and a new packet is coming, the state transition prob-
ability is equal to the receiving probability of this input buffer (see (12)).

All remaining cases for which the state transition probability is not null
are given by (13). All states of Sh with their state probability νh

s (n) have to
be considered except states where no HOL packet is present at input buffer i
(s ∈ Sh |si 6=0). The resulting probability has to be normalized with the sum



pq
00 (i, n+ 1) = 1− q̃ (i, n) (11) pq

01 (i, n+ 1) = q̃ (i, n) (12)

pq

jk|j>0
(i, n+ 1) =

1∑
s∈Sh|si 6=0

νh
s (n)

·
∑

s∈Sh|si 6=0

νh
s (n)

·



p̃qmmax(i)mmax(i) (i, s, n) , if j = k = mmax (i)

p̃qjj (i, s, n) , if j = k < mmax (i)

p̃qj(j−1) (i, s, n) , if j < mmax (i) ∧ k = j − 1

p̃qmmax(i)(mmax(i)−1) (i, s, n) , if mmax (i) = j = k + 1

p̃qj(j+1) (i, s, n) , if k = j + 1 ∧ j < mmax (i)

(13)

p̃qmmax(i)mmax(i) (i, s, n+ 1) = 1− r (si, n) + r (si, n) · |ci (si, s)| − 1

|ci (si, s)|
(14)

p̃qjj (i, s, n+ 1) = (1− r (si, n)) · (1− q̃ (i, n))

+ r (si, n) · |ci (si, s)| − 1

|ci (si, s)|
· (1− q̃ (i, n)) + r (si, n) · 1

|ci (si, s)|
· q̃ (i, n)

(15)

p̃qj(j−1) (i, s, n+ 1) = (1− q̃ (i, n)) · r (si, n)

|ci (si, s)|
(16)

p̃qmmax(i)(mmax(i)−1) (i, s, n+ 1) =
r (si, n)

|ci (si, s)|
(17)

p̃qj(j+1) (i, s, n+ 1) = q̃ (i, n) ·
(

(1− r (si, n)) + r (si, n) · |ci (si, s)| − 1

|ci (si, s)|

)
(18)

Fig. 3. State transition probabilities Pq (n) for the queue length Markov chains

of all considered state probabilities. Five different situations are distinguished
(defined in (14)–(18)):

The probability for a full buffer (j = mmax (i)) at time step n and a full buffer
(k = mmax (i)) at n + 1 is given by (14). Two situations could have happened:
the succeeding buffer is not able to receive a packet (1 − r (si, n)) or it is able
to receive (r (si, n)) but the packet of this buffer lost the conflict with another
HOL packet ((|ci (si, s)| − 1) / |ci (si, s)|).

If the queue length does not change and the buffer is neither full nor empty,
the probability is determined by (15). The following three situations result in
an unchanged queue length: First, the HOL packet is blocked (1 − r (si, n))
because the succeeding buffer is full and no new packet is received (1− q̃ (i, n)).
Second, the target is available but this HOL packet loses the conflict to another
HOL packet. If no competition is present in this HOL state, the term becomes
0 because |ci (si, s)| would be 1.



The last case is similar to the previous case but now this HOL packet wins
the conflict and a new packet is coming to this buffer.

The state transition probability for a decreasing queue length, if the queue
is not full, is calculated by (16). The queue length can only decrease if no new
packet arrives (1 − q̃ (i, n)), the output is not blocked (r (si, n)), and the HOL
packet of this buffer wins a potential conflict (1/ |ci (si, s)|).

Equation (17) also describes a decreasing queue length but for the case of a
full buffer. Here, the probability that a new packet is received has to be omitted
(1− q̃ (i, n)) due to the local backpressure mechanism. No packet is accepted at
a full buffer.

Finally, the state transition probability for an increased queue length is de-
termined by (18). This situation arises if a packet is received (q̃ (i, n)) and the
output is blocked (1−r (si, n)), or the output is not blocked but the HOL packet
lost a conflict ((|ci (si, s)| − 1) / |ci (si, s)|).

State Probabilities of the Virtual Output Buffers. As mentioned before,
the virtual output buffers are a tool to simplify the calculation of the spatial
distribution within the network. Their state is derived from the state probabil-
ity vector of the HOL Markov chain νh (n) at the switch in question and the
receiving probabilities of the succeeding component.

The probability for virtual output buffer o to “hold” a packet from input
buffer i at time step n is given by

νo
i|0<i≤imax

(o, n) = r (o, n) ·
∑

s∈Sh∧si=o

νh
s (n)

|ci (o, s)|
.

A packet can only enter o if the succeeding component is unblocked (r (o, n)).
This probability is multiplied with the sum of all HOL states where input i has
this output o as target (si = o) and the probability for winning a possible conflict
with other inputs to the same target (1/ |ci (o, s)|).

The probability for an empty virtual output buffer, i.e., no packet will move
through this buffer during time step n, can be calculated in the same manner.
Either the succeeding component is blocked (1 − r (o, n)) or if the succeeding
component is available (r (o, n)), then the state probability (νh

s (n)) of all HOL
states where no HOL packet is targeted to output o (s ∈ Sh ∧ o /∈ s) have to be
considered:

νo
0 (o, n) = (1− r (o, n)) + r (o, n) ·

∑
s∈Sh∧o/∈s

νh
s (n) .

Routing. To support irregular network topologies and non-uniform traffic, spa-
tial traffic distributions and routing have to be regarded. The probability that
a packet wants to proceed from source s to destination d of the network is
given by the spatial distribution matrix `gsd. These global routing probabilities



are mapped to local ones for each switch. This local matrix `lio (n) denotes the
probabilities that a packet at switch input i moves to output o at time step n.

To achieve this, routing tables at each switch are established. With Dijkstra’s
algorithm, all possible shortest paths from each source to each destination are
calculated. Each path is traversed and at every switch along the path, a routing
entry is generated. This entry is identified by the source/destination pair as
well as the local input/output pair and consists of the number of redundant
paths a packet could take and the probability that a packet moves along this
specific path (from s to d via i/o at this switch). The probabilities of the routing
entries are iteratively set by getting the probability of the related entry from
the preceding switches or sources on the routing path and weighted with the
probability that a packet leaves the preceding router on this path (given by
νo

Pred (n)). If a redundant path is available at a switch, the probability for a
routing entry is divided by the number of outputs a packet could take (random
selection of paths).

The local probability matrices `l are iteratively determined during the fixed-
point iteration by summation of the probabilities of the routing entries for each
input/output pair.

3.3 Performance Measures

The steady-state performance of a network can be determined by this model since
the Markov chains are ergodic; they are aperiodic and positive recurrent. This
property is ensured by having time-independent load and spatial distributions
as model inputs.

Network performance is usually determined by the normalized throughput,
delay times for packets, and queue lengths. These measures can be determined
within the network or at the destinations. The normalized throughput λo at
output o of a switch is given by the probability that a packet moves through its
virtual output buffer: λo (n) = 1− νo

0 (o, n) .
The normalized throughput of input buffer i is then given by the sum of

the probabilities that this input sends a packet through a virtual output buffer:
λi (n) =

∑
o∈{1,...,omax} ν

o
i (o, n) .

If the switch output o is connected to destination d, the throughput λd(n) is
given by λd(n) = λPred(o) (n) = 1− νo

Pred(o) (o, n) .
The weighted sum of state probabilities of the queue length DTMC deter-

mines the mean queue length of input buffer i: m̄ (i, n) =
∑mmax(i)
j=1 j · νq

j (i, n) .
Little’s Law calculates the mean delay of a packet residing in input buffer i within

the network: d (i, n) = m̄(i,n)
λi(n) . To get the packet’s mean delay at the network

destinations, each routing entry also holds, besides its probability, the accumu-
lated mean delay of its path. At the destination, these accumulated delays are
weighted with their path probability and then summed.

These steady-state performance measures of the network are calculated by
the same iterative method which has been applied to similar models (e.g. [3]):
start with an empty network and iterate over the above equations and transi-
tion tables until all performance measures reach steady-state. Each time step is



divided into smaller steps to calculate the different equations presented above.
These calculations are executed concurrently for all network components within
the following minor steps:

1. The State transition probabilities for the queue length of the input buffers
Pq and the state probabilities for the HOL DTMCs Ph are determined for
the next time step.

2. The state vectors νq and νh are calculated for the input buffers and the
HOL Markov chain as well as the receiving probabilities of the destinations.

3. During this minor step, the state vectors of the virtual output buffers νo are
derived and the mean queue lengths m̄ are calculated.

4. Based on the the results of the former steps, the normalized receiving prob-
ability q̃ at input buffers in case space is available, the new routing proba-
bilities for each routing entry, and the mean delays are determined.

5. With the results of the former step, the local routing tables `l and the
updated delays for the routing entries are calculated.

6. Finally, the delays for each router output are computed.

These minor steps are necessary to support the concurrent calculations without
evaluating the topology of the network and some equations are dependent to
equations in preceding or succeeding network components.

The intermediate results during iteration show the transient behavior of the
network. Up to now, the existence of the fixed point has not been proven. How-
ever, all of our tests show that it exists. We have tested the model with a large
variety of networks with regular and irregular topologies and traffic distributions
ranging from 1× 2 to 32× 32 networks.

4 Results

The DTMC model is implemented in a tool, called CINAn (Component-based
Interconnection Network Analysis). It uses caches and precalculates feasible state
transitions at setup to reduce computation time dramatically during fixed-point
iteration. During the iteration steps, only non-dynamic data structures are used
and the calculation of the state transition probabilities is parallelized. CINAn
uses the same file format for network descriptions as CINSim. Thus, CINSim’s
Graphical User Interface (GUI) (see Fig. 4) can be used for model description
and the results of the DTMC model can easily be compared to simulation results.

As an example, we evaluate a 8×8 bidirectional MIN with three stages (shown
in Fig. 4). This example shows the support of different switch sizes (4× 4 in the
first two stages and 2 × 2 in the last stage) and different route length in the
network. The input buffers have a queue length of four packets. This example
has eight HOL DTMCs with 625 states each, four HOL DTMCs with nine states
each and forty queue length DTMCs with 5 states each.

The spatial distribution of each source is set to `gsd = d
36 for Destinations

{1, . . . , 8}, i.e., Destination 2 is targeted with the probability 2
36 = 1

18 and Des-
tination 8 with 8

36 = 2
9 . The offered load is increased at each run. The results of



Fig. 4. Screenshot of the GUI of CINSim with a three-stage 8× 8 bidirectional MIN

the proposed model are compared with simulation runs and depicted in Fig. 5.
The normalized throughput and the mean delay are measured for Destinations
1–4 and Destinations 5–8 separately. The simulation termination criteria was set
to a confidence level of 99% and a precision of 0.1.

The results indicate that the normalized throughput of the proposed model
matches very well with the simulation. The mean delay also matches very well
until the network reaches saturation. In the part of the network where the load is
very high (Destinations 5–8), the DTMC model underestimates the mean delay
when the network load increases. This is typical for these kind of models and
has been reported before (e.g. [3,11]). We expect that these errors are caused by
the decomposition of the model.

For Destinations 1–4 another effect predominates. In case a conflict happens
at a switch, the DTMC model does not consider a possible redundant routing
path for packets that have lost the conflict. CINSim, however, tries to find an
alternative path for packets that have lost a conflict. Hence, the DTMC model
estimates the mean delay higher if a network has redundant paths.

Fig. 6 shows the finite horizon performance measures of the same network
for an offered load of 0.5 for the first fifty time steps. Again, the throughput is
close to the simulation and with some more differences for the delay.

The observed errors of the DTMC model are representative to other scenarios
we evaluated, for instance, asymmetric topologies, larger networks, etc.

Table 1 shows the runtime and memory usage of the DTMC model and the
simulation for the steady-state (Fig. 5) and the finite horizon (Fig. 6) case with
an offered load of 0.5, respectively. The results were obtained on a Linux machine
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Fig. 5. Steady-state normalized throughput and mean delay of an 8 × 8 bidirectional
MIN shown in Fig. 4 with an asymmetric spatial traffic distribution Results obtained
by the DTMC model and simulation.
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with two Intel Xeon E5 processors with four cores each with a clock frequency
of 3.3 GHz.



Table 1. Runtime and memory usage for results of Fig. 5 and Fig. 6

Runtime DTMC Runtime Sim. Memory DTMC Memory Sim.

Steady-state 13 s 18 s 195 MiB 73 MiB
Time-depended 2 s 82 s 158 MiB 74 MiB

5 Conclusions

In this paper we presented a new analytical model, based on inhomogeneous
discrete time Markov chains, for the performance evaluation of interconnection
networks. The model supports arbitrary topologies and asymmetric spatial traffic
distributions. It provides results that are close to a simulation of the network.
The model was implemented in a tool that reuses the GUI of the simulation
framework CINSim.

Due to the complexity of the model, the runtime of the fixed-point iteration
is comparable to the simulation, depending on the selected precision of the simu-
lation and the network topology. However, the proposed model directly delivers
the time-dependent behavior of the network until it reaches its steady-state in a
single run in contrast to simulation, where the simulation restarts repeatedly to
gather enough samples for each time step under investigation.

With this model, two approaches exists for performance evaluation during
the design process of future onboard computers. This increases confidence in the
results. The implementation of the SpaceWire network switches coincides well
with the synchronous behavior, which is the basis of the model presented in this
paper. Future work will compare actual measurements of the SpaceWire network
in different configurations with the results of the presented model.

Currently, the DTMC model is extended to support Wormhole routing by
adding an additional Markov chain to keep track of the part of the packet cur-
rently at the HOL position at a switch. This model will then be used for op-
timizations of configurations for future spacecraft onboard computers. Further-
more, other routing algorithms can easily be added to the model, e.g., west-first
or xy routing, by replacing Dijkstra’s algorithm during model setup.
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