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Abstract—This paper describes an algorithm that exploits
multipath propagation for position estimation of mobile receivers.
We apply a novel algorithm based on recursive Bayesian fil-
tering, named Channel-SLAM. This approach treats multipath
components as signals emitted from virtual transmitters which
are time synchronized to the physical transmitter and static
in their positions. Contrarily to other approaches, Channel-
SLAM considers also paths occurring due to multiple numbers
of reflections or scattering as well as the combination. Hence,
each received multipath component increases the number of
transmitters resulting in a more accurate position estimate or
enabling positioning when the number of physical transmitters is
insufficient. Channel-SLAM estimates the receiver position and
the positions of the virtual transmitters simultaneously, hence,
the approach does not require any prior information such as
a room-layout or a database for fingerprinting. The only prior
knowledge needed is the physical transmitter position as well
as the initial receiver position and moving direction. Based on
simulations, the position precision of Channel-SLAM is evaluated
by a comparison to simplified algorithms and to the posterior
Cramér-Rao lower bound. Furthermore, the paper shows the
performance of Channel-SLAM based on measurements in an
indoor scenario with only a single physical transmitter.

Index Terms—Channel-SLAM, CRLB, multipath, positioning,
particle filter, SLAM

I. INTRODUCTION

Global navigation satellite systems (GNSSs) are the most

common systems used for positioning in the world. In critical

environments, such as urban canyons or indoors, the position

accuracy using GNSSs might be drastically reduced. In these

environments, multipath effects, low received signal power

and non-line-of-sight (NLoS) propagation reduce the position

accuracy [1]. To enhance the positioning performance in

these scenarios, signals of opportunity (SoO) can be used

for example from mobile communication base-stations [2],

[3], wireless local area network (WLAN) transmitters [4] or

dedicated ultra-wideband (UWB) transmitters [5]–[7]. How-

ever, still multipath propagation might reduce the accuracy.

In multipath environments, the signal reaches the receive

antenna by multiple paths. The range estimate of standard

algorithms like the delay locked loop (DLL) is biased in
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multipath propagation environments [8]. Algorithms like [9]–

[11] reduce the multipath error by modifying the DLL. Other

approaches, estimate the channel impulse response (CIR) to

mitigate multipath effects on the range estimate. Examples for

these approaches are based on maximum likelihood like [12]–

[14] or on recursive Bayesian filters like [15], [16].

Exploiting multipath propagation instead of mitigating the

multipath effect is attracting significant research interest. For

example the authors of [17], [18] use multipath propagation for

positioning of a mobile terminal with a multipath fingerprint-

ing approach. Other ideas, like [19]–[23] interpret the effect

of an electromagnetic wave reflected on a surface as a signal

emitted from virtual transmitters (VTs). In the field of indoor

positioning with UWB signals, the approaches [21]–[23] use

reflected signals with the constraints of knowing the positions

of walls and of the physical transmitter. These constraints

allow to precalculate the position of the VTs and hence, the

estimation of the receiver position. The authors of [24] use a

non-linear least square algorithm combining UWB measure-

ments at several receiver positions to estimate the positions

of the VTs and the receiver simultaneously within small

scale scenarios. Furthermore, the authors of [25] estimate and

track the phase information of multipath components (MPCs)

using an extended Kalman filter (EKF) and estimate the user

position using a time difference of arrival (TDOA) positioning

approach. Additional to positioning applications, multipath

propagation can be used to estimate the surrounding area,

e.g., [26] uses a non-static UWB radar to estimate the room-

geometry. This approach was extended in [27], where the

UWB radar transceiver position is estimated in addition by

using a simultaneous localization and mapping (SLAM) ap-

proach [28]–[30]. Similarly, [31] describes a SLAM approach

to estimate the room-geometry as well as the receiver position

based on UWB by using single time reflected MPCs.

In this paper, we propose an approach for multipath assisted

positioning using wideband signals, named Channel-SLAM.

Channel-SLAM enables accurate positioning even if only

one physical transmitter is available. Contrarily to similar

approaches [20]–[23], Channel-SLAM does not require any

prior knowledge on the building layout. In order to use

Channel-SLAM, the following conditions have to be met: a

static environment, the presence of MPCs, a moving receiver,

the knowledge of the physical transmitter position as well

as an initial prior knowledge of the receiver position and

moving direction to define the coordinate system. In order

to estimate and track the CIRs at the receiver side, we

assume that the receiver is equipped with a linear antenna
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array and the transmitter emits continuously known wideband

signals. Hence, the novelty of the algorithm is to estimate the

position of the receiver and the VTs simultaneously, which

can be interpreted as SLAM with radio signals, see [28]–

[30]. Usually, SLAM approaches estimate the user position

and build a map of the environment simultaneously. Instead

of mapping the environment, Channel-SLAM maps the VT

positions and interprets them as landmarks. Furthermore, com-

pared to [19]–[24], [26], [27], [31], Channel-SLAM considers

also paths occurring due to multiple number of reflections

or scattering as well as the combination of both effects. We

demonstrate that each MPC can be treated as being emitted

from a VT with unknown but fixed position. Additionally, we

consider positioning using wideband instead of UWB signals.

UWB signals have to be of low power to be harmless to

other systems which limits the coverage distance. In result,

wideband signals can be used for larger distances. However,

the estimation of the CIR is more challenging with wideband

signals than with UWB signals [13], [14], [32]. In [33], [34],

we showed that positioning is possible in NLoS scenarios

using MPCs without the knowledge of the room-geometry

by using Channel-SLAM and multiple transmitters. We in-

vestigated TDOA positioning and especially TDOA between

MPCs where synchronization between physical transmitters is

not essential. We extended [33], [34], by using a gyroscope

to obtain heading information of the moving receiver and

showed that positioning with only one physical transmitter is

possible if MPCs and a gyroscope are used, see [35], [36].

In this contribution, we derive a novel algorithm based on

Rao-Blackwellization [37]. The derived algorithm reduces the

computational complexity compared to [33]–[36] and allows to

use different numbers of particles in each particle filter (PF)

associated to a VT. Based on simulations, we compare the

accuracy of Channel-SLAM to a derived posterior Cramér-Rao

lower bound (PCRLB) and to four simplified algorithms. In the

considered scenario, the line-of-sight (LoS) path is received

only for the first half of the simulated receiver trajectory. These

artificial simulations show by a simplified scenario that even

when the LoS path is not present anymore, Channel-SLAM is

able to estimate the receiver position using MPCs. Positioning

algorithms like [16] interpret the first arrived path as the LoS

path and calculate biased position estimates. Additionally,

we show the performance of Channel-SLAM with channel

sounder measurement data captured in an indoor scenario

which considers similarly to the simulated scenario a partially

NLoS situation. Here, the receiver is turning from a corridor

where the transmitter is located into another room where

the LoS path between transmitter and receiver is blocked.

Equivalently to the simulations, the measurement evaluations

show that positioning is possible if MPCs are used.

The paper is structured as follows: Section II addresses

the signal model. Thereafter, in Section III we derive the

proposed algorithm, where we describe in Section III-A

Channel-SLAM using a recursive Bayesian filtering approach,

in Section III-B the Rao-Blackwellized particle filter (RBPF)

and in Section III-C the implementation. Afterwards, we derive

in Section IV the PCRLB for Channel-SLAM. In Section V-A,

we evaluate the proposed algorithm and compare the result

to the PCRLB and to four simplified algorithms. Thereafter,

in Section V-B we show the performance of Channel-SLAM

based on measurements in an indoor environment, using only

one physical transmitter. Section VI briefly discusses potential

applications and resulting issues of the proposed tracking

algorithm. Finally, Section VII concludes the paper.

Throughout the paper, we will use the following notations:

• (·)T and (·)H stand for matrix (or vector) transpose and

conjugate transpose, respectively.

• All vectors are interpreted as column vectors.

• I denotes an identity matrix.

• Matrices are denoted by bold capital letters and vectors

by bold small letters.

• [A]l,m represents the element in row l and column m of

matrix A and [x]l denotes the l-th element of vector x.

• ‖A‖2 =
∑

l

∑

m | [A]l,m |2 represents the square of the

Frobenius norm of A.

• a ∼ N
(
µa, σ

2
a

)
denotes a Gaussian distributed random

variable a with mean µa and variance σ2
a.

• E [x] stands for expectation or sample mean of x.

• 1 : k stands for all integer numbers starting from 1 to k,

thus 1, 2, . . . , k.

• ℜ{x} denotes the real part of x.

• c is the speed of light.

• x̂ denotes the estimation of x.

• ∝ stands for proportional.

• {x(i)}Ni=1 defines the set for xi with i = 1, . . . , N .

II. FORMULATION OF THE SIGNAL MODEL

In wireless propagation the transmitted signal is reflected

and scattered by objects. Thus, the transmitted signal s(t)
reaches the receive antenna via multiple geometric paths.

According to [38], the CIR h(t, τ) at time t can be assumed

to be constant for a short time interval T , with

h(t, τ) =

N(t)−1
∑

i=0

αi(t) · δ (τ − τi(t)) , (1)

for T0 ≤ tk ≤ T0 + T , where N(t) is the number of

paths, αi(t) the complex amplitude, τi(t) the delay of the i-th
path for i = 0, . . . , N(t) − 1 and δ(τ) stands for the Dirac

distribution. Assuming that the transmitted signal s(t) is time

limited with a length smaller than T , the signal received by

the l-th antenna at time tk sampled with rate B, bin indices

m = 0, . . . ,M − 1 and the delay τm = m
B

can be written as

yl(tk, τm) =

N(tk)−1
∑

i=0

αi(tk) bl(φi(tk)) s(τm − τi(tk)) + n(τm)

= ỹl(tk, τm) + n(τm) , (2)

for T0 ≤ tk ≤ T0 + T , where bl(φi(tk)) denotes the response

of the l-th receive antenna with respect to the phase center,

φi(tk) the angle of arrival (AoA)1, ỹl(tk, τm) is the sum of

all paths’ contributions and n(τm) denotes white circular

1Please note, that the expression given in (2) considers a linear antenna
array only. An extension to other types of antenna arrays able to measure the
two dimensional AoA separately is straightforward.
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symmetric normal distributed receiver noise with variance σ2
n.

Using matrix notation, Ỹ(tk) = [ỹ(tk, τ0), . . . , ỹ(tk, τM−1)]
denotes the sum of all paths’ contribution for all antennas

l = 1, . . . , L with ỹ(tk, τm) = [ỹ1(tk, τm), . . . , ỹL(tk, τm)]
T

and respectively the sampled received signal

Y (tk) = [y(tk, τ0) , . . . ,y(tk, τM−1)] with y(tk, τm) =
[y1(tk, τm), . . . , yL(tk, τm)]

T
. For a transmitter which emits

the signal s(t) periodically with period Tp, the receiver may

measure Y (tk) for k = 0, . . . ,∞ with tk+1 − tk = Tp < T .

In order to use MPCs to localize the receiver, a model

reflecting their parameters in dependency of the user position

ru(tk) needs to be found. In the following, we consider a static

environment with a physical transmitter at position rt and a

receiver moving along an arbitrary trajectory. We consider two

propagation effects in this paper: reflection and scattering. For

reflection, we consider the effect of an electromagnetic wave

reflected by a large smooth surface. The propagation effect

of scattering occurs if an electromagnetic wave impinges an

object and the energy is spread out in all directions [39].

Geometrically, the effect of scattering can be described as a

fixed point S at position rs in the pathway of the MPC.

Fig. 1 summarizes three different propagation cases, a de-

tailed description can be found in [33]–[36]. First, we consider

the case of reflection on a smooth surface. The reflection point

at position rr(tk) is moving on the surface when the receiver

is in motion. As indicated in Fig. 1 by VT1, we can construct

a VT at position rVT,1 by mirroring the physical transmitter

position at the reflecting surface. The distance between VT1

and the receiver equals dTR(tk)+dRU1
(tk) = ‖rt − rr(tk)‖+

‖rr(tk)− ru(tk)‖ = ‖rVT,1 − ru(tk)‖, which is the geomet-

rical length of the reflected path, i.e. the delay of the MPC

multiplied by the speed of light, where dTR(tk) is the distance

between the transmitter and the reflection point and dRU1
(tk)

the distance between the reflection point and the receiver. From

the receiver side, both, the reflected and the virtual propagation

path starting at VT1 have the same AoA and delay. Therefore,

the reflected path can be described as a direct path between

VT1 and the receiver. Using the same approach, a VT can

be constructed for paths that are reflected multiple times, see

also [33]–[36].

Fig. 1 provides also a visualization of scattering of the

signal at the physical scatterer S. The geometrical propaga-

tion length of the scattered propagation path is equal to a

direct path between a VT positioned at S and the receiver

as visualized by VT2 at position rs = rVT,2 in Fig. 1

with distance dSU(tk) plus the propagation distance dTS(tk)
between the physical transmitter and S. Hence, the propa-

gation length of the scattered path is dTS(tk) + dSU(tk) =
‖rt − rs‖+ ‖rs − ru(tk)‖ = ‖rVT,2 − ru(tk)‖+ dVT where

dTS(tk) = dVT > 0 is constant for all receiver positions

ru(tk). As indicated in Fig. 1 by the winded line, additional

interactions between the physical transmitter and S may occur.

This holds also for cases where the transmitted signal is subject

to multiple scattering occurrences.

Fig. 1 shows as well a combination of the considered

multipath effects. The emitted signal from the transmitter

is first scattered at S and then reflected before it reaches

the receiver. When the receiver is moving, the reflection

Physical transmitter

Moving receiver

Reflecting surface

rr(tk) rsr(tk)

ru(tk)

ru(tk+1)

ru(tk+2)

rs = rVT,2
rt = rVT,0

rVT,1

rVT,3
VT3

VT1

S = VT2

dSR(tk)

dSR(tk)

dRU1 (tk)

dRU2
(tk)

dSU(tk)

dTR(tk)

dTR(tk)

dTS(tk) = dVT

Fig. 1. The figure shows three propagation mechanism: First scenario:
the transmitted signal is reflected on a smooth surface. VT1 is defined by
mirroring the physical transmitter position at the surface. Second scenario:
the transmitted signal is scattered at S. VT2 is defined at the position of S.
Third scenario: The transmitted signal is scattered and afterwards reflected on
a smooth surface. VT3 is defined by mirroring the scatterer S at the surface.
In the second and third scenario the additional propagation length dVT equals
to dTS(tk). Additional interactions between the physical transmitter and S
may occur indicated by the winded line.

point at position rsr(tk) in Fig. 1 is moving on the sur-

face. Hence, the VT is defined by mirroring the scatterer

S at the surface as indicated by VT3 at position rVT,3.

The propagation distance is therefore dTS(tk) + dSR(tk) +
dRU2

(tk) = dVT + ‖rs − rsr(tk)‖ + ‖rsr(tk)− ru(tk)‖ =
dVT+‖rVT,3 − ru(tk)‖, where dTS(tk) = dVT > 0, dSR(tk)
is the distance between S and rsr(tk), and dRU2(tk) is the

distance between rsr(tk) and the receiver. As mentioned

before, additional interactions between the physical transmitter

and S may occur, as indicated in Fig. 1 by the winded line.

Combining the approaches described above leads to the

conclusion, that the propagation path of the MPC can be

equivalently described as a direct path between a VT and the

receiver plus an additional constant propagation length dVT.

This additional propagation length is zero, i.e. dVT = 0, if

only reflections occurred on the pathway between physical

transmitter and receiver or greater than zero, i.e. dVT > 0, if

the MPC was interacting with a scatterer. In general, dVT

can be interpreted as a clock offset between the VT and

the physical transmitter. In the following, we will denote

the position of the VT and the additional propagation length

associated to the i-th MPC at time instant tk by rVT,i(tk) and

dVT,i(tk), respectively2.

III. POSITION ESTIMATION APPROACH

According to the description given in the previous section,

an MPC can be represented by a direct path between a VT and

the receiver plus an additional propagation length. However,

the receiver position as well as the states of the VTs, i.e.

rVT,i(tk) and dVT,i(tk), are unknown. Additionally, it is

unknown if the MPC is caused by a reflection or an interaction

2Please note, that the position of the VTs and the additional propagation
lengths are constant over time. Nevertheless for notational convenience in the
later sections a time dependence on tk is introduced here.
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with a scatterer. Hence, the state vector x(tk) that describes the

parameters to be estimated at time instant tk for N(tk) MPCs

is defined by

x(tk) =
[

xu(tk)
T
,xVT(tk)

T
]T

, (3)

with the receiver states

xu(tk) =
[

ru(tk)
T
,vu(tk)

T
, bu(tk)

]T

, (4)

where ru(tk) is the receiver position, vu(tk) the receiver

velocity, bu(tk) the receiver’s clock bias and the VT states

xVT(tk) =
[

xVT,0(tk)
T
, . . . , xVT,N(tk)−1(tk)

T
]T

. (5)

The parameters representing the i-th VT are defined as

xVT,i(tk) =
[
rVT,i(tk)

T , dVT,i(tk)
]T

, (6)

where rVT,i(tk) is the position of the i-th VT and dVT,i(tk)
the additional propagation length. For notational conveniences,

we use VT0 to describe the physical transmitter with known

rVT,0(tk) = rt and dVT,0(tk) = 0 in Section V-A and

Section V-B.

Similarly to [33]–[36], the algorithm described in this

paper is split into two levels: On the first level, the mul-

tipath parameters: amplitude αi(tk), AoA φi(tk) and delay

τi(tk) = di(tk)
c

for each MPC i = 0, . . . , N(tk) − 1 are

estimated based on the received signal Y (tk). For consistency

between different time instances, the multipath parameter

estimation algorithm needs to include a path association such

that distinct propagation paths are individually tracked over

sequential time instances. In this paper, we use the algorithm

called Kalman enhanced super resolution tracking (KEST),

see [40], for the estimation and tracking of MPCs. Also

other multipath estimation and tracking algorithms can be

applied, e.g. [15], [41]. On the second level, Channel-SLAM

recursively estimates the posterior distribution of the state

vector x(tk), p
(
x(tk)|Z(t0:k)

)
, using the parameters of all

N(tk) MPCs as measurement Z(tk), with

Z(tk) = [φ̂(tk), d̂(tk)], (7)

where

φ̂(tk) = [φ̂0(tk), . . . , φ̂N(tk)−1(tk)]
T (8)

are the estimates for the AoA φi(tk) and

d̂(tk) = [d̂0(tk), . . . , d̂N(tk)−1(tk)]
T (9)

are the estimates for the propagation path length di(tk) =
τi(tk) · c for the MPCs i = 0 . . . N(tk) − 1 with their

corresponding variances Σz(tk) =
[

σ2
d(tk),σ

2
φ(tk)

]

. Mul-

tipath estimation algorithms like KEST cannot distinguish

between reflected paths, scattered paths or the combination

of both. However, by including the additional propagation

length dVT,i(tk) in the state vector xVT,i(tk), a specific model

detection is not necessary, since for reflected paths, scattered

paths or the combination of both, the same model can be used.

Hence, if the MPC was interacting with a scatterer, Channel-

SLAM estimates dVT,i(tk) > 0. If only reflections occurred

on the pathway between physical transmitter and receiver,

Channel-SLAM estimates dVT,i(tk) ≈ 0. In this paper we

concentrate on the derivation of Channel-SLAM, for a detailed

description of multipath parameter estimation and tracking

with KEST see [40] or similar types of algorithms in [15],

[41].

A. Algorithm Description Based on Recursive Bayesian Fil-

tering

Recursive Bayesian filtering provides a methodology to

optimally estimate parameters in non-stationary conditions.

The methodology consists of two steps, the prediction

step to calculate p
(
x(tk)|Z(t0:k−1)

)
and the update step

to obtain p
(
x(tk)|Z(t0:k)

)
which considers the measure-

ment Z(tk) at time instant tk with the likelihood function

p
(
Z(tk)|x(tk)

)
[42]. Assuming a first-order Markov model,

the transition prior p
(
x(tk)|x(tk−1)

)
used in the prediction

step of the recursive Bayesian filter is defined here as

p
(
x(tk)|x(tk−1)

)
= p
(
xu(tk)|xu(tk−1)

)

×
N(tk)−1
∏

i=0

p
(
xVT,i(tk)|xVT,i(tk−1)

)
, (10)

where we assume independence between the transition priors

of the receiver state vector xu(tk) and the VT state vectors

xVT,i(tk) associated to the MPCs i = 0, . . . , N(tk)−1. Please

note that (10) inherently assumes independence among MPCs,

i.e. propagation paths interact with distinct objects. This is

based on the well-known uncorrelated scattering assumption

in wireless propagation channel modelling [39]. As mentioned

in Section II, the state xVT,i(tk) is time-invariant, hence, for

the transition prior p
(
xVT,i(tk)|xVT,i(tk−1)

)
of the i-th MPC

we obtain

p
(
xVT,i(tk)|xVT,i(tk−1)

)

= δ (xVT,i(tk)− xVT,i(tk−1)) . (11)

For the transition prior p
(
xu(tk)|xu(tk−1)

)
of the receiver

state vector, i.e. the receiver position, velocity and clock

bias, known prediction models can be applied3, see e.g. [8],

[43]–[45]. In this paper, we use a discrete time white noise

acceleration model, see e.g. [45] with

xu(tk) = Au(tδ)xu(tk−1) + nu(tk), (12)

with the transition matrix

Au(tδ) =











1 0 tδ 0 0

0 1 0 tδ 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1











, (13)

where tδ = tk − tk−1 defines the time between two adjacent

time instants and nu(tk) ∼ N (0,Qu(tδ)) defines the transi-

3Please note, if transmitter and receiver oscillators provide different fre-
quencies, a clock drift parameter has to be considered additionally.
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tion noise of the receiver state with

Qu(tδ)=











σ2
qu

(tδ)
3

3 0 σ2
qu

(tδ)
2

2 0 0

0 σ2
qu

(tδ)
3

3 0 σ2
qu

(tδ)
2

2 0

σ2
qu

(tδ)
2

2 0 σ2
qu
tδ 0 0

0 σ2
qu

(tδ)
2

2 0 σ2
qu
tδ 0

0 0 0 0 σ2
qb











,

(14)

where σ2
qu

defines the continuous-time process noise intensity,

which has to be set based on the application with physical

dimension
[
m2

s3

]

and σ2
qb

the variance of the clock bias.

Assuming the elements of Z(tk) to be independent Gaus-

sian distributed conditioned on the current state x(tk),
p
(
Z(tk)|x(tk)

)
can be expressed as

p
(
Z(tk)|x(tk)

)
=

N(tk)−1
∏

i=0

1√
2πσd,i(tk)

e
−

(d̂i(tk)−di(tk))2

2σ2
d,i

(tk)

× 1√
2πσφ,i(tk)

e
−

(φ̂i(tk)−φi(tk))2

2σ2
φ,i

(tk) , (15)

with the propagation length

di(tk) = ‖ru(tk)− rVT,i(tk)‖+dVT,i(tk)+bu(tk) ·c , (16)

and the AoA

φi(tk) = arccos

(

(rVT,i(tk)− ru(tk))
T · vu(tk)

‖rVT,i(tk)− ru(tk)‖ · ‖vu(tk)‖

)

, (17)

for the i-th MPC, where σ2
d,i(tk) and σ2

φ,i(tk) denote the

corresponding variances. Please note that we assume in (17)

that the linear antenna array is aligned to the direction of

vu(tk), i.e. the moving direction.

B. Rao-Blackwellized Particle Filter (RBPF)

In this section a formulation of Channel-SLAM is derived

based on Rao-Blackwellization, where the states space of

x(tk) is partitioned into subspaces, see [37], [46]. Hence,

we use PFs to estimate the subspaces representing the VTs

inside a PF. The formulation allows to use different numbers

of particles in each PF associated to a VT and reduces the

computational complexity compared to [33]–[35]. The reason

to use a PF instead of a low complexity EKF is the high non-

linearity of the measurements in (17) and (16). Assuming the

independency in (10), the posterior density p
(
x(t0:k)|Z(t0:k)

)

is written as

p
(
x(t0:k)|Z(t0:k)

)
(18)

= p
(
xu(t0:k) ,xVT(t0:k)|Z(t0:k)

)

= p
(
xu(t0:k)|Z(t0:k)

)
· p
(
xVT(t0:k)|xu(t0:k) ,Z(t0:k)

)

= p
(
xu(t0:k)|Z(t0:k)

)

×
N(tk)−1
∏

i=0

p
(
xVT,i(t0:k)|xu(t0:k) , zi(t0:k)

)
,

where zi(tk) denotes the measurements of the i-th MPC

with zi(tk) =
[

φ̂i(tk), d̂i(tk)
]T

. In (18) we assume inde-

pendency between the state vectors of the individual MPCs.

Due to using a first order hidden Markov model, only the

estimated posterior filtered density p
(
x(tk)|Z(t0:k)

)
at time

instant tk is required for the next time instant tk+1. As

shown in Fig. 2, the algorithm is based on a superordi-

nate particle filter (superPF) and subordinate particle filters

(subPFs): Each particle j = 1 . . . Ns of the superPF with

the state vector x
(j)
u (tk) =

[

r
(j)
u (tk)

T
,v

(j)
u (tk)

T
, b

(j)
u (tk)

]T

consists of N(tk) subPFs. Each subPF is represented by

the particles x
(j,a)
VT,i(tk) with a = 1, . . . , NP,j,i where NP,j,i

stands for the number of particles in the i-th subPF with

i = 0, . . . , N(tk) − 1, estimating x
(j)
VT,i(tk). In the superPF,

the marginalized posterior filtered density p
(
xu(tk)|Z(t0:k)

)

can be approximated by importance samples, see [42], as

p
(
xu(tk)|Z(t0:k)

)
(19)

≈
Ns∑

j=1

w(j)(tk) δ
(

xu(tk)− x(j)
u (tk)

)

,

where w(j)(tk) defines the weight for the j-th particle at time

instant tk. Using the transition prior p
(
xu(tk)|xu(tk−1)

)
as

the importance density [37], [46], the weight w(j)(tk) can be

calculated recursively by

w(j)(tk) (20)

∝ w(j)(tk−1) · p
(
Z(tk)|x(j)

u (tk) ,Z(tk−1)
)

∝ w(j)(tk−1)

∫

p
(
Z(tk)|x(j)

u (tk) ,xVT(tk) ,Z(tk−1)
)

×p
(
xVT(tk)|x(j)

u (tk) ,Z(tk−1)
)

dxVT(tk)

∝ w(j)(tk−1)

×
N(t)−1
∏

i=0

∫

p
(
zi(tk)|x(j)

u (tk) ,xVT,i(tk) , zi(tk−1)
)

×p
(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)

dxVT,i(tk) ,

again with the assumption of independency among MPCs.

The term p
(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)

of (20) can be

reformulated to

p
(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)

(21)

=

∫

p
(
xVT,i(tk)|xVT,i(tk−1) ,x

(j)
u (tk) , zi(tk−1)

)

×p
(
xVT,i(tk−1)|x(j)

u (tk) , zi(tk−1)
)

dxVT,i(tk−1) .

In order to calculate (21), we consider the stationarity of the

VTs for all time instants of (11) and that the states of the VTs

xVT,i(tk−1) are independent from the receiver states x
(j)
u (tk)

accoding to (10), hence,

p
(
xVT,i(tk)|xVT,i(tk−1) ,x

(j)
u (tk) , zi(tk−1)

)

= p
(
xVT,i(tk)|xVT,i(tk−1)

)

= δ (xVT,i(tk)− xVT,i(tk−1)) , (22)

and represent p
(
xVT,i(tk−1)|x(j)

u (tk) , zi(tk−1)
)

by NP,i,j

Kernels K(·) with weight w
(j,a)
i (tk−1) and bandwith
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σ
(j)
K,i(tk−1), which is a regularized PF [42], thus,

p
(
xVT,i(tk−1)|x(j)

u (tk) , zi(tk−1)
)

(23)

=

NP,i,j∑

a=1

w
(j,a)
i (tk−1) · K(xVT,i(tk−1)− x

(j,a)
VT,i(tk−1)).

Hence, we obtain from (21) by inserting (22) and (23)

p
(
xVT,i(tk)|x(j)

u (tk) , zi(tk−1)
)

(24)

≈
NP,i,j∑

a=1

w
(j,a)
i (tk−1) · K(xVT,i(tk)− x

(j,a)
VT,i(tk−1)).

Finally, we obtain from (20) by inserting (24)

w(j)(tk) ∝ w(j)(tk−1)

N(t)−1
∏

i=0

NP,i,j∑

a=1

w
(j,a)
i (tk−1)

∫

p
(
zi(tk)|x(j)

u (tk) ,xVT,i(tk)
)

×K(xVT,i(tk)− x
(j,a)
VT,i(tk−1)) dxVT,i(tk)

∝ w(j)(tk−1)

N(t)−1
∏

i=0

NP,i,j∑

a=1

w
(j,a)
i (tk−1)p

(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

)

︸ ︷︷ ︸

w
(j,a)
i (tk)

(25)

where we use p
(
zi(tk)|x(j)

u (tk) ,xVT,i(tk)
)

=

p
(
zi(tk)|x(j)

u (tk) ,xVT,i(tk) ,x
(j,a)
VT,i(tk−1)

)
and interprete

K(xVT,i(tk)− x
(j,a)
VT,i(tk−1)) as a density given the particle

state x
(j,a)
VT,i(tk−1) and using x

(j,a)
VT,i(tk) = x

(j,a)
VT,i(tk−1). Hence,

the weight w
(j,a)
i (tk) of the subPFs at time instant tk is

w
(j,a)
i (tk) , w

(j,a)
i (tk−1) · p

(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

)
.

(26)

C. RBPF Implementation

Algorithm 1 provides the pseudocode of Channel-SLAM,

which is executed at every time instant tk ≥ t0 with the

estimates Z(tk) ,Σz(tk) obtained from KEST. During the ini-

tialization, at time instant tk = t0, the particles {x(j)
u (t0)}Ns

j=1

of the superPF are initialized according to prior knowledge.

The particles {x(j,a)
VT,i(t0)}

Np,j,i

a=1 of the subPFs are initialized

dependent on x
(j)
u (t0) and the measurements d̂i(t0), φ̂i(t0)

for the i-th MPC. To initialize the states of x
(j,a)
VT,i(t0) with

a = 1, . . . , Np,j,i of the j-th subPF associated to the i-th

MPC a grid is used. The positions r
(j,a)
VT,i(t0) of the particles

{x(j,a)
VT,i(t0)}

NP,j,i

a=1 are distributed such that

0 ≤ ‖r(j,a)VT,i(t0)− r(j)u (t0)‖ ≤ d̂i(t0) + ∆d (27)

subPF

subPF

subPF

subPF

subPF

subPF

subPF

subPF

subPF

superPF

Particle 1

Particle jParticle Ns

z0
(

tk

)

z0
(

tk

)

z0
(

tk

)

zi
(

tk

)

zi
(

tk

)

zi
(

tk

)

zN(tk)−1
(

tk

)

zN(tk)−1
(

tk

)

zN(tk)−1
(

tk

)

0

0

0

i

i

i
N(tk) − 1

N(tk) − 1

N(tk) − 1

x

(j)
u (t0)

x

(Ns)
VT,0

(

tk

)

x

(Ns)
VT,i

(

tk

)

x

(Ns)
VT,N(tk)−1

(

tk

)

x

(1)
VT,0

(

tk

)

x

(1)
VT,i

(

tk

)

x

(1)
VT,N(tk)−1

(

tk

)

x

(j)
VT,0

(

tk

)

x

(j)
VT,i

(

tk

)

x

(j)
VT,N(tk)−1

(

tk
)

Fig. 2. The algorithm is based on a superordinate particle filter (superPF)
and subordinate particle filters (subPFs): the subPFs estimate the conditional
posterior density p

(

xVT,i(tk)|xu(tk) , zi(t0:k)
)

of xVT,i(tk) for the i-
th VT and the superPF estimates the marginalized posterior filtered density
p
(

xu(tk)|Z(t0:k)
)

of xu(tk). Each particle j = 1 . . . Ns of the superPF
consists of N(tk) subPFs.

with spacing ∆d, hence, Nd,i = ⌊ d̂i(t0)
∆d

⌋+ 1 grid points and

φ̂i(t0)−K · σφ,i(t0)

≤ arccos

( (

r
(j,a)
VT,i

(t0)−r
(j)
u (t0)

)

·v(j)
u (t0)

‖r
(j,a)
VT,i

(t0)−v
(j)
u (t0)‖·‖v

(j)
u (t0)‖

)

≤

φ̂i(t0) +K · σφ,i(t0)

(28)

with spacing ∆φ, resulting in Nφ,i = ⌊ 2K·σφ,i

∆φ
⌋ + 1

grid points, where K denots an empirical constant value.

The additional propagation length is d
(j,a)
VT,i(t0) = d̂i(t0) −

‖r(j,a)VT,i(t0)− r
(j)
u (t0)‖, where we inherently assume bu(t0) =

0 for the initialization. Hence, the total number of particles

can be calculated as

Nt =

Np∑

j=1

N(tk)−1
∑

i=0

NP,j,i = Np

N(tk)−1
∑

i=0

Nd,i ·Nφ,i. (29)

The number of detected MPCs may change, hence, Channel-

SLAM determines at each time instant whether the number

of tracked MPCs has changed. In case that new MPCs have

been detected, new subPFs are added and initialized using (27)

and (28) (cf. Line 7 in Algorithm 1). In case that MPCs

are not tracked by KEST anymore, the corresponding subPFs

are removed (cf. Line 9 in Algorithm 1). Neither KEST

nor Channel-SLAM consider re-tracking of previous MPCs.

Hence, if the tracking of an MPC has been lost and might

be regained, the corresponding VT is initialized without any

prior information. According to (11) the state xVT,i(tk) is

time-invariant, hence each subPF assigns the states of the

VTs with x
(j,a)
VT,i(tk) = x

(j,a)
VT,i(tk−1) and calculates the weight

w
(j,a)
i (tk) using (26). Thereafter, the weight w(j)(tk) is calcu-

lated using (25) (cf. Line 15 in Algorithm 1). Afterwards, the

subPFs and superPF are resampled, weights are normalized
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(cf. Line 16 in Algorithm 1), see [42], [43], [47], and the

states of the VTs x
(j,a)
VT,i(tk) are drawn using a Gaussian-Kernel

(cf. Line 19 in Algorithm 1).

The point estimate, x̂(tk) =
[

x̂u(tk)
T
, x̂VT(tk)

T
]T

(cf. Line 20 in Algorithm 1) is calculated according to the

minimum mean square error (MMSE) criterion. The MMSE

of the RBPF can be derived with (25) as (30).

Algorithm 1: Channel-SLAM for time instant tk
Input:

Multipath estimates: Z(tk) and Σz(tk)
States of subPFs and superPF:

{{x(j,a)
VT,i(tk−1)}Np,j,i

a=1 }Ns

j=1, {x
(j)
u (tk−1)}Ns

j=1 for tk > t0
Weights of subPFs and superPF:

{{w(j,a)
i (tk−1)}Np,j,i

a=1 }Ns

j=1, {w(j)(tk−1)}Ns

j=1 for tk > t0
Output:

States of subPFs and superPF:

{{x(j,a)
VT,i(tk)}

Np,j,i

a=1 }Ns

j=1, {x
(j)
u (tk)}Ns

j=1 for tk ≥ t0
Weights of subPFs and superPF:

{{w(j,a)
i (tk)}Np,j,i

a=1 }Ns

j=1, {w(j)(tk)}Ns

j=1 for tk > t0
MMSE estimate: x̂(tk) for tk > t0

1 if tk = t0 then

2 Initialization using Z(t0) and Σz(t0);

3 else

4 for j = 1 : Ns do

5 Draw x
(j)
u (tk) ∼ p

(
x
(j)
u (tk)|x(j)

u (tk−1)
)
;

6 if New paths detected then

7 Initialize new subPFs;

8 if Tracking of paths lost then

9 Delete corresponding subPFs;

10 for i = 0 : N(tk)− 1 do

11 for a = 1 : NP,j,i do

12 Assign x
(j,a)
VT,i(tk) = x

(j,a)
VT,i(tk−1);

13 Calculate w
(j,a)
i (tk) =

w
(j,a)
i (tk−1)p

(
zi(tk)|x(j)

u (tk) ,x
(j,a)
VT,i(tk)

)
;

14 Calculate total subPF weight:

tj,i = SUM[{w(j,a)
i (tk)}NP,j,i

a=1 ];

15 w(j)(tk) = w(j)(tk−1)
∏N(tk)−1

i=0 tj,i;

16 Normalize and Resample subPFs and superPF;

17 for i = 0 : N(tk)− 1 do

18 for a = 1 : NP,j,i do

19 Draw x
(j,a)
VT,i(tk) from the Gaussian-Kernel;

20 Calculate MMSE x̂(tk) according to (30);

IV. POSTERIOR CRAMÉR-RAO LOWER BOUND

The PCRLB can be calculated by the inverse of the posterior

Fisher information matrix J(tk) and provides a lower bound

of the variance of a Bayesian estimator [48] with

E
[
‖x̂(tk)− x(tk) ‖2

]
≥ PCRLB [x(tk)] = J(tk)

−1. (31)

To consider a dynamic system in the PCRLB, the state

transition from time instant tk−1 to time instant tk can be

obtained by combining the time-invariant transition model for

xVT,i(tk) as introduced in (11) for the VTs and the transition

matrix for the receiver as introduced in (13) with

x(tk) =

(

Au(tδ) 0

0 I

)

︸ ︷︷ ︸

A(tδ)

x(tk−1) +

(

nu(tk)

0

)

(32)

where nu(tk) ∼ N (0,Qu(tδ)) describes the system noise

of the user state, see (14). According to [49] by using the

matrix inversion lemma, the posterior Fisher information can

be calculated recursively by

J(tk) = R(tk) +
(
Q(tδ) +A(tδ)J(tk−1)

−1A(tδ)
T
)−1

,
(33)

where R(tk) is the snapshot based Fisher information matrix

and the covariance matrix

Q(tδ) =

(

Qu(tδ) 0

0 0

)

. (34)

Here, the PCRLB considers the complete system, includ-

ing both levels, i.e. the multipath parameter estimation and

Channel-SLAM. In general, a two level approach performs

either equally or worse than an estimator which jointly com-

bines both levels. Hence, the derived PCRLB is based on a

theoretical joint approach and consideres therefore, the best

possible estimator. In (2), we consider N(tk) received MPCs

with bl(φi(tk)) = e−j2πfcτi,l(tk) where τi,l is the delay of the

i-th MPC for the l-th antenna element l = 1 . . . L. Therefore,

the discrete channel transfer function in dependence on x(tk)
can be written as

µ(ωm, l;x(tk)) =

N(tk)−1
∑

i=0

αi,l(tk)e
−j(2πfc+ωm) τi,l(tk) (35)

where fc is the carrier frequency, ωm defines the discrete

circular frequency at index m = 0 . . .M − 1 and αi,l(tk) the

complex amplitude of the i-th MPC. According to the system

model in (16), the delay of the i-th MPC is

τi,l(tk) =
(

‖d̃VT,i,l(tk)‖+ dVT,i(tk)
) 1

c
+ bu(tk), (36)

with

d̃VT,i,l(tk) = rVT,i(tk)−
(

ru(tk) +
vu(tk) · (l − 1) · d

‖vu(tk)‖

)

(37)

where d defines the spacing between adjacent antennas. The

snapshot based Fisher information matrix R(tk) in (33) can

be obtained by

[R(tk)]k,w =
2

σ2
n

ℜ
{
∂µ(x(tk))

H

∂ [x(tk)]k

∂µ(x(tk))

∂ [x(tk)]w

}

, (38)

where

µ(x(tk)) = [µ(ω0, 1;x(tk)), . . . , µ(ω0, L;x(tk)),

. . . , µ(ωM−1, 1;x(tk)), . . . , µ(ωM−1, L;x(tk))]
T
.
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x̂(tk) =

∫

xu(tk)

∫

xVT(tk)

x(tk) p
(
xu(tk) ,xVT(tk)|Z(tk)

)
dxu(tk) dxVT(tk)

≈
Ns∑

j=1

w(j)(tk)










x
(j)
u (tk)

∑NP,j,0

a=1 w
(j,a)
0 (tk)x

(j,a)
VT,0(tk)

...
∑NP,j,N(tk)−1

a=1 w
(j,a)
N(tk)−1(tk)x

(j,a)
VT,N(tk)−1(tk)










(30)

The derivatives of µ(x(tk)) with respect to the elements of

the state vector x(tk) are derived in the Appendix.

V. PERFORMANCE EVALUATIONS

This section evaluates the performance of Channel-SLAM

based on artificial simulations in Section V-A and measure-

ments in Section V-B where both evaluations include a LoS

to NLoS transition.

A. Simulation Results

In this section, we evaluate the performance of Channel-

SLAM using a two dimensional scenario with a static trans-

mitter, a moving receiver, a reflecting surface and a scatterer,

shown in Fig. 3. The receiver is moving on a random pathway

for 20 s with a system sampling interval of tδ = 0.1 s. The

receiver is equipped with a 3-element linear antenna array

with an element-spacing of 0.5λ, where the wave length

λ = c/fc ≈ 0.2m with fc = 1.51GHz, which is aligned

to the direction of movement. During the receiver movement,

the LoS path between transmitter and receiver is present

for tk ≤ 10 s and has a normalized amplitude of 1. For

10 s < tk ≤ 20 s, the transmitter and receiver are in NLoS

conditions and only MPCs are received. During the whole

receiver movement, the signal reaches the receiving antenna

via four different propagation paths at each time instant tk:

a reflected path with normalized amplitude of 1/2 associated

to VT1, a scattered path with normalized amplitude of 1/3
associated to VT2, a path which is first reflected and afterwards

scattered with normalized amplitude of 1/4 associated to VT3

and a path which is first scattered and afterwards reflected

with normalized amplitude of 1/6 associated to VT4. The band-

unlimited CIRs for each time instant tk are bandlimited to a

bandwidth of 100MHz. The simulations are performed for

different signal-to-noise-ratios (SNRs) which are calculated

as SNR = ‖Ỹ(tk)
2‖

LM σ2
n

, where ‖Ỹ(tk)‖2 is the power of all

paths’ contributions Ỹ(tk), see (2). For the simulations, the

clock bias is drawn randomly for each Monte-Carlo run. As

mentioned in the previous sections, the VT position of the

reflected signal path is determined by mirroring the transmitter

at the reflecting surface, indicated by VT1 in Fig. 3 with

dVT,1 = 0. The position of the scatterer is equivalent to the

position of VT2 and VT3 with dVT,2 = ‖rt − rs‖ = 8.6m
and dVT,3 = ‖rVT,1 − rs‖ = 22.1m, respectively. The

position of VT4 can be determined by mirroring the scatterer

at the reflecting surface with the additional propagation length
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Fig. 3. Simulated scenario with a fixed physical transmitter, a moving receiver,
a reflecting surface and a scatterer. The signal reaches the receiving antenna
via five different propagation paths: the LoS path for 0 s ≤ tk ≤ 10 s, a
reflected path, a path which is scattered, a path which is first reflected and
afterwards scattered and a path which is scattered and afterwards reflected.
The black circle, the purple cross and the light blue circle represent the true
positions of VT1, VT2, VT3 and VT4, respectively. Additionally, the figure
shows the PDFs of the estimated VT positions and the receiver position at
time instant tk = 20 s for SNR = 24 dB using a contour plot. The black cross
indicates the receiver position at tk = 10 s.

dVT,4 = dVT,2. Fig. 3 visualizes these propagation paths for

a receiver at the end of the track. Please note that at time

instant tk = 14.2 s the delay of the paths associated to VT3

and VT4 are equal. However, because of different amplitudes,

phases and AoAs of these MPCs, KEST is able to track both

paths separately, see also [40].

To verify the estimation performance of Channel-

SLAM, KEST is used with a fixed model order of N(tk) = 5
for 0 s ≤ tk ≤ 10 s and N(tk) = 4 for 10 s < tk ≤ 20 s.
The simulations are performed using Ns = 6000 particles in

the superPF, whereas the number of particles for the subPFs

for each MPC with i = 0, . . . , 4 is different depending on

the estimated delay and AoA of each MPC. As mentioned

in Section III we consider for conveniences the first MPC

i = 0 as the LoS path, indicated by VT0 in Fig. 3 with a

known fixed position rVT,0(tk) = rt and dVT,0(tk) = 0. For

the initialization of Channel-SLAM, we use prior information

p
(
xu(t0)

)
. The prior information includes a uniform distri-

bution of 1m width centered around the starting position for

ru(t0). Additionally, the speed vector ‖vu(t0)‖ is initialized



C. GENTNER et al.: MULTIPATH ASSISTED POSITIONING WITH SIMULTANEOUS LOCALIZATION AND MAPPING 9

in terms of speed using a uniform distribution between 0m/s
and 2m/s and a uniform direction of 60◦ width around

the true moving direction. Please note, that an unknown

starting position and direction or larger initial uncertainties

may result in a biased and rotated coordinate system for

the estimation. For ∆d,∆φ,K, we use empirical values as

∆d = 0.1m,∆φ = 0.5◦,K = 5.

Fig. 4 shows the root mean square error (RMSE) versus

different SNRs for the receiver and VT positions at the

end of the track, i.e. tk = 20 s. The green solid curve

represents the RMSEu(tk) =
√

E{‖ru(tk)− r̂u(tk)‖2} of

the estimated user position, the magenta, yellow, blue and

orange the RMSEVT,i(tk) =
√

E{‖rVT,i(tk)− r̂VT,i(tk)‖2}
of the estimated i-th VT position and in cyan the error of

the clock bias estimation times the speed of light in meters,

RMSEb(tk) =

√

E{‖bu(tk)− b̂u(tk)‖2}·c. Whereas the solid

lines indicate the RMSE for the simulations, the dashed lines

indicate the corresponding curves calculated using the PCRLB.

Because the positions of VT2 and VT3 are identical, the curves

for the PCRLBs of these VTs are equivalent. For low SNRs, it

is difficult for KEST to accurately estimate all five paths due

to poor initialization caused by noise. Hence, also Channel-

SLAM does a wrong initialization and estimation of these

VTs which causes high position errors for low SNRs. For

SNR ≤ 6 dB, the RMSEVT,2(tk) is larger than RMSEVT,3(tk)
due to the higher received power of the path associated to VT2

compared to VT3. For higher SNRs, the RMSEs for VT2 and

VT3 are close to the curves for the PCRLBs. Furthermore, for

SNRs higher than 20 dB the receiver is able to estimate the

receiver position with a RMSE below 0.3m. Because VT2 and

VT3 are closer to the track than VT1 and VT4, the delay and

AoA are changing more significantly, hence, the parameter

estimations of VT2 and VT3 are more accurate. The precise

estimation of the receiver and VT positions is also shown

in Fig. 3, which shows the PDFs of the estimated VT positions

and the receiver position at the end of the track, i.e. tk = 20 s,
for SNR = 24 dB.

To see the positioning performance of Channel-SLAM in

relation to other algorithms, Fig. 5 compares Channel-SLAM

to four different algorithms named as Alg. I to Alg. IV.

Alg. I: Positioning algorithm with perfect knowledge of

all VT positions rVT,i(tk) and additional propagation

lengths dVT,i, i = 1 . . . 4. This algorithm can be seen

as a lower bound for Channel-SLAM.

Alg. II: Positioning algorithm using only the reflected and

the LoS signal, assuming perfect knowledge of the ge-

ometry, hence, the knowledge of the states of VT1.

This reflects algorithms in [21], [22]. For tk > 10, the

algorithm uses only the reflected path for positioning.

Alg. III: Positioning algorithm which considers the first ar-

rived path as the LoS path. Hence, the algorithm interprets

the second path (scattered path) as the LoS path for

tk > 10 and represents a multipath mitigation algorithm

similar to [16].

Alg. IV: Positioning algorithm using only the LoS path. For

tk > 10, the algorithm estimates the position using the

movement prediction model. Therefore, the algorithm
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could be described as a multipath mitigation algorithm

including an ideal NLoS detection.

Similarly to Channel-SLAM, these algorithms use the delays

and AoAs of the estimated MPCs provided by KEST as input,

use the same movement model, assume the knowledge of

starting position and direction and are implemented using PFs

with Ns = 6000 particles. Fig. 5 shows the RMSE versus

the receiver traveled time for Channel-SLAM and Alg. I - IV.

The vertical dashed line indicates the time when the LoS path

is not received anymore. At the starting time, the RMSE for

all algorithms are similar because of the same initialization.

Alg. I can be interpreted as a lower bound and estimates

the receiver position with the lowest RMSE. Alg. II shows

similar results, as long as the LoS path prevails. When the

LoS path is absent, the RMSE increases because the number
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Fig. 6. RMSEs of the estimated receiver position, estimated VT positions
and estimated clock offset versus number of particles at the end of the track
at tk = 20 s.

of transmitters reduces to one. Estimating the receiver position

with only one path, like Alg. III and Alg. IV, the worst position

accuracy is obtained compared to Alg. I, Alg. II and Channel-

SLAM.

To evaluate the complexity of Channel-SLAM, Fig. 6 shows

the RMSE for the receiver and VT positions at the end of the

track, i.e. tk = 20 s, versus different number of particles in the

superPF. As mentioned before, the number of particles for the

subPFs for each MPC with i = 0, . . . , 4 is different depending

on the estimated delay and AoA of each MPC. In average, the

subPF uses for VT1 E [NP,1,j ] = 2400, for VT2 E [NP,2,j ] =
2000, for VT3 E [NP,3,j ] = 3150 and for VT4 E [NP,4,j ] =
3700 particles. The more particles for the superPF are used, the

higher the accuracy of Channel-SLAM. However, with Ns ≥
2000, the receiver position can be estimated in average with

an RMSE lower than 0.4m within the simulated scenario.

B. Experimental Results

This section evaluates Channel-SLAM based on indoor

channel measurements, indicated in Fig. 7 where we con-

sider similarly to the simulations a LoS to NLoS transi-

tion. The measurement campaign was conducted using the

MEDAV RUSK-DLR broadband channel sounder in single-

input single-output (SISO) mode. The transmitter emitted a

1mW multitone signal, see [50], with N = 1281 sub-

carriers with equal gains at a center frequency of 1.51GHz
with a bandwidth of B = 100MHz. The CIR snapshots are

repeatedly measured in a time grid of Tg = 1.024ms. The

transmit antenna was located in the lobby of the office building

as visualized by the red diamond in Fig. 7, and the receive

antenna was mounted on an experimental platform realized

using a model train. The model train was running on a pre-

measured track with a length of 23m as indicated by the blue

line in the office building, starting in the lobby and entering

the meeting room after 14 m with a travel speed of 0.05m/s.
To obtain the ground truth of the receiver for each captured

Receiver starting

position

End position

Lobby

Meeting
room

0m 5m

9m

10m

15m

20m

23m

Transmitter = VT0

x [m]

y
[m

]

18

23

10 15 20 25
0
0

5

5

9

14

Calculated and

estimated VT

position associated

to the reflection at

a receiver traveled

distance of 9 m

Estimated VT position

associated to

scattered path for

a receiver traveled

distance of 23mReflection on wall

Fig. 7. Measurement scenario with a fixed transmitter and a moving receiver.
The receiver is moving on the track as indicated in blue, starting in the lobby
and entering after 14 m the meeting room. The green and cyan lines indicate
the receiver position estimations of Channel-SLAM for two independent runs
based on the same measurement data. Additionally, the PDFs of two estimated
VT positions are shown, see also Fig. 8.

CIR snapshot, the train is equipped with a rotary encoder

which counts the number of motor turns. To measure the track

location we used a tachymeter TPS1200 from Leica Geosys-

tems AG which has an accuracy in subcentimeter domain

based on distance and angular measurements. By knowing

the traveled distance for each CIR snapshot, it is possible to

form virtually a linear antenna array from the time-variant

measurements, see also [51]. For these evaluations, we form

a 3-element linear antenna array with an element-spacing of

0.3λ, where λ stands for the wavelength.

Fig. 8 shows the estimation results of KEST for the CIR

versus the receiver traveled distance in meters. Only paths

which are visible to the receiver for more than 5m of move-

ment are visualized. The vertical dashed line in Fig. 8 indicates

the moment when the receiver is entering the meeting room

(cf. Fig. 7). As shown in Fig. 8, many paths can be tracked for

several meters of receiver movement. Channel-SLAM consid-

ers an underdetermined system, therefore, long visible paths

are preferable. Thus for the evaluations, Channel-SLAM only

uses these long tracked paths as visualized in Fig. 8. Anyhow,

Channel-SLAM could use all detected MPCs, however, this

would increase the computational complexity. The LoS path

is visible to the receiver until the receiver enters the meeting

room. Due to limited bandwidth and MPCs that are close to

the LoS path, KEST is not able to resolve all paths properly.

Hence, the KEST estimation of the LoS path length is not

identical to the geometrical line-of-sight (GLoS) path length

indicated by the black line in Fig. 8.

Similarly to the simulations in Section V-A, prior informa-

tion of xu(t0) has been used. We apply a uniform distribution

of 1m width around the starting position ru(t0) and a uniform
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LoS path delay, the dashed line the calculated delay associated to a reflected
path and the dotted line the calculated delay associated to the scattered path
shown in Fig. 7.

distributed speed between 0m/s and 0.2m/s for ‖vu(t0)‖
while the speed direction is drawn from a uniform distribution

of 60◦ width around the moving direction. For the evaluation,

Channel-SLAM uses Ns = 6000 particles in the superPF. As

mentioned before, for notational conveniences, the first MPC,

i.e. i = 0, is considered as the LoS path to the physical

transmitter and, therefore, the position rVT,0(tk) = rt is

equal to the physical transmitter position and dVT,0(tk) = 0.

Compared to the simulations in the previous section, the

number of tracked MPCs changes, hence, the number of

subPFs changes accordingly. The number of used MPCs and

respectively the number of VTs changes between 2 at the

starting point and up to 7 at the end of the track. In Fig. 7,

we show by the green and cyan lines two examples of

the MMSE point estimates of the receiver position for two

different PF evaluations based on the same measurement data4.

Additionally, Fig. 7 visualizes two VTs that might result from

a reflected and scattered propagation path. On the left side

of Fig. 7, the position of a VT occurring due to a reflection

is displayed together with the estimated PDF from Channel-

SLAM for a receiver travelled distance of 9 m. The estimated

PDF of Channel-SLAM is indicated while the black square

denotes the calculated VT position based on the hypothetical

propagation path. A further comparison of the path to the

hypothetical propagation is visualized in Fig. 8 comparing the

delay estimate of KEST to the theoretical delay indicated by

the dashed line. An additional VT is visualized in Fig. 7 on the

right side as a PDF estimated by Channel-SLAM for a receiver

traveled distance of 23m. The VT is located at the edge of

the entrance to the meeting room and corresponds, therefore,

most probably to a scattered path which explains the rather

4Please note, that the PF includes randomness, hence, even based on the
same measurements, the MMSE estimates differ for each evaluation unless
the number of particles is infinite.
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low received power for the path. Again, the theoretical delay

of the path is visualized in Fig. 8 as dotted line.

Please note, that because of the angular ambiguity by using

a linear antenna array, two hypotheses of the VT position, on

both sides of the linear antenna array are equally likely as long

as the receiver moves along a straight line. Neither Channel-

SLAM nor KEST can resolve the ambiguity. Hence, Channel-

SLAM estimates the position of the VT on both sides of the

antenna array that is aligned to the moving direction of the

receiver. However, as long as the receiver moves on a straight

track, both hypotheses do not influence the receiver position

estimation results. By turning, the ambiguity can be solved, see

also Section V-A. Therefore, for the considered reflected signal

in Fig. 7 and Fig. 8, the ambiguity problem can be solved

because the receiver turns at the receiver traveled distance

between 5 m and 10 m. However, to overcome the ambiguity

problem in general, a multidimensional antenna array able to

estimate the two dimensional AoA could be used.

Because Channel-SLAM uses a PF, each evaluation result

includes randomness. Therefore, we performed 200 indepen-

dent evaluations using Channel-SLAM based on the same

measurement data visualized by the estimated CIRs in Fig. 8.

In Fig. 9, the green curve shows the average RMSEu(tk)
for all evaluations and time instants. The vertical dashed line

indicates the time instant when the LoS path is not received

anymore. Because of the initialization of the receiver position

using prior knowledge, the position error at the beginning

of the track is rather low. Afterwards, the RMSEu(tk) is

varying between 0.6 m and 1.1 m. Nevertheless, an average

position accuracy below 1.1 m can be achieved within this

indoor scenario. Similarly to Section V-A, Fig. 9 shows

also the RMSE of Alg. III and Alg. IV. At the starting

time, all algorithms perform similarly because of the same

initialization.
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∂µ(x(tk))

∂ru(tk)
=

N(tk)−1
∑

i=0

{

j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

c · ‖rVT,i(tk)− (ru(tk) +
vu(tk)·(l−1)·d

‖vu(tk)‖
)‖

· d̃VT,i,l(tk)

}

(39)

∂µ(x(tk))

∂vu(tk)
=

N(tk)−1
∑

i=0

{

j · (l − 1) · d · (2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

c · ‖rVT,i(tk)− (ru(tk) +
vu(tk)·(l−1)·d

‖vu(tk)‖
)‖

×
(

I

‖vu(tk)‖
− vu(tk) · vu(tk)

T

‖vu(tk)‖3

)

· d̃VT,i,l(tk)

}

(40)

∂µ(x(tk))

∂bu(tk)
=

N(tk)−1
∑

i=0

−j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk) (41)

∂µ(x(tk))

∂rVT,i(tk)
=

−j(2πfc + ωm)αi,l(tk)e
−j(2πfc+ωm)τi,l(tk)

c · ‖rVT,i(tk)− (ru(tk) +
vu(tk)·(l−1)·d

‖vu(tk)‖
)‖

· d̃VT,i,l(tk) (42)

∂µ(x(tk))

∂dVT,i(tk)
= −j(2πfc + ωm)αi,l(tk)e

−j(2πfc+ωm)τi,l(tk)
1

c
(43)

VI. DISCUSSION ON PRACTICAL IMPLEMENTATION

The paper focuses on Channel-SLAM, derives the algorithm

and provides performance results. In order to use Channel-

SLAM in potential applications, some aspects have to be

considered which are briefly discussed in the following.

Channel-SLAM relies on estimated and tracked CIRs at the

receiver side, hence, it is essential that the transmitter emits

continuously wideband reference signals and that the receiver

is equipped with a linear antenna array. As mentioned in [36],

instead of using a linear antenna array, the moving receiver

could also be equipped with one antenna and a gyroscope

to obtain heading information of the moving receiver. To use

multipath propagation for positioning, Channel-SLAM relies

on tracking the MPCs’ parameters over the receiver movement

as the number of measurements for a MPC is smaller than the

number of parameters to be estimated at a certain time instant.

Therefore, in a real-time algorithm, new MPCs should be first

tracked for a certain time interval. After the MPCs have been

tracked for some time, Channel-SLAM can re-estimate the

receiver positions and the states of the VTs simultaneously

based on these MPCs. Furthermore, Channel-SLAM is based

on a ray optical model for MPCs such that dense MPCs

need to be considered either on the lower level like in KEST

or a model mismatch error might occur. Additionally, in the

described evaluations, we assume the knowledge of the starting

position, in order to fix the coordinate system. In general,

Channel-SLAM works in a local coordinate system which

may be transferred into a global coordinate system by using

other sensors like GNSS. For simplicity, the derived algorithm

does not consider clock drifts where appropriate models have

to be used. Furthermore, Channel-SLAM assumes a static

environment, hence, dynamic scatterers like in a car-to-car

scenario are not included.

VII. CONCLUSION

This paper presents an algorithm for multipath assisted posi-

tioning named Channel-SLAM. The novel positioning method

takes advantage of the multipath components instead of mit-

igating them. Compared to similar approaches, the proposed

algorithm does not need prior information such as the room-

layout or a database for fingerprinting except of the knowledge

of the physical transmitter position as well as the initial

receiver states that are position and speed. Channel-SLAM

exploits paths occurring due to reflections, scattering and the

combination of both phenomena. We demonstrate that each

multipath component can be treated as emitted from a virtual

transmitter with unknown but fixed position. Interpreting the

virtual transmitters as landmarks allows to use a simultaneous

localization and mapping (SLAM) methodology to estimate

the landmarks and the receiver position jointly. Therefore,

multipath components are treated as additional transmitters

enabling to estimate the receiver position using only one phys-

ical transmitter. To verify the position accuracy of Channel-

SLAM a comparison to the posterior Cramér-Rao lower

bound and to four simplified algorithms is performed based

on simulations. An accuracy below 0.3 m in the simulated

scenario can be achieved using only one physical transmitter

for signal-to-noise-ratios greater than 20 dB. Additionally, the

paper presents the performance of Channel-SLAM based on

measurements in an indoor scenario with only one physical

transmitter, where an average position accuracy below 1.1 m

can be achieved. Future work will be done towards pedestrian

and robots navigation in GNSS-challenging scenarios like

urban canyons or indoors such as shopping malls.

APPENDIX

The derivative of µ(x(tk)) with respect to the user position

ru(tk) is (39), with respect to the user velocity vu(tk) is (40),

with respect to the clock bias bu(tk) is (41), with respect

to the i-th virtual transmitter position rVT,i(tk) is (42), and

with respect to the corresponding additional distance dVT,i(tk)
is (43).
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