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Zusammenfassung

Die Modellierung von Stromnetzen erfordert eine geographische Berücksichtigung aller
Netzkomponenten. Bei der Anwendung von Stromsystemmodellen führt eine hohe räum-
liche Auflösung jedoch zu sehr hohen Rechenzeiten. Eine Möglichkeit hochaufgelöste
Modelle zu beschleunigen, bietet eine Aggregation durch Clusterbildung. Durch die
Clusterbildung sollen andererseits Informationen, die das Resultat stark beeinflussen,
nicht verloren gehen. Um dieses Dilemma zu umgehen, wird in dieser Arbeit ein
Ansatz gewählt, bei dem auf der einen Seite ähnliche Netzknoten zusammengefasst
werden und auf der anderen Seite Netzengpässe weiterhin Bestand haben. Um dies
zu erreichen, wird ein Spectral Clustering Algorithmus mit der Grenzkostentheorie
(Locational marginal pricing) kombiniert. Weiterhin wird dieser kombinierte Algorith-
mus auf ein Fallbeispiel angewandt, welches das deutsche Übertragungsnetz in hoher
räumlicher Auflösung abbildet. Die Anwendung des Algorithmus’ auf das Fallbeispiel
führt zu einer Aggregation des hochaufgelösten Modells. Durch die Aggregation werden
Netzbeschränkungen abgebaut, was wiederum Abweichungen im Kraftwerkseinsatz
(Dispatch) verursacht. Bezogen auf die gesamten Systemkosten, führt eine Aggregation
des Modells zu Abweichungen von über 20 %, verglichen mit der höchsten Auflösung.
Auf der anderen Seite ermöglicht eine Aggregation eine Verkürzung der Lösungszeit
um 95 %. Aus diesem Grund muss ein Kompromiss zwischen der Genauigkeit der
Ergebnisse und der Beschleunigung des Modells gefunden werden. Die in dieser Arbeit
entwickelte Methodik, bietet eine Möglichkeit, die durch die Aggregation entstehenden
Abweichungen abzuschätzen.
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Abstract

Modeling power grids requires a geographically explicit consideration of all the grid
components. However, a high spatial resolution leads to high computation times
of fundamental power generation dispatch optimization models. An opportunity to
accelerate highly resolved models, is an aggregation of the model by finding clusters.
In doing so, information affecting the result too strongly should not be lost by the
aggregation. To overcome this dilemma, an approach to find clusters containing similar
grid vertices by keeping grid congestion is developed in this work. For this purpose,
a spectral clustering algorithm is combined with the theory of locational marginal
pricing. Furthermore, this combined algorithm is applied to a case study representing
the German transmission grid in high spatial resolution. In the case study, the highly
resolved model is aggregated, which leads to decreasing grid restrictions, and in turn
causes a deviation of the dispatch. With regard to total system costs, aggregating the
model accounts for deviations of up to 20 % compared to the highest resolution. On
the other hand, aggregating the model enables accelerations of up to 95 % in terms
of solving time. As a consequence, a compromise between accuracy of the results and
acceleration of the model has to be found. The methodology developed in this work
provides an opportunity to estimate the deviations arising from the aggregation.
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1. Introduction

This introduction Chapter provides the underlying motivation for this work. Further-
more, the state of research is examined and based on that, research questions are derived.
Scope and structure of this work are mentioned at the end of this chapter.

1.1. Motivation

In order to reduce climate gas emissions and to mitigate climate change, a switch to a
carbon neutral and sustainable energy supply is required. Due to the climate targets
decided at the 2015 United Nations Climate Changes Conference (less than a 2% increase
in global warming compared to the pre-industrial era) [1], sustainability goes along
with the decarbonization of the power supply. Based on the energy concept decided by
the German government in 2010 [2], a high share of the fossil power supply has to be
substituted by renewable energy sources. In such a power system, the majority of the
electricity generation is related to wind turbines and photovoltaic plants. Intrinsically,
the power supply structure is getting more fragmented, decentralized and additionally
less adjustable.

For analyzing power systems in terms of economic efficiency, environmental sustainability
and supply reliability, so-called fundamental electricity market models are applied. Under
the circumstances of high shares of renewable power generation, these models are growing
more and more complex as analyzing power systems requires a holistic view of the
technologies. These include the demand side, conventional and renewable power plants,
storage technology and also the electrical grid.

In former days, the electrical grid was basically a one-way street, transferring the
electricity from big scale power plants to the consumers in the lower voltage levels over
short distances. In power systems with high shares of renewable energy this principle is
partially reversed. Using Germany as an example, it can be illustrated how the demand
and supply is getting spatially uncoupled. The power-intensive industry and the densely
populated regions are located in the west and south of Germany, whereas the best
potentials of wind energy exist in the north of Germany. Since in former times there
was no need for transferring high amounts of electricity from the North to the South
(or to deal with high supply of RE in distribution grids), the transmission capacities of
the grid will have to be adjusted to the changing generation structure [3]. To achieve
the goals of the German government in terms of a sustainable energy system and also
to guarantee supply reliability, the electrical grid will play a key role in this context. By
identifying grid congestion, it can be figured out where the transmission capacities have
to be adjusted.
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As already stated, power systems and thus power system models, are getting more and
more complex. The growing complexity leads to increasing computation times and in
some cases executing the analysis is not possible due to missing main memory capacity.
To overcome this issue, different strategies regarding reduction and acceleration have
been developed. One of these strategies is aggregating the model. In this context,
aggregation means to aggregate the given information based on a defined detail level.
For instance, aggregating the European power system on a country level, leads to
one vertex in every country, which combines all parameters like power plant stock,
demand or grid information. Obviously, by a simple spatial aggregation of the power
system components, in particular grid information, is getting lost. An aggregated power
system (aggregated on one vertex) can be interpreted as a ’copper plate’ in terms of
power transmission. Regarding power grids, ’copper plate’ is characterized by unlimited
transmission capacity of the grid. Consequently, every spatial power demand or every
pumped storage can be supplied by any arbitrary power plant. It is therefore likely
that the share of the power supply by power plants with low marginal cost, for instance
lignite power plants (with today’s commodity prices), is overestimated, compared to
a system accounting for all grid restrictions. As a follow-up from this shortcoming,
requirements for the aggregation can be derived. On the one hand the aggregation must
lead to a complexity reduction of the power system (and thus to an acceleration in
terms of computing), and on the other hand information affecting the result strongly
may not be lost.
A basic aggregation process of a power system is depicted in Figure 1.1. Based on a
highly resolved power system (upper level) a methodology for systematic aggregation is
needed, in order to fulfill the requirements stated above (complexity reduction while
maintaining information).
A proven approach in terms of systematic aggregation methods are clustering algorithms.
By finding similar patterns in a data set, homogeneous groups of things can be build.
Ordinary clustering algorithms like k-means aggregate elements of a (complex) system
based on their numerical attributes. However, when aggregating power systems (with
consideration of a power grid), also the topology of the grid has to be taken into account.
The spectral clustering approach covers both requirements (clustering on numerical
attributes, considering topology) and has already been used for the clustering of power
grids by Sanchez et al. [4].
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Figure 1.1.: Two levels of the clustering process: highly resolved data set on the upper
level as input, aggregated data set at the bottom level
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1.2. State of research

This section introduces the theoretical background of the study. In addition to the
optimizing energy system model REMix, partition methods, clustering and the nodal
pricing approach are described.

1.2.1. The optimizing energy system model REMix

REMix (Renewable Energy Mix) was developed by the German Aerospace Center (DLR)
as a tool for bottom-up modeling of energy systems. The main goal of the tool is to
determine minimal system costs of energy scenarios (primarily based on high shares of
renewable energy resources). The objective function of the linear optimization problem
represents minimal system costs in terms of dispatch and capacity expansion. For
the formulation of the mathematical problem, REMix uses GAMS (General Algebraic
Modeling System) [5]. The solution of the resulting linear optimization is done by
CPLEX [6]. On the input side, modules for spatially and hourly resolved parametrization
in terms of electricity, heat, storage and transportation are provided to set up energy
system scenarios. REMix determines hourly system operation, capacity and grid
expansion, system costs and CO2 emissions. The whole process is schematically shown
in Figure 1.2. The different components of REMix are described in [7], [8], [9], [10].

Figure 1.2.: Schematic layout of the REMix energy system model [7]

1.2.2. Identification of grid subsections

Basically, a grid consists of vertices (active vertices: in- and output of electricity, passive
vertices: crossings) and links between vertices. By analyzing the grid, calculating
electrical current, voltage or transferred power on the links is meant. Due to the growing
share of renewable energy power plants and hence growing complexity (decentralization,
fluctuating supply, decoupling of supply and demand) analyzing each element in the
grid is getting more difficult [11]. Finding related subsections in electrical grids and thus
reducing the complexity is a contribution to improve the analysis efficiency in power
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system modelling, since one main goal of the grid analysis is to identify critical grid
conditions. Links where critical grid conditions occur can indicate a need of expansion.
A possible criterion for forming a grid subsection can then be the absence of critical
grid conditions within a subsection.
Contemplating the German transmission grid, there is no transparent aggregation
method available. An aggregation for the German power system applied in different
studies is the 18-Regionen-Modell depicted in Figure 1.3 [3]. The applied aggregation
divides the German power system into 20 clusters. The basis for the division seems to
be the geometry of the transmission grids.

Figure 1.3.: 18-Regionen-Modell of the German transmission system operators; naming
of the regions according to ENTSO-E [3]

The methodology behind the aggregation is not published and thus the aggregation
cannot be applied to other power systems such as to other countries or in a European
context.
Other present established aggregations of power systems are a result of long-term work
experience and usually cannot be applied to other grids or to derive general rules for
partitioning as there is no comprehensible methodology underlying [12]. In addition,
with the integration of renewable energy power plants, power systems are changing
over time [12], which also complicates applying the same partitions for a long period.
Furthermore, Gang et al. [12] mention different ways to identify transmission subsections
like the Girvan Newman algorithm (GN) (developed by Michelle Girvan and Mark
Newman) based on complex network theory. GN focuses on transmission betweenness
which is linked to identify key transmission links. Key transmission links are determined
by their total contribution of power transmission compared to the total power injection
in the grid.
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Another approach is given by Anderski et al. [13]. The method of the partition is to
build clusters where small regions with similar properties are aggregated to a cluster
and analogously to put regions with distinct properties in different clusters. Moreover,
a reduction of the grid is considered as well by applying the method of Equivalent
impedances where an estimated power flow is approximated to the real power flow of
the system.
An alternative strategy to the mentioned methods are clustering algorithms using the
spectrum of a graph. The term ’spectrum’ refers to the sized Eigenvalues of the graph’s
Laplacian matrix or Adjacency matrix. In the following, this type of clustering is
examined in detail.

1.2.3. Clustering analysis

Data analysis using clustering algorithms can be considered as a process to reveal data
structures. Clustering analysis is an essential component in the fields of data mining,
image segmentation or pattern classification. Inherently, clustering is grouping objects
based on similarity criteria. A group or a cluster is hence a set of similar patterns [14].
Two of the most important clustering algorithms are k-means and spectral clustering.
They are briefly introduced in the following. In the context of this work, clustering
algorithms are used for reducing power grid data sets in terms of energy system model
acceleration strategies.

Toy example

To visualize the following clustering algorithms, a very simple toy example is introduced.
The sample consists of 11 vertices v1, . . . , v11 with attributes Ai(vi) (bold) and edges
Eij between vertex i and j. The Graph G = (V,E) with vertex set V and edge set E is
shown in Figure 1.4. In the sections, where the clustering algorithms are introduced,
this toy example will be used to clarify how the algorithms work. The toy example can
be interpreted as an electrical grid with distinct attributes at the vertices (e.g. installed
power plants, see Section 1.2.4).
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Figure 1.4.: Toy example: graph consisting of i = 1, . . . , 11 vertices vi labeled with
differing numerical attributes Ai(vi) (bold)

The k-means clustering algorithm

The k-means clustering algorithm is one of the most popular methods to make a k-
partition of a data set, whereas k is the number of requested clusters. For applying a
k-means algorithm on a data set, two input parameters are needed: the data set itself
y1, . . . , yn (points of p-dimensional vector space), which can be interpreted as attributes
of the objects and a desired number of clusters k. Since the attributes represent
coordinates in Rp, the attributes have to be numerical. The algorithm proceeds as
follows [15] (also seen in Figure 1.5):

1. Place centroids c1, . . . , ck at random locations in the p-dimensional vector space

2. Assign each data point yi to its nearest centroid cj (for instance with Euclidean
distance - length of the line segment connecting yi and cj)

3. Update the centroids cj by recomputing the centers of inertia of the data points
yij in the clusters

4. Repeat step 2 and 3 until convergence (convergence means no further change in
assignment of data yi to cj)

Due to the randomized placing of initializing centroids, k-means is not deterministic.
That means k-means will not provide one specific solution for a data set. The output has
always to be referred to a specific initialization of the k-means algorithm. Applications
using k-means (e.g. Python’s scikit-learn library) therefore perform a given number of
initializations and return the ’best’ result. In this context ’best’ means the clustering
with the most compact clusters, respectively the clustering with minimum inertia among
the computed results [16].

If the toy example is converted into k-means’ perspective the graph modifies to a data
set in R1, since the attributes of the vertices are one-dimensional. The modification is
depicted in Figure 1.6.
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data set
y1, . . . , yn
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clusters k

initialize
random-
ized
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Ci
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points
reas-

signed?
end
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Figure 1.5.: The k-means clustering algorithm

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v4v5 v7 v8v1 v2 v6v3 v10v11v9

Figure 1.6.: Modified data set of the toy example into k-means’ perspective

Applying the k-means algorithm on the toy example’s data set with number of clusters
k = 3 and centroids cj set leads to the following result where each cluster is represented
by a different color in Figure 1.7:

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c1 c2c3

v4v5 v7 v8v1 v2 v6v3 v10v11v9

Figure 1.7.: Data set of the toy example clustered by the k-means algorithm with
centroids cj

Considering both the k-means clustering result and the topology of the graph is shown
in Figure 1.8. In order to get a meaningful subclassification of a graph, the problem
has to be contemplated from different perspectives. Besides the vertex attributes, the
topology of the graph has to be considered as well. This means that classical clustering
algorithms like k-means (which cannot take topological aspects into account) are not
sufficient for creating a meaningful partition. Consequently, clustering of the graph only
by the attributes does not lead to the desired result. As already mentioned, both the
vertex attributes and the topology of the graph have to be considered for an appropriate
clustering. This difficulty can be overcome by using spectral clustering. The spectral
clustering algorithm is examined in detail in the following.
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Figure 1.8.: Toy example clustered by vertex attributes using k-means (k = 3, cluster
membership is indicated by color)

Spectral Clustering

Spectral clustering includes all clustering algorithms using the eigenvalues and eigenvec-
tors of the Laplacian matrix of a graph [17]. Simplified, the Laplacian matrix visualizes
the relationship between the different vertices vi in a graph G. According to von
Luxburg [17], there exists a whole field of studying different ways of Laplacian matrices.
This section focuses on the creation of the unnormalized Laplacian matrix L which is
fundamental for creating other Laplacian matrices, the normalized Laplacian matrix
Lsym discussed by Ng. et al [18] and the Laplacian matrix Lrw according to Shi and
Malik [19], because the characteristics of these Laplacian matrices are explained in
detail in [17]. Contemplating not only the unnormalized and in a way ’easiest’ Laplacian
matrix L is due to the advice given by [17] that normalized Laplacian matrices are
always to prefer against unnormalized Laplacian matrices. The difference between
unnormalized and normalized spectral clustering is the way they serve the minimization
of the cut problem. By the cut problem the methodology of removing edges from the
graph is meant, as ’unimportant’ edges have to be removed in order cluster the graph.
Unnormalized spectral clustering is linked to the minimization of Ratio Cut (RCut),
normalized spectral clustering refers to the Normalized Cut (NCut) problem. The RCut
takes only the ’importance’ of an edge into account, whereas the NCut also tends to
create balanced clusters by additionally considering the connectedness of vertices to the
rest of the graph (this is elaborated in detail in Section 2.5). Furthermore, Luxburg et
al. advocate to use Lrw, as Lsym could lead to undesired artifacts due to its algorithm
(see also Section 2.2) [17].
For creating the Laplacian matrix L, edge weights wij are introduced that take into
account how similar two vertices vi and vj are. The interpretation of edge weights is
a penalty for cutting the edge during the clustering process and can also be seen as a
connection strength, as vertices with strong connection (edges) are more likely to get
clustered [4]. Since two vertices vi and vj are considered similar if their vertex attributes
Ai and Aj are similar, a function to weight the edges f(Ai, Aj) has to be implemented.
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For the toy example the function f(Ai, Aj) is set according to Equation 1.1. For further
information how to determine edge weights see Section 2.1.

m = max|Ai − Aj|
f(Ai, Aj) = wij = m− |Ai − Aj|+ 1

(1.1)

The Graph G = (V,E) with vertex set V and weighted edge set E (weighted according
to Equation 1.1) is shown in Figure 1.9.
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Figure 1.9.: Toy example with weighted edges between vertices

If the graph consists of n-vertices, the Laplacian matrix is an n × n, real symmetric
matrix with degree di of vertex vi on the diagonal and negative values outside. By the
degree of a vertex di, the sum of linked (weighted) edges Eij on the vertex vi is meant.
The sum of the columns and the sum of the rows are zero [4].
Creating the unnormalized Laplacian matrix requires the degree matrix D and the
weighted adjacency matrix W . For the unnormalizied Laplacian matrix L the following
relationship can be stated:

L = D −W (1.2)

The degree matrix D has the vertex degrees on the diagonal. The rest of the entries
are zero. Furthermore, W represents the weighted adjecency matrix (also known as
neighboorhood matrix). The adjacency matrix carries the information which vertices
vi of the graph are linked through an edge Eij. The weighted adjacency matrix also
considers the weight of the edges. For a better understanding the matrices L, D and W
of the toy example are set up in the following:
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9 −4 −5 0 0 0 0 0 0 0 0
−4 6 −2 0 0 0 0 0 0 0 0
−5 −2 8 −1 0 0 0 0 0 0 0
0 0 −1 18 −2 0 −4 −5 −6 0 0
0 0 0 −2 7 0 −5 0 0 0 0
0 0 0 0 0 6 0 0 0 −5 −1
0 0 0 −4 −5 0 15 −6 0 0 0
0 0 0 −5 0 0 −6 15 −4 0 0
0 0 0 −6 0 0 0 −4 12 −2 0
0 0 0 0 0 −5 0 0 −2 10 −3
0 0 0 0 0 −1 0 0 0 −3 4



=



9 0 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0 0
0 0 8 0 0 0 0 0 0 0 0
0 0 0 18 0 0 0 0 0 0 0
0 0 0 0 7 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 15 0 0 0 0
0 0 0 0 0 0 0 15 0 0 0
0 0 0 0 0 0 0 0 12 0 0
0 0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 0 4



−



0 −4 −5 0 0 0 0 0 0 0 0
−4 0 −2 0 0 0 0 0 0 0 0
−5 −2 0 −1 0 0 0 0 0 0 0
0 0 −1 0 −2 0 −4 −5 −6 0 0
0 0 0 −2 0 0 −5 0 0 0 0
0 0 0 0 0 0 0 0 0 −5 −1
0 0 0 −4 −5 0 0 −6 0 0 0
0 0 0 −5 0 0 −6 0 −4 0 0
0 0 0 −6 0 0 0 −4 0 −2 0
0 0 0 0 0 −5 0 0 −2 0 −3
0 0 0 0 0 −1 0 0 0 −3 0



For a spectral clustering approach using L, the following steps have to be applied:

1. Determining the first k eigenvectors u1, . . . , uk of L (first in terms of the corre-
sponding k-smallest eigenvalues)

2. Creating new matrix U ∈ Rn×k with vectors u1, . . . , uk as columns
3. Labeling the i-th row of U (i = 1, . . . , n) as yi ∈ Rk

4. Applying a standard algorithm like k-means to the points yi leads to clusters
C1, . . . , Ck

The calculation of the unnormalized Laplacian matrix L can be interpreted as preliminary
work due to its basic property for other Laplacian matrices. The Laplacian matrices
contemplated in this work are set up in the following. The relation between L and Lrw

is described in Equation 1.3:

Lrw = D−1L (1.3)

The algorithm by [19] consists of the following workflow:

1. Determining the first k eigenvectors u1, . . . , uk of L (first in terms of the corre-
sponding k-smallest eigenvalues) of the generalized eigenvalue problem Lu = λDu

2. Creating new matrix U ∈ Rn×k with vectors u1, . . . , uk as columns
3. Labeling the i-th row of U (i = 1, . . . , n) as yi ∈ Rk

4. Applying a standard algorithm like k-means to the points yi leads to clusters
C1, . . . , Ck

Also Lsym can be created out of the unnormalized Laplacian matrix L:

Lsym = D−
1
2LD−

1
2 (1.4)

After creating Lsym the spectral clustering algorithm by [18] can be executed. The
different steps are shown below:

1. Determining the first k eigenvectors u1, . . . , uk of Lsym (first in terms of the
corresponding k-smallest eigenvalues)

2. Creating new matrix U ∈ Rn×k with vectors u1, . . . , uk as columns
3. Normalization of the rows of U to norm 1
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4. Labeling the i-th row of U (i = 1, . . . , n) as yi ∈ Rk

5. Applying a standard algorithm like k-means to the points yi leads to clusters
C1, . . . , Ck

The following explanations are based on working with Lsym. The choice of which
Laplacian matrix is used for the clustering in this work refers to Section 2.2.

What is implicitly done by forming a Laplace matrix, is to give geometric coordinates to
the vertices in Rk. The n rows of the normalized matrix U with k eigenvectors as columns
contain these coordinates [4]. Actually, the vertices already have coordinates yi given
by the Laplacian matrix operations (rows and columns of the Laplacian matrices). Due
to the characteristics of the Laplacian matrices a change of representation (from yi to
zi ∈ Rk) is advantageous. In principle, the coordinates are transformed to a new vector
space Rk spanned by the eigenvectors of the Laplacian matrix. This transformation
increases the cluster properties in the data and cluster information can be traced by
simple clustering algorithms like k-means [17].

For visualization, the algorithm is applied to the toy example (k = 3). As the Laplacian
matrix Lsym is already generated, the matrix Unorm ∈ R10×3 can be computed.

Unorm =



−0.446 −0.874 0.188
−0.440 −0.876 0.193
−0.486 −0.859 0.158
−0.805 0.246 −0.538
−0.708 0.269 −0.651
−0.409 0.387 0.825
−0.721 0.277 −0.633
−0.765 0.302 −0.568
−0.872 0.396 −0.285
−0.454 0.405 0.793
−0.406 0.386 0.827



As already stated, Unorm carries the cluster information. For deriving the membership
of a vertex to a cluster the eigenvectors 2, . . . , k have to be contemplated [17]. The
eigenvectors 2 and 3 of the toy example’s Lsym are displayed in Figure 1.10.

Thresholding the second eigenvector at 0 (dashed line) [17] shows that vertex 1, 2 and
3 belong to one cluster and the rest of the vertices to another cluster. This leads to
the red cut in Figure 1.11. Eigenvector 3 returns the second cut. By thresholding the
third eigenvector at 0 the cut between the third and fourth vertex is already known.
However, the vector contains all the missing information needed for the clustering. As
vertex 6 is not connected with vertex 5 and 7, the graph has to be cut a second time
between vertex 9 and 10. This is displayed by the blue line in Figure 1.11

Finally, the spectral clustering algorithm leads to the clustering in Figure 1.11 on the
right side. While clustering simple networks - such as presented in the toy example
- can be done manually, practical applications which include more vertices and edges
require algorithms like k-means.
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Figure 1.10.: Second and third eigenvector of the toy example
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Figure 1.11.: Cut derived by second (red) and third (blue) eigenvector; on the right side:
final result of the spectral clustering of the toy example

It can be stated, that spectral clustering is an appropriate approach for clustering
based on vertex attributes and also considering the topology of the grid. Thus, spectral
clustering is chosen for the clustering process in Chapter 2.
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1.2.4. Choice of the edge weights

Choosing the edge weights, respectively choosing vertex attributes in the literal sense
(as edge weights are determined by vertex attributes, see Section 1.2.3), has a major
influence on the results of spectral clustering. As described in the following section,
edge weights may take various shapes, however they should be chosen regarding the
desired result of the clustering.

Unweighted graph

In some cases, it can be sufficient only to reveal the pure topology of the graph. This
can be achieved by weighting all edges with the same value, for instance 1 (as the values
are all equal it does not matter which value is selected). The mathematical expression
is shown in Equation 1.5:

wij = 1, ∀(ij) ∈ E (1.5)

Electrotechnical characteristics

A natural choice of edge weights can be based on electrotechnical parameters. With
the intention of revealing the connection strength in the grid line, admittance is a
reasonable choice of edge weights. The admittance of a line indicates the ’electrical
distance’ between vertices as a high admittance refers to low losses. A possible function
for edge weights based on admittance criteria is set up in Equation 1.6 [4]:

wij = Yij = 1
|Rij + jXij|

, ∀(ij) ∈ E (1.6)

However, choosing admittance as edge weights returns no information about the grid
utilization which is an important indicator in the context of clustering a power grid.
A further parameter in terms of electrotechnology is the power flow Pij between vertex
i and j. In contrast to admittance, the power flow implies information about the
grid utilization. With regard to grid congestion, edge weights based on power flow do
not make a reliable statement either. This results from the fact that grid utilization
is contemplated, but it cannot be stated how critical the congestion is in terms of
additional transmission capacity anyway.

Locational marginal pricing

Another approach of weighting edges is weighting according to marginal generation
costs at the vertices of a grid. The theory behind this idea is explained in this section.
Marginal costs are defined by the change of economic costs linked to a specific increase
of the output (mostly one unit increase of the output). Mathematically, marginal values
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are associated with the first derivation. However, in practical applications the per unit
change is more meaningful due to the indivisibility of, for instance, power plants [20].
In liberalized electricity markets, electricity has to be considered as a good which can be
bought, sold and traded with temporal and spatial varying values. The time-dependent
price of a unit of electricity takes the operating and capital costs of generating and
transmitting the electricity into account [21]. The intention of locational marginal
pricing (LMP) is to encourage an economic use of electrical energy with regard to
interdependencies between generation and transmission. The most detailed form of
LMP is called nodal pricing. By applying nodal pricing to an electrical grid, the spot
prices (current price for electricity) for each vertex of the grid have to be calculated.
In this context, vertices can be interpreted as individual markets (linked by the grid),
where ad hoc market prices are determined simultaneously. If the vertices of the grid
are taken in isolation, the locational value of the electricity is a function of operational
costs. Consequently, the locational value of the electricity is dependent on the type of
installed generators at the vertex. Thus, it is very likely that vertex prices within a
power grid differ. As already stated, vertices can be interpreted as individual markets.
By this interpretation, and based on the hypothesis that there are no transmission
capacity limitations, the conclusion can be drawn that vertices tend to trade electricity
until their marginal costs reach harmonization [22].
On the contrary, if a real grid is assumed (with capacity limitation between vertices),
and marginal costs of linked vertices are still unbalanced, a strong indication of a line
capacity limitation between those vertices is given. Consequently, differences in marginal
costs can be grasped as an incentive to increase the line capacities.
With regard to this work, marginal costs seem to be a possible vertex attribute which
reflect important vertex properties like power plant stock and also describes the transfer
ability of the connected links.

1.3. Derivation of the research questions, objective and
organization of this work

Based on the motivation, and on the state of research, two central questions for this
work are derived.

• Which configuration of spectral clustering is suitable for aggregating a power grid?
• What impact does an aggregation based on marginal costs of a power grid have

on the accuracy of the result compared to a highly resolved power grid?
The objective of this work is to develop a methodology for a spatial clustering of
power grid systems. Besides the development, the methodology is implemented in an
optimizing energy system model and also applied to a case study based on the German
transmission grid.
Chapter 2 reveals the underlying methodology for the applied clustering. As spectral
clustering provides many different configurations in terms of the choice of its parameters,
the evaluation of the best choice for the underlying power system is described in detail.
Another part of Chapter 2 outlines the parametrization of the German transmission
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grid. Besides the data collection, the data processing from the raw data to REMix-
interpretable data formats is also covered.
In the following Chapter 3, REMix outputs like electricity mix, network utilization or
system costs, always comparing a varying numbers of clusters with a reference scenario,
are investigated. Furthermore, the computation time for different levels of aggregation is
evaluated to see how aggregation can lead to an acceleration of REMix computations.
In the last Chapter 4 the findings of this work are summarized. Moreover, shortcomings
of the applied methodology are pointed out. Based on the shortcomings possible further
developments are listed.



2. Methodology

This chapter gives an overview on how spectral clustering can be applied in terms
of clustering a power system. By implementing spectral clustering, there exist many
different variations. These variations relate to the choice of the edge weight function
and the Laplacian matrices. To make an appropriate choice, case-related criteria as
decision support have to be set up. Figure 2.1 shows the structure of the entire clustering
process.

Determining
decision
support

Section 2.3

Set up
edge weight f.
Laplacian mat.
Section 2.1

Parametrization
of a reference

model
Section 2.4

Determining
vertex at-
tributes

Section 2.5

Results
reference model

Choice of a
combination
Section 2.5

Application of
spectral
clustering

Results
clustered model

Marginal costs as vertex attributes

Comparison
Chapter 3

Figure 2.1.: Schematical structure of the clustering process

The choice of the edge weight function plays an important role for the clustering. By
defining the edge weight function, it has to be considered, which information are desired
to gain out of the clustering, as low weighted edges are likely to be removed. How
an edge weight function can be determined that takes into account grid congestion, is
elaborated in Section 2.1.
The choice of the edge weight function is associated to the desired results, whereas the
choice of the Laplacian matrix is not that clear, as there exists no reliable advice in the
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literature which Laplacian matrix has to be taken. In other words, the clustering has to
be executed with different edge weight functions and Laplacian matrices in combination
in order to make a choice. The different combinations are shown in Section 2.2. To
support the choice, a parameter has to be defined to validate whether a combination
(edge weight function/Laplacian matrix) provides a good clustering. The definition of
this parameter refers to Section 2.3.

As Laplacian matrices are dependent on the used edge weight functions, and edge weight
functions themselves are based on vertex attributes, attributes for each vertex have
to be calculated in order to execute the validation of the possible combinations. For
this reason, a spatially high resolved reference model is needed. The parametrization
of the reference model is a further part of this chapter (see Section 2.4). Besides basic
information about the different participants of a power system, data sources and the
underlying data process for transferring the parameter data into REMix are described.

Based on the computed vertex attributes, the spectral clustering algorithm can be
applied to the different combinations of edge weight functions and Laplacian matrices
to validate which combination fits best in terms of the defined parameter of the decision
support. This validation process is evaluated in Section 2.5.

After the evaluation, the actual spectral clustering process can be executed, as then
the choice of the edge weight function and also the Laplacian matrix is done. The
algorithm is executed with different number of clusters k which returns different levels
of aggregation of the power system. The result of the REMix computations of the
aggregated power systems are furthermore compared with the results of the reference
model in Chapter 3. With results, different outputs of the REMix computations are
meant. For instance, the power plant utilization, temporal resolved power plant dispatch
and also system costs are investigated.

2.1. Determination of an edge weight function

As mentioned previously in Section 1.2.4, the choice of the edge weights has to be made
with respect to the desired information, as the topological structure of the graph does
not capture any functional indicators about the power grid. Basically, the goal of the
clustering is the aggregation of the model and hence the reduction of the complexity,
while preserving the research object. Since this work focuses on the aggregation of
similar grid substructures to detect grid congestion, an edge weight function which
takes into account the grid related vertex similarity has to be defined. In this case, grid
related vertex similarity means how similar two vertices are in terms of the utilization
of their connecting link. More precisely, a low utilization refers to a high similarity and
a high utilization, especially an overutilization, leads to a low similarity. As already
stated in Section 1.2.4, vertex marginal costs illustrate this similarity behavior.

Obviously, the relative power flow on a link (relative to its maximal capacity) could
also be taken. The main advantage of marginal costs compared to relative power flow is
that marginal costs also indicate how weighty the overutilization is, whereas the relative
power flow returns just a binary information in terms of overutilization.
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By allocating marginal costs on vertices, an obvious choice of the edge weight function
is the difference of marginal costs between two vertices i and j. This can be expressed
according to Equation 2.1:

wij = ∆Mij = |Mi −Mj|, ∀(i, j) ∈ E (2.1)

In principle, Equation 2.1 takes into account a similarity measure based on marginal
costs. However, to map the behavior described above, Equation 2.1 has to be modified,
as at this point a low utilization (a low difference of marginal costs) would lead to a low
connection strength respectively to a low edge weight wij (see also Section 1.2.3). The
desired mapping can be expressed as the reciprocal of the difference of marginal costs
(Equation 2.2):

wij = 1
ij

= 1
|Mi −Mj|

, ∀(i, j) ∈ E (2.2)

Considering the marginal costs difference, the desired similarity behavior can be achieved,
as low differences of marginal costs lead to an high edge weight wij. In the case two
marginal costs are equal, Equation 2.2 would lead to division by zero, which is probably
for most of the programming environments a problem. This case is intercepted by a
try/except statement where in case of a ’ZeroDivisionError’ the belonging edge gets the
maximum value of edge weights where marginal costs are not equal.
Another modification of the edge weight function with regard to the mapping of low
price differences to high edge weights is set in Equation 2.3:

m = max|Mi −Mj|
wij = m− |Mi −Mj|+ 1

∀(i, j) ∈ E
(2.3)

In the first step all the price differences are calculated. The variable m refers to the
maximum price difference of all the links. In the second step all the origin price
differences are subtracted from the maximum value and then added with 1 as edge
weights with weight 0 refer to no existing link between two vertices. Consequently, the
edge with the lowest price difference is mapped with the highest edge weight and vice
versa.

2.2. Combinations of edge weight functions and
Laplacian matrices

In Luxburg et al. [17] it is stated that there exists a whole field of studying different ways
of creating Laplacian matrices. It is furthermore pointed out that a general statement
which Laplacian matrix to use cannot be made. Due to the advice given by [17] (see also
Section 1.2.3) using unnormalized spectral clustering should be avoided. Furthermore,
they advocate to use Lrw, as Lsym can lead to undesired artifacts. In contrast, Sanchez et
al. [4] use Lsym for their approach, however, they do not cluster by k-means afterwards,
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but apply a hierarchical clustering using a dendrogram. In principle, the computational
expense (in terms of coding) is quite equal concerning L, Lrw and Lsym.
In combination with the edge weight function introduced in the previous Section there
exist 2∗3 = 6 possibilities of combining edge weight functions and Laplacian matrices:

• wij = 1
|Mi−Mj | ←→ Lrw

• wij = 1
|Mi−Mj | ←→ Lsym

• wij = 1
|Mi−Mj | ←→ L

• wij = m− |Mi −Mj|+ 1 ←→ Lrw

• wij = m− |Mi −Mj|+ 1 ←→ Lsym

• wij = m− |Mi −Mj|+ 1 ←→ L
Based on the underlying graph the possible combinations are shown in a decision tree
in Figure 2.2.

2 edge weight
functions

3 Laplacian
matrices

Graph

wij1(Ai, Aj)

. . . . . .

wijn(Ai, Aj)

Lrw Lsym L

Figure 2.2.: Decision tree for the choice of the edge weight function and the Laplacian
matrix

To determine which combination fits best to the clustering desired in the context of this
work, a parameter for the decision support has to be set up. This is elaborated in the
subsequent Section.

2.3. Decision support

Two criteria to support the decision of which edge weight function and Laplacian matrix
combination has to be chosen are set up. The aggregation criterion is a sufficient
criterion (the clustering would also work with bad aggregation results), whereas the
consistency of the clustering results can be considered as a necessary criterion (the
clustering would not work with inconsistent clusters).

2.3.1. Aggregation of overloaded links

To measure how good a combination of an edge weight function and a Laplacian matrix
provides a clustering in the desired way, an indicator has to be introduced. As in
the context of this work one goal is to identify grid congestion the applied indicator
is derived from the number of overutilized links. The method can be described as
follows:
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• Identification of all overutilized links in the period under review
• Identification which of the overutilized links are lost by aggregation inside a cluster
• Determination of the ratio between aggregated overutilized links and overall

overutilized links
Transferred to a mathematical expression the method leads to Equation 2.4:

r(k) =
E(agg,ou)k

Eoutot

(2.4)

The ratio r and also the number of aggregated overutilized links is indexed by k, as the
equation must always be seen in combination with a specific clustering. A low number
of aggregated overutilized links indicates a good clustering, as it indicates that a low
number of overutilized links vanish within the clusters obtained.

2.3.2. Consistency of the clustered graph

Besides the number of aggregated overutilized links, the consistency of the clustering
has also to be contemplated by the choice of an edge weight function/Laplacian matrix
combination. A shortcoming of spectral clustering in combination with k-means is the
specification of the desired number of clusters k (see also Section 1.2.3). This property
may lead to undesired artifacts as for a specified number of clusters the situation can
occur that there exists no partition regarding to the solution of the cut problem (see
Section 2.5). This means that there can exist clusters containing vertices, which are
not connected among themselves. This connectedness is meant by consistency in terms
of this work. As already mentioned, consistency refers to the inner connection of the
clusters generated by the clustering. To put it in simpler terms: is there any vertex in
a cluster which is not connected to the rest of the cluster, respectively is it possible
to start at any vertex of a cluster and reach every other vertex of the cluster without
moving through another cluster? Thus, it can be stated that a clustering is consistent if
all the clusters of a clustering consist of only one connected component.
From a mathematical point of view, the number of connected components of a graph
refers to the multiplicity of the eigenvalue λi = 0 of its Laplacian matrix. To execute
the consistency check, the Laplacian matrices of all the clusters of a clustering are set
up and in a further step all their eigenvalues are computed. If for a given clustering
all the eigenvalues with value 0 of a cluster have multiplicity 1 (refers to 1 connected
component) the clustering can be considered as consistent in terms of this criterion.

2.4. Parametrization of a reference model based on the
German transmission grid

As already stated in Section 1.2.4, marginal costs seem to be a reasonable choice for
vertex attributes. In order to determine marginal costs with REMix, a parametrized
power system model has to be set up. The power system referred to this work consists
of the following components:
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• Vertices
• Links (connection lines between vertices)
• Loads
• Conventional power plants
• RE power plants
• Pumped storage

In the following subsections the parametrization of each of the components is described.
The year of study is 2014. This means that loads, power plants and pumped storage are
based on the state of the year of 2014. Apart from the choice of the underlying data (the
whole data for the parametrization can be seen in Appendix A.1), the preparation and
the processing of REMix input files is covered. In the following the term ’link’ is used
instead of ’edge’, as in the context of power systems the term ’link’ is more common
then ’edge’. The term ’edge’ refers to a mathematical consideration of graphs.

2.4.1. Transmission grid vertices and links

Vertices and edges are the basis for the parametrization of the reference model. For the
first time, spatially resolved data (vertices and edges) of the German transmission grid
is provided by SciGRID [23]. SciGRID represents a research project of the German
energy supplier EWE. The overarching goal of the project is to provide an ’Open Source
Reference Model of European Transmission Networks for Scientific Analysis’. For the
moment, only the data of the German transmission grid is available and therefore the
parametrization of the case study is based on that. The data itself consists of two
csv-files (one for vertices, one for links) with characteristics like latitude and longitude
of the vertices or transmission properties like capacity P or linked vertices of the links.
The spatial and topographical information given by SciGRID is visualized in Figure
2.3.
The ’onshore’ vertices are almost complete, however there are ’offshore’ vertices missing.
’Offshore’ vertices are not about the converter stations, but concerning the wind farms
only, as in this case, offshore wind farms are linked directly to the landing points and
not looped through the converter stations. In Figure 2.3, the augmentation of the
SciGRID data set is displayed in red. The augmentation includes offshore wind farms
in the North Sea (BARD 1, e.g.), wind farms in the Baltic Sea (Baltic 1 and 2) and
a new landing point near Emden as well. The augmented data is extracted from 4C
Offshore [24].
Additionally to the augmentation, the SciGRID data set is reduced either. A very small
number of vertices not linked to the grid are removed as well as the DC link between
Herrenwyk (Germany) and Kruseberg (Sweden) as they have no real impact relative
to the investigated power system. A further manipulation of the SciGRID data set in
terms of reduction is the aggregation of multiple links between vertices. In this case
aggregation means that the transmission capacities of the single links are summed up,
and also the single links themselves are summarized to a resulting link. This reduction
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Figure 2.3.: The SciGRID data set of the German transmission grid plotted by QGIS
(yellow), augmented offshore vertices in red

is necessary, as by using spectral clustering an unreduced graph would lead to erroneous
results.

Besides the topological information of the grid (which vertex is connected to which
vertex), the parametrization of the REMix grid module requires the link capacities P
and also a pseudo link length Lx. This pseudo link length is defined in Equation 2.5

Lx = x ∗ l (2.5)

where x is the reactance factor of the link in Ω
km

and l is the real link length in km.
Thus, the ’link length’ insert in REMix is actually the total line reactance Lx. For
further information concerning the calculation of Lx, the SciGRID manual [23] is referred.

Apart from the AC links, the DC links have to be parametrized as well. [24] provides
information about the length of the DC links from the offshore wind farms to the landing
points. Due to the lack of information concerning the transmission capacity of the DC
lines, the assumption is made that the DC capacities are infinite. The idea behind this
assumption is that these lines are exclusively built to transfer the generated power of
the wind farms and are therefore dimensioned adequately.
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2.4.2. Mapping of loads, conventional generators, fluctuating
generators and storage on vertices

As set out in Section 2.4.1, vertices and links are the basis for the parametrization.
For a spatially resolved power system, the regional allocation of other components
(power plants, demand) is needed as well. As the spatial information of the loads,
generators and storage do not contain any information linkable to the SciGRID data
set, geo-referencing is not straightforward. The approach made in this work is derived
from the available data loads, generators and storage all have: postcodes. The linking
process is schematically shown in Figure 2.4.

SciGRID
vertices
lat/lon

Postcode
database
lat/lon

postcode

Loads, power
plants, Storage

postcode

Figure 2.4.: Mapping of the loads, generators and storage on SciGRID data set

The linking pin between the SciGRID data set and the underlying data of the other
participants is a postcode data base of Germany [25]. This data base includes latitude
and longitude of its geographical center for every postcode area in Germany. In a first
process step, every postcode area Bj is mapped on the geographical closest vertex. The
distances between the centers of the postcode areas and the coordinates of the vertices
are calculated by the Haversine formula. The formula is depicted in Equation 2.6

d = 2 ∗ r ∗ arcsin(
√

sin2(φ2 − φ1

2 ) + cos(φ1) ∗ cos(φ2) ∗ sin2(λ2 − λ1

2 )) (2.6)

where φ1 and φ2 are the latitudes of point 1 and 2 in radians, λ1 and λ2 the longitudes
of point 1 and 2 in radians and r the radius of the earth. In this case point 1 stands for
the centers of the postcode areas and point 2 for the vertex coordinates. The mapping
hence follows the algorithm displayed in Equation 2.7:

Bj 7−→ vi

s.t. minv1...vi
(d(lat(Bj), lon(Bj), lat(vi), lon(vi))), ∀Bj

(2.7)

For the better understanding what has been mathematically formulated in Equation 2.7,
the mapping is verbalized: the distance from a postcode area center to each vertex in
the SciGRID data set is calculated and based on that the postcode area is mapped on
the vertex with shortest distance. Finally, every postcode area is mapped on a vertex.
By this the geo-referencing of the loads, generators and storage can be executed as the
postcode information given by their data sets are linked to SciGRID’s data set.
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2.4.3. Power demand

Contrary to the parametrization of generators and pumped hydro storage, there exists
no detailed data base for spatially resolved loads. However, the total load curve of
Germany created by Paul-Frederik Bach [26] is available. According to Bach, the values
in this load curve cover around 91% of the total supply. Industrial on-site power supply
is excluded, as well as some parts of the German railway system.
Furthermore, the number of inhabitants I of the postcode areas and the total number
of inhabitants of Germany are obtainable. Therefore it is possible to determine a per
capita power demand (Equation 2.8):

Epercapita,a = Etot,a

Itot

(2.8)

As the postcode areas are already mapped on the SciGRID data set, the number of
inhabitants can also be mapped. In a further step the yearly power demand per vertex
is calculated (Equation 2.9):

Evi,a = Epercapita,a ∗ Ivi
(2.9)

With this approach, the spatially resolved power demand of the power system can be
approximated. The shortcoming of this method is that the vertex power demand is
based on average per capita power demand. In addition, industrial and service sectors
are not contemplated (but approximated by inhabitants mapping). So in detail the
vertex demand can differ from real values if in reality the relation between inhabitants
and industrial or service sectors at a vertex is particularly low or high.
Besides the spatial allocation of the power demand, a detailed parametrization also
requires temporal resolved load. As this is even more difficult to determine on spatial
aspects, the same load curve (ENTSO-E load curve Germany 2015) [26] is allocated to
each of the vertices.

2.4.4. Conventional power plants

The choice of the data base for conventional generators is highly linked with the
availability of geo-information (rated power values are presumed). The more detailed
Platts data base [27] does not contain continuous postcode information for the individual
power plants. The moment this gap is closed the Platts data base is more than a
considerable alternative as it covers power plants all over Europe.
The data base used for this work (Kraftwerksliste der Bundesnetzagentur) [28] does not
cover power plants all over Europe, but provides steady geo-information for conventional
power plants in Germany. The data set contains power plants with rated power above
10 MW. Besides coal power plants, lignite, nuclear and natural gas power plants can be
extracted from the data set. The information if a power plant refers to combined cycle
technology is yet missing. To overcome this issue, the data set of the Bundesnetzagentur
has to be linked with a data set provided by the Umweltbundesamt [29] which contains
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information if a power plant is using combined cycle technology. Furthermore, it has to
be considered that in many cases power plants are listed as single power plant units
which have to be aggregated in a further process step.
Due to the preliminary work described in Section 2.4.2, the spatial resolving of the
conventional generators is straightforward. As both the data sets of vertices and power
plants have postcode information, the merging can be done easily.
As for a very low number of vertices there is not enough installed capacity to cover
the demand (occurred by k = 499 computations in REMix), one run is executed with
enabled capacity expansion of combined cycle gas power plants at these vertices. That
run allows REMix to add capacity at the vertices with deficient covering. After the
missing capacities are determined, they are added manually at the concerning vertices.
A possible reason for the missing capacities are the allocation of the power demand
according to inhabitants and also missing generation capacities in the Kraftwerksliste.
The process is schematically shown in Figure 2.5.
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reference model

Power
demand
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Computation
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with capacity

expansion enabled

Further
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steps

yes

nomanually
adding
missing
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Figure 2.5.: Process of adding missing capacities

After adding the missing capacities, the capacity expansion is disabled. The reference
model is computed again (with disabled capacity expansion) in order to check if uncovered
power demand still occurs. If this is not the case, the actual process can be continued.

2.4.5. RE and biomass power plants

For the previous parametrization steps, manipulating and processing the data sets with
MS-Excel is absolutely sufficient. Due to the high number of residential photovoltaic
systems, the complete data set of RE power plants is way larger than the data set of
conventional power plants. The chosen data set is provided by energymap.info [30]
and is 363 MB in size with 1.5 million rows (corresponding to the number of installed
generators). To deal with such huge data sets Python [31] is an appropriate environment.
This is elaborated in detail in Section 2.4.9.
The data set itself covers wind onshore generators, photovoltaic modules, hydro power
plants and biomass facilities with postcode information and rated power attribute. It
has to be stated that this data set is not fully consistent as recent investigations (for
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instance by [32]) point out that the data set contains duplicates and also stopped logging
in 2013. Nevertheless, the energymap.info data set is the best available.
To gain data concerning offshore wind farms, the data set is less suitable because this
part is not worked out properly yet. As already mentioned in Section 2.4.1, the data
for offshore wind farms comes from 4C Offshore [24]. The mapping on the vertices can
obviously not be done by merging postcodes. In this case, the data sets (SciGRID and
offshore wind farms) have to be merged manually, which is due to the small number of
wind farms easy to handle.
Analog to Section 2.4.4, the processing of the ’onshore’ wind farms input is also
straightforward.

2.4.6. Storage

For the parametrization of storage, only pumped storage hydro power plants are
contemplated. Since the number of pumped storage in Germany is lower than 40, a
data base with postcode information is not necessarily needed. The geo-referencing
can be done manually by researching on the internet. On the technical side, two main
parameters are needed to integrate the pumped storage into the scenario: on the one
hand, the rated power of the converter and on the other hand the storable amount
of energy of the reservoir. The power of the converter can also be extracted from the
Kraftwerksliste while the reservoir data comes from Marcos et al. [33]. The underlying
data is listed in Appendix A.1.

2.4.7. Time series for fluctuating energy

In Section 2.4.5, the rated power of fluctuating generators and biomass power plants are
determined. It is clear that a further parameter is needed to draw conclusions concerning
generated power by RE power plants (for technical parameter see Section 2.4.8 and
Appendix A). Fluctuating generators need spatial resolved time series in terms of solar
radiation, wind and hydro flow to determine temporal and spatial resolved generated
power. The time series are processed in an upstream environment of REMix named
EnDAT (see also Figure 1.2). EnDAT provides RE technology potentials and hourly
profiles of RE power generation [8], [9]. Biomass potentials are assumed as infinite due
to the small amount of installed capacities.

2.4.8. Technical and economic parameters

Finally, as the rated power and potentials are set up, REMix needs further technical
parameters like efficiencies or availability of the different power plant types, and also
economic indicators (for instance operational expenditure) for determining a cost optimal
solution. The technical and the economic parameters are taken from the short study
’Kapazitätsentwicklung in Süddeutschland bis 2025 unter Berücksichtigung der Situation
in Deutschland und den europäischen Nachbarstaaten’ [34] (see Appendix A.1).
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2.4.9. Underlying process structure

The previous sections present the chosen data for the scenario. All the data is avalaible
as xls- or csv-file. It is obvious that the data has neither the right structure nor the
right data format to be interpretable by REMix. One strategy to transfer the data
to a REMix-interpretable format is to use an existing MS-Excel file where the data
can be manipulated, and also written to a REMix-interpretable dat-file. The main
advantage of this strategy is the intuitive handling of MS-Excel. On the other hand,
the shortcoming of using MS-Excel in terms of parametrization is firstly, the lack of
adaptability concerning parameter adjustment, and secondly, (and also with the bigger
influence regarding this work) the file size limitation. The upper limit of rows in a
csv-file openable with MS-Excel is a little above 1 million rows. Most of the data needed
(Kraftwerkliste, postcode data set) do not approach this upper limit, but, as already men-
tioned in Section 2.4.5, the underlying data set of RE generators is about 1.5 million rows.

To overcome this issue, the data manipulation, and also the writing of the dat-files is
done with Python. The complete data processing is pictured in Figure 2.6.

csv

xlsx

pre_
processing.py processing.py post_

processing.py dat REMix

Figure 2.6.: Process structure of the parametrization

The data processing is divided into three parts, respectively Python scripts. The
pre_processing.py script is fed with the xls- and csv-data containing the data provided
by the Bundesnetzagentur or energy-map.info. In a first step the different technologies
(coal, lignite, wind, photovoltaic) have to be separated. For this purpose, the Python
environment provides a very powerful data analysis library named Pandas [35]. If through
preliminary work, the corresponding technology terms of the data sets (’Steinkohle’
→’coal’, e.g.) are known, the data frames can be sliced easily with Python’s Pandas
library. Another task completed by the pre_processing.py script is the assignment of
age classes to power plants to map appropriate efficiencies in a later process step. At
the end of the pre_processing.py script the data is stored into a hdf-file (hierarchical
data format) as it has excellent writing and reading access features, especially in terms
of speed.
The hdf-file is then read by the consecutive processing.py script. At this part of the
process, the main data manipulation is done. Besides the spatial mapping on the
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SciGRID vertices (see Section 2.4.2), the various data frames are created and prepared
into a format which is already close to the format REMix is able to read. Like in the
previous process step, the data is stored into an hdf-file.

The last process step is done by the post_processing.py script. The script reads in the
hdf-file from processing.py and writes out the dat-files interpretable by REMix.

2.5. Evaluation of the edge weight function - Laplacian
matrix combinations related to the case study

Based on the parametrization of the high resolution model, it is possible to compute
marginal costs for every time and every vertex of the grid. An obvious possibility for
determining the marginal costs (and thus the vertex attributes Ai) is to execute the
computation of the parametrized scenario for a period of one year to then determine the
average marginal costs of the vertices. The problem is that by computing a whole year,
the main memory of the available server is not sufficient (Intel Xeon CPU, 96 GB RAM).
To overcome this issue, only a few hours of the year are considered. Therefore, eight
hours of the year with representing grid usage are identified. They are characterized by
their load level (L) and also photovoltaic (P) and wind (W) power generation level. The
grid usages cases with associated hours of the parametrized model can be seen in Table
2.1. The minus (−) indicates a relatively low, plus (+) a relatively high value. The
conditions low (−) and high (+) are related to the nominated load or nominated supply
of photovoltaic and wind. ’Low’ and ’high’ have no fixed bounds as for some grid usage
cases there exist no fitting hour. Instead, this must be considered on a case-by-case
basis.

Table 2.1.: Grid usage cases with associated hours based on the scenario
Grid usage case Load PV Wind Hour
L- P- W- low low low 5474
L- P+ W- low high low 5486
L- P- W+ low low high 8619
L- P+ W+ low high high 6158
L+ P- W- high low low 7115
L+ P+ W- high high low 2077
L+ P- W+ high low high 65
L+ P+ W+ high high high 6155

The choice of eight grid usage cases further increases the options for the configuration
of the clustering algorithm. By considering a combination of 2 edge weight functions,
3 Laplacian matrices and 8 grid usage cases a total of 2 ∗ 3 ∗ 8 = 48 possibilities
to implement the clustering are evaluated. The compared with Figure 2.2 expanded
decision tree is depicted in Figure 2.7. Every level of the decision tree represents another
level of the decision-making process.
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Figure 2.7.: Decision tree of edge weight function, Laplacian matrix and grid usage case
- in total 48 cases are assessed.

For a better understanding of the evaluation, and also the clustering itself, the structure
of the process is described in the following. The clustering is like the parametrization
also processed in Python. The interaction of REMix and the clustering is schematically
shown in Figure 2.8.

Marginal
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Reference
scenario
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pre_spec_
clustering.py

Laplacian
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spec_

clustering.py
Evaluation

Result of
evaluation

pre_spec_
clustering.py

spec_
clustering.py REMix

Figure 2.8.: Two levels of the clustering process: evaluation on the upper level, clustering
process based on the result of the evaluation on the lower level

For evaluating which set of marginal costs (related to the usage case) are used for the clus-
tering, the clustering is executed with all usage cases. The marginal costs of the REMix
computations (for all eight 8 grid usage cases) are passed to the pre_spec_clustering.py
where the preliminary work for the clustering takes place. In this step the different
defined edge weights (see Section 2.1) of the grid are calculated and prepared for the
main process. In the spec_clustering.py the actual spectral clustering is processed. At
this part of the process, the different Laplacian matrices (see Section 2.2) are deter-
mined. In a further process step, these combinations of marginal costs, edge weight
functions and Laplacian matrices are evaluated. As quality criterion for the evaluation
the aggregation of overutilized links is contemplated (see Section 2.3). The marginal
costs of the different usage cases contain only the overutilization information of their
own usage case (see Section 1.2.4). Thus, the best approximation of a usage case to the
global overutilization is searched.
Based on the result of the evaluation the clustering is processed with the ’best’ (in terms
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of aggregation) combination. The clustering is then executed for different number of
clusters k. The result of the clustering process is written into a REMix-interpretable
file (dat-file) and passed to REMix. In Chapter 3 the output of the computations of the
clustered power systems are elaborated.
Considering the evaluation (upper level of Figure 2.8), Figure 2.9 shows an example
of the different aggregation r(k) of some selected parameter combinations (shown in
the title of the subplots) as a function of the number of clusters k. The shown subplots
represent a sample of parameter combinations.
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Figure 2.9.: Aggregation of overutilized links using different parameter combinations

Black dots represent the number of aggregated overutilized links in relation to the number
of clusters. To visualize the behavior of the parameter combination, a regression curve
(red) is included in the graphs. For a behavior to be good in the sense of aggregation,
the gradient of the regression curve has to be high. A high gradient indicates that
the number of overutilized links decreases considerably with only little increase of the
number of clusters. A further indicator for the quality of the clustering is the cut with
y-axis. The lower the intersection point with the y-axis, the better the clustering already
for a little number of clusters.
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The upper row is based on the use of the reciprocal edge weight function, the bottom
row uses the difference function described in Equation 2.3. The first column consists
of unnormalized spectral clustering results (using the unnormalised Laplacian matrix),
whereas in the second column normalized spectral clustering by [18] using Lsym is
executed. Furthermore, the underlying grid usage cases differ.

An observation that can be made is that the parameter combination of the upper left
subplot best fits the aggregation criterion. Besides a low number of inconsistencies,
this combination also leads to a high gradient of the regression curve. Hence, this
combination (L-P+W+, 1

Mi−Mj
, L) will be used for the clustering. The choice of the

usage case is comprehensive because L-P+W+ refers to the lowest residual load. In
this usage case, the supply of RE is maximal, whereas the load is minimal, and this
usage case has therefore the most overutilized links which is influencing the marginal
costs difference between the vertices. Choosing the reciprocal function instead of the
difference function is also plausible. By using reciprocals, the edge weights have a wider
range of values, and so edges can be weighted with finer graduation.

For the right column (using Lsym), it does not make a huge difference which edge weight
function is used. This is due to the underlying optimization problem (RCut vs. NCut).
Also based on the optimization problem is the reason why L is used instead of Lsym or
Lrw. This is explained in the following part of this section.

A further observation in the upper left subplot in Figure 2.9 reveals missing data,
respectively a missing black dot (for k = 35). The missing data has its origin in missing
consistency of the clustering with the underlying parameter combination. In general
(but based on the SciGRID input graph), it can be stated that both Lrw and Lsym lead
to much more inconsistent clustering results than clustering with L.

An assumption for the occurence of inconsistencies is based on the optimized cut problem.
In contrast to L, Lrw and Lsym do not optimize the RatioCut problem but the NCut
problem (a justification of the relation between the different cut problems and using
the different Laplacian matrices is given by [17]). If the graph G = (V,E) is cut into
two disjoint subsets A and B (disjoint: sets with no element in common) the degree
of dissimilarity between the two subsets is equal to the weight of the removed edges.
Mathematically, this leads to Equation 2.10:

cut(A,B) =
∑

x∈A,y∈B

w(x, y) (2.10)

The optimal solution for a partition is the one that minimizes Equation 2.10. This
optimization tends to create small sets with isolated vertices, as they only have a low
number of edges connecting them to the rest of the graph.

In contrary, the NCut tries to create balanced clusters in terms of the number of vertices
in a cluster. The NCut problem is depicted in Equation 2.11:

Ncut(A,B) = cut(A,B)
assoc(A, V ) + cut(A,B)

assoc(B, V ) (2.11)
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Here assoc(A, V ) represents the total connection from vertices of A to the vertices of
the whole graph. By finding the minimum of this equation it is very unlikely that small
clusters occur as they will have small connectivity to the rest of the graph, and thus the
denominator will get small which, on the other hand leads to huge NCut values [36].
It is assumed that the algorithms of Lsym and Lrw are tending stronger to create incon-
sistent clusters, as they have to fulfill the condition described in Equation 2.11. With
another (more homogeneous) base graph the results are probably better in terms of
consistency, as the German transmission grid consists of many chains, and also of nodes
with only one connection to the rest of the graph. By using L, the consistency issue
is solved, however this method has another shortcoming. As already mentioned, using
L optimizes the RCut, and thus does not tend to create balanced clusters. This can
lead to a very unequal allocation of vertices to clusters. Figure 2.10 shows the standard
deviaton s of the cluster sizes for the two different parameter combinations in the first
row of Figure 2.9.
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Figure 2.10.: Standard deviation σ of the parameter combinations of the upper row in
Figure 2.9

It can be very clearly seen that the combinations using NCut exhibit to a lower standard
deviation σ, and thus to more balanced cluster sizes. However, fulfilling the aggregation
criterion and consistency is weighted more strongly than the balancing criterion, hence
the algorithm based on unnormalized spectral clustering using L is preferred.





3. Results

In this chapter, the developed clustering methodology is applied to the German trans-
mission grid. In addition to the visual result of the spatial clustering (maps), the
evaluation covers different power supply indicators like power plant and grid utilization
or system costs, always comparing the results of different numbers of clusters k, the
maximum resolution (k = 499) and a ’copper plate’ scenario (k = 1). All output relies
on computations in REMix of a fixed 30-day-period (from day 270 to day 300). This
period is chosen because of the high wind supply during the autumn months. High
wind supply is accompanied by critical grid situations, due to the high additional power
supply. Besides the evaluation of the power supply indicators, the computation time is
examined as well. At the end of this chapter a discussion of the applied methodology is
examined.

3.1. The clustered German transmission grid

As elaborated in detail in Chapter 2, a parametrized power system based on the SciGRID
data set is clustered. For a detailed investigation, the results of different clustering
computations (with different number of clusters k) are depicted in Figure 3.1.
In general, due to the model size cause-effect relationships are difficult to comprehend.
By investigating the k = 6 plot, a partition of the graph in 4 four big clusters and two
very small clusters can be stated. Furthermore, the graph is divided into a big north
cluster (green) and a south cluster (purple). Since the clustering is based on obtaining
transmission capacity limitations, this indicates a grid congestion between the northern
and southern part of Germany. This is congruent to the often made assertion that there
is not enough transmission capacity to supply the structurally strong demand regions in
the South with sustainable wind energy from the North. Another partition, which seems
plausible, is the pink north western cluster. This cluster is influenced by low marginal
costs due to the installed wind offshore capacities. This cluster also indicates grid
congestion between this cluster and the power-intensive industry in Nordrhein-Westfalen
(brown cluster).
In the k = 18 plot the biggest cluster is located in the south west and includes Baden-
Württemberg in total and also parts of Saarland, Rheinland-Pfalz, Nordrhein-Westfalen,
Hessen and Bavaria. In the north of Germany there exist two clusters that contain the
landing points of the offshore wind farms (brown and mint green). These clusters are
influenced by low marginal costs of the offshore wind farms and also by the high amount
of installed onshore wind farms. As already in the clustering with k = 6, the small cluster
containing the Frankfurt a.M. metropolitan area still exists. Comparing the k = 18
plot with the 18-Regionen-Modell it can be stated that some of the clusters are similar.
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(a) k = 6 (b) k = 18

(c) k = 30 (d) k = 50

Figure 3.1.: Clustering results for different k, different colors refer to different cluster
membership, clusters mapped on postcode areas

For instance, the blue cluster in the middle of Germany is similar to the cluster with
number 23 of the 18-Regionen-Modell. Another similarity can be observed in the west
of Nordrhein-Westfalen. The result of the clustering as well as the 18-Regionen-Modell
splits this area into clusters. In addition, the big sized clusters in the east of Germany
are similar.

Contemplating the k = 30 and k = 50 plots still shows two clusters including the
landing points of the offshore wind farms. This suggests a high influence of the offshore
wind farms on the marginal costs in these clusters. Furthermore, the Frankfurt a.M.
metropolitan area is still a single cluster like in the k = 6 and k = 18 plots.

In general, the cluster sizes vary a lot. This behavior is probably linked to the underlying
optimization problem (NCut vs. RatioCut). A detailed investigation of the cut problem
is examined in Section 2.5. In terms of consistency, some of the clusters seem to be
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inconsistent (for instance in the k = 50 plot: the ’Berlin cluster’ belongs to the big cyan
cluster in the west). In fact, they are consistent in terms of their underlying transmission
grid vertices. However, the presentation in Figure 3.1 is based on a mapping of postcode
areas to transmission grid vertices and there exist links that go over entire postcode ares.
Furthermore, it may be assumed that by an increasing number of clusters k, existing
clusters (referring to a lower k) would split into a higher number of new clusters. This
split-up sometimes occurs, but a general statement about the splitting behavior cannot
be made. However, the cluster sizes are more balanced the higher number of clusters k
are.

3.2. Power plant utilization

One of the central questions of a clustered power system is the impact of the clustering
on the power supply. Since in an aggregated grid the grid restrictions decrease, the
power system has more options to cover the demand.
In Figure 3.2, the power plant utilization for different number of clusters k is plotted.
On the ordinate the supplied power in TWh is displayed, in each case summed over all
clusters for the different number of clusters. The abscissa refers to different number of
clusters.
Firstly, the increasing amount of total supplied electricity by increasing number of
clusters can be stated. This increase is due to the grid losses. In REMix, grid losses are
taken into account by percentage losses per length values. Since through the clustering
the number of links and thus the total grid length (cumulated link lengths) change,
also the amount of supplied electricity has to change for different number of clusters
k, as the grid losses differ as well. In the reference scenario (k = 499), the grid losses
are highest. Consequently, in the reference scenario the amount of supplied electricity
is also highest. By contemplating decreasing number of clusters k, the amount of
supplied electricity decreases. The lower the number of clusters, the lower the grid
losses, as highly aggregated grids have less links and hence a lower total grid length.
Quantitatively, the losses increase from 0.3 % of the total demand at k = 5 to 3 % of
the total demand at k = 499. However, only the transmission grid losses are taken into
account, whereas distribution grids are not considered.
Another observation reveals the different shares of the used technologies for the supply.
The shares of hydro, nuclear and non-adjustable RE power plants (photovoltaic, wind)
are not changing noticeably, whereas the shares of lignite, coal, natural gas and biomass
power plants are varying for different number of clusters k. The not changing technologies
have the lowest variable costs and thus they are the last power plants to be curtailed.
Furthermore, especially the RE power plants consist of small units and are distributed
more evenly. This means that increasing grid restrictions have a lower influence on
them. The curtailment of the RE technologies is very low for all the scenarios and tends
to increase with increasing number of clusters.
The decreasing share of electricity supplied by lignite power plants for increasing number
of clusters has its origin in the low variable costs of this technology. For instance in the
’copper plate’ scenario (k = 1), where no grid restrictions exist, the share of lignite power
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Figure 3.2.: Power plant utilization in TWh for the power supply of different numbers
of clusters for the investigated 30-day-period

supply is maximal. This is logical, since REMix determines a cost optimal solution.
The reason for the decrease of the lignite power supply by increasing number of clusters
are rising grid restrictions and strongly linked to that, the uneven distribution of lignite
power plants in Germany. The behavior of the power supply by lignite power plants
is also valid for nuclear power plants. Lignite and nuclear power supply both decrease
remarkable when increasing the number of clusters k from 6 to 18. The reason for this
behavior is a significant decrease of the cluster sizes from k = 6 to k = 18 (see Figure
3.1).

In contrary to lignite and nuclear power plants, the power supply by coal plants increases
with increasing number of clusters k. Due to the better distribution and the higher
number of coal power plants (compared to lignite and nuclear power plants), coal power
plants cover a high share of the decrease of power supply by lignite and nuclear power
plants. The reason for this is that increasing grid restrictions less influence better
distributed technologies.
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Looking at smaller units and better distributed technologies like natural gas, a contrary
behavior can be noticed. As the share of lignite power supply decreases due to the rising
grid restrictions, the demand has to be covered with other technologies. As a result, the
share of technologies with high variable costs (natural gas, biomass) increases and has
its maximum, consequently, in the reference scenario with strongest grid restrictions.

3.3. Dispatch comparison

The previous evaluation is based on summed (over all vertices and all time steps)
amounts of power supply. By analyzing the dispatch of different number of clusters k,
the so far gained knowledge can be contemplated with time reference. Figure 3.3 shows
a dispatch comparison between clustered scenarios and the reference scenario. On the
x-axes the time in h, on the y-axes the generated power in GW is plotted. For better
visibility only two representative days are plotted.
Differences in hourly power plant dispatch between aggregated and high resolved systems
can be illustrated most clearly by comparing the reference and the ’copper plate’ scenario.
Furthermore, the approximation to the high resolved system by increasing the resolution
can be seen in the plots with k = 18 and k = 50.
As already stated in Section 3.2, the amount of power supplied by lignite power plants
is significantly reduced if all transmission restrictions are accounted for. Another aspect
which is detectable only in a time dependent plot, is the profile of the supply. In a
power system with high grid restrictions, lignite and nuclear power supply have to be
adjusted to the demand and the supply of RE, whereas without any grid restrictions
(k = 1) this is not the case. The lignite and the nuclear power supply remain constant
over the time, as any spatial demand can be covered with any power plant.
Contemplating the supply by coal power plants reveals that in a maximal aggregated
system, coal power plants are used for peak load covering. This leads to a challenging
ramping behavior of the coal power supply. Actually, coal power plants do not have
start-up characteristics fitting this ramping behavior and are normally used for base load
covering. With increasing number of clusters k, the profile of the coal power supply is
getting more flat, as biomass power plants are used for peak load covering. Furthermore,
with increasing grid restrictions, the utilization of pumped storage hydro power plants
are partially substituted by biomass power plants.
Due to the decrease of coal power peak load covering by increasing grid restrictions,
also combined cycle gas power plants are used for peak load covering (k = 50). The
amount of coal power supply is still higher compared to the reference scenario (k = 499),
whereas the amount of combined cycle gas power supply is lower. Gas turbines are not
used at all in the aggregated power systems.
The curtailment of the RE power generation tends to increase with increasing number
of clusters k. In the fully aggregated power system, there is almost no curtailment. The
reason are missing grid restrictions and thus the power can be used for covering any
spatial demand. With increasing grid restrictions and also increasing spatial allocation of
the demand, it is not always possible to transfer the RE power to the demand locations.
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Figure 3.3.: Comparison of power plant dispatch during 2 October days for different
number of clusters k

In the case, the grid restrictions do not allow a transfer, the RE power plants have to
be curtailed.
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3.4. Power plant ramping

In this section the power plant utilization is analyzed by contemplating ramping behavior.
The ramping behavior shows the power plant control. Considering conventional power
plants, ramping is associated with costs that are higher for coal, lignite and nuclear
power plants then for gas turbines.
The summed ramp-up and -down power for the different number of clusters is depicted
in Figure 3.4. The summed ramping in GW is depicted on the y-axis, different number
of clusters on the x-axis.
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Figure 3.4.: Power plant ramping in GW during the investigated 30-day-period

The knowledge gained through the dispatch (Figure 3.3) can be drawn by investigating
the ramping behavior. It can be stated that the ramping tends to increase with increasing
number of clusters k, with an outlier at k = 100. Contemplating the stronger aggregation
(low k) the less ramping is due to the constant operation mode of few, cost-efficient
technologies. With increasing number of clusters k the ramping also increases. The
reason for this behavior are increasing grid restrictions. In addition, the amount of the
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actual peak load covering gas power plants is increasing. By increasing the number of
clusters k, the increasing ramping of gas power plants is plausible as well. The reason
for this behavior is elaborated in Section 3.3.

3.5. System costs

All in the computation incurring costs are aggregated under system costs. The system
costs include the annuities of the overnight investment costs of capacity expansion as well
the operational costs of the utility dispatch. The latter consists of fuel, implicit grid usage
(implicit due to grid losses), emission certificate as well as operation and maintenance
costs (OM). As in the context of this work, dispatch and not capacity expansion is
optimized, only the operational costs of the utility dispatch are considered.
Figure 3.5 shows the development of the system costs for different levels of aggregation.
On the x-axis the different number of clusters are plotted, the y-axis refers to system
costs in Million Euro.
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Figure 3.5.: Total system costs in MEUR for different number of clusters k

A first observation reveals the cost trend by contemplating different number of clusters.
System costs are increasing by increasing number of clusters. There are various reasons
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for this behavior. The most important reason is that the power plant utilization varies
for different number of clusters (see also Figure 3.2), due to the different grid restrictions.
By low grid restrictions (refer to a low number of clusters) more electricity generated
from cheaper technologies can be used. For instance, the share of lignite is partially
substituted by more expensive technologies like natural gas or biomass power plants
by growing grid restrictions. This leads to the main share of cost difference between
different numbers of clusters.
A further reason for increasing system costs by increasing number of clusters are grid
losses. As a higher number of clusters is accompanied by higher grid utilization, the
grid losses increase the higher the utilization is. Since only the transmission grid and
no distribution grids are considered, which would lead to higher total losses, the impact
of grid losses on the costs is fairly low.
In summary it can be stated that the ’copper plate’ scenario maps only about 80 % of
the costs of the reference scenario. By contemplating future scenarios including capacity
expansion optimization the results would differ more, as grid and storage expansion plays
a key role in this context, in particular on low aggregated levels. For the ’copper-plate’
scenario, grids do not play a role at all and storage is also used less than in the reference
scenario.

3.6. Grid utilization

The evaluation of the grid utilization is linked with a series of challenges. By executing
a clustering, links are removed or aggregated. Hence, the number and also the names
of the links vary by contemplating different clustering results. The convention for the
naming is based on ’startvertexID__endvertexID’. By changing the number of clusters
k, the IDs of the start vertices or end vertices of the links of the clustered grid are
changing as well. Firstly, the number of vertices decreases (and so the set of possible
names does) and secondly the naming of the resulting vertices (in this context clusters)
is randomized because of the randomized initializing of the k-means algorithm (see also
Section 1.2.3). Hence, it is hardly possible to investigate the utilization of a specific
link in different clustering results. As an alternative, the summed power imports of the
different clustering results are analyzed. The term power imports denotes the amount
of electricity which is not generated in the cluster where it is used.
In Figure 3.6 the total imports (blue bars) in TWh, summed over all vertices respectively
clusters, for a different number of clusters k are shown on the left y-axis. On the right
y-axis the relation between electricity imports and total electricity demand is plotted
(red dots).
Since in the scenario with only 1 cluster (k = 1) all the electricity demand is covered
with generation from this cluster, there is no import. With increasing number of
clusters the import is increasing. As the demand is distributed by the inhabitants of the
postcode areas (see Section 2.4.3), the distribution of the demand can be assumed as
different compared to the real demand. However, the distribution of the power plants is
partially coupled to the real demand. Furthermore, by increasing number of clusters,
the clusters themselves are getting smaller (on average). It can thus be concluded that
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Figure 3.6.: Electricity imports in TWh summed over all clusters for the different
scenarios with different number of clusters

the probability that a cluster contains enough installed capacity to cover its demand
is decreasing by increasing number of clusters. As a result, the amount of imported
electricity and also the relation between imported and total electricity demand rises.
The import ratio rises from approximately 15 % (k = 6) to 65 % (k = 499). Hence,
35 % of the demand in the reference scenario (k = 499) can be covered by local power
generation.

3.7. Computing time

As mentioned in Section 1.2.1, REMix uses the CPLEX algorithm to solve the opti-
mization problem. Figure 3.7 shows the computation time of the CPLEX algorithm for
different levels of aggregation k. This computation time excludes the preparation and
follow-up processes executed by REMix and only takes into account the pure solving
time for the linear system of equations. The computations are performed on a Intel
Xeon CPU with 96 GB RAM.
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Figure 3.7.: CPLEX time [s] for different levels of aggregation for the investigated time
period in logarithmic representation

The plot shows that the CPLEX time can be approximated by Equation 3.1:

y = 0.075 ∗ x1.74 (3.1)

what indicates an almost square behavior (the curve can be assumed as going through
(0,0) as k = 0 is an empty set and does not refer to computation time). A better
approximation might be achieved with further data points, like grid points at k = 200
and k = 300.
In general, in an aggregated power system the equation matrix is smaller and thus the
CPLEX algorithm needs less time to solve. Derived from the almost square behavior of
the computation time, it can be stated that with a slight change in aggregation, the
computation time can be reduced noticeable. By comparing the k = 499 scenario with
the k = 100 scenario, the computation time can be reduced by 95 % (from 3784 seconds
to 171 seconds). However, it has to be considered that the testing conditions can differ
from computation to computation as other users could also perform computations and
occupy main memory. Nonetheless, a trend is recognizable.
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3.8. Discussion of the results

In Section 2.5, the evaluation of the choice of the edge weight function, of the best fitting
grid usage case and also of the Laplacian matrix is examined. During the evaluation
inconsistencies for different parameter combinations (edge weight function, grid usage
case, Laplacian matrix) occurred. With inconsistencies unassociated clusters are meant
(for more detailed information see Section 2.5). As there is no hint in the literature
concerning this behavior, it is necessary to validate the model. For the validation of the
model developed in this work, the spectral clustering algorithm has been executed by
Marco Schindler from the TU Clausthal on the underlying graph. His spectral clustering
algorithm (based on Matlab) leaded to inconsistencies by clustering the graph either.
This implies that these inconsistencies are not related to errors in the spectral clustering
algorithm used in this work, but possibly on the topology of the graph, as the German
transmission grid consists of many chains and also vertices with only one connection to
the rest of the graph (see Section 2.5).
For a better classification of the results the shortcomings concerning this work are
explained in the following. The shortcomings can be divided into two main parts:
method related and data related. Method related shortcomings can be overcome by
developing REMix or the clustering process itself. Data related shortcomings are more
difficult to improve, as generating grid data, for instance, is linked to enormous effort.
REMix endogenous limitations of this work are some characteristics of the power plant
scheduling. Due to the high computation times, all the scenarios are executed using
linear optimization, which leads to a simplification in terms of start-up costs, minimum
online and offline times or part load behavior. A more realistic reproduction of the power
plant scheduling can be done by mixed integer optimization. On the other side, mixed
integer optimization is accompanied by higher computation times, which is critical
due to the model size. Another aspect of the power plant scheduling with regard to
the REMix configuration used in this work, is the non-consideration of the heating
sector. In general, REMix computes a most cost-efficient dispatch based on the variable
costs of the generation technologies. However, in reality some of the power plants are
cogeneration power plants. This means that they generate electrical power and heat.
Thus, the situation can occur that a less cost-efficient power plant actually provides a
lower-cost alternative, as the generated heat has also to be taken into account.
A further model endogenous shortcoming is the temporal resolution of the REMix
computations. The maximum resolution is hourly, which means, that although hourly
resolved results are computable, it is not possible to investigate what happens within the
hours and leads to averaged and smoothed hourly profiles. The impact on the results of
this work should be small as also the model exogenous profiles (load curve) are hourly
resolved. If in future load curves with higher temporal resolution are available, a higher
temporal resolution of the result will be necessary.
As there exist no reliable data for a spatial resolved electricity demand and spatial
demand profiles, determining the demand at the vertices and also the vertex demand
profiles are based on assumptions. As the mapping of the demand on the vertices is
based on population density, the demand of regions with small population and high
industrialization is underestimated, whereas the demand of so-called dormitory towns
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(no industrialization, only residential areas) is overestimated. Furthermore, every vertex
has the same load curve, derived from the total German load curve. This can also distort
the results, since high industrialized regions tend to have a more balanced demand.
Hence, the mapping of the demand and also the same load curve at each vertex could
lead to deviations from real world clusters, if the used methodology leads to a grid
congestion between vertices where no power transfer is needed in real world. On the
other hand there could be transmission links which cannot provide enough capacity,
but due to the mapping there is no demand in the model and thus the grid congestion
would not occur.
Another simplification is the non-consideration of distribution grids. In the model,
every power plant, every storage and every demand is connected to a transmission grid
vertex. In a real power grid, the parts of the grid are connected to the grid level their
installed capacity or demand refers to. As grid losses are reciprocal to the voltage level
(higher losses in low voltage levels) and the transmission grid only represents a small
part of the total grid (34,810 km of 1,800,000 km, respectively 2 %) [37], grid losses are
underestimated in this work. In addition, grid congestion occurring in distribution grids
cannot be revealed, which is in particular for the high number of domestic photovoltaic
systems of interest. A method related shortcoming concerning the power transmission is
the DC (direct current) approximation of the actual AC (alternate current) power flows.
This simplification linearizes the AC power flow by ignoring reactive power and assuming
all voltage angles as nominal. More detailed information about the DC approximation
can be found in [9].
The SciGRID data set only covers the transmission grid of Germany and consequently
no imports or exports of electrical energy are taken into account for the computations.
Thus, the developed model can be interpreted as an island system with no exchange
of electrical energy to other countries. This limitation has an influence on the power
flows, since in a pan-European power system the power flow does not consider any state
borders. This means that in a model contemplating an island system, flexibility options
are getting lost and thus grid congestion can be overestimated. For instance, the high
amount of fluctuating wind energy from the north of Germany must be transferred to
the South and cannot be exported to the western or eastern neighboring states, which
would lead to extra flexibility options.
As this work focuses on developing a clustering methodology, which covers a parametriza-
tion, and not on a detailed as possible simulation of the German power grid, this
approximation is chosen (see also Section 4).
A classification of the results is exemplarily executed by contemplating lignite power
supply. In the investigated period (autumn month) lignite power supply in the scenario
with maximum resolution (k = 499) is about approximately 8.9 TWh. Projected to
one year, the lignite power supply in the scenario is about 108 TWh. Considering the
published power plant utilization data of the Bundesministerium für Wirtschaft und
Energie of 2014 [38], lignite power supply accounts for 156 TWh. Compared to the
reference scenario in this work the deviation amounts to 31 %. Possible explanations
for this deviation are the high wind power supply in the investigated period and also
the non-consideration of exports.





4. Conclusion and outlook

This work presents a methodology for aggregating power grids by using spectral cluster-
ing, considering both the grid topology and vertex attributes. In contrast to other works
dealing with the identification of subsections in power grids, the spectral clustering
algorithm used in this work is based on locational marginal pricing (marginal costs as
vertex attributes) and not on electrical parameters, such as power flow or line admittance.
The idea behind using marginal costs as vertex attributes is derived from the intention
of locational marginal pricing: encouraging an economic use of electrical energy with
regard to interdependencies between generation and transmission. This means that
linked vertices tend to transfer electrical energy from vertices with lower marginal costs
to vertices with higher marginal costs to reduce total system costs. In a power system
with infinite transmission capacity this would lead to harmonized marginal costs at
the vertices. Conversely, if linked vertices have differences in marginal costs a strong
indicator for grid congestion is given. Furthermore, the degree of the grid congestion is
determinable as high differences refer to high grid congestion, which is an advantage
compared to only contemplating the power flows. This approach has only a binary
behavior, utilized or underutilized. Insofar, spectral clustering based on locational
marginal pricing provides a meaningful clustering seen from the perspective of the
grid.
Due to a spatial aggregation of power grids, the computed results are influenced, as grid
restrictions decrease and thus the power plant dispatch varies. Through the methodology
developed in this work, it is possible to estimate that deviation of the results of an
aggregated power system to the reference power system (maximum resolution). The
application of this this methodology on the German transmission grid leads to two main
conclusions. First, the aggregation of a power system is accompanied by a decrease
of grid restrictions, since the clusters transform their inner grid to a ’copper plate’.
This favors base load power plants with low marginal generation costs over peak load
power plants, as the demand can be supplied without any grid limitations or losses.
This leads to an overestimation of base load power plant operation times on the one
hand and to an underestimation of peak load power plant operation times on the other.
Second, due to the decreasing grid restrictions, the total system costs are underestimated
in an aggregated power system. The degree of the underestimation depends on the
degree of the aggregation. The more a system is aggregated, the more the system
costs deviate from the reference scenario. However, increasing aggregation leads to
decreasing computation times. Hence, a compromise between accuracy of the result
and acceleration of the computations in a case-by-case contemplation has to be done. A
general rule for an aggregation degree is not derivable.
The shortcomings explained at the end of the previous chapter may serve as a starting
point for further analysis. By using a mixed integer optimization instead of linear
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optimization, the computation time would increase, but the power plant behavior would
be more realistic. This means that even in aggregated systems, the peak load covering is
not provided by base load power plants anymore, as the ramping behavior can be better
represented by mixed integer optimization. Hence, the dispatch could be less deviating
in aggregated systems compared to the reference scenario. A possible approach for an
analysis could be a comparison regarding accuracy of the results and computation time
between an aggregated power system computed with mixed integer optimization and a
highly resolved power system computed with linear optimization.
The mapping of the electrical demand on the vertices provides data related potential
for improvements. An investigation of the power demand of industrial areas and also a
spatial mapping of these areas would contribute to a finer parametrization which would
lead to a more realistic power flow.
On the grid side, there are two main aspects which can get closer to a real power system.
The implementation of distribution grids into the underlying case study would lead to a
more precise mapping of the demand, small RE power plants and also the storage. This
is accompanied by a more realistic representation of grid losses, more grid restrictions
(in particular concerning the domestic PV supply), but also with higher computation
times. Also here an investigation of the relation between accuracy and computing
time must evaluate if a consideration of distribution grids would make sense. Another
starting point for an analysis also considers the grid, but on a different voltage level.
By contemplating the German transmission grid as an island system, flexibility options
are underestimated. Through the parametrization of a pan-European transmission grid,
flexibility options are augmented and also a more realistic power flow can be achieved,
as also power imports and exports can be considered
Besides the elimination of the shortcomings, the developed method in general and
spectral clustering in particular can be executed with a high number of different
configurations. Concerning the method, the locational marginal pricing could be based
on average marginals of a longer period instead of using the marginals of only one hour of
the year. Furthermore, weighting the edges is linked with various opportunities. There
exist a whole field of studying different types of Laplacian matrices and their influence
on the results. The reason why both Lsym and Lrw are linked with a high probability of
occurring inconsistencies is probably related to the topology of the transmission grid.
The transmission grid consists of many chains and vertices with only one connection to
the rest of the grid. By modifying the grid, Lsym or Lrw could lead to less inconsistencies.
An analysis on how to modify the graph and not to influence the results too much,
could lead to more balanced clusters.
In power systems with a high share of RE, flexibility options such as demand side
management, energy storage or power-to-X technologies are playing a key role, due to
the high amount of non adjustable power supply. In particular, such power systems
require a long term investigation (for instance 1 year) to make an assessment that
takes into account seasonal variations in wind, solar and hydro power availability.
However, long term investigations cause high computation times. A reduction of the
computation time can be achieved by aggregating the power system. Applying the
developed aggregation methodology on such power systems requires a further analysis,
in order to investigate the influence of the aggregation on flexibility options.
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A. Annex

A.1. Parametrization of the REMix reference scenario
Decade of construction

1959 1969 1979 1989 1999 2009 2019

Technology Installed capacity in MW
Nuclear 0 0 0 12068 0 0 0
Lignite 832 2885 5939 3851 3825 1773 2843
Coal 306 4553 6324 11216 2570 428 5452
CCGT 0 175 4121 431 1430 4910 5130
Gas turbine 156 290 5368 1055 2863 2482 1055

Gross efficiency
Nuclear 0.324 0.324 0.324 0.324 0.324 0.324 0.324
Lignite 0.355 0.355 0.38 0.395 0.425 0.4505 0.4611
Coal 0.387 0.387 0.407 0.417 0.467 0.4752 0.4968
CCGT 0.409 0.409 0.429 0.509 0.53795 0.53795 0.555
Gas turbine 0.234 0.234 0.274 0.274 0.3045 0.3248 0.355

Netto efficiency
Nuclear 0.309 0.309 0.309 0.309 0.309 0.309 0.309
Lignite 0.33 0.33 0.355 0.37 0.4 0.425 0.435
Coal 0.35 0.35 0.37 0.38 0.43 0.44 0.46
CCGT 0.4 0.4 0.42 0.5 0.53 0.53 0.5475
Gas turbine 0.23 0.23 0.27 0.27 0.3 0.32 0.33

Availability
Nuclear 0.945 0.945 0.945 0.945 0.945 0.945 0.945
Lignite 0.935 0.935 0.935 0.935 0.935 0.935 0.935
Coal 0.94 0.94 0.94 0.94 0.94 0.94 0.94
CCGT 0.977 0.977 0.977 0.977 0.977 0.977 0.977
Gas turbine 0.902 0.902 0.902 0.902 0.902 0.902 0.902

O&M cost in kEUR/MWh
Nuclear 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Lignite 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044
Coal 0.004 0.004 0.004 0.004 0.004 0.004 0.004
CCGT 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Gas turbine 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Tear & wear cost in kEUR/MW
Nuclear 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Lignite 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Coal 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
CCGT 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Gas turbine 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
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Technology Inst. cap. in MW Eff. Avail. O&M cost in kEUR/MWh
Hydro 1532 N/A 1 0
Photovoltaic 36876 N/A 1 0
Wind onshore 37222 N/A 1 0
Wind offshore 2922 N/A 1 0
Pumped storage 6301 0.8 0.98 0
Biomass 6836 0.2 0.9 0.002

Technology Fuel Cost in kEUR/MWh Certificate Cost in kEUR/tCO2
Nuclear 0.000286 0.01
Lignite 0.0064 0.01

Coal 0.0138 0.01
CCGT 0.03 0.01

Gas turbine 0.03 0.01
Biomass 0.01 0.01

1Already considered by EnDAT
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A.2. Results
Number of clusters k

1 6 18 30 50 75 100 499

Technology Power-plant utilization in TWh
Hydro 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
Nuclear 7.83 7.83 7.14 7.27 7.24 7.09 7.15 7.11
Lignite 13.12 13.14 10.69 10.44 10.36 10.29 9.23 8.88
Coal 7.44 7.51 9.85 9.66 9.97 10.11 10.39 9.86
CCGT 0.0 0.05 0.22 0.46 0.47 0.67 0.85 1.65
Gas turbine 0 0 0 0 0 0.02 0.45 0.43
Biomass 0.12 0.12 0.91 0.99 0.96 0.96 1.24 1.81
PV 2.41 2.41 2.41 2.41 2.41 2.41 2.41 2.41
Wind 7.15 7.15 7.15 7.15 7.15 7.15 7.15 6.99

Technology Power plant ramping in GW
Nuclear 6.71 4.8 58.66 57.57 66.56 79.21 63.08 70.09
Lignite 131.06 157.28 46.76 82.88 83.22 98.57 264.51 240.97
Coal 1193.68 1160.06 1043.8 979.31 971.10 991.15 960.13 625.75
CCGT 0 10.24 86.87 146.3 171.16 205.65 224.45 401.88
Gas turbine 0 1.82 0.43 2.39 2.88 10.32 99.27 116.17
Biomass 75.03 74.3 328.92 307.52 266.41 253.12 233.62 252.9
Pumped storage 292.29 317.31 220.43 268.36 292.56 226.79 153.44 246.27

System costs in MEUR
751 758 839 843 854 869 926 968

Electricity import in TWh
0 5.06 7.22 8.83 11.9 14.12 16.28 26.52

Import/total electricity demand in %
0 13 19 23 30 36 41 66

CPLEX time in s
1 4 28 41 150 167 171 3784


