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TanDEM-X for Large-Area Modeling of Urban
Vegetation Height: Evidence from Berlin, Germany

Johannes Schreyer, Christian Geiß, Member, IEEE, and Tobia Lakes

Abstract—Large-area urban ecology studies often miss infor-
mation on vertical parameters of vegetation, even though they
represent important constituting properties of complex urban
ecosystems. The new globally available digital elevation model
(DEM) of the spaceborne TanDEM-X mission has an unprece-
dented spatial resolution (12 × 12m) that allows us to derive
such relevant information. So far, suitable approaches using a
TanDEM-X DEM for the derivation of a normalized canopy model
(nCM) are largely absent. Therefore, this paper aims to obtain dig-
ital terrain models (DTMs) for the subsequent computation of two
nCMs for urban-like vegetation (e.g., street trees) and forest-like
vegetation (e.g., parks), respectively, in Berlin, Germany, using a
TanDEM-X DEM and a vegetation mask derived from UltraCam-
X data. Initial comparisons between morphological DTM-filter
confirm the superior performance of a novel disaggregated pro-
gressive morphological filter (DPMF). For improved assessment
of a DTM for urban-like vegetation, a modified DPMF and image
enhancement methods were applied. For forest-like vegetation, an
interpolation and a weighted DPMF approach were compared.
Finally, all DTMs were used for nCM calculation. The nCM for
urban-like vegetation revealed a mean height of 4.17 m compared
to 9.61 m of a validation nCM. For forest-like vegetation, the mean
height for the nCM of the weighted filtering approach (9.16 m)
produced the best results (validation nCM: 13.55 m). It is con-
cluded that an nCM from TanDEM-X can capture vegetation
heights in their appropriate dimension, which can be beneficial for
automated height-related vegetation analysis such as comparisons
of vegetation carbon storage between several cities.

Index Terms—Digital elevation model (DEM), digital terrain
model (DTM), morphological filters (MFs), normalized digital
surface model (nDSM), Tandem-X, trees, UltraCamX, urban
vegetation.

I. INTRODUCTION

U RBAN vegetation is known to positively regulate urban
ecological processes through air purification, noise

reduction, urban cooling, and run-off mitigation, as well as
to provide aesthetic and environmental benefits that are com-
monly characterized as urban ecosystem services [1]. In recent
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years, these urban ecosystem services have been increasingly
studied on an entire city- or country-level to inform ongoing
debates on carbon sequestration [2], [3], air-pollution control
[4], [5], and cooling effects [6]–[9]. Nevertheless, several neg-
ative urban ecosystem disservices are associated with urban
vegetation, which are mainly social costs such as tree pollens
that trigger allergies [10], [11], financial costs for street-tree
management [12], infrastructural damages [13], or increased
energy consumption due to shadowing [14].

For most urban ecosystem service and disservice assess-
ments, comparable and area-wide height and volume informa-
tion of trees and shrubs are needed. While methods on recon-
structing buildings in their three dimensions are increasingly
provided [15], [16], approaches used to derive up-to-date and
city-wide three-dimensional information on the vegetation have
only recently been explored [17], [18]. Very high-resolution
remote sensing data offer great potential for deriving accurate
height information on urban vegetation from optical sensors
or active systems such as airborne light detection and rang-
ing (LiDAR) [19], [20], or unmanned airborne vehicles [21],
[22]. However, data availability is limited to a few cities and
countries due to high data acquisition and processing costs, as
well as privacy issues. To alleviate these restrictions, current
developments of satellite-based sensors with global homoge-
neous coverage may provide new opportunities for comparable
assessments on small-scale objects like urban vegetation.

In the past decades, space-borne radar systems have become
an important technology for deriving structural and quantita-
tive information on vegetation using various methods. Since the
1980s, synthetic aperture radar (SAR) data have been applied
to forest canopy characterization and used to determine the
vegetation-type, biomass components (stems, foliage, branches,
leaf-off and -on), and canopy structure (e.g., leaf area index and
leaf orientation) [23]. In contrast, interferometric SAR enables
the direct measurement of forest heights using differences in the
wave phases of two or more SAR images. In this manner, the
Shuttle Radar Topography Mission (SRTM) produced a global
digital elevation model (DEM) by deploying two different SAR
systems with a spatial resolution of 90× 90m (a refined spa-
tial resolution of 30× 30m was obtained for North America)
[24]. Data from the TerraSAR-X add-on for Digital Elevation
Measurement (TanDEM-X) mission have only recently become
available; the system combines two nearly identical SAR sen-
sors to derive a global homogeneous DEM (TDM) with an
unprecedentedly high spatial resolution (horizontal: 12× 12m,
vertical: 2 m) [25].

To derive the height of objects that are elevated from
the Earth’s surface such as vegetation from a DEM, several
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methods have been developed. In general, the exact height
of an object within a DEM can be estimated by removing
the underlying terrain. Therefore, the original data have to be
lowered toward a digital terrain model (DTM), which can be
subtracted from the DEM afterward to derive a normalized
digital surface model (nDSM) [26]

nDSM = DEM −DTM. (1)

Particularly, for above-ground tree and bush vegetation, the
term normalized canopy model (nCM) is used.

To derive surface heights from a DEM, Meng et al.
[27] differentiate between directional-scanning, interpolation-
based, segmentation-based, and morphology-based algorithms.
Notably, initial studies with TanDEM-X DEMs have shown
the potential to derive buildings’ heights for the city of Izmir
(Turkey) and Wuppertal (Germany) using a morphological fil-
ter (MF) approach [28], as well as for the area of Dongying
(China), also utilizing a filter approach [29]. Even though
these studies successfully proved the applicability for DTM
derivation for built-up structures, the suitability for deriv-
ing vegetation structures in urban settings has not yet been
analyzed.

This paper aims to evaluate a TanDEM-X DEM for estimat-
ing height information on urban vegetation using morphologi-
cal approaches for a study area in Berlin, Germany. In the first
step, established and novel MF approaches were compared to
evaluate their performance on DTM derivation. Subsequently,
workflows were developed and validated to derive a DTM for
1) vegetation in typical urban settings and 2) urban vegetation
in settings similar to large forest areas. Afterward, a nDSM
was calculated and two nCMs were extracted using additional
vegetation data. Finally, results for both nCMs were validated.

II. MATERIALS AND PROCESSING

A. Study Area

The study was conducted in Berlin, Germany (Fig. 1), which
has an area of ∼892 km2. Almost 40% of this area is covered
by urban vegetation, and thus represents the largest urban forest
in Germany (circa 290 km2 with 438 000 street trees) [30], [31].
Besides, its relevance regarding urban forest, Berlin has been
selected due to the large amount of available validation data.
In addition, Berlin’s heterogeneous urban landscape covers
different types of urban vegetation, as well as ground charac-
teristics [27] that permit the evaluation of methods in a large
variety of urban settings. In addition, this heterogeneity legit-
imizes testing on one area only. The approach was conducted
in the administrative districts of Neukölln, Treptow, Kreuzberg
and Friedrichshain, in the NE of Berlin (area: ∼ 70 km2,
λ 52◦44′ − 52◦50′N, ϕ 13◦36′ − 13◦52′E) (Fig. 1). The type
of vegetation varies depending on the urban structure type [32].
The predominant urban structure type in this area are residential
block-edge buildings with high building density accompanied
by tall street and backyard trees. Moreover, the area includes
several high-rise buildings and areas with small business and
industrial use, both with sporadic green structures. There are
also several public green spaces that cover a large part of

Fig. 1. Study area in Berlin, Germany. A QuickBird image depicts the study
area highlighting vegetation.

the study area; 8, 342 km2 of them are forested areas with
mostly old and tall tree stocks in bundled or linear formation
(the largest green areas are as follows: Treptower Park (park),
Görlitzer Park (park), Tempelhofer Feld (park), Königsheide
(commercial forest)). The terrain of the study area is mostly
flat, with the exception of a glacial valley slope of ∼1 km, and
ranges from 29 to 68 m.a.s.l.

B. Data

The intermediate DEM (iDEM) product from the
TanDEM-X mission was used in this study (see Table I
and Fig. 2). Additional products for the preprocessing were as
follows: 1) a biotope map including all biotope types in Berlin
derived by an in situ survey and aerial image evaluation [31];
2) a height error mask provided by the German Aerospace
Center, including the standard deviation for each DEM pixel,
which was derived by interferometric coherence and geomet-
rical considerations indicating pixels with random errors [33];
3) vector layers processed from an UltraCamX matrix camera,
both of them containing multiple polygons covering all heights
of vegetation and buildings within Berlin (for more details on
the data processing, compare [34]); 4) a DTM of the Official
Topographical Cartographic Information System processed
with airborne LiDAR data (4 points/m2), which serves for
validation purposes (DTMVal); and 5) a Quasigeoid for the
area of Berlin containing the difference between ellipsoidal
and orthometric heights (Table I; Fig. 2).
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Fig. 2. Data.

C. Preprocessing

The original iDEM data showed layover and shadow effects
in the densely built areas of Berlin since it relies on images from
the first coverage. As a result, the viewing geometries from
dual-/multibaseline acquisitions and multiple incident angles
of additional flights are missing [33]. Moreover, the perfor-
mance of the X-band backscatter is reduced over areas with
surfaces such as water, and the resulting interferometric DEM
contains positive and negative deviations [35]. Therefore, com-
prehensive preprocessing of the iDEM was undertaken with the
following steps: 1) conversion from ellipsoidal to orthometric
heights; 2) water masking; 3) including information from the
height error mask; 4) detecting outliers; 5) calculating statisti-
cal errors; and 6) preprocessing of validation data. These steps
are described as follows.

1) The elevation values within the iDEM represent the
ellipsoidal heights relative to WGS84-G1150 [33]. Since
the UltraCamX product as well as the LiDAR DTM
contain orthometric heights, the iDEM was referenced
accordingly using a geoid undulation model (Quaisgeoid
GCG2011) [36]. This model consists of an ASCII file
that contains longitude, latitude, and the height of the
Quasigeoid for 299 positions across Berlin within a
regular-spaced grid. Using universal kriging, the height
information was interpolated to the area of Berlin to
the spatial resolution of the iDEM [37]. The calculated

undulation was then subtracted from the iDEM in the
study area. As a result, the mean height of 89.05 m of the
original data was lowered to 49.74 m in the study area.

2) To avoid signal disturbance and false elevation values of
natural and artificial waterbodies, a water mask of all
waterbodies larger than 2000 m2 was derived from the
biotope map. The threshold was set because small streams
like drainage ditches showed no or only slight height dis-
turbance effects in the iDEM. Finally, all areas covered
by the water mask were excluded from further analyses.

3) The height error mask was used to exclude pixels with a
standard deviation of larger than 3 m height difference.

4) Different comparative statistics [root-mean-square error
(RMSE), mean error (ME), maximum, and minimum]
between the iDEM and DEMVal revealed evidence for
random errors and triggered outlier detection. For this
study, a method developed by Breunig and Kriegel
[38] was chosen to calculate a local outlier factor
(LOF), which indicates by local densities for each raster
row the probability of being an outlier (LOF = 1 :
low probability; LOF > 1 : high probability) by com-
paring a pixel to a defined neighborhood. To avoid
removing the correct heights of artificial objects (e.g.,
single high-rise buildings, transmitter masts, power sta-
tions, or construction cranes), buildings > 50m within
the UltraCamX building layer were extracted for the study
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TABLE I
DATA

*Defined as the uncertainty in the horizontal position of a pixel with respect to the (WGS84) reference datum, caused by random
and uncorrected systematic errors. The value is expressed as a circular error at a 90% confidence level [35].

area, and 111 objects (50–100 m: 107 objects; > 100m :
4 objects) were manually compared to rows containing
a LOF > 1. As a result, 70 of these 111 objects were
prevented from being falsely labeled as outliers, while 45
pixels were removed as reliable ones.

5) Finally, statistical measures of the preprocessed iDEM
(DEMTDM) were calculated in comparison to DEMVal,
which returned an RMSE of 7.47 m, a mean absolute
error (MAE) of 5.06 m, and an ME of −1.72m. The
DEMTDM could be classified as a Level 1 product using
the accuracy classification system of the United States
Geological Service (USGS) (Level 1: RMSE 7–15 m;
Level 2: RMSE < one− half contour interval; Level 3:
RMSE < one− third contour interval) [39].

6) UltraCamX data were used for validation because of their
high resolution (0.10 m vertical and horizontal accuracy)
and similar date of data acquisition. The area and height
layer were rasterized into a layer containing pixels of bare
earth, vegetation, and buildings (class 0: bare earth; class
1: vegetation; class 3: buildings). To accomplish this, both
layers were rasterized using the grid size of DEMTDM,
and the relative proportions of a shape containing class
0, 1, or 2 within a single raster pixel were calculated by
using bilinear interpolation. Results returned pixel val-
ues ranging between 0% and 100%. All pixels containing
more than 50% of class 1 or 2 were declared to be a pixel
mainly containing building or vegetation. This product
was created to validate the outcome of object and bare
earth pixel filtering. The procedure was repeated only
using the vegetation layer to derive a layer for the detec-
tion of areas of urban-like vegetation within the processed
height models. In an additional step, the vegetation layer
was rasterized, resulting in a raster layer attributed to the

height values of the vector shape. This raster layer was
involved in the workflow as a validation height model
for accuracy assessment (nCMVal). The biotope map for
Berlin includes shapes of public green areas, of which all
areas greater than 65 000 m2; were extracted to identify
the areas of forest-like vegetation. Overall, 15 shapes met
this condition.

Finally, all data were resampled to the spatial resolution of
DEMTDM and assigned to the same reference system (UTM,
Zone 33 and WGS84 ellipsoid).

III. METHODS

A. Overview

The methodology for assessing a nCM from DEMTDM in
urban areas is described below (Fig. 3). First, three established
MF approaches were compared, and subsequently, a disag-
gregated filter approach was chosen because of best results.
However, the outcome illustrated the need to differentiate
between two types of vegetation in subsequent steps: Urban-
like vegetation, defined as single or small groups of trees located
in streets, backyards or close to streams, mostly in close prox-
imity to build objects; Forest-like vegetation, characterized by
densely vegetated large green areas (parks, commercial forests,
allotments, and cemeteries larger than 65 000 m2). Both vege-
tation types are shown in Fig. 1. 1) For urban-like vegetation, a
multistep procedure using DPMF aimed to distinguish objects
from bare earth pixels, and the latter were then used to interpo-
late a DTM (DTMULV). 2) For forest-like vegetation, an inter-
polation and a novel weighted DPMF were compared, including
the previously produced DTMULV from step 1). Next, two
DTMs for forest-like vegetation (DTMFLV_I and DTMFLV_II)
were interpolated, and three nCMs were calculated for both



1880 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 5, MAY 2016

Fig. 3. Workflow of the entire procedure. Each shaded box matches Section III.

vegetation types (urban-like vegetation: nCMULV; forest-like
vegetation: nCMFLV_I and nCMFLV_II).

The detection of vegetation pixels was validated using the
UltraCamX vegetation layer, and the vertical accuracy of all
DTMs and nCMs was assessed using DTMVal and nDSMVal.

The entire workflow was conducted in the statistical pro-
gramming software R (Version 3.1.2; main packages: “Raster,”
“mmand,” “rgdal”) [40], with the exception of the local Sigma
filter, which was applied in ENVI (Version 5.1) [41]. The
authors can provide the R code upon request.

B. Comparing MF

In order to derive a DTM from a DEM, several MFs had been
previously developed and applied on the subject of urban ter-
rain filtering, mainly using very high-resolution data [27]. As
the main principle, objects like trees can be distinguished by

their height differences to surrounding ground pixels within a
specified neighborhood. Similar to Geiß et al. [28] a simple MF
and a progressive MF (PMF) were applied. Additionally, a filter
was developed that uses a disaggregated DEM for a subsequent
PMF procedure [disaggregated PMF (DPMF)]. In the follow-
ing, the three filtering techniques of MF, PMF, and DPMF are
briefly explained.

1) Morphological Filter: When using the MF, the input
DEM is arranged by applying a structuring element B in which
a pixel value is compared and altered in accordance to the val-
ues of its neighborhood following the provided rules. These
rules consist of two basic operators, namely, erosion and dila-
tion. In terms of gray-scale morphology, the minimum [erosion,
(2)] or maximum [dilation, (3)] is searched within B of a
continuous elevation set with cells p (x, y, z) [42], [43].

Erosion: εp = min
(xp,yp)∈B

(zp) (2)

Dilation: δp = max
(xp,yp)∈B

(zp) (3)

By sequentially applying a dilation to a previously eroded
surface, an opening operation is conducted:

Opening γp = δp ◦ εp(zp). (4)

Concerning the derivation of a nDSM, the opening opera-
tion is of particular importance; its performance on an elevation
set with urban objects such as trees or buildings will lower all
elevations to the minimum pixel within B, which is ideally a
BE pixel and subsequently ensures coherent structure differ-
ences with an affiliated dilation. The constant increase of the
size of B from the minimum (Bmin) to the maximum (Bmax)
is intended to eliminate small to large urban objects. Usually,
an overflattening of terrain is associated with the simple MF
(compare [27] and [28]), since objects, but also small natural or
artificial ground elevations, are reduced to the minimum value
within the structuring element. By this effect, errors are more
likely to occur in steep terrain. In this study, Bmax was deter-
mined by the largest building from the Ultracam building layer
to avoid the erosion of natural elevations such as the slope of
the glacial valley. By these conditions, an MF with Bmax of
15× 15 pixels was performed fitted to the buildings with the
largest square area, namely, several building supply stores and
factories (20 000− 30 000 m2).

2) Progressive Morphological Filter: In contrast to the MF
filter, the PMF approach attempts to isolate bare earth (BE) and
object (OBJ) pixels by iteratively detecting OBJ pixels. The
remaining pixels are labeled as BE pixels and subsequently got
interpolated to a DTM. More specifically, the DEM is subject to
an opening operation and subtracted from the original DEM to
establish a height difference (dh) at pixel p (dhp). Afterward,
OBJ and BE pixels are identified by applying an elevation
difference threshold (θ) on dhp according to the following
rules [43]:

BE pixel = dhp < θ, OBJ pixel = dhp > θ. (5)

The values for B and the elevation difference threshold con-
stantly change with every filter step, and the process is stopped
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when Bmax is reached, which exceeds a specific size related to
the largest object in the study area. In this manner, small objects
can be detected and changes in terrain height are preserved
by subsequently removing OBJ pixels above the elevation-
difference threshold only [43]. For this study, a PMF was
conducted on DEMTDM using the same Bmin and Bmax as
for the MF approach. Adjusting the suggestion from Zhang
et al. [43] to this case study, an elevation-difference threshold of
0.2 m was chosen based on the vegetation-specific assumption
that small trees and tall bushes can be captured.

3) Disaggregated Progressive Morphological Filter:
Third, a disaggregated approach was tested, which aims at
internalizing the advantages of the PMF applied to a DEM
with a higher spatial resolution of 4× 4m. Therefore, each
DEM pixel was disaggregated with a divisor of 3 and locally
interpolated by three-point linear interpolation [44]. As a result,
each pixel was divided into nine subcells (DEMTDM_sub),
and Bmax was calculated by multiplying Bmax of PMF
(15× 15) with the value “3” (45× 45). In addition, the DPMF
approach was tested with a square and focal shape of B on
DEMTDM_sub to explicitly address the organic structures of
trees and vegetation.

The three approaches were applied to the entire study area,
and the identified BE pixels in the PMF and DPMF were inter-
polated by the inverse distance-weighted (IDW) method [45] to
calculate three preliminary DTMs.

C. DTM Generation for Urban-Like Vegetation: Disaggregated
Filtering

After comparing the three MFs, the DPMF was chosen to
assess urban- and forest-like vegetation due to its best perfor-
mance (see Section VI-A). In the next step, the DPMF was
improved for the final calculation of DTMULV. For this pur-
pose, the forest-like vegetation patches were masked out of the
preprocessed DEM. Overall, the entire study area consists of
4 444 308 pixels, of which 13.45% were masked to be not
available (NA) as a result of preprocessing and masking of
forest-like vegetation.

First, DEMTDM_sub was opened with Bmax (45× 45), and a
threshold with a restrictive value (8.00) was applied to gain BE
pixels that could be considered reliable in the first step. Within
this filter step, every nonnatural elevation was decreased to the
surrounding BE pixels while overestimating the amount of OBJ
pixels that appear as coherent agglomerations (type II error). In
order to prevent errors of omission for small vegetation com-
ponents, the first filter size of 3× 3 was applied with a small
threshold of 0.4 m, but still remained relatively high to ensure
avoiding errors of commission. For the remaining pixels, the
process of DPMF was repeated similar to that in Section III-B,
but using a slightly larger threshold (0.8, 1.6, 2.4, . . . , 16) to
gain reliable OBJ pixels. Ideally, small single trees or groups
were identified with Bmin, and high vegetation stocks such as
street avenues were iteratively removed in the following filter
steps up to Bmax = 43× 43.

The OBJ pixels of all filter steps (3× 3 − 43× 43) with the
exception of Bmax were gathered and used to mask the prepro-
cessed DEM. The remaining BE pixels were grouped in one

raster and interpolated to a set of height-attributed BE pixels
apart from withdrawn pixels from preprocessing. The resulting
DTM was subtracted from DEMTDM_sub to gain a prelimi-
nary DSM for urban-like vegetation, which was subsequently
subject to local Sigma filtering to enhance object areas by an
edge detection [46]. Since Geiß et al. [28] were able to improve
the delineation of buildings by a Lee–Sigma edge-detection
algorithm, this step also aimed to improve the boundaries of
vegetated areas. Within a 3× 3 structuring element, the local
standard deviation was computed for each pixel and its neigh-
borhood, and pixels were classified as valid/nonvalid in case of
their deviation of the neighboring pixel. If they met the condi-
tion of being valid, each pixel value was replaced by the mean
value of all pixels within the structuring element [46]. This
adaptive filtering process was carried out to reconstruct objects
based on reliable OBJ pixels that were gathered by using
a high elevation-difference threshold from 5× 5 − 43× 43.
The identified OBJ pixels were subsetted of the amount of
previously gathered BE pixels, and a DTM was again inter-
polated. Afterward, a mean filter (3× 3) was used to offset
small variations within the final DTMULV. For accuracy assess-
ment, OBJ and BE pixels within vegetated areas had to be
identified. For that, the rasterized binary vegetation layer of the
UltraCAMX data was included, and all pixels with > 50% of
class vegetation were used to identify the relevant BE and OBJ
pixels.

D. DTM Generation for Forest-Like Vegetation: An
Interpolation and Weighted Filter Approach

As explained in Section III-A, a different workflow for
forest-like vegetation areas had to be conducted, since the
absence or scarcity of BE pixels in dense vegetation structures
of areas such as public parks hampered their morphological
opening. However, values of B were not adjusted according to
the largest forest-like vegetation patch, since natural elevations
such as the slope of the glacial valley would be identified as
OBJ pixels and thus would be erased. To cope with this prob-
lem, two approaches were tested on DEMTDM_sub including
the DTM for urban-like vegetation.

The first approach aimed to interpolate the identified BE pix-
els in the surrounding of each large vegetation patch. First,
the 15 forest-like areas were used to mask the previously
derived DTMULV. The resulting gaps were subject to an IDW
interpolation.

The second approach relied on fitting structuring elements
(B) to the specific size of each forest-like vegetation patch
within a weighted DPMF procedure. In the first step, the
15 areas of forest-like vegetation were extracted from the
preprocessed and disaggregated DEM (DEMTDM_sub) and
added to the previously produced DTM for urban-like vegeta-
tion (DTMULV). Second, each of the 15 biotope shapes was
buffered by 150 m, and the outcome was used to crop the
previously merged rasters. As a result of these steps, the prod-
uct contained only forest-like vegetation of the DEMTDM_sub

surrounded by an adjacent 150 m buffer of DTMULV. Third,
the necessary size of B for the largest vegetation patch was
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calculated (235× 235) to gain an initial size for the filter
process.

By relating the size of the 14 remaining vegetation patches
to that of the largest, a relative weighting factor was calculated
and multiplied with B for the largest vegetation patch to gain
the single patch-specific size of B. Finally, the single weights
were used to conduct the weighted DPMF. The corresponding
threshold for DPMF ranged between 7 and 10, and increased
with an augmenting size of B. As a result, a DTM for the forest-
like vegetation was achieved.

E. nCM Calculation and Validation

In the final processing step for the nCM, the derived DTMs
for urban- and forest-like vegetation were normalized using
the preprocessed and disaggregated DEM. In greater detail,
nDSMs for both vegetation types were calculated by sub-
tracting DTMFLV_I, DTMFLV_II, and DTMULV from the
respective areas of DEMTDM_sub. Within the resulting nDSM,
regions with urban-like vegetation were identified by the
UltraCamX vegetation layer and regions with forest-like veg-
etation by the use of the biotope shapes for green areas. This
working step produced the final nCMs for both vegetation types
(ULV : nCMULV; FLV : nCMFLV_I, FLV : nCMFLV_II).

Horizontally, the PMF and DPMF output were validated
using the raster layer with the thematic classes of bare earth,
vegetation, and buildings. A confusion matrix was created
and the overall accuracy (OVA) and Cohen’s kappa coefficient
were calculated for areas with urban- and forest-like vegeta-
tion [47]. Vertically, the accuracies of all DTMs and nCMs
were assessed by calculating several accuracy metrics (MAE,
ME, and RMSE), and statistical metrics (minimum, maximum,
and mean elevation) compared to the specific areas in the val-
idation DTMs and respective nCMs separately for urban- and
forest-like vegetation. For the validation of the disaggregated
approaches, all validation data were resampled to 4× 4m.

IV. RESULTS

A. Comparing MFs

The performance of the different MF approaches clearly
differed when assessing the DTM and the DEM for urban-
and forest-like vegetation (see Table II). All three approaches
operated much better for urban-like vegetation than for forest-
like patches, which highlighted the need for differentiated
approaches according to the specific vegetation-type. As
expected, the MF produced the highest inaccuracies, which was
likely caused by erosion of hilly terrain. Even though both pro-
gressive approaches varied only slightly, the DPMF performed
better. As a result, the DPMF was chosen for DTM assessment
in the subsequent steps.

B. DTM and nCM for the Urban-Like Vegetation

OVA when including the classes of bare earth, vegetation,
and buildings was calculated to be 0.8, and Cohen’s kappa coef-
ficient was 0.71. The results of the DPMF could be improved

by additionally using the local sigma and mean filter, which
is expressed in lowered statistical deviations with respect to
DTMVal (as can be seen from ME, MAE, and RMSE in
Table III). The DTMULV was compared to the mean elevation
of DTMVal, and an underestimation by 4.01 m was reported
(Table III).

To provide greater detail on the processing for DTMULV,
36.62% of the cells were filtered as OBJ and 63.38% as BE
pixels (DTMVal: 73.18% OBJ pixels).

More precisely, 65.33% of BE pixels were identified in the
very first step using Bmax of 45 x 45 with a low elevation-
difference threshold, and an excessive number (109.5%) were
extracted in the following DPMF steps (3× 3 to 43× 43).
After morphological filtering, the BE pixel proportion of
109.5% was reduced by enhancing the boundaries of OBJ pix-
els by the local Sigma filter within a preliminary DSMULV to
the final amount.

The results for DEMTDM_sub, the unsmoothed
(DTMULV_raw), and smoothed DTM (DTMULV) are illus-
trated for a transect in Fig. 4, which shows the offset between
DEMTDM_sub and DTMULV of up to ∼ 7m, and at the same
time, the preservation of the elevation basis.

The accuracy assessment of the elevations in nCMULV

revealed that the minimum elevation height was very simi-
lar (nCMULV : 1.98 m, nCMVal : 2.14 m), the mean elevation
height within nCMULV was 4.35 m, which is less than half of
the mean elevation within nCMVal (9.61 m) (see Table III).
Both maximum height values are too high to represent tree tops,
but can be attributed to false classifications of roof top vegeta-
tion in the UltraCamX vegetation layer. Fig. 5 shows a subset
of nCMULV in the area of Neukölln, Berlin, of which artificial
areas were completely excluded and only the height of single
vegetation structures remained.

C. DTM and nCM for Forest-Like Vegetation

The 15 masked-out forest-like vegetation patches included
7.13% of the pixels not classified to be water or NA in the
entire study area. During the interpolation process, these pixels
were interpolated using the IDW method, which resulted in the
first DTM (DTMFLV_I) for the forested areas. For the second
DTM for forested areas (DTMFLV_II), BE and vegetation pix-
els were first separated within the weighted DPMF approach
to apply an interpolation method afterward (see Fig. 6). The
OVA for the forest-like areas was calculated to be 0.83, and
the Cohen’s kappa coefficient was 0.74. Subsequently, both
DTMs were statistically compared to nCMVal shaped to the
single 15 patches. All statistical measures demonstrated better
performance compared to the preliminary DTM for forest-like
areas during the comparative filtering (Tables II and IV). As
shown in Table IV, MAE, ME, and RMSE measured for the
DTMFLV_II approach were lower than those of DTMFLV_I.
Additionally, the mean elevation of DTMFLV_I (40.37 m)
deviated more from DTMVal (37.19 m) than the result of
DTMFLV_II (40.37 m). The validation of both nCM for forest-
like vegetation confirmed the slightly better performance of
the weighted DPMF approach; MAE, ME, and RMSE were
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TABLE II
ACCURACIES OF THE DTMS DERIVED FROM THE MORPHOLOGICAL FILTERING FOR URBAN-LIKE VEGETATION (ULV) AND FOREST-LIKE

VEGETATION (FLV)

TABLE III
DESCRIPTIVE STATISTICS AND RMSE FOR ULV HEIGHT MODELS

(DTMULV , nCMULV) AND VALIDATION HEIGHT MODELS (DTMVal ,
nCMVal)

Fig. 4. Transect of DEMTDM, unsmoothed (DTMULV_raw), and mean-
filtered DTM (DTMULV) on a range of 250 pixel (= 1000m).

lower and the mean, maximum, and minimum elevation devi-
ated less from the validation nCM (see Table IV). Similar to
the urban-like vegetation data, the mean height of both nCM
for forest-like vegetation varied ∼ 5 to 6m from the validation
data (nCMVal : 13.55m; nCMFLV_II : 9.16m; nCMFLV_I :
7.83m).

V. DISCUSSION

The present study reveals the applicability and potential of
using TanDEM-X DEM for height assessment of common
urban vegetation using morphological approaches. Height was
estimated using nCMs for vegetation in urban-like conditions
(mainly street and backyard trees) and forest-like conditions
(mainly parks and commercial forests> 65 000 m2). For urban-
like vegetation, the mean height of the nCM resulting from

the improved DPMF was calculated to be 4.35 m; this was
approximately one-half of the mean height of the validation
nCM (9.61 m). For forest-like vegetation, a weighted filter
approach produced a more accurate height model than an
interpolation method, resulting in a mean height of 9.16 m
(validation nCM: 13.55 m). Because of the consecutive char-
acter of the entire workflow, the accuracy of the final nCMs
strongly depended on the outcome of the single-methodological
steps, namely, 1) comparison of two existing and a new MF for
DTM derivation; 2) DTM derivation for urban-like vegetation;
3) DTM derivation for forest-like vegetation; and 4) calculation
of nCMs.

The first step aimed to compare the performances of a sim-
ple MF, PMF, and a novel DPMF for deriving a DTM on all
settings of urban vegetation. Similar to earlier studies on build-
ing objects in urban areas [28], [43], the simple MF produced
the greatest deviations and cannot be recommended for the
purpose of urban vegetation height estimation using a DEM
with the presented spatial resolution, even for less-hilly terrain.
In comparison to the PMF, the DPMF was found to produce
a more accurate DTM and nCMs for both vegetation types
related to the validation DTM (RMSE preliminary DTM for
urban-like vegetation: 6.22 m; RMSE preliminary DTM for
forest-like vegetation: 13.90 m). This outcome confirms the
proposed assumption that bare earth and object pixels are clas-
sified more accurate as a result of higher spatial resolution.
Moreover, this methodological step displayed the need of an
individual approach for both forest- and urban-like vegetation,
respectively.

In the second methodological step, the most appropriate fil-
ter of DTM assessment was attempted to be improved for
urban-like vegetation. As a result of a modified DPMF and
image-enhancement methods (Local Sigma filtering, mean fil-
ter), deviations to DTMVal were reduced for DTMULV. Since
benchmark accuracies and results from other studies are largely
absent within this novel application context, the outcome of
the classification of bare earth and object pixels is based on a
general evaluation of accuracy. In this manner, the correspond-
ing OVA (0.81) and kappa coefficient (0.65) for both thematic
classes can be evaluated as “moderate” or “good” according
to the categorization provided by Czaplewski [48]. However,
the result still displays a large offset compared to the valida-
tion DTM, which can be due to several reasons. The higher
mean elevation of DTMULV compared to DTMVal indicates an
error of omission resulting from incomplete detection of objects
during the DPMF. The local Sigma filter does not seem to per-
form well on vegetation components, likely because areas of
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Fig. 5. Results of (a) DPMF-filtering in comparison to (b) UltraCam vegetation layer; and (c) nCM for urban-like vegetation in comparison to (d) validation nCM.

the same standard variation only rebuild a small part of a pixel
conglomeration belonging to vegetation. Improvements in the
differentiation of bare earth and object pixels may be achieved
by using object-based image analysis techniques to delineate
vegetation and artificial objects from terrain more precisely.
Many segmentation approaches have been applied for vege-
tation and crown delineation [49], [50] using high-resolution
data, and some of these methods may be helpful. For example,
a watershed delineation could be suitable for separating homo-
geneous and heterogeneous segments of elevation that indicate
terrain and objects as an additional source of information before
or after the DPMF [51], [52].

For forest-like vegetation, two different methods to create
DTMs were compared. The study had to address the prob-
lem of forest-like vegetation areas, in which the amount of
bare earth pixels was reduced and the application of a corre-
sponding large size of B would erase surrounding natural eleva-
tions. Both proposed approaches (interpolation and weighted
DPMF) were able to highly improve the preliminary DTM
for forest-like vegetation presented in Section III-B. However,
as a result of weighted DPMF, DTMFLV_II was slightly bet-
ter since it performed in conjunction with a few scattered
bare earth pixels that were completely missing in the case of
DTMFLV_I. Since incorrect DTM heights for urban-like condi-
tions are also reflected in the DTM for forest-like vegetation,

an improvement of the DTMULV would likely increase the
quality of results for both approaches for forest-like vegeta-
tion. Similar to urban-like vegetation, the ability to compare
both DTMs to the outcome quality of other studies is limited
because few studies deal with DTM filtering in dense forested
areas using mathematical morphology and low-resolution raster
data. Liu et al. [53] used a sequence of morphological oper-
ators combined with segmentation to derive a DTM using
SRTM data for two forest areas. The authors were able to
reduce the RMSE from 23.58 m to 12.59 m and 14.32 m
to 7.55 m, respectively, using the outcome compared to a
national elevation dataset (NED). Against this background,
the qualities of the results for the present study are compre-
hensible (RMSE DTMFLV_I : 5.74 m, RMSE DTMFLV_II :
4.22 m).

Finally, statistical measures for all produced nCMs and the
validation nCM were calculated (Tables III and IV). The aver-
age mean elevation of all final nCMs deviated ∼ 5 to 6m with
respect to the validation nCM. The height proportions for both
nCMFLV and nCMULV seem to be reasonable, since street
trees in Berlin are generally smaller than in large green areas
due to pruning and limiting environmental factors [54]. The
nCM resulting from the weighted DPMF (nCMFLV_II) was
found to produce better results than the one using the interpola-
tion approach (nCMFLV_I). Incorrect heights within all nCMs
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Fig. 6. (a)–(d) Examples of forest-like patches and corresponding DEMTDM_sub identified BE and OBJ pixels during DPMF, the final nCMFLV_II, and
transects of DEMTDM_sub compared to DTMFLV_II (from left to right).

were caused by overestimations of the DTM and several poten-
tial methodological and data-related errors. First of all, the
pixel values of the preprocessed DTM were slightly changed
during the disaggregation and the following three-point linear
interpolation of cells within the DPMF. Especially in areas of
urban-like vegetation, edges of objects were smoothed and thus
elevations in the nDSM were lowered, which mostly affects
rectangular structures, as well as vegetation [55]. Second, even
though lowered vegetation heights are improbable because of
low penetration rates of the X-band segment [35], a potential
disturbance of height values is possible and was proven within
an initial test. Therefore, the preprocessed DEMTDM with its
original spatial resolution was subtracted from the validation
DTM to gain an experimental nCM; its mean elevation was
calculated to be 12.44 m (for comparison, nCMVal : 13.55m),
which prove disturbed height values in the original iDEM. Such
potential errors will be likely reduced in the final global DEM
that consists of more than one coverage and will be available in
the upcoming years [33]. Further on, for urban-like vegetation,
the validity of results had to be restricted since the close prox-
imity between vegetation and neighboring objects likely caused
mixed pixels with different heights [56]. This effect can be

TABLE IV
DESCRIPTIVE STATISTICS AND RMSE FOR FLV HEIGHT MODELS

(DTMFLV_I , DTMFLV_II , nCMFLV_I , nCMFLV_I) AND VALIDATION

HEIGHT MODELS (DTMVal , nCMVal)

counteracted by the use of a high-resolution DEM with a spatial
resolution of 6 m for selected areas, which will be available in
the upcoming years upon request [33].
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Overall, the present findings suggest that it is possible to
derive DTMs and subsequently nCMs for various urban veg-
etation types with appropriate results. The final nCMs cor-
rectly represent the relative heights of urban- and forest-like
vegetation; however, the absolute values demonstrate the need
for future research on DTM assessment, especially for vege-
tation in urban-like conditions. By overcoming the drawbacks
related to terrain assessment, the nCMs for both types can
be improved. Moreover, better results will likely be achieved
through the application of the final DEM, provided in the
upcoming years.

VI. CONCLUSION

In this paper, an iDEM of the TanDEM-X mission was
used for the first time to derive nCMs for urban vegeta-
tion exploring a novel procedure. The entire workflow was
based on the principles of mathematical morphology. Tailored
approaches were proposed for areas including urban-like and
forest-like vegetation, respectively, for a typical urban area
in the city of Berlin, Germany. An nCM for urban-like veg-
etation could be assessed using an iterative identification of
bare earth pixels by applying a novel DPMF with different
thresholds, sizes of structuring elements, and image filters; for
forest-like vegetation, a weighted DPMF was found to produce
better results than a tested interpolation method. The derived
nCM for typical urban vegetation contained approximately half
(4.35 m), and the nCM for forest-like vegetation approximately
two-thirds (9.16 m) of the mean elevation in the validation
data. Overall, this outcome is very promising and demonstrates
the usability of the TanDEM-X DEM for vegetation-related
assessments. The weighted DPMF proved especially robust for
filtering forest-like vegetation, and its outcome can be enhanced
by improving the results for the DTM for urban-like vegetation.
The approach is meant to be transferred to other regions and can
be conducted with different higher resolution vegetation data.
Multispectral QuickBird, Rapideye, and future Sentinel-2 data
are promising for this purpose, since their large spatial cover-
age and spatial resolution favor transferability [57], [58]. The
outcome of such studies could be used to automatically assess
urban vegetation volume and height classes, which is needed as
a basis for various ecosystem services or disservice studies on
a large, comparative scale.
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