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A useful simplification of the quasilocalized charge approximations (QLCA) method to calculate

the dispersion relations in strongly coupled Yukawa fluids is discussed. In this simplified version, a

simplest possible model radial distribution function, properly related to the thermodynamic

properties of the system, is used. The approach demonstrates good agreement with the dispersion

relations obtained using the molecular dynamics simulations and the original QLCA in the

long-wavelength regime. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942169]

I. INTRODUCTION

The quasilocalized charge approximation (QLCA) was

originally proposed by Kalman and Golden1 as a powerful

formalism for the analysis of the dielectric response tensor

and collective mode dispersion in strongly coupled Coulomb

liquids. The approach is based on a microscopic model in

which the charges are quasilocalized on a short-time scale in

local potential fluctuations, for a review, see Ref. 2. In last

decades, the QLCA approach has been successively applied

to various systems of strongly interacting particles to

describe wave dispersion relations. In particular, this

includes two-dimensional (2D) and three-dimensional (3D)

one-component-plasma (OCP),2 2D and 3D Yukawa sys-

tems, mainly in the context of complex (dusty) plasmas,3–7

classical 2D dipole systems,8,9 and 3D dusty plasma with

Lennard–Jones-like interactions.10

Technically, for a given interaction potential, the QLCA

approach requires the equilibrium radial distribution function

(RDF), g(r), as an input, characterizing the spatial order in

the system of particles. The latter can be obtained via various

integral equation schemes or via the direct molecular dynam-

ics (MD) or Monte Carlo (MC) simulations. Although, there

are no principle difficulties in both these approaches, they

remain relatively resource consuming. The purpose of this

paper is to demonstrate that to describe the long-wavelength

dispersion relations in strongly coupled Yukawa fluids, the

accurate knowledge of g(r) is unnecessary. The main effect

of strong coupling can be accounted for by using a simple

excluded volume consideration. A simplest possible toy g(r)

allows us to reproduce the long-wave dispersion curves with

a reasonable good accuracy.

In Yukawa systems, which are of some relevance in the

context of colloidal suspensions and complex (dusty) plas-

mas,11–13 the particles are interacting via the repulsive poten-

tial of the form VðrÞ ¼ ðQ2=rÞ expð�r=kÞ, where Q is the

particle charge, k is the screening length, and r is the dis-

tance between a pair of particles. These systems are conven-

iently characterized by two dimensionless parameters, which

are the coupling parameter C ¼ Q2=aT, and the screening

parameter j ¼ a=k. Here, T is the system temperature (in

energy units), n is the particle density, and a ¼ ð4pn=3Þ�1=3

is the characteristic inter-particle separation (Wigner–Seitz

radius). The phase behavior of Yukawa systems is relatively

well understood.14,15 For Ce�j � 1, a weakly coupled gase-

ous regime is realized. As C increases, the system shows a

transition to the strongly coupled fluid regime. When C
increases further, the system crystallizes either into body-

centered-cubic (bcc) or into the face-centered-cubic (fcc) lat-

tice (bcc is thermodynamically favorable at weak screening,

i.e., lower j). The values of CmðjÞ, corresponding to the

fluid-crystal transition, have been tabulated;15 relatively

accurate fits are also available.16–18 For even higher C, the

glass transition is predicted, with the glass-transition line

almost parallel to the melting line in the extended region of

the phase diagram.19 In this study, we focus on the strongly

coupled fluid regime, characterized by C � Cm.

II. QUASILOCALIZED CHARGE APPROXIMATION AND
ITS SIMPLIFIED VERSION

The dispersion relations in the QLCA approach read

x2
L ¼ x2

0ðqÞ þ DLðqÞ;
x2

T ¼ DTðqÞ;
(1)

where q¼ ka is the reduced wave number and the subscripts

“L” and “T” stand for longitudinal and transverse modes,

respectively. The term x0ðqÞ corresponds to the longitudinal

dispersion relation of non-correlated particles (weak-cou-

pling limit)

x2
0 qð Þ ¼

x2
pq2

q2 þ j2
; (2)

where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pQ2n=m

p
is the plasma frequency associated

with the charged particle component and m is the particle

mass. In the context of complex (dusty) plasmas, this mode

is known as the dust-acoustic-wave (DAW).20 The respective

projections of the QLCA dynamical matrix DLðqÞ and DTðqÞ
are the functions of the equilibrium g(r)2,4,7
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DL=T ¼ x2
p

ð1
0

dr

r
g rð Þ � 1½ �KL=T qr; jrð Þ; (3)

with

KL x; yð Þ ¼ �e�y 2þ 2yþ 2

3
y2

� ��

� sin x

x
þ 3

cos x

x2
� 3

sin x

x3

� �

þ 1

3
y2 sin x

x
� 1

� ��
; (4)

and

KT x; yð Þ ¼ e�y 1þ yþ 1

3
y2

� ��

� sin x

x
þ 3

cos x

x2
� 3

sin x

x3

� �

� 1

3
y2 sin x

x
� 1

� ��
: (5)

The dimensionless distance r in Eq. (3) and throughout the

paper is expressed in units of a. When g(r) is known, Eqs.

(1)–(5) allow us to calculate the dispersion relations of

Yukawa systems in the QLCA approach.

The equilibrium RDF, g(r), is also related to important

thermodynamic quantities of the system such as energy and

pressure. For pairwise interactions, they can be expressed

in terms of the integrals over g(r), which are known as the

energy and pressure (or virial) equations.21 Since the dis-

persion relations and thermodynamic properties depend

only on the integral of g(r), it is not very unreasonable to

presume that if a simple model form is chosen, which

describes the thermodynamic properties of the system rea-

sonably well, it will also allow to estimate the dispersion

relations of this system. We shall now demonstrate that this

is indeed a reasonable assumption, provided the long wave-

lengths (longer than the mean interparticle separation) are

of main interest.

To further pursue the link between dispersion properties

and thermodynamics, we chose the most simple step-wise

toy model for g(r), i.e., g(r)¼ 1 for r>R and g(r)¼ 0 other-

wise. Here, R characterizes an excluded volume around each

particle due to strong (repulsive) inter-particle interactions.

For this model g(r), the integration in Eq. (3) can be per-

formed analytically. The resulting dispersion relation of the

longitudinal mode is

x2
L ¼ x2

pe�Rj 1þ Rjð Þ 1

3
� 2 cos Rq

R2q2
þ 2 sin Rq

R3q3

� ��

� j2

j2 þ q2
cos Rqþ j

q
sin Rq

� �#
: (6)

Similarly, for the transverse mode, we get

x2
T ¼ x2

pe�Rj 1þ Rjð Þ 1

3
þ cos Rq

R2q2
� sin Rq

R3q3

� �
: (7)

The remaining step is to find an appropriate model for the

dimensionless parameter Rðj;CÞ and to verify whether the

proposed simplification can deliver reasonable results.

Substituting the same step-wise RDF into the energy

equation, we easily obtain the excess energy per particle in

units of the system temperature

uex ¼
2pna3

T

ð1
0

r2V rð Þg rð Þdr ¼ 3C
2j2

1þ Rjð Þe�Rj: (8)

Similarly, for the reduced excess pressure, we get

pex ¼ �
2pna3

3T

ð1
0

r3V0 rð Þg rð Þdr

¼ C
2j2

3þ 3Rjþ R2j2ð Þe�Rj: (9)

The effective radius of the exclusion sphere, R, can then be

obtained from the solution of either Eq. (8) or (9). Naturally,

since the toy model for g(r) is used, the result for R some-

what depends on whether the energy or pressure route is

used. The corresponding quantities will be referred to as Ru

and Rp, respectively.

Thermodynamics of Yukawa systems has been exten-

sively investigated, and the accurate data for uex and pex

from MC and MD simulations exist (see, for example, Refs.

15, 22, and 23). Various fitting formulas, based on different

physical arguments, have also been proposed.24–30 In this

study, we use simple practical expressions for uex and pex ap-

plicable in a wide parameter regime characterizing Yukawa

fluids, which has been published recently.31 These expres-

sions are essentially based on the Rosenfeld–Tarrazona

freezing-temperature scaling for the thermal component of

the excess internal energy and related thermodynamic quan-

tities for simple fluids with soft repulsive interactions.24,25

They demonstrate excellent agreement with the results from

numerical simulations in the regime j � 5 and C=Cm � 0:1,

which is addressed in this study.

The quantities Ruðj;CÞ and Rpðj;CÞ evaluated using the

expressions for uexðj;CÞ and pexðj;CÞ from Ref. 31 exhibit

the following properties. For a given pair of j and C, Ru is

slightly larger than Rp. Both Ru and Rp demonstrate slow

increase as C and j increase. In a relatively wide parameter

regime investigated (1 � j � 4 and 0:01 � C=Cm � 1), the

values of R are confined to a relatively narrow range

1 � Ru;p � 1:3. An example of calculated dispersion relations

using the simple model form of g(r) is shown in Fig. 1. Here,

the solid curves correspond to the full QLCA approach with

the RDF obtained from direct MD simulations (see below for

description), while the dashed (longitudinal mode) and dotted

(transverse mode) curves correspond to the proposed simplifi-

cation employing the simplest model RDF, linked to the ther-

modynamic properties of the system. Two important

observations are as follows: (i) The simplified approach is

practically insensitive to whether energy or pressure route is

used to determine R, and (ii) The simplified QLCA calculation

demonstrates very good agreement with the full QLCA in the

regime of sufficiently long wavelength, q � 2 (where the first

maximum of the longitudinal wave dispersion occurs).
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III. DETAILED COMPARISON

Further MD simulations and full QLCA calculations have

been performed to verify the main conjecture of this study.

Simulations have been performed on graphics processing unit

(NVIDIA GTX 960) using the HOOMD-blue software.32,33

We used N¼ 50 653 Yukawa particles in a cubic box with

periodic boundary conditions. The cut-off radius for the poten-

tial has been chosen to be Lcut ¼ 14:5k. The numerical time

step was set to ’ 10�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma3=Q2

p
� 10�2x�1

p . Simulations

have been performed in the canonical ensemble (NVT) with

the Langevin thermostat at a temperature corresponding to the

desired target coupling parameter C.

The system was first equilibrated for one and a half mil-

lion time steps, and then, we saved the particle positions and

trajectories every 60 time step for 80 000 time steps. The par-

ticle current was then calculated

Jðk; tÞ ¼
XN

j¼1

vjðtÞ expðik � rjðtÞÞ;

and the Fourier transform in time was performed to obtain

the current fluctuation spectra. Moreover, the particle posi-

tion was saved every 4000 time step for an extra 3� 106

time steps to extract the accurate RDF.

Simulations have been performed for four pairs of j and

C, which are summarized in Table I. These points have been

chosen to be located in the strongly coupled fluid state, at

approximately the same distance from the melting line,

C=Cm ¼ Tm=T ’ 0:8. The radial distribution functions

obtained in MD simulations are shown in Fig. 2. We observe

close similarity of the obtained RDFs. This observation is in

line with the isomorph theory put forward recently.34,35

Isomorphs are curves in the thermodynamic phase diagram

along which many properties derived from structure or dy-

namics are invariant in properly reduced units. The isomorph

theory has been developed for liquids, which have strongly

correlated fluctuations of their energy and pressure (referred

to as Roskilde-simple or just Roskilde systems36). Yukawa

fluids belong to this class, and it has been recently demon-

strated that the state points characterized by the same T=Tm

are approximately isomorps.37

Using the obtained RDFs, the dispersion of the longitu-

dinal and transverse modes within the QLCA approach has

been calculated. The results are presented in Figs. 3 and 4.

Here, the color background corresponds to the spectral

decomposition of the longitudinal and transverse current

fluctuations. The maximum magnitude (red color) marks the

approximate location of the collective excitations. The dark

curves correspond to the dispersion relations calculated using

the conventional (full) QLCA approach. They are in very

good agreement with the current fluctuations analysis. The

white curves correspond to the simplified QLCA approach

discussed in the present work. In the long-wavelength regime

(q � 3) shown in Figs. 3 and 4, the agreement with the origi-

nal QLCA is excellent.

In the long-wavelength limit (q! 0), both longitudinal

and transverse modes exhibit the acoustic dispersion,

xL=T ’ cL=Tk. It should be reminded here that the disappear-

ance of the shear mode at q! 0 and the existence of the cor-

responding cutoff wave-vector q	, which are well known

FIG. 1. The dispersion relations of the longitudinal (L-mode) and transverse

(T-mode) waves in strongly coupled Yukawa fluid, characterized by j ¼ 1:0
and C¼ 180 (frequency is in units of the plasma frequency xp). The solid

curves correspond to the conventional QLCA with the radial distribution

function obtained via the direct MD simulations. The dashed (L-mode) and

dotted (T-mode) curves correspond to the simplified version of QLCA of

Eqs. (6) and (7), respectively. Red (green) color corresponds to the pressure

(energy) route in determining R; these curves are almost indistinguishable.

The conventional and simplified QLCA shows very good agreement in the

long-wavelength regime (for q � 2).

TABLE I. The longitudinal (cL) and transverse (cT) sound velocities of

strongly coupled Yukawa fluids evaluated using the QLCA approach (veloc-

ities are expressed in units of xpa). cu;p
L and cu;p

T denote the longitudinal and

transverse sound velocities estimated using the simplified QLCA with the

model RDF linked to the thermodynamics via the energy and pressure route,

respectively.

j C cL cu
L cp

L cT cu
T cp

T

0.5 145 1.980 1.979 1.979 0.191 0.193 0.190

1.0 180 0.959 0.953 0.956 0.175 0.174 0.171

2.0 370 0.415 0.403 0.408 0.128 0.122 0.122

3.0 990 0.212 0.202 0.206 0.081 0.076 0.076

FIG. 2. The radial distribution functions g(r) for four state points of strongly

coupled Yukawa fluids, which are listed in Table I. These state points are

characterized by approximately the same distance from the melting curve

measured in terms of the reduced coupling parameter, C=Cm ’ 0:8.
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properties of the liquid state, cannot be accounted for within

the conventional QLCA, because it does not include damp-

ing effects.7 Nevertheless, apart from the cutoff, the QLCA

shear wave dispersion appears to be nearly parallel to the

actual shear wave dispersion curve, and therefore, the QLCA

transverse sound velocity remains a meaningful quantity.

The longitudinal (cL) and transverse (cT) acoustic velocities

have been evaluated using the conventional QLCA as well

as its simplified version using both the energy (superscript

“u”) and pressure (superscript “p”) routes. The results are

summarized in Table I. The overall agreement is very good,

and the pressure route is slightly more accurate on average.

We have also estimated the thermodynamic longitudinal

sound velocity using the conventional fluid approach pro-

posed in Ref. 38. The resulting values are close but slightly

lower (several percent deviation) than the QLCA approach

yields, as has been already documented.38

In the short-wavelength limit (q!1), both the longitu-

dinal and transverse frequencies approach the common limit,

xE, the Einstein frequency, which is the oscillation fre-

quency of a single particle in the fixed environment of other

particles (see Fig. 1). For the Yukawa potential, the Einstein

frequency is trivially related to the excess internal energy of

the system, x2
E=x

2
p ¼ ð2j2=9CÞuex. The same result can be

obtained via the energy route of the present simplified

QLCA [compare Eqs. (6) and (7) in the q!1 limit with

Eq. (8)], indicating that this approach is virtually exact in the

short-wavelength limit.

IV. ONE-COMPONENT-PLASMA LIMIT

It is worth to briefly discuss the application of the sim-

plified QLCA to the important limiting case of OCP. This

limit corresponds to the unscreened Coulomb interaction

between the particles (j¼ 0) and requires the presence of

neutralizing background to stabilize the system and ensure fi-

nite values for the thermodynamic quantities. The dispersion

relations of the simplified QLCA approach can be directly

obtained from Eqs. (6) and (7), yielding

x2
L ¼ x2

p

1

3
� 2 cos Rq

R2q2
þ 2 sin Rq

R3q3

� �
; (10)

and

FIG. 3. Dispersion of the longitudinal (plasmon) mode in strongly coupled

Yukawa fluids for the ðj;CÞ pairs summarized in Table I. The frequency xL

is measured in units of the plasma frequency xp. The colored background

corresponds to the longitudinal current fluctuation spectrum. The dark

curves are the results of the full QLCA with g(r) obtained using direct MD

simulations. The white curves correspond to the simplified QLCA, Eq. (6),

with the energy route to determine R. The vertical scale is chosen the same

in the figures to illustrate how the increase in screening (increase in j) sup-

presses the wave frequency.

FIG. 4. Same as in Figure 3, but for the transverse (shear) mode.
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x2
T ¼ x2

p

1

3
þ cos Rq

R2q2
� sin Rq

R3q3

� �
: (11)

The Kohn sum rule is automatically satisfied, x2
L þ 2x2

T

¼ x2
p. The energy and pressure equations have to be slightly

modified due to the presence of the neutralizing background,

by substituting hðrÞ ¼ gðrÞ � 1 instead of g(r). For the

Coulomb interaction, the energy and pressure routes give the

same result for R in view of the relation pex ¼ 1
3

uex. The cor-

responding result is uex ¼ � 3
4
CR2. At strong coupling, the

dominant contribution to the excess internal energy of the

OCP model can be approximated, with a good accuracy,39,40

as uex ’ � 9
10

C. Thus, in this strongly coupled regime, the

parameter R is practically constant, R ¼
ffiffiffiffiffiffiffiffi
6=5

p
’ 1:09545.

The corresponding dispersion relations are plotted in Fig. 5,

the long-wavelength behavior shown here agrees well with

that calculated using the conventional QLCA approach (see,

e.g., Fig. 4 from Ref. 2).

In the long-wavelength limit (q! 0), the longitudinal

mode dispersion (10) reduces to

x2
L

x2
p

’ 1� 2

30
R2q2 ¼ 1þ 4

45

q2uex

C
:

For the transverse mode, we get

x2
T

x2
p

’ 1

30
R2q2 ¼ � 2

45

q2uex

C
:

These expressions coincide exactly with those from the con-

ventional QLCA approach.2 In the opposite short-wavelength

limit (q!1), the longitudinal and transverse frequencies

approach the Einstein frequency, xE ¼ xp=
ffiffiffi
3
p

, which again

represents the exact result.

V. CONCLUSION

To summarize, we have proposed a simplified approach

to estimate wave dispersion relations in strongly coupled

Yukawa fluids. The approach is based on the QLCA theory

and employs the most simple model for the radial distribu-

tion function, constructed using excluded volume considera-

tion. Analytic expressions for the longitudinal and transverse

wave modes within the simplified QLCA are derived. They

demonstrate very good accuracy in the long-wavelength re-

gime and are virtually exact in the short-wavelength limit.

The simplified QLCA can be useful when the exact radial

distribution functions are not known, but the information

about thermodynamics functions (internal energy or pres-

sure) is available. The approach can be easily generalized to

Yukawa systems in two dimensions, as well as to other inter-

actions operating in classical systems of strongly coupled

particles.
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