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The collective modes of a familiar two-dimensional one-component-plasma with the repulsive log-

arithmic interaction between the particles are analysed using the quasi-crystalline approximation

(QCA) combined with the molecular dynamic simulation of the equilibrium structural properties. It

is found that the dispersion curves in the strongly coupled regime are virtually independent of the

coupling strength. Arguments based on the excluded volume consideration for the radial distribu-

tion function allow us to derive very simple expressions for the dispersion relations, which show

excellent agreement with the exact QCA dispersion over the entire domain of wavelengths.

Comparison with the results of the conventional fluid analysis is performed, and the difference is

explained. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4950829]

I. INTRODUCTION

The system considered in this paper represents a collec-

tion of point-like particles moving on a two-dimensional sur-

face and interacting via a pairwise repulsive logarithmic

potential of the form

VðrÞ ¼ �� lnðr=aÞ; (1)

where � is the energy scale and r/a is the reduced distance

between a pair of particles. This system is often referred to

as the two-dimensional one-component-plasma (2D OCP).

The interaction potential (1) corresponds to the solution of

the 2D Poisson equation and represents the interaction

between infinite charged filaments. In the conventional nota-

tion � ¼ Q2, where Q is the particle charge, and a ¼
ðpnÞ�1=2

is the 2D Wigner–Seitz radius (n being the 2D num-

ber density). In addition, these point charges are immersed

into a rigid neutralizing background to guarantee system sta-

bility and finite values of the thermodynamical quantities.

The considered system has been employed to model vor-

tices in thin-film semiconductors1–3 and has some relevance

in the context of the anomalous quantum Hall effect.4 Exact

analytic solutions for the free energy and related thermody-

namic quantities in some special cases exist.5,6 The system is

characterized by ultra-soft interactions between the particles

and is of interest from the fundamental point of view as an

opposite limit of the celebrated hard sphere (hard disc in 2D)

model.

Thermodynamic properties of the considered 2D OCP

have received considerable attention.7–14 They are deter-

mined by the single parameter C ¼ �=T, the so-called cou-

pling parameter. As C increases, the OCP shows a transition

from a weakly coupled gaseous regime (C� 1) to a strongly

coupled fluid regime (C� 1). At C > Cm (the subscript “m”

refers to melting), the triangular lattice becomes thermody-

namically favourable. Numerical simulations located this

fluid-crystal phase transition at Cm ’ 130� 140.7,9–11 In a

more recent paper,2 the arguments have been presented that

the crystalline state of this system is unstable at any finite

temperature against proliferation of screened disclinations.

This, however, remains a controversial issue3 and is not the

main topic of this study.

The main purpose of the present paper is to investigate

the behaviour of collective modes in a strongly coupled

2D OCP fluid with the logarithmic interaction. We apply

the quasi-crystalline approximation (QCA) of Hubbard and

Beeby15 to obtain the dispersion relations of the longitudinal

and transverse modes at strong coupling. To do this, we com-

bine the QCA method with molecular dynamic (MD) simula-

tions to obtain accurate structural properties of the system.

The main results are as follows. We demonstrate that in

appropriate reduced units, the dispersion relations are not

very sensitive to exact structural properties and, therefore,

very weakly depend on the coupling strength. Moreover,

based on the simplified QCA version discussed recently,16

we derive very simple analytic expressions for the dispersion

curves, which demonstrate excellent agreement with the

exact QCA results. We also compare the predictions of the

QCA and the conventional fluid approach for the long-

wavelength dispersion of the longitudinal waves and explain

the difference between the results of these two approaches.

To conclude the introductory part, we note that there is

another, perhaps, more familiar system, which is also

referred to as the 2D OCP. In this system, the interaction

between the particles is of conventional Coulomb type

(/1=r), but the particle motion is restricted to a 2D surface.

This system has been used as a first approximation for the

description of electron layers bound to the surface of liquid

dielectrics and of inversion layers in semi-conductor

physics.17,18 It has also some relevance to colloidal and com-

plex (dusty) plasma mono-layers in the regime of week
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screening.18–21 Some thermodynamic properties of these two

OCP fluids with Coulomb and logarithmic interactions are

essentially the same. In particular, the thermal component of

the internal energy exhibits the same scaling with the cou-

pling parameter.22,23 The same scaling also takes place in the

weakly screened Yukawa systems,22 and thus, it can be con-

sidered as 2D analogy of the Rosenfeld–Tarazona scaling

for soft repulsive interactions in 3D.24,25 We do not elaborate

on this further, since the main focus of this study is on

the collective excitations in 2D OCP with the logarithmic

interactions.

II. IMPLEMENTATION OF THE QCA

The quasi-crystalline approximation was proposed in

Ref. 15 and further detailed in Ref. 26. This theoretical

approach can be regarded as a generalization of the pho-

non theory of solids. In the simplest version, the particles

forming liquid are assumed stationary (i.e., like in cold

amorphous solid) but the system is characterized by a

liquid-like order, measured in terms of the isotropic radial

distribution function (RDF) g(r). The linear response of

such disordered system can be approximately calculated

and related to the frequencies of the collective modes.15

The theory becomes exact in the special case of a cold

crystalline solid.15 In this sense, the term “quasi-crystalline

approximation” suggested by Takeno and Goda26 appears

adequate, and we employ it here. Comparable expressions

can also be obtained from the analysis of the fourth fre-

quency moment.27 In the context of plasma physics, simi-

lar approach is known as the quasilocalized charge

approximation (QLCA).28 In particular, it specifies how

the presence of the neutralizing background has to be

accounted for in the case of charged particle systems. In

the last decades, the QLCA has been successively applied

to describe collective modes in various strongly coupled

plasma systems. In particular, this includes one-

component-plasma with the Coulomb interactions28 and

complex (dusty) plasmas with Yukawa interactions,29–33 in

both 3D and 2D situations.

In the QCA model, the dispersion relations are

related to the inter-particle interaction potential V(r) and

the equilibrium radial distribution function g(r) of strongly

interacting particles. The compact QCA expressions for

the longitudinal and transverse modes in neutral fluids

are15

x2
L ¼

n

m

ð
@2V rð Þ
@z2

g rð Þ 1� cos kzð Þ½ �dr; (2)

x2
T ¼

n

m

ð
@2V rð Þ
@y2

g rð Þ 1� cos kzð Þ½ �dr: (3)

Here, xL and xT are the frequencies of the longitudinal and

transverse modes, m is the particle mass, k is the wave num-

ber, and z ¼ r cos h is the direction of the propagation of the

longitudinal mode. Adopted to the 2D situation (particles are

confined to the yz plane) and to the presence of the neutraliz-

ing background (this is detailed for the 2D and 3D OCP

with Coulomb interactions in the overview of the QLCA

model28), these expressions yield for the potential of Eq. (1)

x2
L ¼ x2

0 þ x2
0

ð1
0

h xð Þdx

x
J2 qxð Þ (4)

and

x2
T ¼ �x2

0

ð1
0

h xð Þdx

x
J2 qxð Þ: (5)

Here, x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pQ2n=m

p
is the 2D plasma frequency, x ¼ r=a

is the reduced distance, hðxÞ ¼ gðxÞ � 1 is the pair correlation

function, q¼ ka is the reduced wave number, and J2ðxÞ is the

Bessel function of the first kind. From Eqs. (4) and (5), we im-

mediately see that

x2
L þ x2

T ¼ x2
0;

which represents the two-dimensional version of the Kohn’s

sum rule (note that it does not apply to Coulomb interaction

in 2D28).

We can easily analyse two limiting cases. In the long-

wavelength (small q) limit, we use the series expansion

J2 xð Þ ’ x2

8
� x4

96
þ x6

3072
þO x8ð Þ

combined with the fist sum rules7

ð1
0

h xð Þxdx ¼ � 1

2
; (6)

ð1
0

h xð Þx3dx ¼ � 1

C
; (7)

ð1
0

h xð Þx5dx ¼ � 2 4� Cð Þ
C2

: (8)

The first sum rule, Eq. (6), combined with the virial equation,

immediately yields the reduced excess pressure

pex �
P

nT
� 1 ¼ �C

4
: (9)

We obtain for the long-wavelength dispersion relation of the

longitudinal mode

x2
L

x2
0

’ 1� q2

16
þ q4

96C
� q6 4� Cð Þ

1536C2
þO q8

� �
: (10)

Note that in this normalization, the first two dominant terms

are independent of C. They coincide with the harmonic

solid analysis of Ref. 6. Higher terms do depend on C, but

in the strongly coupled regime (C� 1) where QCA is ap-

plicable, their role is completely negligible. This provides

preliminary indication that the dispersion relations may not

be very sensitive to C in this normalization, and we will

elaborate on this further below. In the short-wavelength

limit (large q), the longitudinal and transverse frequencies

approach the common asymptote, the Einstein frequency

xE ¼ x0=
ffiffiffi
2
p

.
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To go beyond these two limits, the explicit form of the

radial correlation function h(x) is required. We have obtained

h(x) using the MD numerical simulations as described in

Section III.

III. SIMULATIONS

Standard molecular dynamics simulations with the

Verlet velocity algorithm and Langevin thermostat have

been performed (see, e.g., Ref. 34). Initially, N¼ 4800 point-

like particles are randomly distributed over the unit sphere

(to eliminate the periodic boundary conditions), and equili-

brated (at a given C) configurations are then used to calculate

g(x) [and hence h(x)] and to provide the Voronoi tessellation.

Some results of the simulations are presented in Fig. 1,

where typical configurations of particles (color-coded via

the number of nearest neighbours) are shown for the three

values of C (C¼ 40, 80, and 150). The ground state of the

2D OCP with the logarithmic interaction is well known to be

hexagonal, so that blue (five-fold) and red (seven-fold) par-

ticles are the topological defects. The defects abundance,

dd ¼ ðN5fold þ N7foldÞ=N, drops down as C increases. For the

configurations shown in Fig. 1, these abundances are about

0.41 (C¼ 40), 0.30 (C¼ 80), and 0.22 (C¼ 150). The proc-

esses of recombination and association of defects form clus-

ters of a complicated shape, varying from 1D string-like at

high C to 2D-like at low C (see Ref. 34 to compare with the

clusters of defects in Yukawa systems). More structural

details of the system at strong coupling will be reported

elsewhere.

Using the obtained RDFs g(x) (plotted in the inset of

Fig. 2), the dispersion curves of the longitudinal and trans-

verse modes, within the QCA approach, have been calculated.

The results are shown in Fig. 2. The symbols correspond to

the results obtained using integration of Eqs. (4) and (5). It is

evident that in the considered regime of strong coupling, the

dispersion relations are very insensitive to the exact value of

C, although the variations in RDFs are significant. The sym-

bols are all falling on the two distinct curves (L-mode and

T-mode), and no signature of any systematic deviations can

be detected. The black curves correspond to the simplified

version of the QCA, discussed in Section IV. At this point, we

just note that the agreement between these curves and the

location of the symbols is excellent.

IV. SIMPLIFIED QCA

Recently, we have proposed a useful simplification

of the QCA (or, equivalently, QLCA) formalism.16 In

this simplified version, the excluded volume arguments

suggest to use a simplest toy step-wise model for g(x),

i.e., g(x)¼ 1 for x>R and g(x)¼ 0 otherwise. Here, R
(measured in units of a) characterizes the radius of an

excluded sphere around each particle due to a strong (re-

pulsive) inter-particle interaction. To estimate this quan-

tity, energy and pressure equations have been used,

which are also expressed as certain integrals over g(x),35

or h(x) in the present case. For the single component

Yukawa systems, it was demonstrated that the results

are not particularly sensitive to whether the energy or

pressure equation is used to determine R. The obtained

dispersion relations are in very good agreement with the

conventional QLCA in the long wavelength regime and

correctly predict the approach to the Einstein frequency

in the short-wavelength limit.16

FIG. 1. Two dimensional OCP with the logarithmic interaction for different

C values (indicated on the plot) as modelled on a sphere. Particles are color-

coded via the number of nearest neighbors (Nnn) defined from the Voronoi

analysis: five-fold (blue), six-fold (green), and seven-fold (red). By increas-

ing the coupling strength C, the density of defects (five-fold and seven-fold

particles) is considerably reduced.
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Thus, it is tempting to check the performance of this

simplified QCA in the case of 2D OCP with the logarithmic

interaction considered here. In this case, there is a natural

way to determine R, by requiring the perfect screening con-

dition (6) to be satisfied (in this way, we also get the exact

result for the excess pressure, but not for the excess energy).

This results in R¼ 1 and, hence,

x2
L

x2
0

¼ 1

2
þ

J1 qð Þ
q

; (11)

x2
T

x2
0

¼ 1

2
�

J1 qð Þ
q

: (12)

This shows an excellent agreement with the conventional

(full) QCA (or QLCA) formalism in the entire domain of

q (see Fig. 2), much better than in the case of 3D Yukawa

systems.16 The agreement is too impressive that one may

think of a mathematical identity involved. This is, however,

not the case, because the low-q limit of the conventional

QCA [Eq. (10)] does contain some (although vanishingly

small) dependence on C, while Eq. (11) does not.

V. FLUID APPROACH

The dispersion relation of the longitudinal mode within

the conventional fluid description of plasma reads

x2
L ¼ x2

0 þ k2v2
Tcl; (13)

where c is the adiabatic index, l is the isothermal compressi-

bility modulus, and vT ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
is the thermal velocity. The

adiabatic index approaches unity very quickly as the cou-

pling increases, especially for soft interactions (for example,

see Fig. 3 from Ref. 36). The isothermal compressibility

modulus l ¼ ð1=TÞð@P=@nÞT is trivially related to pressure

in the considered case, l ¼ 1þ pex, because pex is density

independent. We have therefore at strong coupling

x2
L ’ x2

0 �
1

8
x2

0q2: (14)

The second term is immediately identified to be by a factor

of two larger than the QCA approach yields (Eq. (10)).

There is interesting physics behind this observation, which

we explain now.

In the long-wavelength limit, the QCA model, applied

to neutral fluids, provides the longitudinal cL and transverse

cT elastic sound velocities. These can be expressed in terms

of the bulk modulus K and shear modulus G.37,38 In the 2D

geometry, the corresponding expressions are mnc2
L ¼ K þ G

and mnc2
T ¼ G. An instantaneous sound velocity38 defined

via mnc2
I ¼ K is then related to the elastic sound velocities

via c2
I ¼ c2

L � c2
T . This instantaneous sound velocity is in fact

very close to the conventional thermodynamic sound veloc-

ity, cTh ¼ vT
ffiffiffiffiffi
cl
p

, which can be derived from a standard fluid

description,39 similar to that used to obtain Eq. (13). The

quantitative similarity between the cI and cTh values should

be particularly pronounced for soft repulsive interactions at

strong coupling. This has been directly verified for weakly

screened 2D Yukawa systems near the fluid-solid phase tran-

sition.40 The remaining step is to account for the presence

of the neutralizing background and resulting non-acoustic

character of the dispersion at low q for the 2D OCP. We

introduce the instantaneous frequency xI and get from the

arguments above (using xL and xT obtained within QCA

model)

x2
I ¼ x2

L � x2
T ¼ 2x2

L � x2
0 ’ x2

0 �
1

8
x2

0q2; (15)

which coincides with the result of the fluid approach (14).

This provides us a link between the results of the QCA and

the fluid (thermodynamic) approximation.

VI. CONCLUSION

To summarize, we have discussed the collective modes

behaviour in the two-dimensional one-component-plasma

fluid with the logarithmic interaction between the particles.

The dispersion relations in the strong coupling regime were

obtained using the QCA (or QLCA) method coupled to the

MD simulations on a sphere, to get information about the

system structural properties. We have also tested the simpli-

fied QCA approach based on a toy model for the radial distri-

bution function, which accounts for the excluded volume

effects. The analytic expressions derived within this simpli-

fied QCA show excellent agreement with the actual disper-

sion relations within the conventional QCA, over the entire

range of wave numbers. This can indicate on the particular

usefulness of the simplified QCA version in two dimensions

(for three dimensional Yukawa systems, the performance of

the simplified QCA is also good, but rather limited to long

wavelengths). Finally, we have discussed the results of the

standard fluid approach and explained the difference it yields

in comparison with the QCA.

FIG. 2. Dispersion relations of the longitudinal (L-mode) and transverse (T-

mode) waves in strongly coupled 2D OCP with the logarithmic interaction.

The solid black curves correspond to the simplified QCA, Eqs. (11) and

(12). Symbols correspond to conventional QCA with g(r) obtained via the

direct MD simulations: red, green, and blue colors correspond to coupling

parameter C � 150, 80, and 40, respectively. The corresponding RDFs are

shown in the inset. The cumulative functions Nð< rÞ of g(r) are also plotted

in the inset by dashed lines to evaluate the number of particles in different

shells. This function clearly reveals sixfold type of symmetry in the system.
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