
Mutation based Feature Localization
Jan Malburg∗

∗Institute of Computer Science
University of Bremen

28359 Bremen, Germany
malburg@informatik.uni-bremen.de

Emmanuelle Encrenaz-Tiphene†
†Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
75252 Paris, France

Emmanuelle.Encrenaz@lip6.fr

Goerschwin Fey∗‡
‡Institute of Space Systems
German Aerospace Center
28359 Bremen, Germany
Goerschwin.Fey@dlr.de

Abstract—The complexity of modern chip designs is rapidly
increasing. More and more blocks from old designs are reused
and third party IP is licensed to fulfill strict time-to-market
constraints. Often, poor documentation of such blocks makes
improvements and extensions of the blocks a difficult time
consuming task.

In this paper we propose a technique for automatically
localizing the parts of the code which are relevant for a feature.
With this a developer can better understand the design and,
consequently, can adjust the design more efficiently. The proposed
approach uses mutants changing the code of the design at a
certain location. The code changed by a mutant is considered to
be related to a feature if the mutant is killed while the feature is
used. The use cases are generated using an automatic approach.
This approach is based on a description specifying how the
different features are used.

I. INTRODUCTION

Modern chip designs, especially System on Chip (SoC)
designs, grow with respect to their transistor count as well as
their functionality. In order to be able to fulfill strict time-to-
market constraints more and more design blocks from previous
designs are reused or third party IP blocks are licensed [1]. All
those blocks provide some features for the design. Following
the definition of the IEEE Standard 829 [2], a feature is
a distinguishing characteristic of the design. A feature is
typically defined with respect to functionality, robustness, or
performance. In this paper we are especially interested in
functional features. If extensions or improvements are done
or bugs are fixed, this often relates to a set of those features.
Normally, a developer starts by identifying the parts of the
design relevant for the corresponding features. However, doing
so can be a tedious task, especially if the corresponding code
is some third party IP, some poorly documented legacy code
or simply because the developer is new in the team and
inexperienced with the design. In this work we propose an
approach to automatically localize the code which is relevant
for a feature using mutants of the design. A mutant of the
design contains a modification at a single location of the
original source code.

The basic assumption underlying the proposed approach is
that if parts of the code are related to a feature, changes to that
code may have an effect on the feature. We propose applying
use cases, for which we know the features they are using, to
mutants of the design. If a mutant is killed, we check which
feature was currently executed by the design, and the part of

the design changed by the mutant is considered to be related to
that feature. In this work we are considering designs, for which
the result of the features can be observed at the primary outputs
of the design. We are not considering designs for which the
features only affect the internal state of the design, e.g., a CPU
design writing the result of the operations which are features
to the registers.

When using feature localization, the quality of the result
depends on the use cases available for the computation. On
one hand a good coverage of the design under consideration
is required; on the other hand classical feature localization
considers use cases as a whole. Therefore each use case should
use as few features as possible. In this work we address
both problems by automatically generating use cases. The
generation process is based on a description, provided by
the user, specifying how the different features are used. One
goal is that a developer should easily be able to write such
description. An automaton describes at an abstract level how
features may be used. From this description a test harness
is created which will be implemented as an extension of
SystemVerilog. We do not require a developer to define all
possible ways of how to use a feature. Instead the developer
only has to specify the use of the features to an extent he
considers sufficient. Our automatic use case generation has two
advantages. First, automation allows to have as much different
use cases as needed to reach high coverage. Second, for each
of the use cases we do not only know which features they are
using but also when they use which feature. Thus we can lift
the requirement of use cases using as few as possible features.

The contributions of a this paper are:

• A proposal of the use of mutation testing to conduct
feature localization.

• A proposal of a description format for specifying how
the features of a design are used.

The remainder of this paper is organized as follows: In
Section II related work is presented. Section III introduces
terms and definitions used throughout the paper. The proposed
approach is presented in Section IV. The model used for
specifying the features’ interaction is described in Section V.
Section VI describes the proposed description of how features
are used and how the description is utilized to create use cases.
In Section VII presents the approach on a small example and
Section VIII summarizes the paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/77230511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

Feature localization was first proposed for software sys-
tems [3]. Feature localization compares the coverage data
of runs which use the feature under consideration, with the
coverage data of runs which do not use that feature. A
heuristic is applied in order to decide which parts of the
code are implementing the feature. In previous work we
implemented feature localization for hardware designs using
statement- and toggle-coverage [4]. Further, we implemented
feature localization for hardware design, using dynamic data-
and control-flow analysis as input for the feature localization
heuristic [5]. Compared to those approaches, the approach
proposed in this work has several advantages: All previous
approaches consider complete use cases, which must been de-
fined by the developer. In contrast, the proposed approach uses
automatically generated use cases, targeting specific features.
This further allows a feedback between the localization and
the use case generation process to improve the localization for
parts of the code, where information is missing. Further, the
proposed approach considers each use of a feature within a
run independently, instead of the run as a whole.

Michael, Grosse and Drechsler proposed feature localization
for Electronic System Level (ESL) models [6]. The models
they are considering are written in SystemC, a class library for
C++. This allows them to use the standard feature localization
approaches for software languages based on line coverage.
In contrast, we are considering feature localization for HDL-
designs. Further, they are also only considering runs as a
whole.

Another approach for reducing the code a developer has to
consider is program slicing. We distinguish between static pro-
gram slicing [7] and dynamic program slicing [8]. For program
slicing one position in the system’s code is considered, called
the slicing criterion. Then program slicing computes those
parts of the code which are affected (forward program slicing)
or affects (backward program slicing) the slicing criterion.
In case of static program slicing this computation is done
with respect to all possible use cases and in case of dynamic
program slicing with respect to one single use case. Originally,
program slicing was proposed for software system, but there
are also implementations for HDL-designs [9]. Program slicing
considers the relation of parts of the code, with respect to
the slicing criterion, in contrast feature localization, like the
proposed approach, considers the relation of parts of the code
to a feature.

Mutation testing [10] is an approach for measuring and im-
proving the quality of a test suite. For this several syntactically
correct versions of the design are generated, called mutants.
Each mutant differs from the original design at one single point
in the source code. Then the test suite is applied to this mutants
and it is checked if the test suite identifies the mutant as
incorrect, also called the test suite kills the mutant. The quality
of the test suite is defined as the ratio between killed and
not killed mutants. In combination with some automatic test
case generation approaches, like a genetic algorithm, mutation

testing can be used to improve the test suite of a design. The
technique presented here also generates mutants, but utilizes
the mutants in order to decide which feature uses which part
of the code.

In [11] a coverage-driven layered testbench architecture is
described. In such architectures the testbench consist of five
layers: signal layer, command layer, functional layer, scenario
layer, and testbench layer. With respect to the work described
in this paper, the scenario layer and the functional layer are
especially interesting. In the scenario layer, randomness is
introduced and function sequences are generated, which are
split into several functions in the functional layer. In this paper
however, we propose an approach for feature localization, for
which the use case generation is only a part of the approach.
As our approach intends to only create use cases which use
defined feature and not require defining correctness conditions
for the result, our approach is likely easier for a developer to
use. If a coverage-driven layered testbench architecture already
exists for the design, this architecture most likely could be
used for the mutation based feature localization presented
in this paper, possibly extended by the state-based-use case
generation approach presented in this paper.

III. PRELIMINARIES

Let H be the hardware design under consideration. We
consider the initial state a part of the design. A use case
u = (i0, i1, i2, ..., im) of H is given by a sequence of
assignments ik, k ∈ {1, 2, 3, ...,m} to the primary inputs of
H . Let U be the set of all possible use cases. We denote by
OH the set of all output sequences created by the design H
for all use cases in U , and oH [u] the output sequence produces
by H on input sequence u.

A feature f defines the behavior of the design for a set of
input sequences If . Let F = {f1, f2, f3, ...} be the set of all
features of H . A feature relates to some part of the design’s
specification. A use case u uses a feature f if there exists an
input sequence if ∈ If such that if is a subsequence of u.

We call a set of two or more features mutually exclusive, if
those features cannot be used together at the same time. Such
mutually exclusiveness exists between features which require
access to the same resources. Such resources can, e.g., be some
computation unit or primary inputs for which each valuation
results in another feature to be used. However, using mutually
exclusive features in sequential order is allowed.

Another relation between features is their orthogonality.
Given several sets of features F1, F2, ..., Fn with:

1) ∀x, y ∈ [1...n], x 6= y ⇒ Fx ∩ Fy ≡ ∅
2) ∀x ∈ [1...n], (|Fx| ≡ 1) ∨ (Fx is mutually exclusive)
3) ∀u ∈ U,∀x ∈ [1...n], (∃f ∈ Fx, u uses f)
⇒ (∀y ∈ ([1...n]\x),∃f ′ ∈ Fy, u uses f ′)

We say the features in Fx are orthogonal to any feature
in the sets F1, F2, ..., Fx−1, Fx+1, ..., Fn. Further, the sets
F1, F2, ..., Fn are pairwise orthogonal.

Informally, the sets F1, F2, ..., Fn are pairwise disjoint and
each of the sets either includes only one feature or the features
they are including are mutually exclusive. If a user wants to

Figure 1: Overview of our approach

use any of those features, he has to choose one feature from
each of those sets. Such a case often appears in pipelined
designs where one functionality from a set of functions can
be chosen at the different stages of the pipeline.

A mutation operator is a function, which takes a design as
input and returns another design which differs from the input
design at one single randomly chosen point. The output of the
mutation operator is called a mutant of the original design.
The change applied by the mutation operator is syntactically
valid, meaning if the input design is syntactically correct then
the resulting mutant is as well. Some often used mutation
operators are [12]:
• Constant replacement: A constant is replaced by another

constant of the same type and width.
• Operand replacement: An operand is replaced by another

signal or constant of the same type.
• Operator replacement: An operator is replaced by another

one.
• Condition negation: A (sub-)expression of a branch-

condition is negated.
A mutant M is called an equivalent mutant, if ∀u ∈

U, oM [u] ≡ oH [u], i.e., for all use cases the values of the
primary outputs of the mutant are identical to the values of
the primary outputs of the original design.

A mutant M is killed by a use case u, if oM [u] 6= oH [u],
i.e., when applying u, the values of the primary outputs of the
mutant differ from the values of the primary outputs of the
original design.

IV. APPROACH

In this section we describe the proposed technique to
localize features. A basic assumption of our approach is that,
if some parts of the code are related to a feature, mutants
of those parts are likely to be killed by use cases which use
that feature. For our approach we automatically generate use
cases of the design under consideration. For these use cases
we know which features of the design are currently used by
the use cases. We execute those use cases on mutants of the
design. If a use case kills a mutant, we relate the code which
has been changed by the mutant to the feature currently used
by the use case.

Figure 1 shows an overview of our proposed approach. The
ovals are input from the user of our approach. Rectangles and
diamonds are automatic steps of our approach. The different
inputs and steps are described in the following:

1) Design: The design under consideration is given as
HDL-code. For this work we are considering designs for which
the effects of their features are observable at their primary
outputs.

2) Mutation engine: Mutation operators are applied to the
design in order to create mutants. The mutation operators are
restricted, such that they do not change module instantiations
or the left-hand-side of assignments.

3) Observation engine: For each position in the source
code, an observation module is generated which multiplexes
the inputs of the original design to all mutants of the source
code location. Further, an observation module compares the
outputs of the mutants with the output of the original design.
The outputs of the original design are used as outputs of the
observation module, thus the observation module can be used
like the original design. The module notifies the overall system
if a mismatch is detected. Because the observation module
considers several mutants for each source code position, we
are assuming that it is rather unlikely that some code is related
to the result of a use case without the observation module
noticing this fact.

4) Feature description: A description, created by the user
of our technique, specifies which features are supported by
the design, how those features are used, and under which
conditions they can be used. The description is given as
an automaton capturing the constraints for the activation of
features. An extended SytemVerilog description derived from
this specification serves as a test harness to generate use cases.
For detailed information see Section VI.

5) Use case generator: Several use cases are created, using
the different features of the design. For the generated use
cases it is known when they use which feature. For detailed
information see Section VI.

6) Execution: The use cases are applied to the different
observation modules and it is recorded which features were
used while a checker detects a mismatch between the original
design and a mutant.

7) Feature localization: The feature localization maps
those parts of the code to the features which were executed
while a mismatch between the corresponding mutants and the
original design has been detected.

8) Quality Check: The result of the feature localization is
rated regarding the quality. A localization is considered to be
of poor quality if much code is not related to any feature
or if for much of the code the corresponding mutants were

Figure 2: The abstract automaton for our example

killed before all features were applied to them. If this check
decides that the feature localization is not yet good enough,
the technique creates further use cases targeting those features
for which the localization is not yet sufficient.

9) Output: The computed result of the feature localization
is presented to the user.

V. SPECIFICATION OF FEATURE INTERACTIONS

We propose to model the feature interactions and activations
with an automaton on an abstract level.

Let F = f1,fn be the set of features; we introduce the
abstract automaton A = (S, S0, 2

F , δ) with δ ⊆ S × 2F × S
and 2F denotes the powerset of F . The states S describe the
abstract state of the system where particular features can be
activated. Transitions represent the execution of a subset of
features. Along an abstract transition, each feature labeling
the transition is activated, executes, and finishes before going
to the target state. With this model, we can express, e.g.,
the orthogonality of features: Assume two orthogonal sets of
features F1 and F2; the number of outgoing transitions of each
state of A is bounded by |F1|·|F2|. Figure 2 shows an example
automaton with two states and the features Reset, and Check.

The automaton A is a specification of features and their
interaction.

We generate a refined automaton B. Instead of sets of
features B uses input sequences as alphabet. Those input
sequences are represented by SystemVerilog tasks. When re-
fining A into B a set of features is replaced by a SystemVerilog
task, which uses exactly that set of features. We do not allow
non-determinism in B. Two transitions with the same set of
features may be refined using different tasks in order to remove
non-determinism. We are using an implicit representation of
the automaton B, which will be presented in the next section.

VI. STATE BASED USE CASE GENERATION

This section explains how the automaton B is described
using SystemVerilog tasks with additional keywords. The
automaton is used to generate a test harness. This test harness
generates use cases by means of constrained random simula-
tion.

Essentially, the description encodes the transitions of B
as actions. Actions are SystemVerilog task annotated with
additional information, e.g. the list of features they are using.
New keywords are introduced to capture the behavior of B.
Each action is labeled by the keyword #action. Each action

1 # s t a t e s : c o n n e c t e d
2
3 # f e a t u r e s : connec t , send , d i s c o n n e c t
4
5 # i n i t :
6 t a s k i n i t () ;
7 r s t =1 ;
8 #2 r s t =0 ;
9 e n d t a s k ;

10 @ ef fec t : c o n n e c t e d =0
11
12 # a c t i o n :
13 @fea tu re : c o n n e c t
14 @req : ! c o n n e c t e d
15 @range : 10000 <= bps <=100000
16 t a s k c o n n e c t (i n t e g e r bps) ;
17 . . .
18 e n d t a s k
19 @ ef fec t : c o n n e c t e d =1;
20 . . .
21
22 # a c t i o n
23 @fea tu re : send
24 @req : c o n n e c t e d
25 t a s k send (b i t [8] d a t a) ;
26 . . .
27 i f (ERROR)
28 c o n n e c t e d =0;
29 . . .
30 e n d t a s k
31 @ready : s e n d _ i n t e r r u p t =1 ;
32 . . .

Listing 1: Example definition of features.

contains at least three sections. First, @feature lists the
used features’ names. Second, a SystemVerilog task describes
the input stimuli. Finally, a @ready section detects the
completion of the action. An action might further have a @req
section constraining the state in which the action can be used
and an @effect section describing the state change caused
by the action. If the @req section is missing, the action can
be used in any state. If the @effect section is missing, the
action describes self-transitions.

The starting state and a task to initialize the design can be
defined in an #init section.

Example 1. We are considering a controller for a commu-
nication protocol. The protocol requires an initial handshake.
The features of this design are: connect, send, and disconnect.
In this case, the send feature can only be used if the design is
currently connected. During the initial handshake the data-
rate of the connection will be negotiated. We assume that
only rates between 10,000 and 100,000 bytes per second are
allowed. Thus we have a restriction of the parameter for the
data-rate.

In Listing 1 we see an excerpt of the description, specifying
the use of those features. We describe the state of the design
with the help of Boolean variables. In the #states section
the used state variables are defined (line 1). When state vari-
ables are used, an initialization (#init) section is mandatory
(lines 5-10). This section defines a task, which is used for the
initialization of the design, for example by resetting the design
(lines 6-9). The initialization section includes an @effect
annotation (line 10), which defines the value of the state
variables after the initialization task is executed.

An action can be annotated with a requirement (@req),
consisting of a constraint over the state variables, which must
be fulfilled in order to be able to use that action (line 14
and line 24). Actions can change the current state of the
automaton (line 19). Actions may set any subset of the state

1 module p a r i t y (c lk , r s t , in ,
2 done , e r r o r) ;
3 i n p u t wi r e c lk , in , r s t ;
4 o u t p u t r e g done , e r r o r ;
5 r e g p a r i t y ;
6 r e g [0 : 3] pos ;
7
8 i n i t i a l
9 b e g i n

10 done <=0;
11 e r r o r <=0;
12 p a r i t y <=0;
13 pos <=0;
14 end
15
16 a lways @(posedge c l k)
17 b e g i n
18 i f (r s t == 1)
19 b e g i n
20 done <=0;
21 e r r o r <=0;
22 p a r i t y <=0;
23 pos <=0;
24 end
25 e l s e i f (e r r o r == 1)
26 b e g i n
27 / / do n o t h i n g
28 end
29 e l s e i f (pos <9)
30 b e g i n
31 p a r i t y <= p a r i t y ^ i n ;
32 pos <= pos +1;
33 done <=0;
34 end
35 e l s e
36 b e g i n
37 e r r o r <= p a r i t y != i n ;
38 done <= 1 ;
39 pos <=0;
40 end
41 end
42 endmodule

(a) Design

1 # f e a t u r e s : Check , R e s e t
2 # s t a t e s : e r r o r
3
4 # i n i t
5 t a s k i n i t () ;
6 s t a r t C l k () ;
7 e n d t a s k ;
8 @ ef fec t : e r r o r =0 ;
9

10 # a c t i o n
11 @fea tu re : R e s e t
12 t a s k r e s e t () ;
13 r s t =1 ;
14 #2 r s t =0 ;
15 e n d t a s k ;
16 @ready : # 0 ;
17 @ ef fec t : e r r o r =0 ;
18
19 # a c t i o n
20 @fea tu re : Check
21 @req : e r r o r =0 ;
22 t a s k c o r r e c t (b i t [0 : 7] v) ;
23 f o r (i n t i =0 ; i <8 ; i ++)
24 b e g i n
25 i n =v [i] ; # 2 ;
26 end
27 i n =^v ;
28 e n d t a s k ;
29 @ready : done =1
30
31 # a c t i o n
32 @fea tu re : Check
33 @req : e r r o r =0 ;
34 t a s k i n c o r r e c t (b i t [0 : 7] v) ;
35 f o r (i n t i =0 ; i <8 ; i ++)
36 b e g i n
37 i n =v [i] ; # 2 ;
38 end
39 i n = ! (^ v) ;
40 e n d t a s k ;
41 @ready : done =1
42 @ ef fec t : e r r o r =1 ;

(b) Description

Figure 3: Code of our example design

Figure 4: The concrete automaton for our example

variables. Exceptional changes to the state variables can be
defined within the task (line 28). Parameters of a task can be
restricted with the @range annotation (line 15).

This description requires to encode each action of B.
Additional modeling elements allow for a more compact
description. This elements allow to describe sets of actions
which only differ in the order they apply inputs to the design
and to describe all actions for all combinations of orthogonal
features1 in linear space. The constrained random simulation
creates single transitions from those constructs whenever re-
quired during the generation of use cases.

VII. APPLYING MUTATION FOR FEATURE LOCALIZATION

In this section we illustrate our approach of using mutation
for feature localization on a simple design. The example design
is shown in Figure 3a and the corresponding feature activation
description in Figure 3b. The concrete automaton B for this

1which is an exponential large amount of actions

example is shown in Figure 4. The features used by the actions
are shown in braces. The design checks if the correct parity
bit is appended after each packet of eight bits. If so, the design
raises a done signal for one clock tick and then begins with the
next set of inputs. If a parity error is detected, the design raises
an error signal and stays in an error state until the design is
reset. Our approach starts with creating mutants of the design.
For describing our approach we will consider the following
mutants: M1: line 21 ’0’ replaced by ’1’. M2: line 29 ’<’
replaced by ’!=’. M3: line 29 ’<’ replaced by ’>=’.

In the next step observer modules for the mutants are
created. In this step the mutants M2 and M3 are combined
in a single observer module as they are mutants of the same
source code position.

In the next step use cases are created. Let the created
uses cases be: u1: (reset, correct(246)), u2: (correct(72), in-
correct(19), reset). When applied to the observer modules M1

is killed by both use cases while reset is used. M2 is not killed
for any use case, however the observer module includes M3

which is killed for both use cases whenever the check feature
is used.

In the next step the feature localization is applied, resulting
in line 21 is related to the reset feature and line 29 to the
check feature. The classification passes the quality check as
both considered lines are related to a feature and further both
features were applied to both observer modules.

VIII. SUMMARY AND OUTLOOK

In this paper we proposed an approach for feature local-
ization in hardware designs, using mutants. The basic idea
of our approach is that if a mutated statement changes the
behavior of a features, this statement is part of the code
implementing the feature. Our approach uses the source code
of the design, and a description how to use the different
features to automatically perform the localization. Using the
description, the required use cases are generated automatically.
The description considers the design as a finite state automata,
where transitions are done using the features of the design.
The transitions themselves are described in form of annotated
SystemVerilog-tasks. In the next step we want to extend our
approach for designs, for which the result of a feature is not
observable at its primary outputs, e.g., a CPU design for which
the result of the computation is stored in its general purpose
registers.

REFERENCES

[1] ITRS Working Group, International Technology Roadmap for Semicon-
ductors 2009 Update System Drivers, ITRS Std., 2009.

[2] IEEE Standard for Software and System Test Documentation, Std for
Software Test Documentation Working Group Std., 2008.

[3] N. Wilde and M. C. Scully, “Software reconnaissance: Mapping program
features to code,” Journal of Software Maintenance: Research and
Practice, vol. 7, no. 1, pp. 49–62, 1995.

[4] J. Malburg, A. Finder, and G. Fey, “Automated feature localization for
hardware designs using coverage metrics,” in Proceedings of Design
Automation Conference, 2012, pp. 941–946.

[5] J. Malburg, A. Finder, and G. Fey, “Tuning dynamic data flow analysis
to support design understanding,” in Proceedings of Design, Automation
and Test in Europe, 2013, pp. 1179–1184.

[6] M. Michael, D. Grosse, and R. Drechsler, “Localizing features of ESL
models for design understanding,” in Forum on Specification and Design
Languages, 2012, pp. 120–125.

[7] M. Weiser, “Program slicing,” in Proceedings of International Confer-
ence on Software Engineering, 1981, pp. 439–449.

[8] B. Korel and J. Laski, “Dynamic program slicing,” Information Process-
ing Letters, vol. 29, pp. 155–163, 1988.

[9] E. Clarke, M. Fujita, S. Rajan, T. Reps, S. Shankar, and T. Teitelbaum,
“Program slicing of hardware description languages,” in Correct Hard-
ware Design and Verification Methods, ser. Lecture Notes in Computer
Science, 1999, vol. 1703, pp. 72–72.

[10] Y. Serrestou, V. Beroulle, and C. Robach, “Functional verification of rtl
designs driven by mutation testing metrics,” in Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro
Conference on, 2007, pp. 222–227.

[11] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale, Verification
methodology manual for SystemVerilog. Springer, 2006.

[12] G. Al-Hayek and C. Robach, “From design validation to hardware
testing: A unified approach,” Journal of Electronic Testing, vol. 14, no.
1-2, pp. 133–140, 1999.

