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Abstract— Navigation in global navigation satellite system
denied areas such as urban canyons or indoors has aroused large
interest due to the recent growth of location aware services.
In these scenarios, multipath assisted positioning schemes are
promising due to a rich multipath propagation. Instead of trying
to combat multipath, multipath assisted positioning approaches
make use of multipath components arriving at a receiver that
is to be located. In more detail, multipath components arriving
at the receiver via different paths are regarded as pure line-of-
sight signals from virtual transmitters. In general, the number
of transmitters might be large, and their location may be
unknown. The underlying estimation problem, i.e., estimating the
positions of the receiver and the physical and virtual transmitters,
tends to be very costly in computational terms. Within this
paper, we present a Rao-Blackwellization approach to tackle the
computational burden. The receiver location is tracked using
a particle filter, while the probability density functions of the
transmitter states are represented by Gaussian mixture models,
whose parameters are estimated using cubature Kalman filters.

I. INTRODUCTION

While global navigation satellite systems (GNSSs) perform

well under good view-to-sky conditions, they are known to

show weak performance in urban or indoor scenarios due

to a low received signal power, multipath propagation, and

shadowing [1]. In these situations, wireless navigation and

positioning technologies using signals of opportunity (SoO)

have aroused more and more research interest. However,

multipath propagation has been considered a curse in urban

and indoor scenarios using wireless systems, as it biases

range estimates and hence decreases the positioning accuracy.

Standard methods to overcome the multipath problem are

based on the estimation of the channel impulse response (CIR)

at the receiver. These methods try to mitigate the influence of

multipath components (MPCs) on the line-of-sight (LoS) path

to increase the accuracy.

Instead of trying to mitigate and combat MPCs, the idea of

multipath assisted positioning is contrary: MPCs may actually

be exploited for positioning. Each of the signal components,

no matter if arriving at the receiver via the LoS path or a

different propagation path, can be regarded as a SoO from

a transmitter in a pure LoS condition to the receiver. If the

signal component arrives via the LoS path, the corresponding

transmitter is an actual physical transmitter, otherwise, we may

cal l the transmitter a virtual transmitter. Both the physical and
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the virtual transmitters can now be used for positioning at the

receiver.

Fundamental limits and theoretical results on multipath as-

sisted positioning have been presented in [2]. Some approaches

using multipath assisted positioning assume the physical and

virtual transmitter positions to be known in advance, for

example in form of a floorplan in indoor [3] or in radar [4]

applications. In a general setting, however, the positions of

the virtual and possibly also of the physical transmitters are

unknown. Therefore, with the Channel-SLAM algorithm, an

approach has been presented in [5] and [6] that does not rely

on a-priori knowledge of the transmitter positions. Instead,

their locations are estimated jointly with the receiver position

using a recursive Bayesian estimation approach. Each trans-

mitter state probability density function (PDF) is initialized

based on the first time of arrival (ToA) measurement for the

corresponding signal component at a mobile terminal carrying

the receiver. Again, each MPC is treated as being sent from a

virtual transmitter in a pure LoS condition to the receiver.

Since we assume only ToA measurements to be available,

and due to possible clock offsets of the transmitters, the

initialization of a transmitter PDF is performed with a high

uncertainty.

Estimating the entire state, i.e., the mobile terminal position

and the location of all transmitters, is expensive in terms of

computational complexity. While the Kalman filter provides

an optimal and efficient solution to such problems, it can

not be applied due to the nonlinearity of the underlying

ToA measurement model. Other recursive Bayesian estima-

tion methods, such as particle filters, suffer from the curse

of dimensionality. Though, Rao-Blackwellization techniques

tackle that problem and have been applied successfully to

simultaneous localization and mapping (SLAM) problems.

Within this paper we propose a new recursive Bayesian

estimation approach that is based on the idea of Rao-

Blackwellization: Assuming independence between the ToA

measurements associated to each transmitter enables esti-

mating their states independently. We use a particle filter

that estimates the mobile terminal position. For each particle

representing a hypotheses of the mobile terminal state, we

estimate the state of each transmitter by means of a Gaussian

mixture filter, where we regard each Gaussian component as a

weighted hypotheses for the state of the respective transmitter.

We use a cubature Kalman filter (CKF) presented in [7] to

estimate the parameters of the Gaussian components. The idea

of the CKF is to approximate the integrals in the Bayesian

estimation process by a closed form cubature rule.

The rest of this paper is organized as follows. Section II in-

troduces the underlying concepts and methods. In Section III,

we introduce the estimation problem at hand and our solution

to it. We present simulations in order to assess the performance

of our algorithm in Section IV. Section V concludes the paper.

Fig. 1. The signals emitted by the transmitter Tx are reflected by the surface
and received by a mobile terminal. From the mobile terminal perspective, as
it moves along its track, the reflected signals seem to be emerging from the
point vTx.

II. SYSTEM MODEL

A. Virtual Transmitters

The idea of virtual transmitters is illustrated in Fig. 1: The

physical transmitter Tx broadcasts a signal that is received by

the mobile terminal equipped with a receiver. As depicted, one

signal component arrives at the mobile terminal via a reflection

at the straight, reflecting surface, i.e., as a MPC. From the

mobile terminal point of view, this signal may be regarded

as being sent from the virtual transmitter vTx in a pure LoS

condition. The position of the virtual transmitter is the position

of the physical transmitter Tx mirrored at the surface. As

the mobile terminal moves along its trajectory, the position

of the virtual transmitter is constant if the environment and

the physical transmitter are static, and hence it might be used

for positioning purposes. In addition, the virtual transmitter is

inherently synchronized to the physical transmitter. Depending

on the amount of multipath propagation in the scenario, the

number of virtual transmitters might allow to obtain a unique

positioning solution even if only single physical transmitter is

present. Furthermore, the physical transmitter does not even

have to be in LoS to the receiver.

The concept of virtual transmitters can be transferred from a

reflecting surface to a punctual scatterer. Then, the position of

the virtual transmitter is equal to the position of the scatterer.

However, for the punctual scatterer case, the virtual transmit-

ters have a clock offset to the physical transmitter. Also, a

generalization to the case where the signal is reflected and/or

scattered multiple times can be made in a straightforward

manner [5].

B. Recursive Bayesian Estimation

Recursive Bayesian estimation allows in general for recur-

sively estimating a PDF of a state vector x [8]. It is assumed

that the state vector follows a first order hidden Markov model,

and can not be observed directly. The evolution of x over time

is modeled as



xk = fk (xk−1,vk−1) , (1)

where xk and xk−1 are the state vector at time steps k
respectively k − 1, fk(·) is a known function, and vk is the

realization of a process noise sequence at time step k. Eq. (1)

describes the so-called movement or state transition model of

the process. In the same way, measurements that are taken can

be related to the state vector as

zk = hk (xk,nk) , (2)

where zk is the measurement, hk(·) is a known function,

and nk is a realization of a measurement noise sequence at

time step k. The goal is now to estimate the state at all time

steps 0 to k, i.e., x0:k, given the k conducted measurements

z1:k. This is, to estimate the posterior PDF p (x0:k|z1:k). This

problem can be approached recursively in two stages, namely

prediction and update stage. In the prediction stage, a-priori

information on the state transition is utilized if available.

In the update stage, the prediction is corrected based on

measurements. If the movement and measurement model, i.e.,

the functions fk(·) and hk(·) in Eq. (1) respectively Eq. (2),

are linear, and if the noise samples vk and nk are uncorrelated

and drawn from Gaussian distributions, an optimal estimator

to the problem is the Kalman filter.

If the physical transmitters and the environment are static,

the virtual transmitters are static as well. Our goal is to track

the mobile terminal’s position and velocity in two dimensions,

and to estimate the locations of the transmitters as well as

their clock offsets to the receiver. Hence, we define the mobile

terminal state vector at a time step k as

xMT,k =
[

xMT yMT vx,MT vy,MT

]T

,

and the state vector of the jth of the physical and virtual

transmitters as

x
<j>
TX,k =

[

xTX,j yTX,j τTX,j

]T

,

where τTX,j represents the transmitter’s clock offset. Given

the number of transmitters being NTX, the entire state vector

at time step k is given by

xk =
[

xMT,k
T xTX,k

T
]T

=
[

xMT,k
T x<0>

TX,k

T
. . . x<NTX−1>

TX,k

T
]T

.

C. Gaussian Mixture Models

The Gaussian mixture model used here represents the PDF

of a transmitter state by a sum of NCKF Gaussian PDFs, or

Gaussian components. Each of the Gaussian components is

described by a mean and a covariance matrix, and has a weight

associated to it. The weight of the ℓth component for the jth

transmitter at time step k is denoted by w<j,ℓ>
k , and the sum of

all NCKF weights for one transmitter equals one. Representing

the PDF for the jth transmitter at time step k as a Gaussian

mixture, we have [9]

p
(

x
<j>
TX,k|z

<j>
1:k

)

=

NCKF
∑

ℓ=1

w<j,ℓ>
k N

(

x
<j>
TX,k; x̂

<j,ℓ>

TX,k|k,P
<j,ℓ>

k|k

)

,

where x̂
<j,ℓ>

TX,k|k and P
<j,ℓ>

k|k are the mean and the covariance

matrix of the ℓth Gaussian component of the jth transmitter,

respectively, and z
<j>
1:k are the measurements from time step 1

to k for the jth transmitter. The function N (x;µ,C) describes

a Gaussian PDF with mean µ and covariance matrix C.

D. Cubature Kalman Filter

In our system model, the ToA measurement model between

the transmitters and the receiver is nonlinear in the state. Some

of the integrals involved in the estimation process are therefore

intractable or do not have a closed-form solution. We propose

to use a CKF to estimate the transmitter state vectors. The CKF

is a variant of the unscented Kalman filter (UKF) originally

presented in [10]. It numerically approximates those integrals

by exploiting their special structure, as the integrands are the

product of an arbitrary function g (·) and a Gaussian PDF

N (x;0, I). The integral can then be approximated by a third-

degree spherical-radial cubature rule, which results in a general

form in

∫

Rn

g (x)N (x;0, I) dx ≈ 1

2n

2n
∑

t=1

g (ξt) ,

where n is the number of states in the state space,

ξt =
√
nQt,

and Qt is the tth cubature point from the cubature points

set Q. For further details on the CKF, we refer the reader to

[7].

III. PROPOSED ALGORITHM

A. Estimation Problem

The state vector xk that is to be estimated can grow huge

depending on the number of visible transmitters, i.e., signal

components arriving at the receiver. To make the estimation

process more efficient, we follow a Rao-Blackwellization

approach and split the state space into the mobile terminal

state space and the transmitter state space. For the posterior

density, we hence have

p (x0:k|z1:k) = p (xTX,0:k,xMT,0:k|z1:k)
= p (xTX,0:k|xMT,0:k, z1:k) p (xMT,0:k|z1:k) .

(3)

We use a sequential importance resampling (SIR) particle

filter [11] to estimate the mobile terminal state xMT,k. For each

of the particles representing a hypotheses of the the mobile

terminal state, we estimate the transmitter states given the

mobile terminal state vector. This idea is reflected in the first
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0

NTX−1

N0 w<0>

...

NNCKF−1 w<NCKF−1>

N0 w<0>

...

NNCKF−1 w<NCKF−1>

xMT xTX

Fig. 2. The mobile terminal state xMT is tracked using a particle filter. For
each particle, the NTX transmitter states are estimated independently from
each other using a Gaussian sum filter, where each of the NCKF hypotheses is
represented by a Gaussian distribution Nℓ with an associated weight w<ℓ>.

factor of the right hand side on the second line in Eq. (3): it

is the posterior PDF for the transmitter states given the state

of the mobile terminal and the measurements up to time step

k, multiplied by the PDF for the actual mobile terminal state

given the measurements.

The state transition models for the single transmitter states

are independent from each other. In addition, we assume inde-

pendence between the ToA measurements that are obtained for

the single transmitters. Hence, we can factorize the likelihood

at time step k as

p (zk|xMT,k,xTX,k) =

NTX
∏

j=1

p
(

z
<j>
k |xMT,k,x

<j>
TX,k

)

,

where z
<j>
k is the measurement for the jth transmitter at

time step k. For each mobile terminal particle, we can now

estimate each transmitter state independently using a Gaussian

mixture filter. Each weighted Gaussian component of the

Gaussian mixture represents one hypotheses for the transmitter

state.

We obtain a ToA measurement for each visible transmitter

at time step k, and model the ToA measurement for the jth

transmitter as

ẑ
<j>
k =

1

c0
‖pMT,k − p

<j>
TX,k ‖+ τTX,j + nk,

where pMT,k and p
<j>
TX,k are the locations of the mobile

terminal and the jth transmitter, respectively, at time step k,

‖·‖ denotes the Euclidean norm, and c0 is the speed of light.

To estimate the parameters of the Gaussian components of the

transmitters’ states, the nonlinearity in the measurement model

does not allow to use Kalman filters. We choose a CKF to cope

with the nonlinearity. Based on the incoming measurements,

the weights of the Gaussian components and the weight of the

particles in the particle filter are updated at every time step.

Fig. 2 illustrates the filtering structure: We use a particle

rmin

rmax

Fig. 3. Example for the spatial initialization of twelve Gaussian components
representing hypotheses for one transmitter. The components are indicated by
crosses, and they are located on three circles around a mobile terminal particle
located in the center.

filter to track the mobile terminal’s state vector. Each gray

square in the circle on the left hand side represents one

particle, i.e., one hypothesis in the mobile terminal state space.

We have NTX transmitters whose states are estimated indepen-

dently from each other for each mobile terminal particle, as

exemplarily drawn for the rightmost particle. In turn, each

transmitter’s state is represented by a Gaussian mixture, a

sum of weighted Gaussian distributions Nℓ with an associated

weight w<ℓ>. The vertical dashed line in Fig. 2 differentiates

between the mobile terminal state space representation on the

left, and the transmitters’ state space representation on the

right.

B. Initialization and Time Progress

We assume to have no prior information on the true

transmitter states upon their initialization. We initialize each

transmitter state PDF after the first ToA for this transmitter

has been measured. Given only one ToA measurement and

an unknown clock offset, the uncertainty for each transmitter

state at initialization is very high. Hence, we need a lot of

hypotheses, i.e., Gaussian components in the mixture model.

The initial transmitter hypotheses are spread spatially such that

the coordinates in the mean of the corresponding component

are located on circles around the current mobile terminal

position hypotheses. The radius of the innermost circle is

chosen as some rmin, the radius of the outermost circle, rmax,

is equal to the first ToA measurement multiplied by the speed

of light. The radii of the circles in between are chosen such

that they divide the interval between rmin and rmax equally.

On each of the circles, the means of the components are

evenly spread. Having initialized the components spatially,

their clock offset is chosen such that it matches the first

ToA measurement. Hence, the clock offsets for the Gaussian

components on the outermost circle is zero. An example for

twelve Gaussian components is shown in Fig. 3. The gray

square in the center represents the particle, i.e., the hypotheses

for the mobile terminal position. The crosses represent the

position coordinates in the mean of the Gaussian components

for one transmitter, located on three circles with equidistant

radii. On each circle, we have four Gaussian components.
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Fig. 4. A simple urban scenario with physical transmitters Tx0 and Tx1,
reflecting walls Wall1 and Wall2, and corresponding virtual transmitters vTx2,
vTx3, and vTx4. The receiver track is depicted in blue with the start and
end positions marked as START respectively END. The traveled distance is
marked for every 20 m. Black, dashed lines are non-reflecting, but blocking
walls.

The weights associated to the NCKF single components

are initialized equally as 1/NCKF. They are updated and

normalized at every time step based on the incoming ToA

measurements. As the mobile terminal moves through the

scenario, many of the initial hypotheses for the transmitters’

states will not match the measurements. If their weight falls

below a threshold, we discard the corresponding Gaussian

components from the mixture model. Hence, the number of

Gaussian components in the transmitter state PDFs might

change over time and be different for each transmitter of each

mobile terminal particle.

IV. SIMULATIONS

A. Simulation Scenario

For verifying our estimation approach, we performed sim-

ulations exploiting the multipath propagation in a simple

urban scenario, which is depicted in Fig. 4. Solid black lines

represent walls reflecting the transmit signals, whereas black,

dashed lines are non-reflecting but blocking walls. We have

two physical transmitters, Tx0 and Tx1, that are represented

by red upward triangles. Knowing the environment, we model

two virtual transmitters for Tx0. These are vTx2, arising due to

reflections of signals originating from Tx0 at the wall to the

left (marked as Wall1), and vTx3, arising due to reflections

of signals from Tx0 at the lower wall (marked as Wall2).

The position of vTx2 respectively vTx3 is the position of

the physical transmitter Tx0 mirrored at Wall1 respectively

Wall2. Similarly, we have one virtual transmitter vTx4 for the

physical transmitter Tx1 due to reflections of signals from

Tx1 at Wall2, and the position of vTx4 is the position of Tx1

mirrored at Wall2. The virtual transmitters are depicted by

magenta colored downward triangles.

The mobile terminal carrying a receiver moves on a track

represented by the blue line with a constant velocity of 1.8 m/s.

TABLE I

OBJECTS AND THEIR COORDINATES IN THE SIMULATION SCENARIO.

Object Coordinates

Tx0 (40, 70)

Tx1 (110, 45)

vTx2 (−40, 70)

vTx3 (40,−70)

vTx4 (110,−45)

receiver START (25, 90)

receiver END (124, 20)

The start and end positions are indicated by the labels START

respectively END. Not all transmitters are visible at any

mobile terminal position due to blocking by the walls. Every

700 ms, the receiver takes a ToA measurement for the currently

available MPCs. The exact coordinates of the transmitters and

the start and end position of the mobile terminal are listed in

Table I. We simulate an inertial measurement unit (IMU) at

the mobile terminal to avoid the ambiguity when the mobile

terminal turns left after approx. 64 m of traveled distance.

However, we only make use of the IMU heading information,

since we have experienced that the heading information even

of low-cost IMUs tends to be very reliable without much

processing, while the IMU speed information tends to drift

considerably. For simulating the IMU heading data, we use

the true heading data of the mobile terminal and add white

Gaussian noise.

At the beginning of the mobile terminal track, the view to

the transmitter Tx1 is blocked (see Fig. 4). After approx. 100 m

of traveled distance, Tx1 becomes visible and is initialized

at the receiver. Having traveled another 15 m, the LoS to

transmitter Tx0 is lost, and this physical transmitter cannot

be used anymore. Though, the virtual transmitters vTx2 and

vTx3, which arise due to the reflections of the signals emitted

from Tx0, can still be used. After a traveled distance of approx.

141 m, vTx3 cannot be used any further, since the signal

traveling from Tx0 to the mobile terminal via Wall2 is blocked.

We assume the starting position and the initial direction

of the mobile terminal to be known in order to define a

local coordinate system. For its tracking, 1000 particles are

initialized normally distributed around the true mobile terminal

position with a variance of 1m2. For the mobile terminal state

transition model, we make use of heading information from

the simulated IMU. For the mobile terminal speed, a random

walk model is implemented.

The ToA measurements in the simulation are the true ToA

values with additive white Gaussian noise. They are taken at

the receiver for every transmitter that is visible at a certain time

step. We assume ultra-wideband (UWB) signals, and hence

that the signal components arriving at the receiver can be well

resolved. This means that ToA the measurements for the single

physical and virtual transmitters are taken independently from

each other.
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No a-priori knowledge on the transmitter positions and

clock offsets is assumed. When the first ToA for a transmitter

is measured, the transmitter is initialized as described in Sub-

section III-B. We choose rmin = 10m and place 768 Gaussian

components on twelve circles, resulting in 64 components per

circle. The threshold for pruning Gaussian components equals

10−15.

B. Simulation Results

Fig. 5 shows the simulation results. The root mean square

error (RMSE) for the mobile terminal position and the loca-

tions of the physical and virtual transmitters is plotted against

the distance the mobile terminal has traveled.

The RMSE for the mobile terminal position is always

below 3 m throughout the mobile terminal motion. After

initialization, the error is very high for the transmitters since

no information on them is given. Already after the first meters,

many hypotheses for the transmitters are pruned as the weights

of the Gaussian components fall below the threshold. Hence,

the RMSE for the transmitters decreases. Though, as the

mobile terminal walks in a straight line in the beginning, there

is the ambiguity on which side of the line each transmitter is

located, and this ambiguity flattens the RMSE curves for the

transmitters in that region. When the mobile terminal takes a

turn to the right after a traveled distance of approx. 64 m, using

heading information from the simulated IMU, the ambiguity

can be resolved, and the RMSE decreases during and right

after the turn. At a traveled distance of approx. 100 m, the

physical transmitter Tx1 becomes visible for the first time, and

is initialized. Since the mobile terminal moves on a straight

track after this initialization, the ambiguity for Tx1 cannot

be resolved, and hence the RMSE curve for Tx1 flattens out.

Having completed the track, the final values for the RMSE are

given in Table II.

While the RMSE for transmitters Tx0 and vTx2 drop down

below 3 m respectively 2 m during the mobile terminal motion,

the errors for the transmitters vTx3 and vTx4 flatten out

TABLE II

RMSE IN METERS AFTER COMPLETING THE TRACK.

Object RMSE [m]

mobile terminal 1.85

Tx0 2.60

Tx1 22.56

vTx2 1.77

vTx3 27.65

vTx4 15.73

towards the end of the track, and stay on a relatively high

value. The reason is that the mobile terminal track does

not fully exploit the geometry of the scenario. The mobile

terminal receives LoS signals from Tx0 from a wide range of

angles while moving on its track, which is why many initial

hypotheses for the state vector of Tx0 are pruned. In contrast,

signals from vTx3 are received only from a limited range

of angles. Hence, more initial hypotheses are kept alive and

prevent the RMSE for Tx3 from decreasing. In the same way,

the good RMSE performance for vTx2, and the relatively high

RMSE for vTx4 can be explained.

V. CONCLUSION

We presented an new estimation scheme for multipath

assisted positioning in this paper. The transmitters’ states are

represented by Gaussian mixture models. The single Gaussian

densities represent hypotheses for the transmitter states, and

they are pruned if their weight falls below a threshold. We use

CKFs to estimate these Gaussian densities, and a particle filter

for estimating the mobile terminal state. A urban scenario was

used for simulations to verify our algorithm.
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