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Abstract. Monitoring of net primary productivity (NPP) is especially important for the fragile 
ecosystems in arid and semi-arid regions. Great interest exists in observing large-scale 
vegetation dynamics and understanding spatial and temporal patterns of NPP in these areas. In 
this study we present results of NPP obtained with the model BETHY/DLR for Kazakhstan for 
2003-2011 and its spatial and temporal dynamics. The spatial distribution of vegetation 
productivity shows a gradient from North to South and clear differences between individual 
vegetation classes. The monthly NPP values show the highest productivity in June. Differences 
between rain-fed and irrigated areas indicate the dependency on water availability. Annual 
NPP variability was high for agricultural areas, but showed low values for natural vegetation. 
The analysis of different patterns in vegetation productivity provides valuable information for 
the identification of regions that are vulnerable to a possible climate change. This information 
may thus substantially support a sustainable land management. 

1. Introduction  
Arid and semi-arid regions are especially susceptible to environmental degradation, which has been 
identified as one of the major threats by the High Level Panel on Threats, Challenges and Change of 
the United Nations [1]. Large areas in Kazakhstan are characterized as arid or semi-arid [2], [3]. The 
country is land-locked and its climate is extremely continental. Kazakhstan has experienced varying 
human influences and political decisions with ecological and environmental consequences. In addition 
to the human impacts on the environment, there are also the effects of changing climate. Increased 
annual and winter temperatures have been recorded since the beginning of the 20th century. 
Temperatures in Central Asia are expected to further increase 1–2°C by 2030–2050 [4]. Aridity is 
expected to intensify, especially in western Kazakhstan.  

In the context of these diverse influences on the Kazakh environment, it is of great interest to 
observe large-scale vegetation dynamics and distribution. Remote-sensing based modelling of NPP 
allows for analysing vegetation productivity of large areas. It provides valuable information on both 
spatial and temporal patterns of NPP. In this study we apply the Biosphere Energy Transfer Hydrology 
Model (BETHY/DLR) for calculation of NPP for Kazakhstan for 2003–2011. The results are used to 
analyze spatial distribution of annual NPP, monthly NPP dynamics for different vegetation classes, 
and NPP variability. 
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2. Study area  
The climate of Kazakhstan is extremely continental, due to its location in the centre of the Eurasian 
continent. High summer temperatures and freezing winters are typical for most parts of the country. 
Precipitation shows an irregular distribution for different regions of the country. Annual precipitation 
ranges between 100 and 400 mm, except for the mountainous regions in the South and East, where 
precipitation reaches up to 1000 mm per year. 

Most areas of Kazakhstan are flat with more than 80% of the country lying below 500 m above sea 
level. In the South-East of the country important mountain ranges are the Tian Shan, the Dzungarian 
Alatau, and the Altay. The Kazakh Uplands are located south-west of Karaganda in Central 
Kazakhstan. Kazakhstan is relatively rich in soils. Most of the forest-steppe zone in the North grows 
on Chernozems, which turn to dark Kastanozem, light Kastanozem, and brown soils further south. The 
deserts and semi-deserts are mainly characterised by Solonchaks. 

The vegetation zones of Kazakhstan show a pronounced north-to-south distribution. A small strip 
in the North belongs to the forest steppe. Further south follow large areas of steppe and semi-desert, 
which can be divided in northern steppe, dry steppe and northern semi-desert. The South of 
Kazakhstan belongs mainly to the southern semi-desert zone. In the mountainous areas, montane 
deserts and steppes developed. Figure 1 provides an overview map of the Republic of Kazakhstan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Overview map of Kazakhstan. 
 
3. Input data and methods 
NPP time-series for Kazakhstan were calculated with the model BETHY/DLR. In this section a short 
description of the model and the input data are provided.  

3.1. The model BETHY/DLR 
BETHY/DLR is a soil-vegetation-atmosphere-transfer (SVAT) model [5], which has been adapted at 
DLR for regional modelling based on remote-sensing-based data. It was successfully applied to a test 
site in Central Kazakhstan [6]. It simulates the CO2 uptake by vegetation as a process that is limited by 
light intensity, heat, soil water availability, and nitrogen. NPP is finally derived as the difference of 
total carbon assimilation (gross primary productivity, GPP) and autotrophic respiration (i.e. carbon 
released by foliage respiration). For each land cover pixel, two vegetation types can be defined. A 
weighting factor gives the relative spatial fraction of the primary and the secondary vegetation type. 
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The spatial resolution of calculated NPP depends on the resolution of the land cover classification 
and the leaf area index (LAI) input data. Satellite derived LAI data is needed to describe vegetation 
phenology. Continuous time-series of meteorological data provide the required climatic information. 
For this study, the spatial resolution of NPP outputs is 1 km. The temporal resolution of the model 
outputs is one day. For NPP analyses, monthly and annual sums of NPP were calculated. Mean annual 
NPP variability was derived based on relative annual NPP deviations. 

3.2. Input data 
The meteorological input data for BETHY/DLR comprise operational data on air temperature, wind 
speed, and cloud coverage. These are available from the European Centre for Medium-Range Weather 
Forecasts (ECMWF) ERA-Interim reanalysis with a spatial resolution of 0.25° × 0.25° and a six hour 
interval. Precipitation is also available from the ECMWF as daily data [7]. The LAI data used in this 
study were MODIS LAI data [8]. These are available as 8-day composites with a spatial resolution of 
926.6 m. During pre-processing the MODIS LAI data were mosaicked and gaps and outliers in the 
time-series were identified and corrected applying a harmonic analysis. A regional land cover and land 
use classification for Central Asia [9], [10], was used to describe the spatial variability of vegetation 
types. Further input data for BETHY/DLR comprise a digital elevation model from the latest version 
of the NOAA/NGDC GTOPO30 product [11] and soil types from the FAO soil map [12]. 
   
4. Results 
The model BETHY/DLR was applied to derive NPP for the period 2003–2011 for Kazakhstan. Mean 
monthly and annual NPP sums were calculated based on the daily model outputs. Figure 2 shows the 
mean annual NPP calculated with BETHY/DLR for the 9-year period for Kazakhstan. At average for 
Kazakhstan mean annual NPP is 143 g C m-2. Along river valleys in the South of Kazakhstan, high 
annual NPP can be observed. These areas are used for irrigated agriculture. This land cover class 
shows the highest average annual NPP with 338 g C m-2. Forest areas, for example in the Altai 
Mountains in the East of Kazakhstan, also have high annual NPP with an average of 264 g C m-2. In 
the northern districts of Kazakhstan, rain-fed agriculture is common, which shows annual NPP sums 
of about 225 g C m-2. The natural and semi-natural vegetation classes (shrubland, grassland, sparse 
vegetation) feature lower annual NPP values between 112 g C m-2 and 205 g C m-2. 
 

 

Figure 2. Mean annual NPP in g C m-2 for Kazakhstan for 2003–2011 calculated 
with BETHY/DLR. 
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Figure 3. Mean monthly NPP in g C m-2 for 2003–2011 for individual vegetated 
land cover classes within Kazakhstan calculated with BETHY/DLR. 

 
Figure 3 depicts the mean monthly NPP for individual vegetation classes for the months March to 
October. The beginning of vegetation activity is mostly in March. Irrigated agriculture, which is 
mainly located along river valleys in South Kazakhstan, shows the highest NPP value in this month. 
The maximum vegetation productivity is reached in June for almost all vegetation classes. Highest 
productivities can be observed for agricultural areas and forest with monthly NPP >60 g C m-2. 
Grassland and closed shrubland reach maximum monthly NPP values between 35–50 g C m-2, while 
maximum NPP for the sparsely vegetated land cover classes is in the range 10–25 g C m-2. Irrigated 
agriculture shows a high mean NPP through all months from May to September. In September and 
October, the vegetation activity decreases throughout the country. 
 
 

 

Figure 4. Detail of the Central Asia land cover and land use map (Klein et al. 
2012) and mean annual NPP variability for the period 2003–2011 for a region 

with high mean annual NPP variability in North Kazakhstan. 
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The results of annual NPP variability show a low variability for most parts of the country, except for a 
region in Central North Kazakhstan. Figure 4 provides a detailed view of this region with partly high 
mean annual NPP variability. In comparison to the Central Asia land cover and land use classification 
(figure 4 left) it becomes obvious, that NPP variability higher than 20% is mainly located in regions 
classified as agricultural land. Grasslands show a relatively low mean annual NPP variability, which 
does not exceed 20%.  

 
5. Discussion and conclusions 
In this paper we present NPP results obtained with the model BETHY/DLR for Kazakhstan for the 
period 2003–2011. The NPP results were analysed regarding spatial patterns, monthly distribution, 
and inter-annual variability. The results showed a mean annual NPP of 143 g C m-2 for Kazakhstan. 
The natural vegetation features a gradient from higher NPP in the North to lower NPP in the South 
(figure 2). This distribution follows the amount of precipitation that is also higher in the North of the 
country, especially in summer.  

The NPP values retrieved with BETHY/DLR in this study are consistent with productivities 
published in other studies. Propastin et al. [13], for example, estimated mean annual NPP of 168 g C 
m-2 for Central Kazakhstan in 2004. Yu et al. [14] reported mean annual NPP values of 144.1 g C m-2 
(open shrubland), 228.1 g C m-2 (grassland), and 26.2 g C m-2 (sparse vegetation) for East Asia. Feng 
et al. [15] derived annual NPP of 252.8 g C m-2 (deciduous shrubland), 122.6 g C m-2 (grassland) and 
14.3 g C m-2 (bare areas) in China.  

The monthly NPP sums revealed that the maximum vegetation productivity is reached in June 
throughout the country (figure 3). The monthly productivity varies strongly between individual 
vegetation classes. Highest productivities were observed for agriculture and forest. Irrigated 
agriculture showed a high productivity for the whole period from May until September. In contrast to 
other land cover classes, water availability is no limiting factor in summer and autumn for this class 
due to irrigation. 

The annual NPP variability observed in this study for Kazakhstan was low for shrubland and 
grassland areas. For these areas, the NPP values of individual years are predicted quite well by the 9-
year mean. Thus, NPP modelling provides valuable information for ecosystem and rangeland 
management in terms of prediction of possible carbon sequestration and available biomass for 
livestock for the large semi-arid and arid regions in Kazakhstan. Our finding of high variability in 
rain-fed agriculture in northern Kazakhstan is supported by de Beurs and Henebry [16], who observed 
high inter-annual variability in crop yields in this area. The region might also be most strongly 
affected by changing meteorological conditions [17]. 

This study showed that remote-sensing based modelling of NPP allows for analysing vegetation 
productivity of large areas with a reasonable spatial resolution. This information is valuable for 
identification of regions that are vulnerable to a possible climate change. It may also substantially 
support a sustainable land management.  
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