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Abstract— This paper derives the basic concept of modal
matching—an approach to natural motion control. Modal
matching exploits the nonlinearity of the rigid multi-body
dynamics (and the variability of the elastic transmissions) as
degree of freedom to fit the natural plant dynamics to the
desired dynamics of the task. Modal matching achieves a
desired intrinsic oscillation behavior which is locally equivalent
to the dynamics of the basic spring loaded inverted pendulum
or pogo-stick model (both implementing a linear inertia acting
on a linear spring), well established in locomotion analysis and
control. Using the concept of modal matching, an efficient and
effective methodology to natural jumping control is introduced.

I. INTRODUCTION

Physical compliance is a key feature of legged locomotion

in robotic and biological systems [1], [2]. The elastic energy

storages can be exploited to overcome peak power and

velocity limitations [3], [4], [5], [6] on the one hand and

improve the mechanical robustness [7], [8] on the other

hand. Especially in case of cyclic locomotion tasks such

as jumping, hopping or running, transferring resonance con-

cepts from single mass-spring-damper systems to nonlinear

elastic multi-body systems seems to be a key point of

performance and energy efficiency. Very basic concepts in

locomotion exploiting elasticities for the bouncing motion

use either translational actuators [9] or translational spring

models [10], [11], [12], [13]. These concepts naturally inherit

the resonance properties of the linear spring-mass model.

To implement such a desired behavior on real robots with

segmented legs, approaches based on virtual model control

[14], virtual constraints [15], or operational space control

[16] have been successfully applied.

Our goal is to directly excite the plant in a resonance

mode, while simultaneously obtaining the desired bouncing

motion required for the specific gait. For simple motions

such as vertical jumping, this can be achieved by our recent

method proposed in [17]. The functional principle of the ap-

proach in [17] is to initially excite the system with a guess of

the oscillation mode and observe the resulting motion. Based

on this observation, the excitation is improved successively.

The system converges to an excitation, respectively motion

which correspond to an average of the eigenmode of the

instantaneously linearized system. Since the resulting motion

is an intrinsic property of the plant, it is potentially efficient,
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Fig. 1. The concept of modal matching.

but does not necessarily match to the desired task, which is

given for example by a predefined forward jumping direction.

In our follow up work [18], we proposed an approach which

can be used to excite an oscillation in a direction specified

by the task. Since this predefined oscillation mode is in

general not the intrinsic behavior of the plant, the motion

is performant (the task is achieved), but not necessarily

efficient.

This paper presents a methodology which combines both

requirements: task performance and efficiency. The approach

adapts the intrinsic oscillatory behavior of the plant to the

desired behavior of the task. This, is achieved by a novel

concept which we call modal matching—an approach to nat-

ural motion control. An implication of modal matching is the

generalization of the locomotion principles such as Raibert’s

pogo-stick [9] or the spring loaded inverted pendulum (SLIP)

[10] to elastic, segmented multi-body legs dynamics, without

the need of modifying the intrinsic dynamics behavior of the

plant, for example by decoupling control. An intermediate

result of the modal matching algorithm is an adaptation law

to adjust the direction of the oscillation mode in a modally

compatible manner. This property can be used to perform

the transition from the landing phase/direction and push-off

phase/direction in the stance phase of a directed, natural

jumping motion.

The contributions of this paper are as follows:

• a formulation of the stance phase dynamics which

prepares for the modal matching theory (Sect. III);

• the main result: modal matching theory and algorithm

(basic concepts, Sect. II and formal theory, Sect. IV);

• a natural jumping control methodology directly derived

from the modal matching theory (Sect. V).

II. BASIC CONCEPTS

This section explains the basic idea of modal matching

and its application to natural jumping control.
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The class of systems considered here are compliantly

actuated robots which are schematically depicted in Fig. 1

(left). In each joint, the inertia of a motor is connected via

a elastic transmission (spring) to the succeeding link. This

actuator principle is also depicted in Fig. 2. If the motors are

held in a constant position and the links are deflected (e. g.,

according to an impulsive contact force), one can observe an

oscillatory motion of the links. Due to the nonlinearity of the

multi-body dynamics, the resulting oscillation will be also

not linear (Fig. 1, left). The nonlinear oscillation is depending

on the configuration. The basic idea of modal matching is to

modify the mode by changing the configuration. The main

tool of the modal matching algorithm is to compute how

a change in the robot configuration changes its oscillatory

behavior. This so-called differential mapping can be obtained

by considerations of differential geometry. It is worth men-

tioning that a desired oscillation could be an oscillation

which has no rotational components, i. e., an oscillation

which is exclusively translational (Fig. 1, middle). Thereby,

the resulting oscillation dynamics is (locally) equivalent to

the oscillation dynamics of the simple spring-mass or pogo-

stick model1 (Fig. 1, right). This is of major importance for

the jumping control explained in Sect. V.

The development from the modal matching concept to

natural jumping control can be performed by addressing the

following subtasks:

1) landing and spring compression (energy storage) along

the modal direction;

2) tilting the mode to achieve the transition from the

compression phase to the push-off phase;

3) imposing an equilibrium position for the modal incli-

nation, i. e., stabilizing the modal tilting motion.

1) can be achieved by matching the oscillation mode with the

landing direction. 2) can be the result of a (positive) differ-

ence between the direction of the adjusted oscillation mode

and the landing direction, which produces a force tilting the

oscillation mode in the push-off direction. 3) can be achieved

by analyzing the Jacobian corresponding to the differential

mapping required for the modal matching algorithm, which

can be used to derive a stabilizing potential for the modal

inclination. 3) is required, since the modal tilting dynamics,

essentially an inverted pendulum dynamics, is intrinsically

unstable and thus very sensitive to disturbances.

III. MODEL

The considered model has two finite states, either the rigid

body dynamics is completely free floating (flight phase) or all

legs are in contact (stance phase). We start by describing the

free floating dynamics and then introduce the constraints and

the resulting dynamics imposed by the legs in contact. Even

though the concepts are introduced based on simple exam-

ples, the model and the following theory will be formulated

in a general way which fits to a single leg as well as multi-

1The equivalence is only in the modally matched direction approximately
valid.

legged robots with fully-actuated and over-actuated2 stance

phase dynamics. In particular, the constraints of the stance

phase dynamics are not assumed to be explicitly solvable for

the dependent configuration variables.

A. Free floating dynamics

The free floating dynamics may be partitioned in the form

[

M bb(q) M bj(q)
M bj(q)

T M jj(q)

] [

q̈b

q̈j

]

+

[

bb(q, q̇)
bj(q, q̇)

]

=

[

0

τ j

]

(1)

Herein, the generalized coordinates q = (qT
b , q

T
j )

T are sub-

divided into base coordinates qb ∈ R
nb and joint coordinates

qj ∈ R
nj describing the base and joint configuration, respec-

tively. The block matrices Mkl represent the generalized

inertia tensor and the bias forces bk summarize generalized

Coriolis/centrifugal and gravitational forces, for k, l ∈ {b, j}.

B. Actuator dynamics

The joint torques τ j(θ, qj) ∈ R
nj in (1) are derived from

the elastic potential U(θ, qj), i. e.,

τ j(θ, qj) := −
∂U(θ, qj)

∂qj

, (2)

where θ ∈ R
nj are generalized motor coordinates. Note that

the potential U(θ, qj) itself is assumed to be positive definite

in a sense that U(θ, qj) > 0, ∀(θ−q) > 0, and U(θ, qj) = 0
only if (θ−q) = 0. In particular, the Hessian of the potential

K(θ, qj) :=
∂2U(θ,qj)

∂qj
2 referred to as the stiffness matrix is

positive definite.

Following common simplifications [19] fully justified for

many robotic systems, the actuator dynamics can be repre-

sented by Bθ̈ + τ j(θ − qj) = τm, where B ∈ R
nj×nj is

a constant, positive definite, and diagonal inertia matrix and

τm ∈ R
nj are generalized motor forces which are considered

as control input. Note that the states qj, q̇j of the rigid body

dynamics (1) are only indirectly actuated via the actuator

dynamics Bθ̈+τ j(θ−qj) = τm, where the coupling is due

to the generalized elastic forces introduced in (2). Using a

PD control τm = −KP(θ − θdes) − KDθ̇ for the desired

motor position θdes, with high positive definite gain matrices

KP,KD ∈ R
nj×nj such that ǫ

(

Bθ̈ +KDθ̇ + τ j

)

= θdes −

θ ≈ 0, we can approximately consider θ in (2) respectively

(1) as control input. This is as the singular perturbation

assumption [20], ǫ = 1/‖KP‖ → 0, holds.

C. Constrained dynamics

The stance phase dynamics is modeled by incorporating

the constraints

φ = φ(qb,d, qj) ∈ R
nj = 0 (3)

2The rigid body dynamics is fully-actuated if the number of kinematics
degrees of freedom equals the number of actuator degrees of freedom. It is
over-actuated if the latter exceed the former.



into the free floating dynamics (1), i. e.,

Γb(q, q̇, q̈) =

(

∂φ(qb,d, qj)

∂qb

)T

λ (4)

0 =

(

∂φ(qb,d, qj)

∂d

)T

λ (5)

Γj(q, q̇, q̈) =

(

∂φ(qb,d, qj)

∂qj

)T

λ+ τ j(θ, qj) (6)

where for the free floating inverse dynamics, the following

abbreviations are introduced: Γb(q, q̇, q̈) := M bb(q)q̈b +
M bj(q)q̈j + bb(q, q̇) and Γj(q, q̇, q̈) := M bj(q)

T q̈b +
M jj(q)q̈j +bj(q, q̇). The constraints (3) are formulated such

that the absolute positions of the contact points have to be

constant during stance phase. To explicitly resolve the prob-

lem of over-actuation, the ”artificial” coordinates d ∈ R
nj−nb

satisfying dim(qb) + dim(d) = dim(qj) are introduced.

The introduction of the coordinates d ”relaxes” nj − nb

constraints. Since during stance phase, these constraints are

still active the corresponding force along these coordinates

τ d = (∂qj/∂d)
T τ j can be controlled to remove internal

tension forces.

The Lagrange multipliers λ in (4)–(6) can be eliminated

by substituting (6) into (4), (5) yielding

Γb =

(

∂φ

∂qb

)T (

∂φ

∂qj

)

−T

(Γj − τ j) (7)

0 =

(

∂φ

∂d

)T (

∂φ

∂qj

)

−T

(Γj − τ j) (8)

where for compactness of notation, the dependencies are

omitted. Considering the second time derivative of (3), the

constrained dynamics (7) and (8) can be written in compo-

nent form (structurally equal to (1)):

M̄

[

q̈b

d̈

]

+

[

b̄b

b̄d

]

=

[

Φ
−T
jb

Φ
−T
jd

]

τ j (9)

where explicit expressions for the inertia matrix M̄ and the

Jacobian matrices Φjb,Φjd required for later computations

are provided in the Appendix I.

IV. THEORY AND ALGORITHM

This section derives the basic result, i. e., the theory and

the algorithm of what we call modal matching. First, we

introduce a representation of the oscillation modes which

corresponds to the eigenmodes of the linearization of the

constraint dynamics (9), Sect. III-C. Second, we derive the

corresponding algorithm which matches the actual mode

with the desired oscillation mode. At this point, it is worth

mentioning that although the representation of the oscillation

mode is based on a linearization, the algorithm exploits

the nonlinearity of the dynamics (i. e., the dependency of

the generalized inertia and stiffness on the configuration) as

degree of freedom to adjust the eigenmode. In particular, the

approach applies only to a nonlinear plant (i. e., a multi-body

dynamics with configuration dependent inertia matrix).

A. Linearized dynamics

In the following, we describe the modal oscillation behav-

ior of the stance phase dynamics, when the motor coordinates

θ are held constant. Let us therefore denote the task coor-

dinates by x = (qT
b ,d

T )T and the task and configuration

variables by z = (xT , qT
j )

T . Then, consider the linearization

of (9): Sect. III-C

M̄ (z)ẍ+ K̄(z)δxqj
= K̄(z)δxθ , (10)

where explicit expressions of the components of the inertia

and stiffness matrix in task coordinates M̄ (z) and K̄(z),
respectively, are provided in the Appendix I. In (10), the non-

linear elastic torques given by (2), Sect. III-B, are linearized

based on a first order Taylor expansion with deflections

δxqj
=

(

∂φ
∂qj

)

−1
∂φ
∂x

δqj, δxθ =
(

∂φ
∂qj

)

−1
∂φ
∂x

δθ. Note that in

general the stiffness matrix K̄(z) also depends on the motor

coordinates θ, but since we are interested in the passive

behavior (i. e., θ = const.), this dependency drops out.

B. Definition of modal matching

On the basis of the linearized task dynamics (10), the

representation of the oscillation mode results from the gen-

eralized eigenvalue problem

λM̄w = K̄w (11)

s.t. wTw = 1 , (12)

where λ > 0 is a generalized eigenvalue and w ∈ R
nj is a

generalized eigenvector. We assume algebraic and geometric

multiplicity of one, therefore the solution of problem (11),

(12) results in nj eigenvalues λi and corresponding eigen-

vectors wi. In the following, we always only consider the

eigenvector wk which has minimum distance to the desired

eigenvector wdes, where k = min
i
(‖wi − wdes‖) and for

simplicity of notation we define w := wk. The components

of the generalized eigenvector wi describe the distribution

of the oscillation amplitudes w. r. t. coordinate directions xi

for a motion along the corresponding oscillation mode in the

vicinity of qj = θ. Thus, we refer to w as oscillation mode

or simply mode. The process of finding a joint configuration

qj such that w = wdes is what we call modal matching.

C. Modal matching algorithm

The idea of the modal matching algorithm considers the

differential mapping

dw =
∂w(z)

∂z
dz (13)

and approximates dw ≈ wdes−w and dz ≈ zk+1−zk such

that the recursion

zk+1 = zk +

[

∂w

∂z
(zk)

]+

(wdes −w) (14)

converges to a z∞ which minimizes the error w̃ = wdes−w.

In (14), the operator (·)+ denotes the generalized inverse of a

matrix which is required since the linear system of equations

(13) is under-determined, i. e., ∂w/∂z is a nj × 2nj matrix.



In particular, the matrix ∂w/∂z has row rank nj−1 since the

length of the eigenvector is identity (cf. condition (12)). This

rank-deficiency can be overcome by a transformation of the

form y = y(w), where y ∈ R
nj−1 is a representation of the

direction of the vector w. The differential of this mapping

takes the form dy = ∂y(w)
∂w

dw and applying the chain rule

results in

∂y

∂w
dw =

∂y

∂w

∂w

∂z
dz , (15)

where the (nj−1)×2nj Jacobian matrix (∂y/∂w)(∂w/∂z)
has full row rank. Note that the Jacobian matrix in (15) does

not account for the constraints φ(z) = 0 which represent an

implicit relation between qj and x. These constraints can be

incorporated differentially by
[

∂y
∂w

dw
0

]

= J(z)dz (16)

where the Jacobian matrix J(z) =

[

∂y
∂w

∂w
∂z

∂φ
∂z

]

is now (2nj −

1) × nj and therefore the linear system of equations (16)

is still under-determined. The degree of freedom in the

solution of (16) can be exploited to span one dimensional

subspaces3 where the motion along the oscillation mode

w takes place. In case of mode matching it represents

the vector space where changes in the configuration dqj

do not result in changes dw of the oscillation mode w.

The remaining nullspace can be resolved by augmenting the

Jacobian [21]: Jaug =

(

J

Z

)

, where Z ∈ R
1×2nj is a basis

spanning the nullspace of J such that JZT = 0. Finally,

the mode matching algorithm can be compactly described

by the following formula:

zk+1 = zk + γJaug(zk)
−1





∂y
∂w

(wdes −wk(zk))
0nj×1

Z(zk) (zdes − zk)



 , (17)

where zdes is a desired configuration satisfying φ(zdes) = 0

which ”is kept in the nullspace of J” and γ > 0 influences

the convergence rate.

Remark 1: The closed-form computation (without finite

differences) of the augmented Jacobian in (17) requires to

compute the closed-form differentiation of the eigenvector

w w. r. t. the variables z. This can be achieved using the

procedure given in the Appendix II.

The modal matching algorithm and its intermediate results

derived above, form the basis for the control approach

proposed next.

V. CONTROL APPROACH

The basic idea of the control approach is to achieve di-

rected (cyclic) jumping motions with minimal control action

and thereby changing the original plant dynamics only to

a minimum extent. The intention is to already achieve the

desired behavior by means of the modal matching algorithm

3Note that there exist infinitely many possibilities to span the nullspace
of J .

qj,1

motor

spring

thigh

shank

trunk

qj,2

f c

qb

rc

stance phase flight phase

Fig. 2. Two segment leg setup considered for the derivation of the control
approach. The stance phase (left) and the flight phase (right) are depicted.
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Fig. 3. Finite dynamics of the controller

derived in Sect. IV-C and use very low gain feedback control

to regulate against model uncertainties and disturbances. In

the following, we will introduce the control law exemplarily

for a single two segment leg for which the base is free to

translate in the sagittal plane (see, Fig. 2). At the end of

the section, we will briefly discuss how the approach can

be extended to legs including a foot and to multi-legged

systems.

A. Finite state machine

The controller is embedded in a finite state machine which

switches between control actions respectively feedback con-

trols triggered based on state dependent events. As depicted

in Fig. 3, the state machine has the following states:

• flight phase,

• stance phase,

• and push-off phase,

which also represent the phases of the controlled jumping

motion. These phases are triggered by events which occur

when the continuous system states hit the boundary of the

corresponding switching manifold:

• The flight phase is triggerd by the takeoff event TO
which occur when the normal component f c

n of the

contact force defined in Fig. 2 becomes zero.

• The touchdown event TD triggers the stance phase

when the foot hits the ground, i. e., when the distance

between the contact point and the ground rc
n (see, Fig. 2)

becomes zero.

• The generalized elastic force τn ∈ R (defined in (20))

reflecting the spring compression triggers the push-off

phase when the threshold ǫτn
is reached. Note that this

phase change is part of the feedback control.

The following subsections derive the control action during

these phases which lead to a continuing jumping cycle.
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Fig. 4. (a) Deflection motion of the trunk due to the modal matching
algorithm. The desired mode is represented as a dashed line. For perfect
matching, the pivot point of the hip should move along the dashed line.
(b) Definition of the angle of attack β, the angle between the touchdown
velocity (dash-dotted blue direction) and the mode at touchdown (dashed
red direction). Additionally, the effect of the angle of attack is shown. A
tilting of the mode direction is achieved.

B. Flight phase / foot placement

In the first instance, the goal of our flight phase control is

to reconfigure the leg such that the deflection motion after the

touchdown is along the desired oscillation mode of the plant.

The direction of the translational velocity of the base, i. e.,

αv,TD = angle(q̇b(TD)) is assumed to be known a priori.

Note that αv,TD can be predicted based on the takeoff velocity

angle αv,TO assuming a frictionless ballistic flight phase. In

particular, αv,TO can be predicted based on the joint velocity

q̇j just before the takeoff incorporating the stance phase

constraint (3), Sect. III-C. Then, given αv,TD, the touchdown

configuration can be computed based on the modal matching

algorithm of Sect. IV-C for the desired oscillation mode

wdes = wdes(αv,TD).
For the two-segment leg example considered here, the

degrees of freedom during contact are nj = 2 such that

the direction coordinate of the mode y ∈ R is scalar.

Furthermore, the contact constraints can be solved explicitly,

resulting in the mapping qb(qj). As a consequence the

augmented Jacobian of (17) simplifies to

J aug(qj) =

[

∂y(w)
∂w

∂w(qj)

∂qj

Z(qj)

]

(18)

where Z(qj) ∈ R
1×2 satisfies

∂y(w)
∂w

∂w(qj)

∂qj
Z(qj)

T = 0, and

the modal matching recursion (17) reduces to

qj,k+1 = qj,k + γJ aug(qj,k)
−1

[

∂y
∂w

(

wdes −w(qj,k)
)

Z(qj,k)
(

qj,des − qj,k

)

]

Fig. 4(a) depicts an example simulation result of the

mode matching procedure. In the shown case, the deflection

behavior is such that the motion is almost linear in the desired

direction especially in the first part of the motion. Note that

due to the mode matching procedure, the segmented leg

behaves like a spring loaded telescopic leg as considered

in the pogo-stick model of Raibert [9] or the spring loaded

inverted pendulum model [10].

For a directed jumping motion, the touchdown and takeoff

angles are of opposite sign. Therefore, the mode orientation

needs to be tilted from the touchdown to the takeoff direction.

The tilting is an effect which can be naturally achieved

by means of the mode matching based reconfiguration.

Therefore, we introduce a non-zero angle β = y(qj(TD))−
αv,TD which we refer to as angle of attack (see, Fig. 4(b)).

The angle of attack β is a control input which indirectly

influences the tilting momentum and can be used to control

the horizontal jumping velocity. Since, the control variable of

the proposed approach is the touchdown angle respectively

takeoff angle, i. e., αv,TD = −αv,TO, we formulate the

repetitive feedback law

β(l + 1) = β(l)− kα
(

αv,TO − αdes
v,TO

)

where kα > 0 is a (low) feedback gain, αdes
v,TO is the desired

takeoff angle and l is the iteration variable of the l-th jumping

cycle.

Note that this concept generalizes also the foot placement

algorithm of Raibert [9] as introduced for a telescopic leg

to the case of a two-segment leg.

C. Stance phase

The stance phase is in charge of the two main tasks: (i)

weight bearing and (ii) stabilizing the mode tilting. Thereby,

the goal is that both tasks fit to our concept of natural

dynamics exploitation. This is achieved by shaping the spring

potential in coordinates based on the oscillation mode w.

Consider therefore the differential mapping based on the

augmented Jacobian (18)
[

ẏ
vn

]

= J aug(qj)q̇j

and its pull-back transformation (transforming generalized

forces)

τ j = J aug(qj)
T

[

τy

τn

]

where vn ∈ R is a velocity in the nullspace of the mapping

y = y(qj). The generalized forces τy and τn are dual to ẏ
and vn, respectively.

Remark 2: At this point it is worth pointing out that,

although the coordinate y is based on the oscillation mode w

which is a notion for linear dynamics, the mapping y = y(qj)
is nonlinear and the considered coordinate transformation

follows the strict rules of differential geometry as, e. g.,

explained in [22].

Using the above transformation, let us transform the joint

torques τ j(θ0, qj) defined by (2), where θ0 := qj(TD) (con-

stant during stance phase) is the result of the reconfiguration

algorithm of Sect. V-B:
[

τy(θ0, qj)
τn(θ0, qj)

]

= J aug(qj)
−Tτ j(θ0, qj) . (19)

In particular, Z(qj) can be computed such that

τn(θ0, qj) = Z(qj)τ j(θ0, qj) (20)

which represent the portion of the spring forces τ j(θ0, qj) in

the direction of the mode vector w. This force implements

the weight bearing task (i).



The second task of the stance phase is to achieve stable

transition from the direction of the touchdown mode to the

direction of the push-off mode. Assuming, these directions

are symmetric according to the vertical line, the stable

transition can be implemented by the equilibrium position

corresponding to the mode angle y = ydes = 0. Note

that the force τy(θ0, qj) resulting from the springs in the

joints (cf. (19)) does not implement the desired equilibrium

τy(θ0, qj) = 0 =⇒ y = ydes. In particular, in the gravity

free case, the equilibrium of the modal angle would be

y = αv,TD (i. e., the modal angle at touchdown resulting from

the modal matching algorithm). To achieve the desired equi-

librium, we artificially introduce a potential which produces

the generalized force

τ des
y = −ky (y − ydes) (21)

with ky > 0 being the stiffness of the potential. This control

law stabilizes the mode tilting task (ii).

The complete stance phase control takes the form

τ des
j = J aug(qj)

T

[

−ky (y − ydes)
Z(qj)τ j(θ0, qj) .

]

(22)

Note that this control law only alters the elastic potential

corresponding to the mode tilting coordinate y and therefore

changes the original plant dynamics only to a minimum

extent.

Remark 3: As explained in Sect. III-B, the joint torque τ j

is not an control input of the plant. To implement the control

law (22), we invert the generalized elastic force function

(2), Sect. III-B, (note that this is always possible due to the

conditions on U(θ, qj)): θdes = τ−1
j (τ des

j ) + qj.

The procedure of partially changing the (visco-)elastic

behavior in terms of task-coordinates has already been

proposed in our previous work [18] for a Cartesian task.

Here, we adapt the method to the case of modal coordinates

and thereby we combine it with the novel modal matching

approach.

D. Push-off phase

The push-off phase is triggered when the nullspace force

τn(θ0, qj) defined by (20) overshoots a certain threshold

ǫτn
, following the concept of switching based limit cycle

control as proposed in our previous work [23]. The control

action of the push-off phase is a pure switching of the motor

position in the direction of the instantaneous oscillation mode

w(qj(PO)), i. e.,

θdes = θ(PO) +

(

∂qb(qj)

∂qj

)

−1

w(qj(PO))
∥

∥

∥

∥

(

∂qb(qj)

∂qj

)

−1

w(qj(PO))

∥

∥

∥

∥

θ̂ , (23)

where θ̂ > is a constant switching amplitude and PO denotes

the time instance where the push-off phase is triggered. This

control action is responsible for the energy input required to

sustain the limit cycle.

It is worth mentioning that the limit cycle excitation

considered here differs from our method proposed in [17].

In [17] the excitation is performed along the principal

component of the motion which corresponds to an ”average”

of all local linear eigenmodes of the motion. Here, we excite

the system along the instantaneous eigenmode. As such,

push-off and deflection after the touchdown are modal and

the transition between both phases is performed w. r. t. to

modally based coordinates. Conceptually, in the presence of

damping (which exists in every physical system), a modal

excitation is the most efficient excitation. Since our concept

exploits the oscillation mode in all phases of the jumping

motion, the energy efficiency is potentially higher compared

to motions which are less ”modal”.

E. Additional degrees of freedom extension / multiple legs

Here, we briefly discuss how the control approach pre-

sented above extends to the general case of additional degrees

of freedom and multiple legs. Therefore, we subdivide the

task coordinates in the components x =





xt

xr

xd



, where

xt and xr represent the translation and rotation of the

trunk, respectively, and the generalized force τ d dual to ẋd

represent the internal tension force due to multiple legs in

contact. We may define the components of the oscillation

mode accordingly: w =





wt

wr

wd



. If the jumping task requires

a purely translational motion, we may match to a desired

mode of the form wdes =





wt(αv,TD)
wr = 0

wd = 0



. The stance phase

control can be performed for the translational part of the

dynamics (corresponding to xt), while the rotational motion

ẋr and the tension force τ d need to be regulated to zero. A

comprehensive analysis on the coupling between the tasks

will be part of future work.

VI. SIMULATION RESULTS

This section conducts simulations4 of a system as depicted

in Fig. 2 to evaluate the performance of the controller

introduced in Sect. V. Fig. 5 shows the compression of the

springs along the modal direction as well as the transition to

the push-off phase, the flight phase and the foot placement

based on modal matching. Fig. 6 validates the steady-state

behavior of the approach by showing the limit cycle of the

hip angle, knee angle, and vertical trunk position. Finally,

Fig. 7 depicts the convergence behavior of the takeoff angle,

which is a control variable of the repetitive low gain control.

The stability and robustness properties of the closed-loop

jumping system have been additionally analyzed using the

numerical Poincaré return map method. Since the control

system dynamics is hybrid, the formulation of the Poincaré

return map for hybrid systems as proposed in [25, Chapt. 4]

has been utilized. It is worth mentioning that the assumptions

4The differential equations of the closed-loop system has been integrated
using a variable step solver of MATLAB/Simulink. The contact dynamics
has been incooporated in the differential equations using a compliant contact
model as described by [24].
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Fig. 5. Motion of a complete jumping cycle between two consecutive
touchdown (TD) events of the two segment, compliantly actuated robot
model. Red points correspond to the hip, green points to the knee and blue
points to the foot. The horizontal positions of the hip at TD and takeoff
(TO) are marked by vertical dotted lines. A symmetric motion of the hip
(red dots) between the first TD and TO can be observed.
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Fig. 6. Limit cylce hip angle vs. knee angle vs. vertical trunk position.

of [25, Theorem 4.1 and 4.3] have been checked and are

satisfied, but due to space limitations only the results of

the analysis are presented in Fig. 8 and 9. Fig. 8 depicts

the convergence behavior for a perturbation of the initial

conditions with respect to the fixed-point. Fig. 9 depicts the

convergence behavior for a perturbation of the model pa-

rameters used in the feedback control. Both figures represent

the Poincaré return map considering the takeoff condition as

Poincaré section. The evaluation of the Jacobian matrices of

the Poincaré return maps reveals that the jumping system

has an exponentially stable fixed-point even in the case of

parameter uncertainties.

VII. CONCLUSION

The concept of modal matching and its application to natu-

ral jumping control introduced here, bridges the gap between

performance and efficiency. While our previous and exist-

ing approaches satisfy only one of these controller design

goals, i. e., forced desired oscillations or natural resulting

oscillations, the methodology introduced here achieves both

design criteria. As a result, modal matching generalizes the
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Fig. 7. Convergence of the takeoff angle. Solid line represents the current
takeoff angle and dashed line the desired takeoff angle.
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Fig. 8. Graphical representation of the Poincaré return map cor-
responding to the exponentially stable fixed-point (eigenvalues magni-
tude of the Jacobian linearization are strictly less than one) χ⋆ =
(0,−0.02, 0.77,−0.89, 0.64, 1.41,−19.55, 40.48). The deviation from
the fixed-point δχ = χk − χ⋆ are plotted for the states corresponding
to the joint configuration variables qj.

spring-mass and pogo-stick model (which are very basic to

locomotion) to the case of articulated, elastic multi-body

systems.

APPENDIX I

COMPONENTS OF THE CONSTRAINED INERTIA AND

STIFFNESS MATRIX

Using the notations Φjb =
(

∂φ
∂qj

)

−1
∂φ
∂qb

, Φjd =
(

∂φ
∂qj

)

−1
∂φ
∂d

for the constrained Jacobian matrices, the com-

ponents of the closed-loop inertia matrix in (9), M̄ =
[

M̄ bb M̄ bd

M̄
T

bd M̄ dd

]

, can be computed by M̄ bb = M bb −

M bjΦjb − Φ
T
jbM

T
bj + Φ

T
jbM jjΦjb, M̄ bd = −M bjΦjd +

Φ
T
jbM jjΦjd, and M̄ dd = Φ

T
jdM jjΦjd. Analogously, the

components of the closed-loop stiffness matrix, K̄ =
[

K̄bb K̄bd

K̄
T

bd K̄dd

]

, can be computed by K̄bb = Φ
T
jbKΦjb,

K̄bd = Φ
T
jbKΦjd, K̄dd = Φ

T
jdKΦjd.
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Fig. 9. Graphical representation of the Poincaré return map cor-
responding to the exponentially stable fixed-point (eigenvalues magni-
tude of the Jacobian linearization are strictly less than one) χ⋆ =
(0,−0.02, 0.78,−0.90, 0.68, 1.45,−19.68, 41.34). The initial conditions
equal to the one corresponding to the simulation in Fig. 8, but the model
parameters considered in the modal matching controller are perturbed (joint
stiffness and trunk inertia of the model deviate by 10%, sign alternately).
Note that the parameter deviation leads to a slightly changed but also
exponentially stable fixed-point.

APPENDIX II

DIFFERENTIATION OF EIGENVECTORS

Given are two symmetric matrices K,M ∈ R
m×m with

M positive definite. Consider the generalized eigenvalue

problem (11), (12), where K̄ , K and M̄ , M . Assume

that all quantities in the above equations are functions of the

variables z = (z1, z2, . . . , zn)
T . The goal is to compute the

Jacobian matrix ∂w
∂z

=
(

∂w
∂z1

∂w
∂z2

. . . ∂w
∂zn

)

. Therefore,

we show how to compute ∂w/∂zi. We derive both sides of

(11) and rearrange the equation as

(K − λM)
∂w

∂zi
=

∂λ

∂zi
Mw −

(

∂K

∂zi
− λ

∂M

∂zi

)

w (24)

Pre-multiplying (24) by wT from the left and taking into

account that wT (K − λM ) = 0 (cf. (11)), leads to the

derivative of λ as

∂λ

∂zi
=

wT
(

∂K
∂zi

− λ∂M
∂zi

)

w

wTMw
. (25)

To compute ∂w/∂zi, (25) is substituted in (24):

(K − λM )
∂w

∂zi
=

(

MwwT

wTMw
− I

)(

∂K

∂zi
− λ

∂M

∂zi

)

w .

(26)

Since the matrix (K − λM ) is singular by definition, one

equation in (26) has to be replaced by the derivative of

(12), 2wT ∂w
∂zi

= 0 such that the resulting system of linear

equations becomes regular.
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